code
stringlengths
2.5k
6.36M
kind
stringclasses
2 values
parsed_code
stringlengths
0
404k
quality_prob
float64
0
0.98
learning_prob
float64
0.03
1
``` def launch(spark_session, map_fun, args_dict): """ Run the wrapper function with each hyperparameter combination as specified by the dictionary Args: :spark_session: SparkSession object :map_fun: The TensorFlow function to run :args_dict: A dictionary containing hyperparameter values to insert as arguments for each TensorFlow job """ sc = spark_session.sparkContext # Length of the list of the first list of arguments represents the number of Spark tasks num_tasks = len(args_dict.values()[0]) # Create a number of partitions (tasks) nodeRDD = sc.parallelize(range(num_tasks), num_tasks) # Execute each of the hyperparameter arguments as a task nodeRDD.foreachPartition(_do_search(map_fun, args_dict)) def _do_search(map_fun, args_dict): def _wrapper_fun(iter): for i in iter: executor_num = i argcount = map_fun.func_code.co_argcount names = map_fun.func_code.co_varnames args = [] argIndex = 0 while argcount > 0: # Get arguments for hyperparameter combination param_name = names[argIndex] param_val = args_dict[param_name][executor_num] args.append(param_val) argcount -= 1 argIndex += 1 map_fun(*args) return _wrapper_fun def mnist(num_steps): from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(num_steps): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) args_dict = {'num_steps': [1000, 10000]} launch(spark, mnist, args_dict) ```
github_jupyter
def launch(spark_session, map_fun, args_dict): """ Run the wrapper function with each hyperparameter combination as specified by the dictionary Args: :spark_session: SparkSession object :map_fun: The TensorFlow function to run :args_dict: A dictionary containing hyperparameter values to insert as arguments for each TensorFlow job """ sc = spark_session.sparkContext # Length of the list of the first list of arguments represents the number of Spark tasks num_tasks = len(args_dict.values()[0]) # Create a number of partitions (tasks) nodeRDD = sc.parallelize(range(num_tasks), num_tasks) # Execute each of the hyperparameter arguments as a task nodeRDD.foreachPartition(_do_search(map_fun, args_dict)) def _do_search(map_fun, args_dict): def _wrapper_fun(iter): for i in iter: executor_num = i argcount = map_fun.func_code.co_argcount names = map_fun.func_code.co_varnames args = [] argIndex = 0 while argcount > 0: # Get arguments for hyperparameter combination param_name = names[argIndex] param_val = args_dict[param_name][executor_num] args.append(param_val) argcount -= 1 argIndex += 1 map_fun(*args) return _wrapper_fun def mnist(num_steps): from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True) # Create the model x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, 10]) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() for _ in range(num_steps): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Test trained model correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})) args_dict = {'num_steps': [1000, 10000]} launch(spark, mnist, args_dict)
0.833087
0.859782
<h1>Branch and Rebase</h1> In this notebook you will start with a repository containing names of cities in various US states. Following the distinction between the develop and issue branches, the names for each state will be added to the `cities` file in a different commit. However, the order of the commits will not match the order in which the states joined United States. For example, New York joined the union before Texas, and Hawaii joined after Texas. You will use the `rebase` command in Git to reorder the commits to match the order in which the states became part of the United States. The following initializes the repo and creates the commits in an arbitrary order. Feel free to modify the cell to use your user name and email. ``` %%bash git init rebase_repo cd rebase_repo git config --global user.email "peter@initech.com" git config --global user.name "Peter Gibbons" git checkout -b develop echo "This repo contains lists of cities for New York, Hawaii, and Texas" > README git add README git commit -m 'initial commit' git branch hawaii git branch newyork git branch texas git checkout --force hawaii echo "Honolulu Hilo Kailua" >> cities git add cities git commit -am 'added hawaii' git checkout --force newyork echo "New York Albany Buffalo" >> cities git add cities git commit -am 'added new york' git checkout --force texas echo "Austin Dallas Houston" >> cities git add cities git commit -am 'added texas' %cd rebase_repo ``` Start by defining an usual alias for the `git log` command. ``` !git config --global alias.lol 'log --graph --decorate --oneline --all' ``` After you run the detailed `log`, your output should resemble the following: <pre> * b4e0... (hawaii) added hawaii | * b52c... (newyork) added new york |/ | * df45... (HEAD -> texas) added texas |/ * d3a8... (develop) initial commit </pre> ``` !git lol ``` Since New York was the first to join the union, ensure that your `HEAD` points to the `newyork` branch before doing the rebase. ``` !git checkout newyork ``` Use your detailed log to confirm the correct state of the `HEAD` reference. ``` !git lol ``` You are ready to start with the `rebase`. Ensure that the commit for `newyork` is rebased back to the `develop` branch. ``` !git rebase develop ``` Don't be surprised with the output of the rebase command. If there is a direct path from `develop` to `newyork` then there is nothing to rebase. ``` !git lol ``` Next, rebase `texas` on top of the `newyork` commit. ``` !git checkout texas !git rebase newyork ``` This time the command results in a conflict. Review the conflicting file and resolve the issue. ``` !cat cities %%writefile cities New York Albany Buffalo Austin Dallas Houston ``` Remeber that once the `cities` file has the right content you need to re-stage it and `--continue` the rebase. ``` !git add cities !git rebase --continue ``` Confirm that the rebase completed successfully using your `git log` alias. ``` !git lol ``` Finally, complete the steps to rebase `hawaii`. ``` !git checkout hawaii !git rebase texas !cat cities %%writefile cities New York Albany Buffalo Austin Dallas Houston Honolulu Hilo Kailua !git add cities !git rebase --continue !cat cities ``` Once the rebase is done, check the detailed log. ``` !git lol ``` Assuming the rebase completed as expected, the order of the commits in the log should resemble the following: <pre> * ebac... (HEAD -> hawaii) added hawaii * 0e46... (texas) added texas * b52c... (newyork) added new york * d3a8... (develop) initial commit </pre> Finally, checkout the `develop` branch and "fast-forward" it to the `hawaii` branch so that future commits to develop happen based on the `hawaii` commit. ``` !git checkout develop !git merge hawaii ``` At the conclusion of this exercise your log should resemble the following: <pre> * 538b... (HEAD -> develop, hawaii) added hawaii * f7b1... (texas) added texas * baca... (newyork) added new york * 28fe... initial commit </pre> ``` !git lol ``` Copyright 2019 CounterFactual.AI LLC. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
github_jupyter
%%bash git init rebase_repo cd rebase_repo git config --global user.email "peter@initech.com" git config --global user.name "Peter Gibbons" git checkout -b develop echo "This repo contains lists of cities for New York, Hawaii, and Texas" > README git add README git commit -m 'initial commit' git branch hawaii git branch newyork git branch texas git checkout --force hawaii echo "Honolulu Hilo Kailua" >> cities git add cities git commit -am 'added hawaii' git checkout --force newyork echo "New York Albany Buffalo" >> cities git add cities git commit -am 'added new york' git checkout --force texas echo "Austin Dallas Houston" >> cities git add cities git commit -am 'added texas' %cd rebase_repo !git config --global alias.lol 'log --graph --decorate --oneline --all' !git lol !git checkout newyork !git lol !git rebase develop !git lol !git checkout texas !git rebase newyork !cat cities %%writefile cities New York Albany Buffalo Austin Dallas Houston !git add cities !git rebase --continue !git lol !git checkout hawaii !git rebase texas !cat cities %%writefile cities New York Albany Buffalo Austin Dallas Houston Honolulu Hilo Kailua !git add cities !git rebase --continue !cat cities !git lol !git checkout develop !git merge hawaii !git lol
0.177098
0.905531
<a href="https://colab.research.google.com/github/SoIllEconomist/ds4b/blob/master/python_ds4b/07_machine_learning/scikit_learn_overview.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Scikit-learn Scikit-learn is an open source Python library that implements a range of machine learning, preprocessing, cross-validation and visualization algorithms using an unified interface. ## Loading Data Your data needs to be numeric and stored as NumPy arrays or SciPy sparse matrices. Other types that are convertible to numeric arrays, such as Pandas DataFrame, are also acceptable. ``` import numpy as np X = np.random.random((11,5)) y = np.array(['M','M','F','F','M','F','M','M','F','F','F']) X[X < 0.7] = 0 ``` ## Train-Test-Split ``` from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=42) ``` ## Preprocessing Data ### Standardization ``` from sklearn.preprocessing import StandardScaler scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) ``` ### Normalization ``` from sklearn.preprocessing import Normalizer scaler = Normalizer().fit(X_train) normalized_X = scaler.transform(X_train) normalized_X_test = scaler.transform(X_test) ``` Binarization ``` from sklearn.preprocessing import Binarizer binarizer = Binarizer(threshold=0.0).fit(X) binary_X = binarizer.transform(X) ``` ### Encoding Categorical Features ``` from sklearn.preprocessing import LabelEncoder enc = LabelEncoder() y = enc.fit_transform(y) ``` ### Imputing Missing Values ``` from sklearn.impute import SimpleImputer imp = SimpleImputer(missing_values=0, strategy='mean') imp.fit_transform(X_train) ``` ### Generating Polynomial Features ``` from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(5) poly.fit_transform(X) ``` ## Model Creation ### Supervised Learning Estimators #### Linear Regression ``` from sklearn.linear_model import LinearRegression lr = LinearRegression(normalize=True) ``` #### Support Vector Machines (SVM) ``` from sklearn.svm import SVC svc = SVC(kernel='linear') ``` #### Naive Bayes ``` from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() ``` #### KNN ``` from sklearn import neighbors knn = neighbors.KNeighborsClassifier(n_neighbors=5) ``` ### Unsupervised Learning Estimators #### Principal Component Analysis (PCA) ``` from sklearn.decomposition import PCA pca = PCA(n_components=0.95) ``` #### K Means ``` from sklearn.cluster import KMeans k_means = KMeans(n_clusters=3, random_state=0) ``` ## Model Fitting ### Supervised Learning Fit the model to the data ``` lr.fit(X, y) knn.fit(X_train, y_train) svc.fit(X_train, y_train) ``` ### Unsupervised Learning Fit the model to the data ``` k_means.fit(X_train) ``` Fit to data, then transform it ``` pca_model = pca.fit_transform(X_train) ``` ## Prediction ### Supervised Estimators Predict Labels ``` y_pred = svc.predict(np.random.random((2,5))) y_pred = lr.predict(X_test) ``` Estimate probability of a label ``` y_pred = knn.predict_proba(X_test) ``` ### Unsupervised Estimators Predict labels in clustering algorithms ``` y_pred = k_means.predict(X_test) ``` ## Evaluate Model Performance ### Classification Metrics #### Accuracy Score Estimator score method ``` knn.score(X_test, y_test) ``` Metric scoring functions ``` from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) ``` #### Classification Precision, recall, f1-score and support ``` from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) ``` #### Confusion Matrix ``` from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) ``` ### Regression Metrics #### Mean Absolute Error ``` from sklearn.metrics import mean_absolute_error y_true = [3, -0.5, 2] mean_absolute_error(y_true, y_pred) ``` #### Mean Squared Error ``` from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred) ``` #### $R^2$ Score ``` from sklearn.metrics import r2_score r2_score(y_true, y_pred) ``` ### Cluster Metrics #### Adjusted Rand Index ``` from sklearn.metrics import adjusted_rand_score adjusted_rand_score(y_true, y_pred) ``` #### Homogeneity ``` from sklearn.metrics import homogeneity_score homogeneity_score(y_true, y_pred) ``` #### V-measure ``` from sklearn.metrics import v_measure_score v_measure_score(y_true, y_pred) ``` ### Cross-Validation ``` from sklearn.model_selection import cross_val_score print(cross_val_score(knn, X_train, y_train, cv=4)) print(cross_val_score(lr, X, y, cv=2)) ``` ## Model Tuning ### Grid Search ``` from sklearn import svm, datasets from sklearn.model_selection import GridSearchCV iris = datasets.load_iris() parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} svc = svm.SVC() clf = GridSearchCV(svc, parameters) clf.fit(iris.data, iris.target) GridSearchCV(estimator=SVC(), param_grid={'C': [1, 10], 'kernel': ('linear', 'rbf')}) sorted(clf.cv_results_.keys()) ``` ### Randomized Parameter Optimization ``` from sklearn.model_selection import RandomizedSearchCV params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]} rsearch = RandomizedSearchCV(estimator=knn, param_distributions=params, cv=4, n_iter=8, random_state=5) rsearch.fit(X_train, y_train) print(rsearch.best_score_) ```
github_jupyter
import numpy as np X = np.random.random((11,5)) y = np.array(['M','M','F','F','M','F','M','M','F','F','F']) X[X < 0.7] = 0 from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=42) from sklearn.preprocessing import StandardScaler scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.preprocessing import Normalizer scaler = Normalizer().fit(X_train) normalized_X = scaler.transform(X_train) normalized_X_test = scaler.transform(X_test) from sklearn.preprocessing import Binarizer binarizer = Binarizer(threshold=0.0).fit(X) binary_X = binarizer.transform(X) from sklearn.preprocessing import LabelEncoder enc = LabelEncoder() y = enc.fit_transform(y) from sklearn.impute import SimpleImputer imp = SimpleImputer(missing_values=0, strategy='mean') imp.fit_transform(X_train) from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(5) poly.fit_transform(X) from sklearn.linear_model import LinearRegression lr = LinearRegression(normalize=True) from sklearn.svm import SVC svc = SVC(kernel='linear') from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() from sklearn import neighbors knn = neighbors.KNeighborsClassifier(n_neighbors=5) from sklearn.decomposition import PCA pca = PCA(n_components=0.95) from sklearn.cluster import KMeans k_means = KMeans(n_clusters=3, random_state=0) lr.fit(X, y) knn.fit(X_train, y_train) svc.fit(X_train, y_train) k_means.fit(X_train) pca_model = pca.fit_transform(X_train) y_pred = svc.predict(np.random.random((2,5))) y_pred = lr.predict(X_test) y_pred = knn.predict_proba(X_test) y_pred = k_means.predict(X_test) knn.score(X_test, y_test) from sklearn.metrics import accuracy_score accuracy_score(y_test, y_pred) from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) from sklearn.metrics import mean_absolute_error y_true = [3, -0.5, 2] mean_absolute_error(y_true, y_pred) from sklearn.metrics import mean_squared_error mean_squared_error(y_test, y_pred) from sklearn.metrics import r2_score r2_score(y_true, y_pred) from sklearn.metrics import adjusted_rand_score adjusted_rand_score(y_true, y_pred) from sklearn.metrics import homogeneity_score homogeneity_score(y_true, y_pred) from sklearn.metrics import v_measure_score v_measure_score(y_true, y_pred) from sklearn.model_selection import cross_val_score print(cross_val_score(knn, X_train, y_train, cv=4)) print(cross_val_score(lr, X, y, cv=2)) from sklearn import svm, datasets from sklearn.model_selection import GridSearchCV iris = datasets.load_iris() parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} svc = svm.SVC() clf = GridSearchCV(svc, parameters) clf.fit(iris.data, iris.target) GridSearchCV(estimator=SVC(), param_grid={'C': [1, 10], 'kernel': ('linear', 'rbf')}) sorted(clf.cv_results_.keys()) from sklearn.model_selection import RandomizedSearchCV params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]} rsearch = RandomizedSearchCV(estimator=knn, param_distributions=params, cv=4, n_iter=8, random_state=5) rsearch.fit(X_train, y_train) print(rsearch.best_score_)
0.666714
0.975992
# Basic `Python` We are going to learn the most basic commands of Python. The objective is not to teach you how to program to become an expert, but to learn the syntaxis of the language & recongnize it through the next notebooks ## Basic operations ### +, -, \*, /, ** <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br> - Define two integer variables & print the result of basic operations </div> ### Operations over the same variables can be simplified by adding the operand before the `=`, like this: x += 1 <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br>- Execute the code in the cell below & print <b>x</b> & <b>y</b> final values </div> ``` x, y = 3, 4 print(x,y) x += 1 y /= 2 ``` *** ## `for` loops Can iterate on any list. <br> #### Note the indentation in the line after the `for` command. This position indicates which lines belong to the `for` loop. The print statement is no longer being looped on because it has no indent. <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br>Execute the code below </div> ``` somelist = [10,15,25, '10ppm','5m/s'] for item in somelist: print(item) print(somelist) ``` ### A list can also be just of numbers, and we can build a list using the function `range`: #### range(start, end, step) <br><i>Note: the end is non-inclusive</i> <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br>- Execute the code below <br> - Replace <b>somelist</b> in the <b>for</b> loop with: <b>range(0,41,5)</b>, and execute the code again <br> - Change the start, end or step and execute the code again </div ``` somelist = [0, 5, 10, 15, 20, 25, 30, 35, 40] for item in somelist: print(item) ``` <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br>- Try <b>range(10)</b> instead ``` somelist = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i','j'] for inx in range(10): print(inx) print('********\n') for inx in range(10): print(somelist[inx]) print('********\n') for inx in range(0,10,2): print(somelist[inx]) ``` ## Sometimes we want the index and the value of each element on a list ### The command `enumerate` gives you both <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br> - Execute the code below <br> - Then try with <b>range(10)</b> instead </div> <br>Note the use of <b>{ }</b> and <b>.format</b> to print <b>inx</b> and <b>item</b> ``` for inx,item in enumerate(range(0,41,a5)): print('index {}, value = {}'.format(inx,item)) ``` *** # conditionals: `if`, `elif`, `else` ### Conditional operators can be used to compare different types of variables or to test logical statements. - The basic operator to compare numerical values are: ==, !=, <, >, >=, <= - The logical operators are: and, or, not - and the use of conditional operators are exemplified in the next cell #### Note the indentation again <div class="alert alert-block alert-info"> <b>Try it out!</b> <br><br> - Execute the next cell <br> - Test different comparison operators and logical operators and execute </div> ``` lat = 12 if (lat <= -23.5) or (lat >= 23.5): print('extra-tropical') elif lat == 0: print('equator') else: print('tropical') ```
github_jupyter
x, y = 3, 4 print(x,y) x += 1 y /= 2 somelist = [10,15,25, '10ppm','5m/s'] for item in somelist: print(item) print(somelist) somelist = [0, 5, 10, 15, 20, 25, 30, 35, 40] for item in somelist: print(item) somelist = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i','j'] for inx in range(10): print(inx) print('********\n') for inx in range(10): print(somelist[inx]) print('********\n') for inx in range(0,10,2): print(somelist[inx]) for inx,item in enumerate(range(0,41,a5)): print('index {}, value = {}'.format(inx,item)) lat = 12 if (lat <= -23.5) or (lat >= 23.5): print('extra-tropical') elif lat == 0: print('equator') else: print('tropical')
0.05694
0.985426
# Introduction In October 2015, a data journalist named Walt Hickey analyzed movie ratings data and found strong evidence to suggest that [Fandango's](https://www.fandango.com/) rating system was biased and dishonest. He published his analysis in this [article](https://fivethirtyeight.com/features/fandango-movies-ratings/) — a great piece of data journalism that's totally worth reading. Fandango displays a 5-star rating system on their website, where the minimum rating is 0 stars and the maximum is 5 stars. Hickey found that there's a significant discrepancy between the number of stars displayed to users and the actual rating, which he was able to find in the HTML of the page. He was able to find that: - The actual rating was almost always rounded up to the nearest half-star. For instance, a 4.1 movie would be rounded off to 4.5 stars, not to 4 stars, as you may expect. - In the case of 8% of the ratings analyzed, the rounding up was done to the nearest whole star. For instance, a 4.5 rating would be rounded off to 5 stars. - For one movie rating, the rounding off was completely bizarre: from a rating of 4 in the HTML of the page to a displayed rating of 5 stars. The distribution of displayed ratings is clearly shifted to the right compared to the actual rating distribution, suggesting strongly that Fandango inflates the ratings under the hood. In this project, we'll analyze more recent movie ratings data to determine whether there has been any change in Fandango's rating system after Hickey's analysis. ## The Data One of the best ways to figure out whether there has been any change in Fandango's rating system after Hickey's analysis is to compare the system's characteristics previous and after the analysis. Fortunately, we have ready-made data for both these periods of time: Walt Hickey made the data he analyzed publicly available on [GitHub](https://github.com/fivethirtyeight/data/tree/master/fandango). We'll use the data he collected to analyze the characteristics of Fandango's rating system previous to his analysis. One of Dataquest's team members collected movie ratings data for movies released in 2016 and 2017. The data is publicly available on [GitHub](https://github.com/mircealex/Movie_ratings_2016_17) and we'll use it to analyze the rating system's characteristics _after_ Hickey's analysis. Steps: Read in and explore briefly the two data sets (fandango_score_comparison.csv and movie_ratings_16_17.csv) to understand their structure. You can find the documentation of both data sets in the GitHub repositories we linked to above. For the data set with ratings previous to Hickey's analysis, select the following columns: 'FILM', 'Fandango_Stars', 'Fandango_Ratingvalue', 'Fandango_votes', 'Fandango_Difference'. For the other data set, select the the following columns: 'movie', 'year', 'fandango'. Define the population of interest for our goal — remember that our goal is to determine whether there has been any change in Fandango's rating system after Hickey's analysis. By reading the README.md files of the two repositories, figure out whether the two samples are representative for the population we're trying to describe. Determine whether the sampling is random or not — did all the movies have an equal chance to be included in the two samples? ``` import pandas as pd pd.options.display.max_columns = 100 # Avoid having displayed truncated output previous = pd.read_csv('fandango_score_comparison.csv') after = pd.read_csv('movie_ratings_16_17.csv') previous.head(3) after.head(3) ``` We'll now isolate only the columns that provide information about Fandango, to have the revelant data available for later use. We'll make copies to avoid any `SettingWithCopyWarning` later on. ``` fandango_previous = previous[['FILM', 'Fandango_Stars', 'Fandango_Ratingvalue', 'Fandango_votes', 'Fandango_Difference']].copy() fandango_after = after[['movie', 'year', 'fandango']].copy() fandango_previous.head(3) fandango_after.head(3) ``` Our goal is to determine whether there has been any change in Fandango's rating system after Hickey's analysis. The population of interest for our analysis is made up of all the movie ratings stored on Fandango's website, regardless of the year it was released. Because we want to find out whether the parameters of this population changed after Hickey's analysis, we're interested in sampling the population at two different periods in time — previous and after Hickey's analysis — so we can compare the two states. The data we're working with was sampled at the moments we want: one sample was taken previous to the analysis, and the other after the analysis. We want to describe the population, so we need to make sure that the samples are representative, otherwise we should expect a large sampling error and, ultimately, wrong conclusions. From Hickey's article and from the [README.md](https://github.com/fivethirtyeight/data/blob/master/fandango/README.md) of the data set's repository, we can see that he used the following sampling criteria: - The movie must have had at least 30 fan ratings on Fandango's website at the time of sampling (Aug. 24, 2015). - The movie must have had tickets on sale in 2015. The sampling was clearly not random because not every movie had the same chance to be included in the sample — some movies didn't have a chance at all (like those having under 30 fan ratings or those without tickets on sale in 2015). It's questionable whether this sample is representative of the entire population we're interested to describe. It seems more likely that it isn't, mostly because this sample is subject to temporal trends — e.g. movies in 2015 might have been outstandingly good or bad compared to other years. The sampling conditions for our other sample were (as it can be read in the [README.md](https://github.com/mircealex/Movie_ratings_2016_17/blob/master/README.md) of the data set's repository): - The movie must have been released in 2016 or later. - The movie must have had a considerable number of votes and reviews This second sample is also subject to temporal trends and it's unlikely to be representative of our population of interest. The number of votes and reviews for each movie is unclear from the README.md or from the data. Both authors had certain research questions in mind when they sampled the data, and they used a set of criteria to get a sample that would fit their questions. Their sampling method is called [purposive sampling](https://youtu.be/CdK7N_kTzHI) (or judgmental/selective/subjective sampling). While these samples were good enough for their research, they don't seem too useful for us. ## Changing our goal At this point, we have at least two alternatives: either we collect new data, either we change the goal of our analysis by placing some limitations on it. Tweaking our goal seems a much faster choice compared to collecting new data. Also, it's quasi-impossible to collect a new sample previous to Hickey's analysis at this moment in time. Our new goal is to determine whether there's any difference between Fandango's ratings for popular movies in 2015 and Fandango's ratings for popular movies in 2016. This new goal should also be a fairly good proxy for our initial goal. ## Isolating the necessary samples With the new goal, we now have two populations that we want to describe and compare with each other: - All of Fandango's ratings for popular movies released in 2015. - All of Fandango's ratings for popular movies released in 2016. The term "popular" is vague and we need to define it with precision before continuing. We'll use Hickey's benchmark of 30 fan ratings and consider a movie as "popular" only if it has 30 fan ratings or more on Fandango's website. One quick way to check the representativity of this sample is to sample randomly 10 movies from it and then check the number of fan ratings ourselves on Fandango's website. Ideally, at least 8 out of the 10 movies have 30 fan ratings or more. ``` fandango_after.sample(10, random_state = 1) ``` 90% of the movies in our sample are popular. This is enough and we move forward with a bit more confidence. Let's also double-check the other data set for popular movies. The documentation states clearly that there're only movies with at least 30 fan ratings, but it should take only a couple of seconds to double-check here. ``` sum(fandango_previous['Fandango_votes'] < 30) ``` We notice that there are movies with the year of release other than 2015 or 2016. For our purposes, we'll need to isolate only the movies released in 2015 and 2016. Let's start with Hickey's data set and isolate only the movies released in 2015. There's no special column for the year a movie was released, but we should be able to extract it from the strings in the FILM column. ``` fandango_previous.head(2) fandango_previous['Year'] = fandango_previous['FILM'].str[-5:-1] fandango_previous.head(2) ``` Let's examine the frequency distribution for the Year column and then isolate the movies released in 2015. ``` fandango_previous['Year'].value_counts() fandango_2015 = fandango_previous[fandango_previous['Year'] == '2015'].copy() fandango_2015['Year'].value_counts() ``` We'll now do the same for our 2016 data set. ``` fandango_after.head(2) fandango_after['year'].value_counts() fandango_2016 = fandango_after[fandango_after['year'] == 2016].copy() fandango_2016['year'].value_counts() ``` ## Comparing Distribution Shapes for 2015 and 2016 There are many ways we can go about with our analysis, but let's start simple with making a high-level comparison between the shapes of the distributions of movie ratings for both samples. Steps: - Generate two kernel density plots on the same figure for the distribution of movie ratings of each sample. - Customize the graph such that: - It has a title with an increased font size. - It has labels for both the x and y-axis. - It has a legend which explains which distribution is for 2015 and which is for 2016. - The x-axis starts at 0 and ends at 5 because movie ratings on Fandango start at 0 and end at 5. - The tick labels of the x-axis are: [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]. - It has the fivethirtyeight style (this is optional). You can change to this style by using plt.style.use('fivethirtyeight'). This line of code must be placed before the code that generates the kernel density plots. ``` import matplotlib.pyplot as plt from numpy import arange %matplotlib inline plt.style.use('fivethirtyeight') fandango_2015['Fandango_Stars'].plot.kde(label = '2015', legend = True, figsize = (8,5.5)) fandango_2016['fandango'].plot.kde(label = '2016', legend = True) plt.title("Comparing distribution shapes for Fandango's ratings\n(2015 vs 2016)", y = 1) # the `y` parameter pads the title upward plt.xlabel('Stars') plt.xlim(0,5) # because ratings start at 0 and end at 5 plt.xticks(arange(0,5.1,.5)) plt.show() ``` ### Observations Two aspects are striking on the figure above: - Both distributions are strongly left skewed. - The 2016 distribution is slightly shifted to the left relative to the 2015 distribution. The left skew suggests that movies on Fandango are given mostly high and very high fan ratings. Coupled with the fact that Fandango sells tickets, the high ratings are a bit dubious. The slight left shift of the 2016 distribution is very interesting for our analysis. - It shows that ratings were slightly lower in 2016 compared to 2015. - This suggests that there was a difference indeed between Fandango's ratings for popular movies in 2015 and Fandango's ratings for popular movies in 2016. - We can also see the direction of the difference: the ratings in 2016 were slightly lower compared to 2015. ## Comparing Relative Frequencies We now need to analyze more granular information. Steps: Examine the frequency distribution tables of the two distributions. - The samples have different number of movies. Does it make sense to compare the two tables using absolute frequencies? - If absolute frequencies are not useful here, would relative frequencies be of more help? If so, what would be better for readability — proportions or percentages? - Analyze the two tables and try to answer the following questions: - Is it still clear that there is a difference between the two distributions? - What can you tell about the direction of the difference just from the tables? Is the direction still that clear anymore? Because the data sets have different numbers of movies, we normalize the tables and show percentages instead. ``` print('2015' + '\n' + '-' * 16) # To help us distinguish between the two tables fandango_2015['Fandango_Stars'].value_counts(normalize = True).sort_index() * 100 print('2016' + '\n' + '-' * 16) fandango_2016['fandango'].value_counts(normalize = True).sort_index() * 100 ``` ### Observations In 2016, very high ratings (4.5 and 5 stars) had significantly lower percentages compared to 2015. - In 2016, under 1% of the movies had a perfect rating of 5 stars, compared to 2015 when the percentage was close to 7%. - Ratings of 4.5 were also more popular in 2015 — there were approximately 13% more movies rated with a 4.5 in 2015 compared to 2016. - The minimum rating is also lower in 2016 — 2.5 instead of 3 stars, the minimum of 2015. There clearly is a difference between the two frequency distributions. For some other ratings, the percentage went up in 2016. There was a greater percentage of movies in 2016 that received 3.5 and 4 stars, compared to 2015. 3.5 and 4.0 are high ratings and this challenges the direction of the change we saw on the kernel density plots. ## Determining the Direction of the Change We'll now use the mean, the median, and the mode for both distributions and then use a bar graph better understand the direction of the change. ``` mean_2015 = fandango_2015['Fandango_Stars'].mean() mean_2016 = fandango_2016['fandango'].mean() median_2015 = fandango_2015['Fandango_Stars'].median() median_2016 = fandango_2016['fandango'].median() mode_2015 = fandango_2015['Fandango_Stars'].mode()[0] # the output of Series.mode() is a bit uncommon mode_2016 = fandango_2016['fandango'].mode()[0] summary = pd.DataFrame() summary['2015'] = [mean_2015, median_2015, mode_2015] summary['2016'] = [mean_2016, median_2016, mode_2016] summary.index = ['mean', 'median', 'mode'] summary plt.style.use('fivethirtyeight') summary['2015'].plot.bar(color = 'blue', align = 'center', label = '2015', width = .25) summary['2016'].plot.bar(color = 'yellow', align = 'edge', label = '2016', width = .25, rot = 0, figsize = (8,5)) plt.title('Comparing summary statistics: 2015 vs 2016', y = 1.07) plt.ylim(0,5.5) plt.yticks(arange(0,5.1,.5)) plt.ylabel('Stars') plt.legend(framealpha = 0, loc = 'upper center') plt.show() (summary.loc['mean'][0] - summary.loc['mean'][1]) / summary.loc['mean'][0] ``` ## Conclusions The mean rating was lower in 2016 by almost 5% relative to the mean rating in 2015. While the median is the same for both distributions, the mode is lower in 2016 by 0.5. Coupled with what we saw for the mean, the direction of the change we saw on the kernel density plot is confirmed: on average, popular movies released in 2016 were rated slightly lower than popular movies released in 2015. We cannot be completely sure what caused the change, however it occured shortly after Hickey's analysis.
github_jupyter
import pandas as pd pd.options.display.max_columns = 100 # Avoid having displayed truncated output previous = pd.read_csv('fandango_score_comparison.csv') after = pd.read_csv('movie_ratings_16_17.csv') previous.head(3) after.head(3) fandango_previous = previous[['FILM', 'Fandango_Stars', 'Fandango_Ratingvalue', 'Fandango_votes', 'Fandango_Difference']].copy() fandango_after = after[['movie', 'year', 'fandango']].copy() fandango_previous.head(3) fandango_after.head(3) fandango_after.sample(10, random_state = 1) sum(fandango_previous['Fandango_votes'] < 30) fandango_previous.head(2) fandango_previous['Year'] = fandango_previous['FILM'].str[-5:-1] fandango_previous.head(2) fandango_previous['Year'].value_counts() fandango_2015 = fandango_previous[fandango_previous['Year'] == '2015'].copy() fandango_2015['Year'].value_counts() fandango_after.head(2) fandango_after['year'].value_counts() fandango_2016 = fandango_after[fandango_after['year'] == 2016].copy() fandango_2016['year'].value_counts() import matplotlib.pyplot as plt from numpy import arange %matplotlib inline plt.style.use('fivethirtyeight') fandango_2015['Fandango_Stars'].plot.kde(label = '2015', legend = True, figsize = (8,5.5)) fandango_2016['fandango'].plot.kde(label = '2016', legend = True) plt.title("Comparing distribution shapes for Fandango's ratings\n(2015 vs 2016)", y = 1) # the `y` parameter pads the title upward plt.xlabel('Stars') plt.xlim(0,5) # because ratings start at 0 and end at 5 plt.xticks(arange(0,5.1,.5)) plt.show() print('2015' + '\n' + '-' * 16) # To help us distinguish between the two tables fandango_2015['Fandango_Stars'].value_counts(normalize = True).sort_index() * 100 print('2016' + '\n' + '-' * 16) fandango_2016['fandango'].value_counts(normalize = True).sort_index() * 100 mean_2015 = fandango_2015['Fandango_Stars'].mean() mean_2016 = fandango_2016['fandango'].mean() median_2015 = fandango_2015['Fandango_Stars'].median() median_2016 = fandango_2016['fandango'].median() mode_2015 = fandango_2015['Fandango_Stars'].mode()[0] # the output of Series.mode() is a bit uncommon mode_2016 = fandango_2016['fandango'].mode()[0] summary = pd.DataFrame() summary['2015'] = [mean_2015, median_2015, mode_2015] summary['2016'] = [mean_2016, median_2016, mode_2016] summary.index = ['mean', 'median', 'mode'] summary plt.style.use('fivethirtyeight') summary['2015'].plot.bar(color = 'blue', align = 'center', label = '2015', width = .25) summary['2016'].plot.bar(color = 'yellow', align = 'edge', label = '2016', width = .25, rot = 0, figsize = (8,5)) plt.title('Comparing summary statistics: 2015 vs 2016', y = 1.07) plt.ylim(0,5.5) plt.yticks(arange(0,5.1,.5)) plt.ylabel('Stars') plt.legend(framealpha = 0, loc = 'upper center') plt.show() (summary.loc['mean'][0] - summary.loc['mean'][1]) / summary.loc['mean'][0]
0.449876
0.993196
# Evaluate the performance of CritterCounter models We will use this to evaluate the performance of the models built for empty vs animal as well as a species classifier. ### Set up the environment ``` import os import pandas as pd import re from keras.preprocessing.image import ImageDataGenerator from keras.applications import ResNet50 from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense import numpy as np from sklearn.metrics import confusion_matrix test_folder = '/data/holdout_set' ``` ## Import the holdout data ### Create the data frame ``` test_file_paths = [] for root, sub, files in os.walk(test_folder): if len(files) > 0: test_file_paths += [os.path.join(root, file) for file in files] df = pd.DataFrame({'path': test_file_paths}) df['category_name'] = df['path'].apply(lambda x: re.findall('/data/holdout_set/([a-z_]+)', x)[0]) ``` #### Create the species specific dataset ``` species_subset = [ 'american_black_bear', 'bobcat', 'cougar', 'coyote', 'deer', 'domestic_cow', 'domestic_dog', 'elk', 'moose', 'vehicle', 'wild_turkey' ] species_df = df[df['category_name'].isin(species_subset)] print(len(species_df)) species_df['category_name'].value_counts() ``` ## Species Model Evaluation ### Import the pretrained network ``` img_width, img_height = 224, 224 batch_size = 1 model_path = '/data/models/ResNet50/MobileNetV2_20190323_weights.h5' # Define the model ResNet50 = ResNet50(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) print('Model loaded.') # build a classifier model to put on top of the convolutional model model = Sequential() model.add(ResNet50) model.add(Flatten(input_shape=model.output_shape[1:])) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(15, activation='softmax')) # Load the pretrained weights model.load_weights(model_path) model.summary() ``` ### Create the Generator ``` test_samples = len(species_df) test_datagen = ImageDataGenerator(rescale=1/255.) test_generator = test_datagen.flow_from_dataframe( species_df, x_col='path', y_col ='category_name', target_size=(img_width, img_height), batch_size=batch_size, shuffle=False, class_mode='categorical') ``` ### Predict on the holdout set ``` predictions = model.predict_generator( test_generator, steps=test_samples//batch_size, verbose=True ) # Save results np.save(file='/data/results/ResNet50_original_species_preds.npy', arr=predictions) ``` ### Evaluation Results #### Build Results DataFrame ``` id_map = { 0: 'american_black_bear', 1: 'bobcat', 2: 'cougar', 3: 'coyote', 4: 'domestic_cow', 5: 'domestic_dog', 6: 'elk', 7: 'gray_fox', 8: 'moose', 9: 'deer', 10: 'elk', 11: 'red_fox', 12: 'vehicle', 13: 'deer', 14: 'wild_turkey', 15: 'wolf' } preds = pd.DataFrame(predictions) results_df = pd.concat([species_df.reset_index(drop=True), preds], axis=1) results_df['top_class'] = pd.Series(predictions.argmax(axis=1)) results_df['top_prob'] = pd.Series(predictions.max(axis=1)) results_df['pred_category_name'] = results_df['top_class'].apply(lambda x: id_map[x]) results_df['top_1_acc'] = results_df['category_name'] == results_df['pred_category_name'] results_df['top_3_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-4:-1]]) results_df['top_3_classes'] = results_df['top_3_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_3_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_3_classes'], axis=1) results_df['top_5_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-6:-1]]) results_df['top_5_classes'] = results_df['top_5_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_5_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_5_classes'], axis=1) results_df.to_csv('/data/results/ResNet50_original_species_results.csv', index=False) ``` #### Evaluation Metrics ``` from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, precision_recall_curve import seaborn as sns; sns.set() print('Top 1 Accuracy: {:.2%}'.format(results_df['top_1_acc'].mean())) print('Top 3 Accuracy: {:.2%}'.format(results_df['top_3_acc'].mean())) print('Top 5 Accuracy: {:.2%}'.format(results_df['top_5_acc'].mean())) print('F1 Score: {:.2%}'.format(f1_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Precision Score: {:.2%}'.format(precision_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Recall Score: {:.2%}'.format(recall_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) ``` #### Categorical Breakdown ``` results_df.groupby('category_name')['top_1_acc'].mean()*100 results_df.pred_category_name.nunique() results_df.groupby('category_name')['top_1_acc'].mean() conf_mat = confusion_matrix(results_df['category_name'], results_df['pred_category_name']) pd.DataFrame(np.round(conf_mat/np.repeat(conf_mat.sum(axis=1), 13).reshape(13,13), 2)) sns.heatmap(conf_mat/np.repeat(conf_mat.sum(axis=1), 13).reshape(13,13)) ``` ## Species Model Evaluation ### Import the pretrained network ``` img_width, img_height = 224, 224 batch_size = 1 model_path = '/data/ResNet50/ResNet50_20190404_species_weights.h5' # Define the model ResNet50 = ResNet50(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) print('Model loaded.') # build a classifier model to put on top of the convolutional model model = Sequential() model.add(ResNet50) model.add(Flatten(input_shape=model.output_shape[1:])) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(16, activation='softmax')) # Load the pretrained weights model.load_weights(model_path) model.summary() ``` ### Create the Generator ``` test_samples = len(species_df) test_datagen = ImageDataGenerator(rescale=1/255.) test_generator = test_datagen.flow_from_dataframe( species_df, x_col='path', y_col ='category_name', target_size=(img_width, img_height), batch_size=batch_size, shuffle=False, class_mode='categorical') ``` ### Predict on the holdout set ``` predictions = model.predict_generator( test_generator, steps=test_samples//batch_size, verbose=True ) # Save results np.save(file='/data/results/ResNet50_species_preds.npy', arr=predictions) ``` ### Evaluation Results #### Build Results DataFrame ``` id_map = { 0: 'american_black_bear', 1: 'bobcat', 2: 'cougar', 3: 'coyote', 4: 'domestic_cow', 5: 'domestic_dog', 6: 'elk', 7: 'gray_fox', 8: 'moose', 9: 'deer', 10: 'elk', 11: 'red_fox', 12: 'vehicle', 13: 'deer', 14: 'wild_turkey', 15: 'wolf' } preds = pd.DataFrame(predictions) results_df = pd.concat([species_df.reset_index(drop=True), preds], axis=1) results_df['top_class'] = pd.Series(predictions.argmax(axis=1)) results_df['top_prob'] = pd.Series(predictions.max(axis=1)) results_df['pred_category_name'] = results_df['top_class'].apply(lambda x: id_map[x]) results_df['top_1_acc'] = results_df['category_name'] == results_df['pred_category_name'] results_df['top_3_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-4:-1]]) results_df['top_3_classes'] = results_df['top_3_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_3_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_3_classes'], axis=1) results_df['top_5_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-6:-1]]) results_df['top_5_classes'] = results_df['top_5_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_5_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_5_classes'], axis=1) results_df.to_csv('/data/results/ResNet50_species_results.csv', index=False) ``` #### Evaluation Metrics ``` from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, precision_recall_curve import seaborn as sns; sns.set() print('Top 1 Accuracy: {:.2%}'.format(results_df['top_1_acc'].mean())) print('Top 3 Accuracy: {:.2%}'.format(results_df['top_3_acc'].mean())) print('Top 5 Accuracy: {:.2%}'.format(results_df['top_5_acc'].mean())) print('F1 Score: {:.2%}'.format(f1_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Precision Score: {:.2%}'.format(precision_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Recall Score: {:.2%}'.format(recall_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) ``` #### Categorical Breakdown ``` results_df.groupby('category_name')['top_1_acc'].mean()*100 results_df.pred_category_name.nunique() results_df.groupby('category_name')['top_1_acc'].mean() conf_mat = confusion_matrix(results_df['category_name'], results_df['pred_category_name']) pd.DataFrame(np.round(conf_mat/np.repeat(conf_mat.sum(axis=1), 14).reshape(14,14), 2)) sns.heatmap(conf_mat/np.repeat(conf_mat.sum(axis=1), 14).reshape(14,14)) ``` # Empty vs Non-Empty #### Create the empty vs animal dataset ``` def empty_v_animal(label): if label == 'empty': return label else: return 'animal' empty_df = df.copy() empty_df['target'] = empty_df['category_name'].apply(empty_v_animal) list_ = [] for key, grp in empty_df.groupby('target'): grp = grp.sample(frac=1).reset_index(drop=True) grp = grp[:200] list_.append(grp) empty_df = pd.concat(list_) print(len(empty_df)) empty_df['target'].value_counts() ``` ## Species Model Evaluation ### Import the pretrained network ``` img_width, img_height = 224, 224 batch_size = 1 model_path = '/data/ResNet50/ResNet50_20190403_exclusiveEVA_weights.h5' # Define the model ResNet50 = ResNet50(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) print('Model loaded.') # build a classifier model to put on top of the convolutional model model = Sequential() model.add(ResNet50) model.add(Flatten(input_shape=model.output_shape[1:])) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(2, activation='softmax')) # Load the pretrained weights model.load_weights(model_path) model.summary() ``` ### Create the Generator ``` test_samples = len(empty_df) test_datagen = ImageDataGenerator(rescale=1/255.) test_generator = test_datagen.flow_from_dataframe( empty_df, x_col='path', y_col ='target', target_size=(img_width, img_height), batch_size=batch_size, shuffle=False, class_mode='categorical') ``` ### Predict on the holdout set ``` predictions = model.predict_generator( test_generator, steps=test_samples//batch_size, verbose=True ) # Save results np.save(file='/data/results/ResNet50_empty_preds.npy', arr=predictions) ``` ### Evaluation Results #### Build Results DataFrame ``` id_map = { 0: 'animal', 1: 'empty' } preds = pd.DataFrame(predictions) results_df = pd.concat([empty_df.reset_index(drop=True), preds], axis=1) results_df['top_class'] = pd.Series(predictions.argmax(axis=1)) results_df['top_prob'] = pd.Series(predictions.max(axis=1)) results_df['pred_category_name'] = results_df['top_class'].apply(lambda x: id_map[x]) results_df['acc'] = 1.0*(results_df['target'] == results_df['pred_category_name']) results_df.to_csv('/data/results/ResNet50_empty_results.csv', index=False) results_df.groupby(['target'])['acc'].mean() ``` #### Evaluation Metrics ``` from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, precision_recall_curve import seaborn as sns; sns.set() print('Accuracy: {:.2%}'.format(results_df['acc'].mean())) print('F1 Score: {:.2%}'.format(f1_score(results_df['target'], results_df['pred_category_name'], average='weighted'))) print('Precision Score: {:.2%}'.format(precision_score(results_df['target'], results_df['pred_category_name'], average='weighted'))) print('Recall Score: {:.2%}'.format(recall_score(results_df['target'], results_df['pred_category_name'], average='weighted'))) ``` #### Categorical Breakdown ``` results_df[(results_df['target']=='empty') & (results_df['top_class']==1)]['top_prob'].plot.density() results_df[(results_df['target']=='animal') & (results_df['top_class']==0)]['top_prob'].plot.density() results_df[(results_df['target']=='empty') & (results_df['top_class']==0)]['top_prob'].plot.density() results_df[(results_df['target']=='animal') & (results_df['top_class']==1)]['top_prob'].plot.density() results_df.groupby('category_name')['acc'].mean() conf_mat = confusion_matrix(results_df['target'], results_df['pred_category_name']) pd.DataFrame(np.round(conf_mat/np.repeat(conf_mat.sum(axis=1), 2).reshape(2,2), 2)) sns.heatmap(conf_mat/np.repeat(conf_mat.sum(axis=1), 2).reshape(2,2)) ```
github_jupyter
import os import pandas as pd import re from keras.preprocessing.image import ImageDataGenerator from keras.applications import ResNet50 from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense import numpy as np from sklearn.metrics import confusion_matrix test_folder = '/data/holdout_set' test_file_paths = [] for root, sub, files in os.walk(test_folder): if len(files) > 0: test_file_paths += [os.path.join(root, file) for file in files] df = pd.DataFrame({'path': test_file_paths}) df['category_name'] = df['path'].apply(lambda x: re.findall('/data/holdout_set/([a-z_]+)', x)[0]) species_subset = [ 'american_black_bear', 'bobcat', 'cougar', 'coyote', 'deer', 'domestic_cow', 'domestic_dog', 'elk', 'moose', 'vehicle', 'wild_turkey' ] species_df = df[df['category_name'].isin(species_subset)] print(len(species_df)) species_df['category_name'].value_counts() img_width, img_height = 224, 224 batch_size = 1 model_path = '/data/models/ResNet50/MobileNetV2_20190323_weights.h5' # Define the model ResNet50 = ResNet50(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) print('Model loaded.') # build a classifier model to put on top of the convolutional model model = Sequential() model.add(ResNet50) model.add(Flatten(input_shape=model.output_shape[1:])) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(15, activation='softmax')) # Load the pretrained weights model.load_weights(model_path) model.summary() test_samples = len(species_df) test_datagen = ImageDataGenerator(rescale=1/255.) test_generator = test_datagen.flow_from_dataframe( species_df, x_col='path', y_col ='category_name', target_size=(img_width, img_height), batch_size=batch_size, shuffle=False, class_mode='categorical') predictions = model.predict_generator( test_generator, steps=test_samples//batch_size, verbose=True ) # Save results np.save(file='/data/results/ResNet50_original_species_preds.npy', arr=predictions) id_map = { 0: 'american_black_bear', 1: 'bobcat', 2: 'cougar', 3: 'coyote', 4: 'domestic_cow', 5: 'domestic_dog', 6: 'elk', 7: 'gray_fox', 8: 'moose', 9: 'deer', 10: 'elk', 11: 'red_fox', 12: 'vehicle', 13: 'deer', 14: 'wild_turkey', 15: 'wolf' } preds = pd.DataFrame(predictions) results_df = pd.concat([species_df.reset_index(drop=True), preds], axis=1) results_df['top_class'] = pd.Series(predictions.argmax(axis=1)) results_df['top_prob'] = pd.Series(predictions.max(axis=1)) results_df['pred_category_name'] = results_df['top_class'].apply(lambda x: id_map[x]) results_df['top_1_acc'] = results_df['category_name'] == results_df['pred_category_name'] results_df['top_3_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-4:-1]]) results_df['top_3_classes'] = results_df['top_3_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_3_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_3_classes'], axis=1) results_df['top_5_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-6:-1]]) results_df['top_5_classes'] = results_df['top_5_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_5_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_5_classes'], axis=1) results_df.to_csv('/data/results/ResNet50_original_species_results.csv', index=False) from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, precision_recall_curve import seaborn as sns; sns.set() print('Top 1 Accuracy: {:.2%}'.format(results_df['top_1_acc'].mean())) print('Top 3 Accuracy: {:.2%}'.format(results_df['top_3_acc'].mean())) print('Top 5 Accuracy: {:.2%}'.format(results_df['top_5_acc'].mean())) print('F1 Score: {:.2%}'.format(f1_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Precision Score: {:.2%}'.format(precision_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Recall Score: {:.2%}'.format(recall_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) results_df.groupby('category_name')['top_1_acc'].mean()*100 results_df.pred_category_name.nunique() results_df.groupby('category_name')['top_1_acc'].mean() conf_mat = confusion_matrix(results_df['category_name'], results_df['pred_category_name']) pd.DataFrame(np.round(conf_mat/np.repeat(conf_mat.sum(axis=1), 13).reshape(13,13), 2)) sns.heatmap(conf_mat/np.repeat(conf_mat.sum(axis=1), 13).reshape(13,13)) img_width, img_height = 224, 224 batch_size = 1 model_path = '/data/ResNet50/ResNet50_20190404_species_weights.h5' # Define the model ResNet50 = ResNet50(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) print('Model loaded.') # build a classifier model to put on top of the convolutional model model = Sequential() model.add(ResNet50) model.add(Flatten(input_shape=model.output_shape[1:])) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(16, activation='softmax')) # Load the pretrained weights model.load_weights(model_path) model.summary() test_samples = len(species_df) test_datagen = ImageDataGenerator(rescale=1/255.) test_generator = test_datagen.flow_from_dataframe( species_df, x_col='path', y_col ='category_name', target_size=(img_width, img_height), batch_size=batch_size, shuffle=False, class_mode='categorical') predictions = model.predict_generator( test_generator, steps=test_samples//batch_size, verbose=True ) # Save results np.save(file='/data/results/ResNet50_species_preds.npy', arr=predictions) id_map = { 0: 'american_black_bear', 1: 'bobcat', 2: 'cougar', 3: 'coyote', 4: 'domestic_cow', 5: 'domestic_dog', 6: 'elk', 7: 'gray_fox', 8: 'moose', 9: 'deer', 10: 'elk', 11: 'red_fox', 12: 'vehicle', 13: 'deer', 14: 'wild_turkey', 15: 'wolf' } preds = pd.DataFrame(predictions) results_df = pd.concat([species_df.reset_index(drop=True), preds], axis=1) results_df['top_class'] = pd.Series(predictions.argmax(axis=1)) results_df['top_prob'] = pd.Series(predictions.max(axis=1)) results_df['pred_category_name'] = results_df['top_class'].apply(lambda x: id_map[x]) results_df['top_1_acc'] = results_df['category_name'] == results_df['pred_category_name'] results_df['top_3_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-4:-1]]) results_df['top_3_classes'] = results_df['top_3_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_3_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_3_classes'], axis=1) results_df['top_5_classes'] = pd.Series([list(i) for i in predictions.argsort(axis=1)[:,:-6:-1]]) results_df['top_5_classes'] = results_df['top_5_classes'].apply(lambda x: [id_map[i] for i in x]) results_df['top_5_acc'] = results_df.apply(lambda x: x['category_name'] in x['top_5_classes'], axis=1) results_df.to_csv('/data/results/ResNet50_species_results.csv', index=False) from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, precision_recall_curve import seaborn as sns; sns.set() print('Top 1 Accuracy: {:.2%}'.format(results_df['top_1_acc'].mean())) print('Top 3 Accuracy: {:.2%}'.format(results_df['top_3_acc'].mean())) print('Top 5 Accuracy: {:.2%}'.format(results_df['top_5_acc'].mean())) print('F1 Score: {:.2%}'.format(f1_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Precision Score: {:.2%}'.format(precision_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) print('Recall Score: {:.2%}'.format(recall_score(results_df['category_name'], results_df['pred_category_name'], average='weighted'))) results_df.groupby('category_name')['top_1_acc'].mean()*100 results_df.pred_category_name.nunique() results_df.groupby('category_name')['top_1_acc'].mean() conf_mat = confusion_matrix(results_df['category_name'], results_df['pred_category_name']) pd.DataFrame(np.round(conf_mat/np.repeat(conf_mat.sum(axis=1), 14).reshape(14,14), 2)) sns.heatmap(conf_mat/np.repeat(conf_mat.sum(axis=1), 14).reshape(14,14)) def empty_v_animal(label): if label == 'empty': return label else: return 'animal' empty_df = df.copy() empty_df['target'] = empty_df['category_name'].apply(empty_v_animal) list_ = [] for key, grp in empty_df.groupby('target'): grp = grp.sample(frac=1).reset_index(drop=True) grp = grp[:200] list_.append(grp) empty_df = pd.concat(list_) print(len(empty_df)) empty_df['target'].value_counts() img_width, img_height = 224, 224 batch_size = 1 model_path = '/data/ResNet50/ResNet50_20190403_exclusiveEVA_weights.h5' # Define the model ResNet50 = ResNet50(weights=None, include_top=False, input_shape=(img_width, img_height, 3)) print('Model loaded.') # build a classifier model to put on top of the convolutional model model = Sequential() model.add(ResNet50) model.add(Flatten(input_shape=model.output_shape[1:])) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(2, activation='softmax')) # Load the pretrained weights model.load_weights(model_path) model.summary() test_samples = len(empty_df) test_datagen = ImageDataGenerator(rescale=1/255.) test_generator = test_datagen.flow_from_dataframe( empty_df, x_col='path', y_col ='target', target_size=(img_width, img_height), batch_size=batch_size, shuffle=False, class_mode='categorical') predictions = model.predict_generator( test_generator, steps=test_samples//batch_size, verbose=True ) # Save results np.save(file='/data/results/ResNet50_empty_preds.npy', arr=predictions) id_map = { 0: 'animal', 1: 'empty' } preds = pd.DataFrame(predictions) results_df = pd.concat([empty_df.reset_index(drop=True), preds], axis=1) results_df['top_class'] = pd.Series(predictions.argmax(axis=1)) results_df['top_prob'] = pd.Series(predictions.max(axis=1)) results_df['pred_category_name'] = results_df['top_class'].apply(lambda x: id_map[x]) results_df['acc'] = 1.0*(results_df['target'] == results_df['pred_category_name']) results_df.to_csv('/data/results/ResNet50_empty_results.csv', index=False) results_df.groupby(['target'])['acc'].mean() from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score, precision_recall_curve import seaborn as sns; sns.set() print('Accuracy: {:.2%}'.format(results_df['acc'].mean())) print('F1 Score: {:.2%}'.format(f1_score(results_df['target'], results_df['pred_category_name'], average='weighted'))) print('Precision Score: {:.2%}'.format(precision_score(results_df['target'], results_df['pred_category_name'], average='weighted'))) print('Recall Score: {:.2%}'.format(recall_score(results_df['target'], results_df['pred_category_name'], average='weighted'))) results_df[(results_df['target']=='empty') & (results_df['top_class']==1)]['top_prob'].plot.density() results_df[(results_df['target']=='animal') & (results_df['top_class']==0)]['top_prob'].plot.density() results_df[(results_df['target']=='empty') & (results_df['top_class']==0)]['top_prob'].plot.density() results_df[(results_df['target']=='animal') & (results_df['top_class']==1)]['top_prob'].plot.density() results_df.groupby('category_name')['acc'].mean() conf_mat = confusion_matrix(results_df['target'], results_df['pred_category_name']) pd.DataFrame(np.round(conf_mat/np.repeat(conf_mat.sum(axis=1), 2).reshape(2,2), 2)) sns.heatmap(conf_mat/np.repeat(conf_mat.sum(axis=1), 2).reshape(2,2))
0.730194
0.794744
# Distirbuted Training of Mask-RCNN in Amazon SageMaker using S3 This notebook is a step-by-step tutorial on distributed tranining of [Mask R-CNN](https://arxiv.org/abs/1703.06870) implemented in [TensorFlow](https://www.tensorflow.org/) framework. Mask R-CNN is also referred to as heavy weight object detection model and it is part of [MLPerf](https://www.mlperf.org/training-results-0-6/). Concretely, we will describe the steps for training [TensorPack Faster-RCNN/Mask-RCNN](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) and [AWS Samples Mask R-CNN](https://github.com/aws-samples/mask-rcnn-tensorflow) in [Amazon SageMaker](https://aws.amazon.com/sagemaker/) using [Amazon S3](https://aws.amazon.com/s3/) as data source. The outline of steps is as follows: 1. Stage COCO 2017 dataset in [Amazon S3](https://aws.amazon.com/s3/) 2. Build SageMaker training image and push it to [Amazon ECR](https://aws.amazon.com/ecr/) 3. Configure data input channels 4. Configure hyper-prarameters 5. Define training metrics 6. Define training job and start training Before we get started, let us initialize two python variables ```aws_region``` and ```s3_bucket``` that we will use throughout the notebook: ``` aws_region = # aws-region-code e.g. us-east-1 s3_bucket = # your-s3-bucket-name ``` ## Stage COCO 2017 dataset in Amazon S3 We use [COCO 2017 dataset](http://cocodataset.org/#home) for training. We download COCO 2017 training and validation dataset to this notebook instance, extract the files from the dataset archives, and upload the extracted files to your Amazon [S3 bucket](https://docs.aws.amazon.com/en_pv/AmazonS3/latest/gsg/CreatingABucket.html) with the prefix ```mask-rcnn/sagemaker/input/train```. The ```prepare-s3-bucket.sh``` script executes this step. ``` !cat ./prepare-s3-bucket.sh ``` Using your *Amazon S3 bucket* as argument, run the cell below. If you have already uploaded COCO 2017 dataset to your Amazon S3 bucket *in this AWS region*, you may skip this step. The expected time to execute this step is 20 minutes. ``` %%time !./prepare-s3-bucket.sh {s3_bucket} ``` ## Build and push SageMaker training images For this step, the [IAM Role](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html) attached to this notebook instance needs full access to Amazon ECR service. If you created this notebook instance using the ```./stack-sm.sh``` script in this repository, the IAM Role attached to this notebook instance is already setup with full access to ECR service. Below, we have a choice of two different implementations: 1. [TensorPack Faster-RCNN/Mask-RCNN](https://github.com/tensorpack/tensorpack/tree/master/examples/FasterRCNN) implementation supports a maximum per-GPU batch size of 1, and does not support mixed precision. It can be used with mainstream TensorFlow releases. 2. [AWS Samples Mask R-CNN](https://github.com/aws-samples/mask-rcnn-tensorflow) is an optimized implementation that supports a maximum batch size of 4 and supports mixed precision. This implementation uses custom TensorFlow ops. The required custom TensorFlow ops are available in [AWS Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md) images in ```tensorflow-training``` repository with image tag ```1.15.2-gpu-py36-cu100-ubuntu18.04```, or later. It is recommended that you build and push both SageMaker training images and use either image for training later. ### TensorPack Faster-RCNN/Mask-RCNN Use ```./container/build_tools/build_and_push.sh``` script to build and push the TensorPack Faster-RCNN/Mask-RCNN training image to Amazon ECR. ``` !cat ./container/build_tools/build_and_push.sh ``` Using your *AWS region* as argument, run the cell below. ``` %%time ! ./container/build_tools/build_and_push.sh {aws_region} ``` Set ```tensorpack_image``` below to Amazon ECR URI of the image you pushed above. ``` tensorpack_image = # mask-rcnn-tensorpack-sagemaker ECR URI ``` ### AWS Samples Mask R-CNN Use ```./container-optimized/build_tools/build_and_push.sh``` script to build and push the AWS Samples Mask R-CNN training image to Amazon ECR. ``` !cat ./container-optimized/build_tools/build_and_push.sh ``` Using your *AWS region* as argument, run the cell below. ``` %%time ! ./container-optimized/build_tools/build_and_push.sh {aws_region} ``` Set ```aws_samples_image``` below to Amazon ECR URI of the image you pushed above. ``` aws_samples_image = # mask-rcnn-tensorflow-sagemaker ECR URI ``` ## SageMaker Initialization First we upgrade SageMaker to 2.3.0 API. If your notebook is already using latest Sagemaker 2.x API, you may skip the next cell. ``` ! pip install --upgrade pip ! pip install sagemaker==2.3.0 ``` We have staged the data and we have built and pushed the training docker image to Amazon ECR. Now we are ready to start using Amazon SageMaker. ``` %%time import boto3 import sagemaker from sagemaker import get_execution_role from sagemaker.estimator import Estimator role = get_execution_role() # provide a pre-existing role ARN as an alternative to creating a new role print(f'SageMaker Execution Role:{role}') client = boto3.client('sts') account = client.get_caller_identity()['Account'] print(f'AWS account:{account}') session = boto3.session.Session() region = session.region_name print(f'AWS region:{region}') ``` Next, we set ```training_image``` to the Amazon ECR image URI you saved in a previous step. ``` training_image = # set to tensorpack_image or aws_samples_image print(f'Training image: {training_image}') ``` ## Define SageMaker Data Channels In this step, we define SageMaker *train* data channel. ``` from sagemaker.inputs import TrainingInput prefix = "mask-rcnn/sagemaker" #prefix in your S3 bucket s3train = f's3://{s3_bucket}/{prefix}/input/train' train_input = TrainingInput(s3_data=s3train, distribution="FullyReplicated", s3_data_type='S3Prefix', input_mode='File') data_channels = {'train': train_input} ``` Next, we define the model output location in S3 bucket. ``` s3_output_location = f's3://{s3_bucket}/{prefix}/output' ``` ## Configure Hyper-parameters Next, we define the hyper-parameters. Note, some hyper-parameters are different between the two implementations. The batch size per GPU in TensorPack Faster-RCNN/Mask-RCNN is fixed at 1, but is configurable in AWS Samples Mask-RCNN. The learning rate schedule is specified in units of steps in TensorPack Faster-RCNN/Mask-RCNN, but in epochs in AWS Samples Mask-RCNN. The detault learning rate schedule values shown below correspond to training for a total of 24 epochs, at 120,000 images per epoch. <table align='left'> <caption>TensorPack Faster-RCNN/Mask-RCNN Hyper-parameters</caption> <tr> <th style="text-align:center">Hyper-parameter</th> <th style="text-align:center">Description</th> <th style="text-align:center">Default</th> </tr> <tr> <td style="text-align:center">mode_fpn</td> <td style="text-align:left">Flag to indicate use of Feature Pyramid Network (FPN) in the Mask R-CNN model backbone</td> <td style="text-align:center">"True"</td> </tr> <tr> <td style="text-align:center">mode_mask</td> <td style="text-align:left">A value of "False" means Faster-RCNN model, "True" means Mask R-CNN moodel</td> <td style="text-align:center">"True"</td> </tr> <tr> <td style="text-align:center">eval_period</td> <td style="text-align:left">Number of epochs period for evaluation during training</td> <td style="text-align:center">1</td> </tr> <tr> <td style="text-align:center">lr_schedule</td> <td style="text-align:left">Learning rate schedule in training steps</td> <td style="text-align:center">'[240000, 320000, 360000]'</td> </tr> <tr> <td style="text-align:center">batch_norm</td> <td style="text-align:left">Batch normalization option ('FreezeBN', 'SyncBN', 'GN', 'None') </td> <td style="text-align:center">'FreezeBN'</td> </tr> <tr> <td style="text-align:center">images_per_epoch</td> <td style="text-align:left">Images per epoch </td> <td style="text-align:center">120000</td> </tr> <tr> <td style="text-align:center">data_train</td> <td style="text-align:left">Training data under data directory</td> <td style="text-align:center">'coco_train2017'</td> </tr> <tr> <td style="text-align:center">data_val</td> <td style="text-align:left">Validation data under data directory</td> <td style="text-align:center">'coco_val2017'</td> </tr> <tr> <td style="text-align:center">resnet_arch</td> <td style="text-align:left">Must be 'resnet50' or 'resnet101'</td> <td style="text-align:center">'resnet50'</td> </tr> <tr> <td style="text-align:center">backbone_weights</td> <td style="text-align:left">ResNet backbone weights</td> <td style="text-align:center">'ImageNet-R50-AlignPadding.npz'</td> </tr> <tr> <td style="text-align:center">load_model</td> <td style="text-align:left">Pre-trained model to load</td> <td style="text-align:center"></td> </tr> <tr> <td style="text-align:center">config:</td> <td style="text-align:left">Any hyperparamter prefixed with <b>config:</b> is set as a model config parameter</td> <td style="text-align:center"></td> </tr> </table> <table align='left'> <caption>AWS Samples Mask-RCNN Hyper-parameters</caption> <tr> <th style="text-align:center">Hyper-parameter</th> <th style="text-align:center">Description</th> <th style="text-align:center">Default</th> </tr> <tr> <td style="text-align:center">mode_fpn</td> <td style="text-align:left">Flag to indicate use of Feature Pyramid Network (FPN) in the Mask R-CNN model backbone</td> <td style="text-align:center">"True"</td> </tr> <tr> <td style="text-align:center">mode_mask</td> <td style="text-align:left">A value of "False" means Faster-RCNN model, "True" means Mask R-CNN moodel</td> <td style="text-align:center">"True"</td> </tr> <tr> <td style="text-align:center">eval_period</td> <td style="text-align:left">Number of epochs period for evaluation during training</td> <td style="text-align:center">1</td> </tr> <tr> <td style="text-align:center">lr_epoch_schedule</td> <td style="text-align:left">Learning rate schedule in epochs</td> <td style="text-align:center">'[(16, 0.1), (20, 0.01), (24, None)]'</td> </tr> <tr> <td style="text-align:center">batch_size_per_gpu</td> <td style="text-align:left">Batch size per gpu ( Minimum 1, Maximum 4)</td> <td style="text-align:center">4</td> </tr> <tr> <td style="text-align:center">batch_norm</td> <td style="text-align:left">Batch normalization option ('FreezeBN', 'SyncBN', 'GN', 'None') </td> <td style="text-align:center">'FreezeBN'</td> </tr> <tr> <td style="text-align:center">images_per_epoch</td> <td style="text-align:left">Images per epoch </td> <td style="text-align:center">120000</td> </tr> <tr> <td style="text-align:center">data_train</td> <td style="text-align:left">Training data under data directory</td> <td style="text-align:center">'train2017'</td> </tr> <tr> <td style="text-align:center">data_val</td> <td style="text-align:left">Validation data under data directory</td> <td style="text-align:center">'val2017'</td> </tr> <tr> <td style="text-align:center">resnet_arch</td> <td style="text-align:left">Must be 'resnet50' or 'resnet101'</td> <td style="text-align:center">'resnet50'</td> </tr> <tr> <td style="text-align:center">backbone_weights</td> <td style="text-align:left">ResNet backbone weights</td> <td style="text-align:center">'ImageNet-R50-AlignPadding.npz'</td> </tr> <tr> <td style="text-align:center">load_model</td> <td style="text-align:left">Pre-trained model to load</td> <td style="text-align:center"></td> </tr> <tr> <td style="text-align:center">config:</td> <td style="text-align:left">Any hyperparamter prefixed with <b>config:</b> is set as a model config parameter</td> <td style="text-align:center"></td> </tr> </table> ``` hyperparameters = { "mode_fpn": "True", "mode_mask": "True", "eval_period": 1, "batch_norm": "FreezeBN" } ``` ## Define Training Metrics Next, we define the regular expressions that SageMaker uses to extract algorithm metrics from training logs and send them to [AWS CloudWatch metrics](https://docs.aws.amazon.com/en_pv/AmazonCloudWatch/latest/monitoring/working_with_metrics.html). These algorithm metrics are visualized in SageMaker console. ``` metric_definitions=[ { "Name": "fastrcnn_losses/box_loss", "Regex": ".*fastrcnn_losses/box_loss:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_loss", "Regex": ".*fastrcnn_losses/label_loss:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_metrics/accuracy", "Regex": ".*fastrcnn_losses/label_metrics/accuracy:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_metrics/false_negative", "Regex": ".*fastrcnn_losses/label_metrics/false_negative:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_metrics/fg_accuracy", "Regex": ".*fastrcnn_losses/label_metrics/fg_accuracy:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/num_fg_label", "Regex": ".*fastrcnn_losses/num_fg_label:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/accuracy", "Regex": ".*maskrcnn_loss/accuracy:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/fg_pixel_ratio", "Regex": ".*maskrcnn_loss/fg_pixel_ratio:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/maskrcnn_loss", "Regex": ".*maskrcnn_loss/maskrcnn_loss:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/pos_accuracy", "Regex": ".*maskrcnn_loss/pos_accuracy:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/IoU=0.5", "Regex": ".*mAP\\(bbox\\)/IoU=0\\.5:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/IoU=0.5:0.95", "Regex": ".*mAP\\(bbox\\)/IoU=0\\.5:0\\.95:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/IoU=0.75", "Regex": ".*mAP\\(bbox\\)/IoU=0\\.75:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/large", "Regex": ".*mAP\\(bbox\\)/large:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/medium", "Regex": ".*mAP\\(bbox\\)/medium:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/small", "Regex": ".*mAP\\(bbox\\)/small:\\s*(\\S+).*" }, { "Name": "mAP(segm)/IoU=0.5", "Regex": ".*mAP\\(segm\\)/IoU=0\\.5:\\s*(\\S+).*" }, { "Name": "mAP(segm)/IoU=0.5:0.95", "Regex": ".*mAP\\(segm\\)/IoU=0\\.5:0\\.95:\\s*(\\S+).*" }, { "Name": "mAP(segm)/IoU=0.75", "Regex": ".*mAP\\(segm\\)/IoU=0\\.75:\\s*(\\S+).*" }, { "Name": "mAP(segm)/large", "Regex": ".*mAP\\(segm\\)/large:\\s*(\\S+).*" }, { "Name": "mAP(segm)/medium", "Regex": ".*mAP\\(segm\\)/medium:\\s*(\\S+).*" }, { "Name": "mAP(segm)/small", "Regex": ".*mAP\\(segm\\)/small:\\s*(\\S+).*" } ] ``` ## Define SageMaker Training Job Next, we use SageMaker [Estimator](https://sagemaker.readthedocs.io/en/stable/estimators.html) API to define a SageMaker Training Job. We recommned using 32 GPUs, so we set ```instance_count=4``` and ```instance_type='ml.p3.16xlarge'```, because there are 8 Tesla V100 GPUs per ```ml.p3.16xlarge``` instance. We recommend using 100 GB [Amazon EBS](https://aws.amazon.com/ebs/) storage volume with each training instance, so we set ```volume_size = 100```. We run the training job in your private VPC, so we need to set the ```subnets``` and ```security_group_ids``` prior to running the cell below. You may specify multiple subnet ids in the ```subnets``` list. The subnets included in the ```sunbets``` list must be part of the output of ```./stack-sm.sh``` CloudFormation stack script used to create this notebook instance. Specify only one security group id in ```security_group_ids``` list. The security group id must be part of the output of ```./stack-sm.sh``` script. For ```instance_type``` below, you have the option to use ```ml.p3.16xlarge``` with 16 GB per-GPU memory and 25 Gbs network interconnectivity, or ```ml.p3dn.24xlarge``` with 32 GB per-GPU memory and 100 Gbs network interconnectivity. The ```ml.p3dn.24xlarge``` instance type offers significantly better performance than ```ml.p3.16xlarge``` for Mask R-CNN distributed TensorFlow training. ``` security_group_ids = ['sg-043bfdabb0f3675fd'] # ['sg-xxxxxxxx'] subnets = ['subnet-0f9b8cc9c33f79763','subnet-0cc8d9f0eb3bf5c93','subnet-0fe2a35b1c5495531'] # [ 'subnet-xxxxxxx'] sagemaker_session = sagemaker.session.Session(boto_session=session) mask_rcnn_estimator = Estimator(image_uri=training_image, role=role, instance_count=1, instance_type='ml.p3.16xlarge', volume_size = 100, max_run = 400000, output_path=s3_output_location, sagemaker_session=sagemaker_session, hyperparameters = hyperparameters, metric_definitions = metric_definitions, subnets=subnets, security_group_ids=security_group_ids) ``` Finally, we launch the SageMaker training job. See ```Training Jobs``` in SageMaker console to monitor the training job. ``` import time job_name=f'mask-rcnn-s3-{int(time.time())}' print(f"Launching Training Job: {job_name}") # set wait=True below if you want to print logs in cell output mask_rcnn_estimator.fit(inputs=data_channels, job_name=job_name, logs="All", wait=False) ```
github_jupyter
aws_region = # aws-region-code e.g. us-east-1 s3_bucket = # your-s3-bucket-name !cat ./prepare-s3-bucket.sh %%time !./prepare-s3-bucket.sh {s3_bucket} !cat ./container/build_tools/build_and_push.sh %%time ! ./container/build_tools/build_and_push.sh {aws_region} tensorpack_image = # mask-rcnn-tensorpack-sagemaker ECR URI !cat ./container-optimized/build_tools/build_and_push.sh %%time ! ./container-optimized/build_tools/build_and_push.sh {aws_region} aws_samples_image = # mask-rcnn-tensorflow-sagemaker ECR URI ! pip install --upgrade pip ! pip install sagemaker==2.3.0 %%time import boto3 import sagemaker from sagemaker import get_execution_role from sagemaker.estimator import Estimator role = get_execution_role() # provide a pre-existing role ARN as an alternative to creating a new role print(f'SageMaker Execution Role:{role}') client = boto3.client('sts') account = client.get_caller_identity()['Account'] print(f'AWS account:{account}') session = boto3.session.Session() region = session.region_name print(f'AWS region:{region}') training_image = # set to tensorpack_image or aws_samples_image print(f'Training image: {training_image}') from sagemaker.inputs import TrainingInput prefix = "mask-rcnn/sagemaker" #prefix in your S3 bucket s3train = f's3://{s3_bucket}/{prefix}/input/train' train_input = TrainingInput(s3_data=s3train, distribution="FullyReplicated", s3_data_type='S3Prefix', input_mode='File') data_channels = {'train': train_input} s3_output_location = f's3://{s3_bucket}/{prefix}/output' hyperparameters = { "mode_fpn": "True", "mode_mask": "True", "eval_period": 1, "batch_norm": "FreezeBN" } metric_definitions=[ { "Name": "fastrcnn_losses/box_loss", "Regex": ".*fastrcnn_losses/box_loss:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_loss", "Regex": ".*fastrcnn_losses/label_loss:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_metrics/accuracy", "Regex": ".*fastrcnn_losses/label_metrics/accuracy:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_metrics/false_negative", "Regex": ".*fastrcnn_losses/label_metrics/false_negative:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/label_metrics/fg_accuracy", "Regex": ".*fastrcnn_losses/label_metrics/fg_accuracy:\\s*(\\S+).*" }, { "Name": "fastrcnn_losses/num_fg_label", "Regex": ".*fastrcnn_losses/num_fg_label:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/accuracy", "Regex": ".*maskrcnn_loss/accuracy:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/fg_pixel_ratio", "Regex": ".*maskrcnn_loss/fg_pixel_ratio:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/maskrcnn_loss", "Regex": ".*maskrcnn_loss/maskrcnn_loss:\\s*(\\S+).*" }, { "Name": "maskrcnn_loss/pos_accuracy", "Regex": ".*maskrcnn_loss/pos_accuracy:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/IoU=0.5", "Regex": ".*mAP\\(bbox\\)/IoU=0\\.5:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/IoU=0.5:0.95", "Regex": ".*mAP\\(bbox\\)/IoU=0\\.5:0\\.95:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/IoU=0.75", "Regex": ".*mAP\\(bbox\\)/IoU=0\\.75:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/large", "Regex": ".*mAP\\(bbox\\)/large:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/medium", "Regex": ".*mAP\\(bbox\\)/medium:\\s*(\\S+).*" }, { "Name": "mAP(bbox)/small", "Regex": ".*mAP\\(bbox\\)/small:\\s*(\\S+).*" }, { "Name": "mAP(segm)/IoU=0.5", "Regex": ".*mAP\\(segm\\)/IoU=0\\.5:\\s*(\\S+).*" }, { "Name": "mAP(segm)/IoU=0.5:0.95", "Regex": ".*mAP\\(segm\\)/IoU=0\\.5:0\\.95:\\s*(\\S+).*" }, { "Name": "mAP(segm)/IoU=0.75", "Regex": ".*mAP\\(segm\\)/IoU=0\\.75:\\s*(\\S+).*" }, { "Name": "mAP(segm)/large", "Regex": ".*mAP\\(segm\\)/large:\\s*(\\S+).*" }, { "Name": "mAP(segm)/medium", "Regex": ".*mAP\\(segm\\)/medium:\\s*(\\S+).*" }, { "Name": "mAP(segm)/small", "Regex": ".*mAP\\(segm\\)/small:\\s*(\\S+).*" } ] security_group_ids = ['sg-043bfdabb0f3675fd'] # ['sg-xxxxxxxx'] subnets = ['subnet-0f9b8cc9c33f79763','subnet-0cc8d9f0eb3bf5c93','subnet-0fe2a35b1c5495531'] # [ 'subnet-xxxxxxx'] sagemaker_session = sagemaker.session.Session(boto_session=session) mask_rcnn_estimator = Estimator(image_uri=training_image, role=role, instance_count=1, instance_type='ml.p3.16xlarge', volume_size = 100, max_run = 400000, output_path=s3_output_location, sagemaker_session=sagemaker_session, hyperparameters = hyperparameters, metric_definitions = metric_definitions, subnets=subnets, security_group_ids=security_group_ids) import time job_name=f'mask-rcnn-s3-{int(time.time())}' print(f"Launching Training Job: {job_name}") # set wait=True below if you want to print logs in cell output mask_rcnn_estimator.fit(inputs=data_channels, job_name=job_name, logs="All", wait=False)
0.357343
0.978611
``` #default_exp crafter #hide from nbdev.showdoc import * ``` # Crafter Takes a list of image filenames and transforms them to batches of the correct dimensions for CLIP. This executor subclasses PyTorch's VisionDataset (for its file-loading expertise) and DataLoaders. The `DatasetImagePaths` takes a list of image paths and a transfom, returns the transformed tensors when called. DataLoader does batching internally so we pass it along to the encoder in that format. ``` #export import torch from torchvision.datasets import VisionDataset from PIL import Image #export def make_dataset(new_files): '''Returns a list of samples of a form (path_to_sample, class) and in this case the class is just the filename''' samples = [] slugs = [] for i, f in enumerate(new_files): path, slug = f samples.append((str(path), i)) slugs.append((slug, i)) return(samples, slugs) #export def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') #export class DatasetImagePaths(VisionDataset): def __init__(self, new_files, transforms = None): super(DatasetImagePaths, self).__init__(new_files, transforms=transforms) samples, slugs = make_dataset(new_files) self.samples = samples self.slugs = slugs self.loader = pil_loader self.root = 'file dataset' def __len__(self): return(len(self.samples)) def __getitem__(self, index): path, target = self.samples[index] sample = self.loader(path) if sample is not None: if self.transforms is not None: sample = self.transforms(sample) return sample, target new_files = [('images/memes/Wholesome-Meme-8.jpg', 'Wholesome-Meme-8'), ('images/memes/Wholesome-Meme-1.jpg', 'Wholesome-Meme-1')]#, ('images/corrupted-file.jpeg', 'corrupted-file.jpeg')] crafted = DatasetImagePaths(new_files) crafted[0][0] ``` Okay, that seems to work decently. Test with transforms, which I will just find in CLIP source code and copy over, to prevent having to import CLIP in this executor. ``` #export from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize #export def clip_transform(n_px): return Compose([ Resize(n_px, interpolation=Image.BICUBIC), CenterCrop(n_px), ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) ``` Put that all together, and wrap in a DataLoader for batching. In future, need to figure out how to pick batch size and number of workers programmatically bsed on device capabilities. ``` #export def crafter(new_files, device, batch_size=128, num_workers=4): with torch.no_grad(): imagefiles=DatasetImagePaths(new_files, clip_transform(224)) img_loader=torch.utils.data.DataLoader(imagefiles, batch_size=batch_size, shuffle=False, num_workers=num_workers) return(img_loader) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device crafted_files = crafter(new_files, device) crafted_files.batch_size, crafted_files.num_workers file = new_files[1][0] #export def preproc(img): transformed = clip_transform(224)(img) return(transformed) im = preproc([Image.open(file)][0]) # %matplotlib inline # show_image(im) ```
github_jupyter
#default_exp crafter #hide from nbdev.showdoc import * #export import torch from torchvision.datasets import VisionDataset from PIL import Image #export def make_dataset(new_files): '''Returns a list of samples of a form (path_to_sample, class) and in this case the class is just the filename''' samples = [] slugs = [] for i, f in enumerate(new_files): path, slug = f samples.append((str(path), i)) slugs.append((slug, i)) return(samples, slugs) #export def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') #export class DatasetImagePaths(VisionDataset): def __init__(self, new_files, transforms = None): super(DatasetImagePaths, self).__init__(new_files, transforms=transforms) samples, slugs = make_dataset(new_files) self.samples = samples self.slugs = slugs self.loader = pil_loader self.root = 'file dataset' def __len__(self): return(len(self.samples)) def __getitem__(self, index): path, target = self.samples[index] sample = self.loader(path) if sample is not None: if self.transforms is not None: sample = self.transforms(sample) return sample, target new_files = [('images/memes/Wholesome-Meme-8.jpg', 'Wholesome-Meme-8'), ('images/memes/Wholesome-Meme-1.jpg', 'Wholesome-Meme-1')]#, ('images/corrupted-file.jpeg', 'corrupted-file.jpeg')] crafted = DatasetImagePaths(new_files) crafted[0][0] #export from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize #export def clip_transform(n_px): return Compose([ Resize(n_px, interpolation=Image.BICUBIC), CenterCrop(n_px), ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) #export def crafter(new_files, device, batch_size=128, num_workers=4): with torch.no_grad(): imagefiles=DatasetImagePaths(new_files, clip_transform(224)) img_loader=torch.utils.data.DataLoader(imagefiles, batch_size=batch_size, shuffle=False, num_workers=num_workers) return(img_loader) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device crafted_files = crafter(new_files, device) crafted_files.batch_size, crafted_files.num_workers file = new_files[1][0] #export def preproc(img): transformed = clip_transform(224)(img) return(transformed) im = preproc([Image.open(file)][0]) # %matplotlib inline # show_image(im)
0.576661
0.906405
``` import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair, _quadruple from matplotlib import pyplot as plt import seaborn as sns import numpy as np proj_range = torch.load('proj_range.pt') proj_mask = torch.load('proj_mask.pt') pred_np = torch.load('pred_np.pt') pred_np.clip(0, 118) pred_np.shape sum(pred_np > 1) sns.scatterplot(np.arange(len(pred_np)), pred_np) class MedianPool2d(nn.Module): """ Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=True): super(MedianPool2d, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) # convert to l, r, t, b self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - (ih % self.stride[0]), 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - (iw % self.stride[1]), 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = (pl, pr, pt, pb) else: padding = self.padding return padding def forward(self, x): # using existing pytorch functions and tensor ops so that we get autograd, # would likely be more efficient to implement from scratch at C/Cuda level x = F.pad(x, self._padding(x), mode='reflect') x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] return x medpool3 = MedianPool2d() medpool5 = MedianPool2d(kernel_size=5) medpool7 = MedianPool2d(kernel_size=7) medpool13 = MedianPool2d(kernel_size=13) medpool29 = MedianPool2d(kernel_size=29) def fill_step(tensor, mask, medpool): eps = 1e-6 H, W = tensor.shape[0], tensor.shape[1] tensor = tensor * mask # clear the tensor # apply median filter then combine median = tensor.clone() median = median + medpool(median.unsqueeze(0).unsqueeze(0)).squeeze() * torch.logical_not(mask) mask = median.abs() > eps return median, mask x = proj_range.clone() mask = proj_mask.clone() print(x.shape) plt.figure(figsize=(20, 20)) plt.subplot(6, 1, 1) sns.heatmap(x, square=True) plt.subplot(6, 1, 2) x, mask = fill_step(x, mask, medpool3) sns.heatmap(x, square=True) plt.subplot(6, 1, 3) x, mask = fill_step(x, mask, medpool5) sns.heatmap(x, square=True) plt.subplot(6, 1, 4) x, mask = fill_step(x, mask, medpool7) sns.heatmap(x, square=True) plt.subplot(6, 1, 5) x, mask = fill_step(x, mask, medpool13) sns.heatmap(x, square=True) plt.subplot(6, 1, 6) x, mask = fill_step(x, mask, medpool13) sns.heatmap(x, square=True) import vispy vispy.test() ```
github_jupyter
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair, _quadruple from matplotlib import pyplot as plt import seaborn as sns import numpy as np proj_range = torch.load('proj_range.pt') proj_mask = torch.load('proj_mask.pt') pred_np = torch.load('pred_np.pt') pred_np.clip(0, 118) pred_np.shape sum(pred_np > 1) sns.scatterplot(np.arange(len(pred_np)), pred_np) class MedianPool2d(nn.Module): """ Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=True): super(MedianPool2d, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) # convert to l, r, t, b self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - (ih % self.stride[0]), 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - (iw % self.stride[1]), 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = (pl, pr, pt, pb) else: padding = self.padding return padding def forward(self, x): # using existing pytorch functions and tensor ops so that we get autograd, # would likely be more efficient to implement from scratch at C/Cuda level x = F.pad(x, self._padding(x), mode='reflect') x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] return x medpool3 = MedianPool2d() medpool5 = MedianPool2d(kernel_size=5) medpool7 = MedianPool2d(kernel_size=7) medpool13 = MedianPool2d(kernel_size=13) medpool29 = MedianPool2d(kernel_size=29) def fill_step(tensor, mask, medpool): eps = 1e-6 H, W = tensor.shape[0], tensor.shape[1] tensor = tensor * mask # clear the tensor # apply median filter then combine median = tensor.clone() median = median + medpool(median.unsqueeze(0).unsqueeze(0)).squeeze() * torch.logical_not(mask) mask = median.abs() > eps return median, mask x = proj_range.clone() mask = proj_mask.clone() print(x.shape) plt.figure(figsize=(20, 20)) plt.subplot(6, 1, 1) sns.heatmap(x, square=True) plt.subplot(6, 1, 2) x, mask = fill_step(x, mask, medpool3) sns.heatmap(x, square=True) plt.subplot(6, 1, 3) x, mask = fill_step(x, mask, medpool5) sns.heatmap(x, square=True) plt.subplot(6, 1, 4) x, mask = fill_step(x, mask, medpool7) sns.heatmap(x, square=True) plt.subplot(6, 1, 5) x, mask = fill_step(x, mask, medpool13) sns.heatmap(x, square=True) plt.subplot(6, 1, 6) x, mask = fill_step(x, mask, medpool13) sns.heatmap(x, square=True) import vispy vispy.test()
0.931936
0.726183
``` import os from bids import BIDSLayout from glob import glob from nipype.interfaces.io import BIDSDataGrabber from nipype.pipeline import Node, MapNode, Workflow from nipype.interfaces.utility import Function bids_dir = os.path.join('/Users/sebastientourbier/Softwares/mialsuperresolutiontoolkit/data') output_dir = os.path.join('/Users/sebastientourbier/Softwares/mialsuperresolutiontoolkit/data','derivatives','mialsrtk') subject = '01' layout = BIDSLayout(bids_dir) print(layout) bg = Node(BIDSDataGrabber(infields = ['subject']),name='bids_grabber') bg.inputs.base_dir = bids_dir bg.inputs.subject = subject bg.inputs.index_derivatives = True bg.inputs.output_query = {'T2ws': dict(suffix='T2w',datatype='anat',extensions=[".nii",".nii.gz"]), 'masks': dict(suffix='mask',datatype='anat',extensions=[".nii",".nii.gz"])} from traits.api import * from nipype.utils.filemanip import split_filename from nipype.interfaces.base import traits, isdefined, CommandLine, CommandLineInputSpec,\ TraitedSpec, File, InputMultiPath, OutputMultiPath, BaseInterface, BaseInterfaceInputSpec class prepareDockerPathsInputSpec(BaseInterfaceInputSpec): local_T2ws_paths = InputMultiPath(File(desc='input T2ws paths', mandatory = True, exists = True)) local_masks_paths = InputMultiPath(File(desc='input masks paths', mandatory = True, exists = True)) local_dir = Directory(mandatory=True) docker_dir = Directory('/fetaldata',mandatory=True) class prepareDockerPathsOutputSpec(TraitedSpec): docker_T2ws_paths = OutputMultiPath(File(desc='docker T2ws paths')) docker_masks_paths = OutputMultiPath(File(desc='docker masks paths')) class prepareDockerPaths(BaseInterface): input_spec = prepareDockerPathsInputSpec output_spec = prepareDockerPathsOutputSpec def _run_interface(self,runtime): return runtime def _list_outputs(self): outputs = self._outputs().get() outputs["docker_T2ws_paths"] = [] for p in self.inputs.local_T2ws_paths: p = os.path.join(self.inputs.docker_dir,p.split(self.inputs.local_dir)[1].strip("/")) print(p) outputs["docker_T2ws_paths"].append(p) outputs["docker_masks_paths"] = [] for p in self.inputs.local_masks_paths: p = os.path.join(self.inputs.docker_dir,p.split(self.inputs.local_dir)[1].strip("/")) print(p) outputs["docker_masks_paths"].append(p) return outputs preparePaths = Node(interface=prepareDockerPaths(), name="preparePaths") preparePaths.inputs.local_dir = bids_dir preparePaths.inputs.docker_dir = '/fetaldata' wf = Workflow(name="bids_demo",base_dir=output_dir) wf.connect(bg, "T2ws", preparePaths, "local_T2ws_paths") wf.connect(bg, "masks", preparePaths, "local_masks_paths") import subprocess def run(self, command, env={}, cwd=os.getcwd()): merged_env = os.environ merged_env.update(env) process = subprocess.run(command, shell=True, env=merged_env, cwd=cwd, capture_output=True) return process from traits.api import * from nipype.utils.filemanip import split_filename from nipype.interfaces.base import traits, isdefined, CommandLine, CommandLineInputSpec,\ TraitedSpec, File, InputMultiPath, OutputMultiPath, BaseInterface, BaseInterfaceInputSpec import nibabel as nib class BtkNLMDenoisingInputSpec(BaseInterfaceInputSpec): bids_dir = Directory(desc='BIDS root directory',mandatory=True,exists=True) in_file = File(desc='Input image',mandatory=True,) out_postfix = traits.Str("_nlm", usedefault=True) weight = traits.Float(0.1,desc='NLM weight (0.1 by default)') class BtkNLMDenoisingOutputSpec(TraitedSpec): out_file = File(desc='Denoised image') class BtkNLMDenoising(BaseInterface): input_spec = BtkNLMDenoisingInputSpec output_spec = BtkNLMDenoisingOutputSpec def _run_interface(self, runtime): _, name, ext = split_filename(os.path.abspath(self.inputs.in_file)) out_file = os.path.join(os.getcwd().replace(self.inputs.bids_dir,'/fetaldata'), ''.join((name, self.inputs.out_postfix, ext))) cmd = 'docker run --rm -u {}:{} -v "{}":/fetaldata sebastientourbier/mialsuperresolutiontoolkit btkNLMDenoising -i "{}" -o "{}" -b {}'.format(os.getuid(),os.getgid(),self.inputs.bids_dir,self.inputs.in_file,out_file,self.inputs.weight) try: print('... cmd: {}'.format(cmd)) run(self, cmd, env={}, cwd=os.path.abspath(self.inputs.bids_dir)) except: print('Failed') return runtime def _list_outputs(self): outputs = self._outputs().get() _, name, ext = split_filename(os.path.abspath(self.inputs.in_file)) outputs['out_file'] = os.path.join(os.getcwd(), ''.join((name, self.inputs.out_postfix, ext))) return outputs class MultipleBtkNLMDenoisingInputSpec(BaseInterfaceInputSpec): bids_dir = Directory(desc='BIDS root directory',mandatory=True,exists=True) input_images = InputMultiPath(File(desc='files to be denoised', mandatory = True)) weight = traits.Float(0.1) out_postfix = traits.Str("_nlm", usedefault=True) class MultipleBtkNLMDenoisingOutputSpec(TraitedSpec): output_images = OutputMultiPath(File()) class MultipleBtkNLMDenoising(BaseInterface): input_spec = MultipleBtkNLMDenoisingInputSpec output_spec = MultipleBtkNLMDenoisingOutputSpec def _run_interface(self, runtime): for input_image in self.inputs.input_images: ax = BtkNLMDenoising(bids_dir = self.inputs.bids_dir, in_file = input_image, out_postfix=self.inputs.out_postfix, weight = self.inputs.weight) ax.run() return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['output_images'] = glob(os.path.abspath("*.nii.gz")) return outputs nlmDenoise = Node(interface=MultipleBtkNLMDenoising(),base_dir=os.path.join(output_dir,'bids_demo'),name='nlmDenoise') nlmDenoise.inputs.bids_dir = bids_dir nlmDenoise.inputs.weight = 0.1 wf.connect(preparePaths, "docker_T2ws_paths", nlmDenoise, "input_images") res = wf.run() wf.write_graph() ```
github_jupyter
import os from bids import BIDSLayout from glob import glob from nipype.interfaces.io import BIDSDataGrabber from nipype.pipeline import Node, MapNode, Workflow from nipype.interfaces.utility import Function bids_dir = os.path.join('/Users/sebastientourbier/Softwares/mialsuperresolutiontoolkit/data') output_dir = os.path.join('/Users/sebastientourbier/Softwares/mialsuperresolutiontoolkit/data','derivatives','mialsrtk') subject = '01' layout = BIDSLayout(bids_dir) print(layout) bg = Node(BIDSDataGrabber(infields = ['subject']),name='bids_grabber') bg.inputs.base_dir = bids_dir bg.inputs.subject = subject bg.inputs.index_derivatives = True bg.inputs.output_query = {'T2ws': dict(suffix='T2w',datatype='anat',extensions=[".nii",".nii.gz"]), 'masks': dict(suffix='mask',datatype='anat',extensions=[".nii",".nii.gz"])} from traits.api import * from nipype.utils.filemanip import split_filename from nipype.interfaces.base import traits, isdefined, CommandLine, CommandLineInputSpec,\ TraitedSpec, File, InputMultiPath, OutputMultiPath, BaseInterface, BaseInterfaceInputSpec class prepareDockerPathsInputSpec(BaseInterfaceInputSpec): local_T2ws_paths = InputMultiPath(File(desc='input T2ws paths', mandatory = True, exists = True)) local_masks_paths = InputMultiPath(File(desc='input masks paths', mandatory = True, exists = True)) local_dir = Directory(mandatory=True) docker_dir = Directory('/fetaldata',mandatory=True) class prepareDockerPathsOutputSpec(TraitedSpec): docker_T2ws_paths = OutputMultiPath(File(desc='docker T2ws paths')) docker_masks_paths = OutputMultiPath(File(desc='docker masks paths')) class prepareDockerPaths(BaseInterface): input_spec = prepareDockerPathsInputSpec output_spec = prepareDockerPathsOutputSpec def _run_interface(self,runtime): return runtime def _list_outputs(self): outputs = self._outputs().get() outputs["docker_T2ws_paths"] = [] for p in self.inputs.local_T2ws_paths: p = os.path.join(self.inputs.docker_dir,p.split(self.inputs.local_dir)[1].strip("/")) print(p) outputs["docker_T2ws_paths"].append(p) outputs["docker_masks_paths"] = [] for p in self.inputs.local_masks_paths: p = os.path.join(self.inputs.docker_dir,p.split(self.inputs.local_dir)[1].strip("/")) print(p) outputs["docker_masks_paths"].append(p) return outputs preparePaths = Node(interface=prepareDockerPaths(), name="preparePaths") preparePaths.inputs.local_dir = bids_dir preparePaths.inputs.docker_dir = '/fetaldata' wf = Workflow(name="bids_demo",base_dir=output_dir) wf.connect(bg, "T2ws", preparePaths, "local_T2ws_paths") wf.connect(bg, "masks", preparePaths, "local_masks_paths") import subprocess def run(self, command, env={}, cwd=os.getcwd()): merged_env = os.environ merged_env.update(env) process = subprocess.run(command, shell=True, env=merged_env, cwd=cwd, capture_output=True) return process from traits.api import * from nipype.utils.filemanip import split_filename from nipype.interfaces.base import traits, isdefined, CommandLine, CommandLineInputSpec,\ TraitedSpec, File, InputMultiPath, OutputMultiPath, BaseInterface, BaseInterfaceInputSpec import nibabel as nib class BtkNLMDenoisingInputSpec(BaseInterfaceInputSpec): bids_dir = Directory(desc='BIDS root directory',mandatory=True,exists=True) in_file = File(desc='Input image',mandatory=True,) out_postfix = traits.Str("_nlm", usedefault=True) weight = traits.Float(0.1,desc='NLM weight (0.1 by default)') class BtkNLMDenoisingOutputSpec(TraitedSpec): out_file = File(desc='Denoised image') class BtkNLMDenoising(BaseInterface): input_spec = BtkNLMDenoisingInputSpec output_spec = BtkNLMDenoisingOutputSpec def _run_interface(self, runtime): _, name, ext = split_filename(os.path.abspath(self.inputs.in_file)) out_file = os.path.join(os.getcwd().replace(self.inputs.bids_dir,'/fetaldata'), ''.join((name, self.inputs.out_postfix, ext))) cmd = 'docker run --rm -u {}:{} -v "{}":/fetaldata sebastientourbier/mialsuperresolutiontoolkit btkNLMDenoising -i "{}" -o "{}" -b {}'.format(os.getuid(),os.getgid(),self.inputs.bids_dir,self.inputs.in_file,out_file,self.inputs.weight) try: print('... cmd: {}'.format(cmd)) run(self, cmd, env={}, cwd=os.path.abspath(self.inputs.bids_dir)) except: print('Failed') return runtime def _list_outputs(self): outputs = self._outputs().get() _, name, ext = split_filename(os.path.abspath(self.inputs.in_file)) outputs['out_file'] = os.path.join(os.getcwd(), ''.join((name, self.inputs.out_postfix, ext))) return outputs class MultipleBtkNLMDenoisingInputSpec(BaseInterfaceInputSpec): bids_dir = Directory(desc='BIDS root directory',mandatory=True,exists=True) input_images = InputMultiPath(File(desc='files to be denoised', mandatory = True)) weight = traits.Float(0.1) out_postfix = traits.Str("_nlm", usedefault=True) class MultipleBtkNLMDenoisingOutputSpec(TraitedSpec): output_images = OutputMultiPath(File()) class MultipleBtkNLMDenoising(BaseInterface): input_spec = MultipleBtkNLMDenoisingInputSpec output_spec = MultipleBtkNLMDenoisingOutputSpec def _run_interface(self, runtime): for input_image in self.inputs.input_images: ax = BtkNLMDenoising(bids_dir = self.inputs.bids_dir, in_file = input_image, out_postfix=self.inputs.out_postfix, weight = self.inputs.weight) ax.run() return runtime def _list_outputs(self): outputs = self._outputs().get() outputs['output_images'] = glob(os.path.abspath("*.nii.gz")) return outputs nlmDenoise = Node(interface=MultipleBtkNLMDenoising(),base_dir=os.path.join(output_dir,'bids_demo'),name='nlmDenoise') nlmDenoise.inputs.bids_dir = bids_dir nlmDenoise.inputs.weight = 0.1 wf.connect(preparePaths, "docker_T2ws_paths", nlmDenoise, "input_images") res = wf.run() wf.write_graph()
0.345216
0.183082
# Symbolic Aggregate approXimation *(SAX)* Encoding ## Distance DEMO ``` # at first time install pynuTS with this command #!pip install git+https://github.com/nickprock/pynuTS.git@main import pandas as pd import numpy as np from pynuTS.decomposition import NaiveSAX import matplotlib.pyplot as plt %matplotlib inline ``` ## Introduction Symbolic Aggregate approXimation Encoding (SAX Encoding) * Developed in 2002 by Keogh e Lin * Dimensionality Reduction for sequences * In this example we will use it to find anomaly patterns. For more informations read this [KDNuggets article](https://www.kdnuggets.com/2019/09/time-series-baseball.html). ## Create dataset. We Create 10 sequences with 12 observations. ``` # Some useful functions def sigmoid(x, a, b, c): expo = a * (b - x) sig = 1 / ( 1 + np.exp( expo ) ) * c return sig def white_noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(120) np.random.seed(42) a = np.random.randn(10) b = np.random.beta(a[0], a[-1], 10) c = np.random.normal(loc = 10, scale=0.05,size=10) list_series = [] for i in range(10): noise = white_noise(time) temp = sigmoid(time, a[i], b[i], c[i]) + noise list_series.append(temp) ``` ### Create DataFrame * every row is a period * every column is a sequence ``` X = pd.DataFrame(list_series).T X X.plot(figsize=(18,10)) plt.legend(["ts1", "ts2","ts3","ts4","ts5","ts6","ts7","ts8","ts9","ts10"]) plt.show() ``` ## Distance Matrix with SAX Encoding We choose a window size 12. We reduct the 120 periods in 10 periods, a letter is a year. You transpose X because each row must be a time series and each column a timestep. ``` sax = NaiveSAX(windows=24) sax_strings = np.apply_along_axis(sax.fit_transform, 1, X.T) ``` ## Dimensionality Reduction with **Piecewise Aggregate Approximation** The **Piecewise Aggregate Approximation** consisting in taking the mean over back-to-back points. This decreases the number of points and reduces noise while preserving the trend of the time series. The labels for each level form the **SAX String** (like *'AAA'*) <br> ![PAA](https://www.researchgate.net/profile/Bill-Chiu-2/publication/221653289/figure/fig7/AS:668838362349575@1536474900462/Symbolic-aggregate-approximation-of-a-time-series-as-the-four-letter-word-dbad-The.ppm) <br> ``` sax_strings ``` ### Choose the distance: Hamming In information theory, the [Hamming distance](https://en.wikipedia.org/wiki/Hamming_distance) between two strings of equal length is the number of positions at which the corresponding symbols are different. Use the [scipy version](https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.hamming.html) ``` from scipy.spatial.distance import hamming print("The distance between ", sax_strings[0], " and ", sax_strings[1], " is: ",hamming(list(sax_strings[0]), list(sax_strings[1]))) # very dummy loop for i in range(len(sax_strings)): for j in range(len(sax_strings)): print("The distance between ", sax_strings[i], " and ", sax_strings[j], " is: ",hamming(list(sax_strings[i]), list(sax_strings[j]))) ``` ## Credits pynuTS by Nicola Procopio 2020 Original repository https://github.com/nickprock/pynuTS/ <br> * *The **sigmoid** function was created by [Piero Savastano](https://github.com/pieroit) for [covid19italia](https://github.com/ondata/covid19italia/blob/master/visualizzazione/analisi_predittiva.ipynb)* * *The **white_noise** function was created by [Aurélien Géron](https://github.com/ageron) for an Udacity course*
github_jupyter
# at first time install pynuTS with this command #!pip install git+https://github.com/nickprock/pynuTS.git@main import pandas as pd import numpy as np from pynuTS.decomposition import NaiveSAX import matplotlib.pyplot as plt %matplotlib inline # Some useful functions def sigmoid(x, a, b, c): expo = a * (b - x) sig = 1 / ( 1 + np.exp( expo ) ) * c return sig def white_noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level time = np.arange(120) np.random.seed(42) a = np.random.randn(10) b = np.random.beta(a[0], a[-1], 10) c = np.random.normal(loc = 10, scale=0.05,size=10) list_series = [] for i in range(10): noise = white_noise(time) temp = sigmoid(time, a[i], b[i], c[i]) + noise list_series.append(temp) X = pd.DataFrame(list_series).T X X.plot(figsize=(18,10)) plt.legend(["ts1", "ts2","ts3","ts4","ts5","ts6","ts7","ts8","ts9","ts10"]) plt.show() sax = NaiveSAX(windows=24) sax_strings = np.apply_along_axis(sax.fit_transform, 1, X.T) sax_strings from scipy.spatial.distance import hamming print("The distance between ", sax_strings[0], " and ", sax_strings[1], " is: ",hamming(list(sax_strings[0]), list(sax_strings[1]))) # very dummy loop for i in range(len(sax_strings)): for j in range(len(sax_strings)): print("The distance between ", sax_strings[i], " and ", sax_strings[j], " is: ",hamming(list(sax_strings[i]), list(sax_strings[j])))
0.351534
0.930395
``` import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import matplotlib.ticker as ticker import seaborn as sns from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestClassifier,\ VotingClassifier,\ GradientBoostingClassifier,\ StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import f1_score, make_scorer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ParameterGrid from sklearn.inspection import permutation_importance import multiprocessing from xgboost import XGBClassifier labels = pd.read_csv('../../csv/train_labels.csv') labels.head() values = pd.read_csv('../../csv/train_values.csv') values.T to_be_categorized = ["land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status"] for row in to_be_categorized: values[row] = values[row].astype("category") values.info() datatypes = dict(values.dtypes) for row in values.columns: if datatypes[row] != "int64" and datatypes[row] != "int32" and \ datatypes[row] != "int16" and datatypes[row] != "int8": continue if values[row].nlargest(1).item() > 32767 and values[row].nlargest(1).item() < 2**31: values[row] = values[row].astype(np.int32) elif values[row].nlargest(1).item() > 127: values[row] = values[row].astype(np.int16) else: values[row] = values[row].astype(np.int8) labels["building_id"] = labels["building_id"].astype(np.int32) labels["damage_grade"] = labels["damage_grade"].astype(np.int8) labels.info() ``` # Feature Engineering para XGBoost ``` important_values = values\ .merge(labels, on="building_id") important_values.drop(columns=["building_id"], inplace = True) important_values["geo_level_1_id"] = important_values["geo_level_1_id"].astype("category") important_values X_train, X_test, y_train, y_test = train_test_split(important_values.drop(columns = 'damage_grade'), important_values['damage_grade'], test_size = 0.2, random_state = 123) #OneHotEncoding def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status"] for feature in features_to_encode: X_train = encode_and_bind(X_train, feature) X_test = encode_and_bind(X_test, feature) X_train import time # min_child_weight = [0, 1, 2] # max_delta_step = [0, 5, 10] def my_grid_search(): print(time.gmtime()) i = 1 df = pd.DataFrame({'subsample': [], 'gamma': [], 'learning_rate': [], 'max_depth': [], 'score': []}) for subsample in [0.75, 0.885, 0.95]: for gamma in [0.75, 1, 1.25]: for learning_rate in [0.4375, 0.45, 0.4625]: for max_depth in [5, 6, 7]: model = XGBClassifier(n_estimators = 350, booster = 'gbtree', subsample = subsample, gamma = gamma, max_depth = max_depth, learning_rate = learning_rate, label_encoder = False, verbosity = 0) model.fit(X_train, y_train) y_preds = model.predict(X_test) score = f1_score(y_test, y_preds, average = 'micro') df = df.append(pd.Series( data={'subsample': subsample, 'gamma': gamma, 'learning_rate': learning_rate, 'max_depth': max_depth, 'score': score}, name = i)) print(i, time.gmtime()) i += 1 return df.sort_values('score', ascending = False) current_df = my_grid_search() df = pd.read_csv('grid-search/res-feature-engineering.csv') df.append(current_df) df.to_csv('grid-search/res-feature-engineering.csv') current_df import time def my_grid_search(): print(time.gmtime()) i = 1 df = pd.DataFrame({'subsample': [], 'gamma': [], 'learning_rate': [], 'max_depth': [], 'score': []}) for subsample in [0.885]: for gamma in [1]: for learning_rate in [0.45]: for max_depth in [5,6,7,8]: model = XGBClassifier(n_estimators = 350, booster = 'gbtree', subsample = subsample, gamma = gamma, max_depth = max_depth, learning_rate = learning_rate, label_encoder = False, verbosity = 0) model.fit(X_train, y_train) y_preds = model.predict(X_test) score = f1_score(y_test, y_preds, average = 'micro') df = df.append(pd.Series( data={'subsample': subsample, 'gamma': gamma, 'learning_rate': learning_rate, 'max_depth': max_depth, 'score': score}, name = i)) print(i, time.gmtime()) i += 1 return df.sort_values('score', ascending = False) df = my_grid_search() # df = pd.read_csv('grid-search/res-feature-engineering.csv') # df.append(current_df) df.to_csv('grid-search/res-feature-engineering.csv') df pd.read_csv('grid-search/res-no-feature-engineering.csv')\ .nlargest(20, 'score') ``` # ... ``` xgb_model_1 = XGBClassifier(n_estimators = 350, subsample = 0.885, booster = 'gbtree', gamma = 1, learning_rate = 0.45, label_encoder = False, verbosity = 2) xgb_model_2 = XGBClassifier(n_estimators = 350, subsample = 0.950, booster = 'gbtree', gamma = 0.5, learning_rate = 0.45, label_encoder = False, verbosity = 2) xgb_model_3 = XGBClassifier(n_estimators = 350, subsample = 0.750, booster = 'gbtree', gamma = 1, learning_rate = 0.45, label_encoder = False, verbosity = 2) xgb_model_4 = XGBClassifier(n_estimators = 350, subsample = 0.80, booster = 'gbtree', gamma = 1, learning_rate = 0.55, label_encoder = False, verbosity = 2) rf_model_1 = RandomForestClassifier(n_estimators = 150, max_depth = None, max_features = 45, min_samples_split = 15, min_samples_leaf = 1, criterion = "gini", verbose=True) rf_model_2 = RandomForestClassifier(n_estimators = 250, max_depth = None, max_features = 45, min_samples_split = 15, min_samples_leaf = 1, criterion = "gini", verbose=True, n_jobs =-1) import lightgbm as lgb lgbm_model_1 = lgb.LGBMClassifier(boosting_type='gbdt', colsample_bytree=1.0, importance_type='split', learning_rate=0.15, max_depth=None, n_estimators=1600, n_jobs=-1, objective=None, subsample=1.0, subsample_for_bin=200000, subsample_freq=0) lgbm_model_2 = lgb.LGBMClassifier(boosting_type='gbdt', colsample_bytree=1.0, importance_type='split', learning_rate=0.15, max_depth=25, n_estimators=1750, n_jobs=-1, objective=None, subsample=0.7, subsample_for_bin=240000, subsample_freq=0) lgbm_model_3 = lgb.LGBMClassifier(boosting_type='gbdt', colsample_bytree=1.0, importance_type='split', learning_rate=0.20, max_depth=40, n_estimators=1450, n_jobs=-1, objective=None, subsample=0.7, subsample_for_bin=160000, subsample_freq=0) import sklearn as sk import sklearn.neural_network neuronal_1 = sk.neural_network.MLPClassifier(solver='adam', activation = 'relu', learning_rate_init=0.001, learning_rate = 'adaptive', verbose=True, batch_size = 'auto') estimators = [('xgb', xgb_model_1), ('rfm', rf_model_1), ('lgbm', lgbm_model_1)] final_estimator = GradientBoostingClassifier(n_estimators = 305, max_depth = 9, min_samples_split = 2, min_samples_leaf = 3, subsample=0.6, verbose=True, learning_rate=0.15) sc_model = StackingClassifier(estimators = estimators) sc_model.fit(X_train, y_train) y_preds = sc_model.predict(X_test) f1_score(y_test, y_preds, average='micro') test_values = pd.read_csv('../../csv/test_values.csv', index_col = "building_id") test_values test_values_subset = test_values test_values_subset["geo_level_1_id"] = test_values_subset["geo_level_1_id"].astype("category") test_values_subset def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status"] for feature in features_to_encode: test_values_subset = encode_and_bind(test_values_subset, feature) test_values_subset test_values_subset.shape # Genero las predicciones para los test. preds = vc_model.predict(test_values_subset) submission_format = pd.read_csv('../../csv/submission_format.csv', index_col = "building_id") my_submission = pd.DataFrame(data=preds, columns=submission_format.columns, index=submission_format.index) my_submission.head() my_submission.to_csv('../../csv/predictions/jf/vote/jf-model-3-submission.csv') !head ../../csv/predictions/jf/vote/jf-model-3-submission.csv ```
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import matplotlib.ticker as ticker import seaborn as sns from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestClassifier,\ VotingClassifier,\ GradientBoostingClassifier,\ StackingClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import f1_score, make_scorer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ParameterGrid from sklearn.inspection import permutation_importance import multiprocessing from xgboost import XGBClassifier labels = pd.read_csv('../../csv/train_labels.csv') labels.head() values = pd.read_csv('../../csv/train_values.csv') values.T to_be_categorized = ["land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status"] for row in to_be_categorized: values[row] = values[row].astype("category") values.info() datatypes = dict(values.dtypes) for row in values.columns: if datatypes[row] != "int64" and datatypes[row] != "int32" and \ datatypes[row] != "int16" and datatypes[row] != "int8": continue if values[row].nlargest(1).item() > 32767 and values[row].nlargest(1).item() < 2**31: values[row] = values[row].astype(np.int32) elif values[row].nlargest(1).item() > 127: values[row] = values[row].astype(np.int16) else: values[row] = values[row].astype(np.int8) labels["building_id"] = labels["building_id"].astype(np.int32) labels["damage_grade"] = labels["damage_grade"].astype(np.int8) labels.info() important_values = values\ .merge(labels, on="building_id") important_values.drop(columns=["building_id"], inplace = True) important_values["geo_level_1_id"] = important_values["geo_level_1_id"].astype("category") important_values X_train, X_test, y_train, y_test = train_test_split(important_values.drop(columns = 'damage_grade'), important_values['damage_grade'], test_size = 0.2, random_state = 123) #OneHotEncoding def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status"] for feature in features_to_encode: X_train = encode_and_bind(X_train, feature) X_test = encode_and_bind(X_test, feature) X_train import time # min_child_weight = [0, 1, 2] # max_delta_step = [0, 5, 10] def my_grid_search(): print(time.gmtime()) i = 1 df = pd.DataFrame({'subsample': [], 'gamma': [], 'learning_rate': [], 'max_depth': [], 'score': []}) for subsample in [0.75, 0.885, 0.95]: for gamma in [0.75, 1, 1.25]: for learning_rate in [0.4375, 0.45, 0.4625]: for max_depth in [5, 6, 7]: model = XGBClassifier(n_estimators = 350, booster = 'gbtree', subsample = subsample, gamma = gamma, max_depth = max_depth, learning_rate = learning_rate, label_encoder = False, verbosity = 0) model.fit(X_train, y_train) y_preds = model.predict(X_test) score = f1_score(y_test, y_preds, average = 'micro') df = df.append(pd.Series( data={'subsample': subsample, 'gamma': gamma, 'learning_rate': learning_rate, 'max_depth': max_depth, 'score': score}, name = i)) print(i, time.gmtime()) i += 1 return df.sort_values('score', ascending = False) current_df = my_grid_search() df = pd.read_csv('grid-search/res-feature-engineering.csv') df.append(current_df) df.to_csv('grid-search/res-feature-engineering.csv') current_df import time def my_grid_search(): print(time.gmtime()) i = 1 df = pd.DataFrame({'subsample': [], 'gamma': [], 'learning_rate': [], 'max_depth': [], 'score': []}) for subsample in [0.885]: for gamma in [1]: for learning_rate in [0.45]: for max_depth in [5,6,7,8]: model = XGBClassifier(n_estimators = 350, booster = 'gbtree', subsample = subsample, gamma = gamma, max_depth = max_depth, learning_rate = learning_rate, label_encoder = False, verbosity = 0) model.fit(X_train, y_train) y_preds = model.predict(X_test) score = f1_score(y_test, y_preds, average = 'micro') df = df.append(pd.Series( data={'subsample': subsample, 'gamma': gamma, 'learning_rate': learning_rate, 'max_depth': max_depth, 'score': score}, name = i)) print(i, time.gmtime()) i += 1 return df.sort_values('score', ascending = False) df = my_grid_search() # df = pd.read_csv('grid-search/res-feature-engineering.csv') # df.append(current_df) df.to_csv('grid-search/res-feature-engineering.csv') df pd.read_csv('grid-search/res-no-feature-engineering.csv')\ .nlargest(20, 'score') xgb_model_1 = XGBClassifier(n_estimators = 350, subsample = 0.885, booster = 'gbtree', gamma = 1, learning_rate = 0.45, label_encoder = False, verbosity = 2) xgb_model_2 = XGBClassifier(n_estimators = 350, subsample = 0.950, booster = 'gbtree', gamma = 0.5, learning_rate = 0.45, label_encoder = False, verbosity = 2) xgb_model_3 = XGBClassifier(n_estimators = 350, subsample = 0.750, booster = 'gbtree', gamma = 1, learning_rate = 0.45, label_encoder = False, verbosity = 2) xgb_model_4 = XGBClassifier(n_estimators = 350, subsample = 0.80, booster = 'gbtree', gamma = 1, learning_rate = 0.55, label_encoder = False, verbosity = 2) rf_model_1 = RandomForestClassifier(n_estimators = 150, max_depth = None, max_features = 45, min_samples_split = 15, min_samples_leaf = 1, criterion = "gini", verbose=True) rf_model_2 = RandomForestClassifier(n_estimators = 250, max_depth = None, max_features = 45, min_samples_split = 15, min_samples_leaf = 1, criterion = "gini", verbose=True, n_jobs =-1) import lightgbm as lgb lgbm_model_1 = lgb.LGBMClassifier(boosting_type='gbdt', colsample_bytree=1.0, importance_type='split', learning_rate=0.15, max_depth=None, n_estimators=1600, n_jobs=-1, objective=None, subsample=1.0, subsample_for_bin=200000, subsample_freq=0) lgbm_model_2 = lgb.LGBMClassifier(boosting_type='gbdt', colsample_bytree=1.0, importance_type='split', learning_rate=0.15, max_depth=25, n_estimators=1750, n_jobs=-1, objective=None, subsample=0.7, subsample_for_bin=240000, subsample_freq=0) lgbm_model_3 = lgb.LGBMClassifier(boosting_type='gbdt', colsample_bytree=1.0, importance_type='split', learning_rate=0.20, max_depth=40, n_estimators=1450, n_jobs=-1, objective=None, subsample=0.7, subsample_for_bin=160000, subsample_freq=0) import sklearn as sk import sklearn.neural_network neuronal_1 = sk.neural_network.MLPClassifier(solver='adam', activation = 'relu', learning_rate_init=0.001, learning_rate = 'adaptive', verbose=True, batch_size = 'auto') estimators = [('xgb', xgb_model_1), ('rfm', rf_model_1), ('lgbm', lgbm_model_1)] final_estimator = GradientBoostingClassifier(n_estimators = 305, max_depth = 9, min_samples_split = 2, min_samples_leaf = 3, subsample=0.6, verbose=True, learning_rate=0.15) sc_model = StackingClassifier(estimators = estimators) sc_model.fit(X_train, y_train) y_preds = sc_model.predict(X_test) f1_score(y_test, y_preds, average='micro') test_values = pd.read_csv('../../csv/test_values.csv', index_col = "building_id") test_values test_values_subset = test_values test_values_subset["geo_level_1_id"] = test_values_subset["geo_level_1_id"].astype("category") test_values_subset def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status"] for feature in features_to_encode: test_values_subset = encode_and_bind(test_values_subset, feature) test_values_subset test_values_subset.shape # Genero las predicciones para los test. preds = vc_model.predict(test_values_subset) submission_format = pd.read_csv('../../csv/submission_format.csv', index_col = "building_id") my_submission = pd.DataFrame(data=preds, columns=submission_format.columns, index=submission_format.index) my_submission.head() my_submission.to_csv('../../csv/predictions/jf/vote/jf-model-3-submission.csv') !head ../../csv/predictions/jf/vote/jf-model-3-submission.csv
0.412648
0.714516
``` import core.config as config from chofer_tda_datasets import Reininghaus2014ShrecReal, SciNe01EEGBottomTopFiltration from chofer_tda_datasets.transforms import Hdf5GroupToDict, Hdf5GroupToDictSelector from sklearn.model_selection import StratifiedShuffleSplit, GridSearchCV from sklearn.svm import LinearSVC from sklearn.metrics import accuracy_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import sys from IPython.display import clear_output from collections import defaultdict def bendich_vectorization(dgm, num_dims=100): persistences = [d-b for b, d in dgm] v = sorted(persistences, reverse=True) if len(v) < num_dims: v += [0]*(num_dims - len(v)) return v[:num_dims] def svm_linear_standard_scaled_c_optimized(pca_num_dims=None): grid = {'C': [0.1, 1, 10, 100]} clf = GridSearchCV(cv=3, estimator=LinearSVC(), param_grid=grid, n_jobs=10 ) pipeline_members = [] pipeline_members.append(('scaler', StandardScaler())) if pca_num_dims is not None: pipeline_members.append(('pca', PCA(pca_num_dims))) pipeline_members.append(('classifier', clf)) return Pipeline(pipeline_members) def bendich_vectorization_generic_experiment(dataset, vectorization_callback, vectorization_dimensions, pca_num_dims=None): train_size = 0.9 splitter = StratifiedShuffleSplit(n_splits=10, train_size=train_size, test_size=1-train_size, random_state=123) train_test_splits = list(splitter.split(X=dataset.targets, y=dataset.targets)) train_test_splits = [(train_i.tolist(), test_i.tolist()) for train_i, test_i in train_test_splits] return_value = {} X = [] y = [] for i, (x_i, y_i) in enumerate(dataset): clear_output(wait=True) print('loading data ... ', i, end='\r') sys.stdout.flush() v = vectorization_callback(x_i, num_dims=max(vectorization_dimensions)) X.append(v) y.append(int(y_i)) # X = np.array(X) y = np.array(y) print('') for dim in vectorization_dimensions: print('dimension =', dim, ":") return_value_dim = defaultdict(list) return_value[dim] = return_value_dim X_dim = [] for x in X: X_dim.append(sum([v[:dim] for v in x], [])) X_dim = np.array(X_dim) for run_i, (train_i, test_i) in enumerate(train_test_splits): print('run', run_i, end='\r') X_train = X_dim[train_i] y_train = y[train_i] X_test = X_dim[test_i] y_test = y[test_i] classifier = svm_linear_standard_scaled_c_optimized(pca_num_dims=pca_num_dims) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) return_value_dim['accuracies'].append(accuracy_score(y_test, y_pred)) return_value_dim['classifier'].append(classifier) print('') return return_value ds_shrec_real = Reininghaus2014ShrecReal(data_root_folder_path=config.paths.data_root_dir) ds_shrec_real.data_transforms = [Hdf5GroupToDict()] def shrec_real_bendich_vectorization(input_dict, num_dims): ret_val = [] for scale in range(1, 11): for dim in ['0', '1']: x = input_dict[str(scale)][dim] ret_val.append(bendich_vectorization(x, num_dims=num_dims)) return ret_val shrec_result = bendich_vectorization_generic_experiment(ds_shrec_real, shrec_real_bendich_vectorization, vectorization_dimensions=[5, 10, 20, 40, 80, 160]) with open('./bendich_exp_shrec_real.pickle', 'bw') as f: pickle.dump(shrec_result, f) for k, v in shrec_result.items(): print('dimension', k, 'accuracy:', np.mean(v['accuracies'])) ds_scine_eeg = SciNe01EEGBottomTopFiltration(data_root_folder_path=config.paths.data_root_dir) sensor_indices = [str(i) for i in ds_scine_eeg.sensor_configurations['low_resolution_whole_head']] selection = {'top': sensor_indices, 'bottom': sensor_indices} selector = Hdf5GroupToDictSelector(selection) ds_scine_eeg.data_transforms = [selector] def scine_bendich_vectorization(input_dict, num_dims): ret_val = [] for filt in ['top', 'bottom']: for sensor_i in sensor_indices: x = input_dict[filt][sensor_i] ret_val.append(bendich_vectorization(x, num_dims=num_dims)) return ret_val eeg_result = bendich_vectorization_generic_experiment(ds_scine_eeg, scine_bendich_vectorization, vectorization_dimensions=[5, 10, 20, 40, 80, 160], pca_num_dims=None) with open('./bendich_exp_scitrecs_eeg.pickle', 'bw') as f: pickle.dump(eeg_result, f) for k, v in eeg_result.items(): print('dimension', k, 'accuracy:', np.mean(v['accuracies'])) with open('./bendich_exp_scitrecs_eeg.pickle', 'br') as f: result = pickle.load(f) for k, v in result.items(): print(k, np.mean(v['accuracies'])) ```
github_jupyter
import core.config as config from chofer_tda_datasets import Reininghaus2014ShrecReal, SciNe01EEGBottomTopFiltration from chofer_tda_datasets.transforms import Hdf5GroupToDict, Hdf5GroupToDictSelector from sklearn.model_selection import StratifiedShuffleSplit, GridSearchCV from sklearn.svm import LinearSVC from sklearn.metrics import accuracy_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import sys from IPython.display import clear_output from collections import defaultdict def bendich_vectorization(dgm, num_dims=100): persistences = [d-b for b, d in dgm] v = sorted(persistences, reverse=True) if len(v) < num_dims: v += [0]*(num_dims - len(v)) return v[:num_dims] def svm_linear_standard_scaled_c_optimized(pca_num_dims=None): grid = {'C': [0.1, 1, 10, 100]} clf = GridSearchCV(cv=3, estimator=LinearSVC(), param_grid=grid, n_jobs=10 ) pipeline_members = [] pipeline_members.append(('scaler', StandardScaler())) if pca_num_dims is not None: pipeline_members.append(('pca', PCA(pca_num_dims))) pipeline_members.append(('classifier', clf)) return Pipeline(pipeline_members) def bendich_vectorization_generic_experiment(dataset, vectorization_callback, vectorization_dimensions, pca_num_dims=None): train_size = 0.9 splitter = StratifiedShuffleSplit(n_splits=10, train_size=train_size, test_size=1-train_size, random_state=123) train_test_splits = list(splitter.split(X=dataset.targets, y=dataset.targets)) train_test_splits = [(train_i.tolist(), test_i.tolist()) for train_i, test_i in train_test_splits] return_value = {} X = [] y = [] for i, (x_i, y_i) in enumerate(dataset): clear_output(wait=True) print('loading data ... ', i, end='\r') sys.stdout.flush() v = vectorization_callback(x_i, num_dims=max(vectorization_dimensions)) X.append(v) y.append(int(y_i)) # X = np.array(X) y = np.array(y) print('') for dim in vectorization_dimensions: print('dimension =', dim, ":") return_value_dim = defaultdict(list) return_value[dim] = return_value_dim X_dim = [] for x in X: X_dim.append(sum([v[:dim] for v in x], [])) X_dim = np.array(X_dim) for run_i, (train_i, test_i) in enumerate(train_test_splits): print('run', run_i, end='\r') X_train = X_dim[train_i] y_train = y[train_i] X_test = X_dim[test_i] y_test = y[test_i] classifier = svm_linear_standard_scaled_c_optimized(pca_num_dims=pca_num_dims) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) return_value_dim['accuracies'].append(accuracy_score(y_test, y_pred)) return_value_dim['classifier'].append(classifier) print('') return return_value ds_shrec_real = Reininghaus2014ShrecReal(data_root_folder_path=config.paths.data_root_dir) ds_shrec_real.data_transforms = [Hdf5GroupToDict()] def shrec_real_bendich_vectorization(input_dict, num_dims): ret_val = [] for scale in range(1, 11): for dim in ['0', '1']: x = input_dict[str(scale)][dim] ret_val.append(bendich_vectorization(x, num_dims=num_dims)) return ret_val shrec_result = bendich_vectorization_generic_experiment(ds_shrec_real, shrec_real_bendich_vectorization, vectorization_dimensions=[5, 10, 20, 40, 80, 160]) with open('./bendich_exp_shrec_real.pickle', 'bw') as f: pickle.dump(shrec_result, f) for k, v in shrec_result.items(): print('dimension', k, 'accuracy:', np.mean(v['accuracies'])) ds_scine_eeg = SciNe01EEGBottomTopFiltration(data_root_folder_path=config.paths.data_root_dir) sensor_indices = [str(i) for i in ds_scine_eeg.sensor_configurations['low_resolution_whole_head']] selection = {'top': sensor_indices, 'bottom': sensor_indices} selector = Hdf5GroupToDictSelector(selection) ds_scine_eeg.data_transforms = [selector] def scine_bendich_vectorization(input_dict, num_dims): ret_val = [] for filt in ['top', 'bottom']: for sensor_i in sensor_indices: x = input_dict[filt][sensor_i] ret_val.append(bendich_vectorization(x, num_dims=num_dims)) return ret_val eeg_result = bendich_vectorization_generic_experiment(ds_scine_eeg, scine_bendich_vectorization, vectorization_dimensions=[5, 10, 20, 40, 80, 160], pca_num_dims=None) with open('./bendich_exp_scitrecs_eeg.pickle', 'bw') as f: pickle.dump(eeg_result, f) for k, v in eeg_result.items(): print('dimension', k, 'accuracy:', np.mean(v['accuracies'])) with open('./bendich_exp_scitrecs_eeg.pickle', 'br') as f: result = pickle.load(f) for k, v in result.items(): print(k, np.mean(v['accuracies']))
0.350977
0.408218
# Exercise Set 6: Data Structuring 2 *Afternoon, August 15, 2018* In this Exercise Set we will continue working with the weather data you downloaded and saved in Exercise Set 4. > **_Note_**: to solve the bonus exercises in this exerise set you will need to apply the `.groupby()` method a few times. This has not yet been covered in the lectures (you will see it tomorrow). > > `.groupby()` is a method of pandas dataframes, meaning we can call it like so: `data.groupby('colname')`. The method groups your dataset by a specified column, and applies any following changes within each of these groups. For a more detailed explanation see [this link](https://www.tutorialspoint.com/python_pandas/python_pandas_groupby.htm). The [documentation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.groupby.html) might also be useful. First load in the required modules and set up the plotting library: ``` %matplotlib inline import pandas as pd import matplotlib.pyplot as plt ``` ## Exercise Section 6.1: Weather, part 2 This section is the second part of three that analyzes NOAA data. The first part is Exercise Section 4.1, the last part is Exercise Section 7.2. > **Ex. 6.1.1:** Load the CSV data you stored yesterday as part of Exercise Section 4.1. If you didn't manage to save the CSV file, you can use the code in [this gist](https://gist.github.com/Kristianuruplarsen/be3a14b226fc4c4d7b62c39de70307e4) to load in the NOAA data. ``` # [Answer to Ex. 6.1.1] import pandas as pd df_weather = pd.read_csv('/Users/karlbindslev/Documents/GitHub/sds_group29/Test_karl/material/session_6/1864.csv', header = None).iloc[:,:4] #df_weather.columns = ['station', 'datetime', 'obs_type', 'obs_value'] #df_weather['obs_value'] = df_weather['obs_value'] / 10 #df_select = df_weather[(df_weather.station == 'ITE00100550') & (df_weather.obs_type == 'TMAX')].copy() #df_select['TMAX_F'] = 32 + 1.8 * df_select['obs_value'] #df_sorted = df_select.reset_index(drop=True).sort_values(by=['obs_value']) print(df_sorted) print(df_sorted['station'].unique()) ``` > **Ex. 6.1.2:** Convert the date formatted as string to datetime. Make a new column with the month for each observation. ``` # [Answer to Ex. 6.1.2] #print(type(df_sorted)) df_sorted.dtypes df_sorted['datetime'] = pd.to_datetime(df_sorted['datetime'], format ='%Y%m%d') df_sorted['month'] = df_sorted['datetime'].dt.month print(df_sorted.head(5)) ``` > **Ex. 6.1.3:** Set the datetime variable as temporal index and make a timeseries plot. > _Hint:_ for this you need to know a few methods of the pandas DataFrames and pandas Series objects. Look up `.set_index()` and `.plot()`. ``` # [Answer to Ex. 6.1.3] #print(df_sorted['datetime'][0]) df_sorted.set_index('datetime').plot() ``` > **Ex. 6.1.4:** Extract the country code from the station name into a separate column. > _Hint:_ The station column contains a GHCND ID, given to each weather station by NOAA. The format of these ID's is a 2-3 letter country code, followed by a integer identifying the specific station. A simple approach is to assume a fixed length of the country ID. A more complex way would be to use the [`re`](https://docs.python.org/2/library/re.html) module. ``` # [Answer to Ex. 6.1.4] import re df_sorted['country_code'] = df_sorted['station'].str.extract('([A-Z]+)', expand = True) print(df_sorted.head(5)) print(df_sorted['country_code'].unique()) ``` > **Ex. 6.1.5:** Make a function that downloads and formats the weather data according to previous exercises in Exercise Section 4.1, 6.1. You should use data for ALL stations but still only select maximal temperature. _Bonus:_ To validate that your function works plot the temperature curve for each country in the same window. Use `plt.legend()` to add a legend. ``` # [Answer to Ex. 6.1.5] def weather(): df_weather = pd.read_csv('/Users/karlbindslev/Documents/GitHub/sds_group29/Test_karl/material/session_6/1864.csv', sep = ',', header = None).iloc[:,:4] df_weather.columns = ['station', 'datetime', 'obs_type', 'obs_value'] df_weather['obs_value'] = df_weather['obs_value'] / 10 #df_select = df_weather[(df_weather.station == 'ITE00100550') & (df_weather.obs_type == 'TMAX')].copy() df_select['TMAX_F'] = 32 + 1.8 * df_select['obs_value'] df_sorted = df_select.reset_index(drop=True).sort_values(by=['obs_value']) df_sorted['country_code'] = df_sorted['station'].str.extract('([A-Z]+)', expand = True) print(df_sorted['country_code'].unique()) weather() ``` ## Exercise Section 6.2: In this section we will use [this dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets.html) to practice some basic operations on pandas dataframes. > **Ex. 6.2.1:** This link `'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data'` leads to a comma-separated file with income data from a US census. Load the data into a pandas dataframe and show the 25th to 35th row. > _Hint #1:_ There are no column names in the dataset. Use the list `['age','workclass', 'fnlwgt', 'educ', 'educ_num', 'marital_status', 'occupation','relationship', 'race', 'sex','capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'wage']` as names. > _Hint #2:_ When you read in the csv, you might find that pandas includes whitespace in all of the cells. To get around this include the argument `skipinitialspace = True` to `read_csv()`. ``` # [Answer to Ex. 6.2.1] ``` > **Ex. 6.2.2:** What is the missing value sign in this dataset? Replace all missing values with NA's understood by pandas. Then proceed to drop all rows containing any missing values with the `dropna` method. How many rows are removed in this operation? > _Hint 1:_ if this doesn't work as expected you might want to take a look at the hint for 6.2.1 again. > _Hint 2:_ The NaN method from NumPy might be useful ``` # [Answer to Ex. 6.2.2] ``` > **Ex. 6.2.3:** (_Bonus_) Is there any evidence of a gender-wage-gap in the data? Create a table showing the percentage of men and women earning more than 50K a year. ``` # [Answer to Ex. 6.2.3] ``` > **Ex. 6.2.4:** (_Bonus_) Group the data by years of education (`educ_num`) and marital status. Now plot the share of individuals who earn more than 50K for the two groups 'Divorced' and 'Married-civ-spouse' (normal marriage). Your final result should look like this: ![](examplefig.png) > _Hint:_ the `.query()` method is extremely useful for filtering data. ``` # [Answer to Ex. 6.2.4] ```
github_jupyter
%matplotlib inline import pandas as pd import matplotlib.pyplot as plt # [Answer to Ex. 6.1.1] import pandas as pd df_weather = pd.read_csv('/Users/karlbindslev/Documents/GitHub/sds_group29/Test_karl/material/session_6/1864.csv', header = None).iloc[:,:4] #df_weather.columns = ['station', 'datetime', 'obs_type', 'obs_value'] #df_weather['obs_value'] = df_weather['obs_value'] / 10 #df_select = df_weather[(df_weather.station == 'ITE00100550') & (df_weather.obs_type == 'TMAX')].copy() #df_select['TMAX_F'] = 32 + 1.8 * df_select['obs_value'] #df_sorted = df_select.reset_index(drop=True).sort_values(by=['obs_value']) print(df_sorted) print(df_sorted['station'].unique()) # [Answer to Ex. 6.1.2] #print(type(df_sorted)) df_sorted.dtypes df_sorted['datetime'] = pd.to_datetime(df_sorted['datetime'], format ='%Y%m%d') df_sorted['month'] = df_sorted['datetime'].dt.month print(df_sorted.head(5)) # [Answer to Ex. 6.1.3] #print(df_sorted['datetime'][0]) df_sorted.set_index('datetime').plot() # [Answer to Ex. 6.1.4] import re df_sorted['country_code'] = df_sorted['station'].str.extract('([A-Z]+)', expand = True) print(df_sorted.head(5)) print(df_sorted['country_code'].unique()) # [Answer to Ex. 6.1.5] def weather(): df_weather = pd.read_csv('/Users/karlbindslev/Documents/GitHub/sds_group29/Test_karl/material/session_6/1864.csv', sep = ',', header = None).iloc[:,:4] df_weather.columns = ['station', 'datetime', 'obs_type', 'obs_value'] df_weather['obs_value'] = df_weather['obs_value'] / 10 #df_select = df_weather[(df_weather.station == 'ITE00100550') & (df_weather.obs_type == 'TMAX')].copy() df_select['TMAX_F'] = 32 + 1.8 * df_select['obs_value'] df_sorted = df_select.reset_index(drop=True).sort_values(by=['obs_value']) df_sorted['country_code'] = df_sorted['station'].str.extract('([A-Z]+)', expand = True) print(df_sorted['country_code'].unique()) weather() # [Answer to Ex. 6.2.1] # [Answer to Ex. 6.2.2] # [Answer to Ex. 6.2.3] # [Answer to Ex. 6.2.4]
0.10872
0.987508
# buy-and-hold (monthly and holding period returns) buy, then never ever sell, until the end date :) ``` import pandas as pd import matplotlib.pyplot as plt import datetime from talib.abstract import * import pinkfish as pf # format price data pd.options.display.float_format = '{:0.2f}'.format %matplotlib inline # set size of inline plots '''note: rcParams can't be in same cell as import matplotlib or %matplotlib inline %matplotlib notebook: will lead to interactive plots embedded within the notebook, you can zoom and resize the figure %matplotlib inline: only draw static images in the notebook ''' plt.rcParams["figure.figsize"] = (10, 7) pf.DEBUG = True ``` Some global data ``` symbol = '^GSPC' #symbol = 'SPY' capital = 10000 start = datetime.datetime(1900, 1, 1) end = datetime.datetime.now() ``` Define Strategy Class ``` class Strategy: def __init__(self, symbol, capital, start, end): self.symbol = symbol self.capital = capital self.start = start self.end = end def _algo(self): pf.TradeLog.cash = self.capital for i, row in enumerate(self.ts.itertuples()): date = row.Index.to_pydatetime() high = row.high; low = row.low; close = row.close end_flag = pf.is_last_row(self.ts, i) shares = 0 # buy if self.tlog.shares == 0: shares = self.tlog.buy(date, close) # sell elif end_flag: shares = self.tlog.sell(date, close) if shares > 0: pf.DBG("{0} BUY {1} {2} @ {3:.2f}".format( date, shares, self.symbol, close)) elif shares < 0: pf.DBG("{0} SELL {1} {2} @ {3:.2f}".format( date, -shares, self.symbol, close)) # record daily balance self.dbal.append(date, high, low, close) def run(self): self.ts = pf.fetch_timeseries(self.symbol) self.ts = pf.select_tradeperiod(self.ts, self.start, self.end, use_adj=True) self.ts, self.start = pf.finalize_timeseries(self.ts, self.start) self.tlog = pf.TradeLog(self.symbol) self.dbal = pf.DailyBal() self._algo() def get_logs(self): """ return DataFrames """ self.tlog = self.tlog.get_log() self.dbal = self.dbal.get_log(self.tlog) return self.tlog, self.dbal def get_stats(self): stats = pf.stats(self.ts, self.tlog, self.dbal, self.capital) return stats ``` Run Strategy ``` s = Strategy(symbol, capital, start, end) s.run() ``` Retrieve log DataFrames ``` tlog, dbal = s.get_logs() stats = s.get_stats() tlog.tail() dbal.tail() pf.print_full(stats) ``` Summary ``` pf.summary(stats) returns = dbal['close'] pf.monthly_returns_map(returns['1990':]) returns = dbal['close'] pf.holding_period_map(returns['1990':]) ```
github_jupyter
import pandas as pd import matplotlib.pyplot as plt import datetime from talib.abstract import * import pinkfish as pf # format price data pd.options.display.float_format = '{:0.2f}'.format %matplotlib inline # set size of inline plots '''note: rcParams can't be in same cell as import matplotlib or %matplotlib inline %matplotlib notebook: will lead to interactive plots embedded within the notebook, you can zoom and resize the figure %matplotlib inline: only draw static images in the notebook ''' plt.rcParams["figure.figsize"] = (10, 7) pf.DEBUG = True symbol = '^GSPC' #symbol = 'SPY' capital = 10000 start = datetime.datetime(1900, 1, 1) end = datetime.datetime.now() class Strategy: def __init__(self, symbol, capital, start, end): self.symbol = symbol self.capital = capital self.start = start self.end = end def _algo(self): pf.TradeLog.cash = self.capital for i, row in enumerate(self.ts.itertuples()): date = row.Index.to_pydatetime() high = row.high; low = row.low; close = row.close end_flag = pf.is_last_row(self.ts, i) shares = 0 # buy if self.tlog.shares == 0: shares = self.tlog.buy(date, close) # sell elif end_flag: shares = self.tlog.sell(date, close) if shares > 0: pf.DBG("{0} BUY {1} {2} @ {3:.2f}".format( date, shares, self.symbol, close)) elif shares < 0: pf.DBG("{0} SELL {1} {2} @ {3:.2f}".format( date, -shares, self.symbol, close)) # record daily balance self.dbal.append(date, high, low, close) def run(self): self.ts = pf.fetch_timeseries(self.symbol) self.ts = pf.select_tradeperiod(self.ts, self.start, self.end, use_adj=True) self.ts, self.start = pf.finalize_timeseries(self.ts, self.start) self.tlog = pf.TradeLog(self.symbol) self.dbal = pf.DailyBal() self._algo() def get_logs(self): """ return DataFrames """ self.tlog = self.tlog.get_log() self.dbal = self.dbal.get_log(self.tlog) return self.tlog, self.dbal def get_stats(self): stats = pf.stats(self.ts, self.tlog, self.dbal, self.capital) return stats s = Strategy(symbol, capital, start, end) s.run() tlog, dbal = s.get_logs() stats = s.get_stats() tlog.tail() dbal.tail() pf.print_full(stats) pf.summary(stats) returns = dbal['close'] pf.monthly_returns_map(returns['1990':]) returns = dbal['close'] pf.holding_period_map(returns['1990':])
0.585931
0.873647
# Advanced Tutorial (geared toward state-space models) This tutorial covers more or less the same topics as the basic tutorial (filtering and smoothing of state-space models), but in greater detail. ## Defining state-space models We consider a state-space model of the form: \begin{align*} X_0 & \sim N(0, 1) \\ X_t & = f(X_{t-1}) + U_t, \quad U_t \sim N(0, \sigma_X^2) \\ Y_t & = X_t + V_t, \quad V_t \sim N(0, \sigma_Y^2) \end{align*} where function $f$ is defined as follows: $f(x) = \tau_0 - \tau_1 * \exp( \tau_2 * x)$. This model comes from Population Ecology; there $X_t$ stands for the logarithm of the population size of a given species. This model may be defined as follows. ``` # the usual imports from matplotlib import pyplot as plt import seaborn as sb import numpy as np # imports from the package import particles from particles import state_space_models as ssm from particles import distributions as dists class ThetaLogistic(ssm.StateSpaceModel): """ Theta-Logistic state-space model (used in Ecology). """ default_params = {'tau0':.15, 'tau1':.12, 'tau2':.1, 'sigmaX': 0.47, 'sigmaY': 0.39} def PX0(self): # Distribution of X_0 return dists.Normal() def f(self, x): return (x + self.tau0 - self.tau1 * np.exp(self.tau2 * x)) def PX(self, t, xp): # Distribution of X_t given X_{t-1} = xp (p=past) return dists.Normal(loc=self.f(xp), scale=self.sigmaX) def PY(self, t, xp, x): # Distribution of Y_t given X_t=x, and X_{t-1}=xp return dists.Normal(loc=x, scale=self.sigmaY) ``` This is most similar to what we did in the previous tutorial (for stochastic volatility models): methods `PX0`, `PX` and `PY` return objects defined in module `distributions`. (See the [documentation](distributions.html) of that module for a list of available distributions). The only novelty is that we defined (as a class attribute) the dictionary `default_parameters`, which provides default values for each parameter. When it is defined, each parameter that is not set explicitly when instantiating (calling) `ThetaLogistic` is replaced by its default value: ``` my_ssm = ThetaLogistic() # use default values for all parameters x, y = my_ssm.simulate(100) plt.style.use('ggplot') plt.plot(y) plt.xlabel('t') plt.ylabel('data'); ``` "Bogus Parameters" (parameters that do not appear in `PX0`, `PX` and `PY`) are simply ignored: ``` just_for_fun = ThetaLogistic(tau2=0.3, bogus=92.) # ok ``` This behaviour may look suprising, but it will allow us to define prior distributions that involve hyper-parameters. ## Automatic definition of `FeynmanKac` objects We have seen in the previous tutorial how to run a bootstrap filter: we first define some `Bootstrap` object, and then passes it to SMC. ``` fk_boot = ssm.Bootstrap(ssm=my_ssm, data=y) my_alg = particles.SMC(fk=fk_boot, N=100) my_alg.run() ``` In fact, `ssm.Bootstrap` is a subclass of `FeynmanKac`, the base class for objects that represent "Feynman-Kac models" (covered in Chapters 5 and 10 of the book). To make things simple, a Feynman-Kac model is a "recipe" for our SMC algorithms; in particular, it tells us: 1. how to sample each particle $X_t^n$ at time $t$, given their ancestors $X_{t-1}^n$; 2. how to reweight each particle $X_t^n$ at time $t$. The bootstrap filter is a particular "recipe", where: 1. we sample the particles $X_t^n$ according to the state transition of the model; in our case a $N(f(x_{t-1}),\sigma_X^2)$ distribution. 2. we reweight the particles according to the likelihood of the model; here the density of $N(x_t,\sigma_Y^2)$ at point $y_t$. The class `ssm.Bootstrap` defines this recipe automatically from the supplied state-space model and data. The bootstrap filter is not the only available "recipe". We may want to run a *guided* filter, where the particles are simulated according to user-chosen proposal kernels. Such proposal kernels may be defined by adding methods `proposal` and `proposal0` to our `StateSpaceModel` class: ``` class ThetaLogistic_with_prop(ThetaLogistic): def proposal0(self, data): return self.PX0() def proposal(self, t, xp, data): prec_prior = 1. / self.sigmaX**2 prec_lik = 1. / self.sigmaY**2 var = 1. / (prec_prior + prec_lik) mu = var * (prec_prior * self.f(xp) + prec_lik * data[t]) return dists.Normal(loc=mu, scale=np.sqrt(var)) my_better_ssm = ThetaLogistic_with_prop() ``` In this particular case, we implemented the "optimal" proposal, that is, the distribution of $X_t$ given $X_{t-1}$ and $Y_t$. (Check this is indeed this case, this is a simple exercise!). (For simplicity, the proposal at time 0 is simply the distribution of X_0, so this one is not optimal.) Now we may define our guided Feynman-Kac model: ``` fk_guided = ssm.GuidedPF(ssm=my_better_ssm, data=y) ``` An APF (auxiliarly particle filter) may be implemented in the same way: for this, we must also define method `logeta`, which computes the auxiliary function used in the resampling step; see the documentation and the end of Chapter 10 of the book. ## Running a particle filter Here is the signature of class `SMC`: ``` alg = particles.SMC(fk=fk_guided, N=100, qmc=False, resampling='systematic', ESSrmin=0.5, store_history=False, verbose=False, collect=None) ``` Apart from ``fk`` (which expects a `FeynmanKac` object), all the other arguments are optional. Here is what they do: * `N`: the number of particles * `qmc`: whether to use the QMC (quasi-Monte Carlo) version * `resampling`: which resampling scheme to use (possible choices: `'multinomial'`, `'residual'`, `'stratified'`, `'systematic'` and `'ssp'`) * `ESSrmin`: the particle filter resamples at each iteration such that ESS / N is below this threshold; set it to `1.` (resp. `0.`) to resample every time (resp. to never resample) * `verbose`: whether to print progress information The remaining arguments (``store_history`` and ``collect``) will be explained in the following sections. Once we have a created a SMC object, we may run it, either step by step, or in one go. For instance: ``` next(alg) # processes data-point y_0 next(alg) # processes data-point y_1 for _ in range(8): next(alg) # processes data-points y_3 to y_9 # alg.run() # would process all the remaining data-points ``` At any time, object `alg` has the following attributes: * `alg.t`: index of next iteration * `alg.X`: the N current particles $X_t^n$; typically a (N,) or (N,d) [numpy array](https://docs.scipy.org/doc/numpy-dev/user/quickstart.html) * `alg.W`: the N normalised weights $W_t^n$ (a (N,) numpy array) * `alg.Xp`: the N particles at the previous iteration, $X_{t-1}^n$ * `alg.A`: the N ancestor variables: A[3] = 12 means that the parent of $X_t^3$ was $X_{t-1}^{12}$. * `alg.summaries`: various summaries collected at each iteration. Let's do for instance a weighted histogram of the particles. ``` plt.hist(alg.X, 20, weights=alg.W); ``` Object alg.summaries contains various lists of quantities collected at each iteration, such as: * `alg.summaries.ESSs`: the ESS (effective sample size) at each iteration * `alg.summaries.rs_flags`: whether or not resampling was triggered at each step * `alg.summaries.logLts`: estimates of the log-likelihood of the data $y_{0:t}$ All this and more is explained in the documentation of the `collectors` module. Let's plot the ESS and the log-likelihood: ``` plt.plot(alg.summaries.ESSs) plt.xlabel('t') plt.ylabel('ESS'); plt.plot(alg.summaries.logLts) plt.xlabel('t') plt.ylabel('log-likelihood'); ``` ## Running many particle filters in one go Function multiSMC accepts the same arguments as `SMC` plus the following extra arguments: * `nruns`: number of runs * `nprocs`: if >0, number of CPU cores to use; if <=0, number of cores *not to* use; i.e. `nprocs=0` means use all cores * `out_func`: a function that is applied to each resulting particle filter (see below). To explain how exactly `multiSMC` works, let's try to compare the bootstrap and guided filters for the theta-logistic model we defined at the beginning of this tutorial: ``` outf = lambda pf: pf.logLt results = particles.multiSMC(fk={'boot':fk_boot, 'guid':fk_guided}, nruns=20, nprocs=1, out_func=outf) ``` The command above runs **40** particle algorithms (on a single core): 20 bootstrap filters, and 20 guided filters. The output, ``results``, is a list of 40 dictionnaries; each dictionary contains the following (key, value) pairs: * `'model'`: either `'boot'` or `'guid'` (according to whether a boostrap or guided filter has been run) * `'run'`: a run indicator (between 0 and 19) * `'output'`: the result of `outf(pf)` where pf is the SMC object that was run. (If `outf` is set to None, then the SMC object is returned.) The rationale for function `outf` is that SMC objects may take a lot of memory in certain cases (especially if you set `store_history=True`, see section on smoothing below), so we may want to save only some results of interest rather than the complete object itself. Here the output is simply the estimate of the log-likelihood of the (complete) data computed by each particle filter. Let's check if the guided filter provides lower-variance estimates, relative to the bootstrap filter. ``` sb.boxplot(x=[r['fk'] for r in results], y=[r['output'] for r in results]) ``` This is indeed the case. To understand this line of code, you must be a bit familiar with [list comprehensions](http://www.secnetix.de/olli/Python/list_comprehensions.hawk). More generally, function `multiSMC` may be used to run multiple SMC algorithms, while varying any possible arguments; for more details, see the documentation of `multiSMC` and of the module `particles.utils`. ## Collectors, on-line smoothing We have said that `alg.summaries` (where `alg` is a SMC object) contains **lists** that contains quantities computed each iteration (such as the ESS, the log-likelihood estimates). It is possible to compute extra such quantities such as: * moments: at each time $t$, a dictionary with keys 'mean', and 'var', which stores the component-wise weighted means and variances. * on-line smoothing estimates (naive, and $O(N^2)$, see module ``collectors`` for more details) by providing a list of `Collector` objects to parameter `collect`. For instance, to collect moments: ``` from particles.collectors import Moments alg_with_mom = particles.SMC(fk=fk_guided, N=100, collect=[Moments()]) alg_with_mom.run() plt.plot([m['mean'] for m in alg_with_mom.summaries.moments], label='filtered mean') plt.plot(y, label='data') plt.legend() ``` ## Off-line smoothing Off-line smoothing is the task of approximating, at some final time $T$ (i.e. when we have stopped acquiring data), the distribution of all the states, $X_{0:T}$, given the full data, $Y_{0:T}$. To run a particular off-line smoothing algorithm, one must first run a particle filter, and save its **history**: ``` alg = particles.SMC(fk=fk_guided, N=100, store_history=True) alg.run() ``` Now `alg` has a `hist` attribute, which is a `ParticleHistory` object. Basically, `alg.hist` recorded, at each time $t$: * the N particles $X_t^n$ * their weights $W_t^n$ * the N ancestor variables Smoothing algorithms are implemented as methods of class `ParticleHistory`. For instance, the FFBS (forward filtering backward sampling) algorithm, which samples complete smoothing trajectories, may be called as follows: ``` trajectories = alg.hist.backward_sampling(5, linear_cost=False) plt.plot(trajectories); ``` The output of `backward_sampling` is a list of 100 arrays: `trajectories[t][m]` is the $t$-component of trajectory $m$. (If you want to turn it into a numpy array, simply do: `np.array(trajectories)`.) Option `linear_cost` determines whether we use the standard, $O(N^2)$ version of FFBS (where generating a single trajectory costs $O(N)$), or the $O(N)$ version which relies on rejection. The latter algorithm requires us to specify an upper bound for the transition density of $X_t | X_{t-1}$; this may be done by defining a method `upper_bound_trans(self, t)` in the considered state-space model. ``` class ThetaLogistic_with_upper_bound(ThetaLogistic_with_prop): def upper_bound_log_pt(self, t): return -np.log(np.sqrt(2 * np.pi) * self.sigmaX) my_ssm = ThetaLogistic_with_upper_bound() alg = particles.SMC(fk=ssm.GuidedPF(ssm=my_ssm, data=y), N=100, store_history=True) alg.run() (more_trajectories, acc_rate) = alg.hist.backward_sampling(10, linear_cost=True, return_ar=True) print('acceptance rate was %1.3f' % acc_rate) plt.plot(more_trajectories); ``` Two-filter smoothing is also available. The difficulty with two-filter smoothing is that it requires to design an "information filter", that is a particle filter that computes recursively (backwards) the likelihood of the model. Since this is not trivial for the model considered here, we refer to Section 11.6 of the book and the documentation of package `smoothing`.
github_jupyter
# the usual imports from matplotlib import pyplot as plt import seaborn as sb import numpy as np # imports from the package import particles from particles import state_space_models as ssm from particles import distributions as dists class ThetaLogistic(ssm.StateSpaceModel): """ Theta-Logistic state-space model (used in Ecology). """ default_params = {'tau0':.15, 'tau1':.12, 'tau2':.1, 'sigmaX': 0.47, 'sigmaY': 0.39} def PX0(self): # Distribution of X_0 return dists.Normal() def f(self, x): return (x + self.tau0 - self.tau1 * np.exp(self.tau2 * x)) def PX(self, t, xp): # Distribution of X_t given X_{t-1} = xp (p=past) return dists.Normal(loc=self.f(xp), scale=self.sigmaX) def PY(self, t, xp, x): # Distribution of Y_t given X_t=x, and X_{t-1}=xp return dists.Normal(loc=x, scale=self.sigmaY) my_ssm = ThetaLogistic() # use default values for all parameters x, y = my_ssm.simulate(100) plt.style.use('ggplot') plt.plot(y) plt.xlabel('t') plt.ylabel('data'); just_for_fun = ThetaLogistic(tau2=0.3, bogus=92.) # ok fk_boot = ssm.Bootstrap(ssm=my_ssm, data=y) my_alg = particles.SMC(fk=fk_boot, N=100) my_alg.run() class ThetaLogistic_with_prop(ThetaLogistic): def proposal0(self, data): return self.PX0() def proposal(self, t, xp, data): prec_prior = 1. / self.sigmaX**2 prec_lik = 1. / self.sigmaY**2 var = 1. / (prec_prior + prec_lik) mu = var * (prec_prior * self.f(xp) + prec_lik * data[t]) return dists.Normal(loc=mu, scale=np.sqrt(var)) my_better_ssm = ThetaLogistic_with_prop() fk_guided = ssm.GuidedPF(ssm=my_better_ssm, data=y) alg = particles.SMC(fk=fk_guided, N=100, qmc=False, resampling='systematic', ESSrmin=0.5, store_history=False, verbose=False, collect=None) next(alg) # processes data-point y_0 next(alg) # processes data-point y_1 for _ in range(8): next(alg) # processes data-points y_3 to y_9 # alg.run() # would process all the remaining data-points plt.hist(alg.X, 20, weights=alg.W); plt.plot(alg.summaries.ESSs) plt.xlabel('t') plt.ylabel('ESS'); plt.plot(alg.summaries.logLts) plt.xlabel('t') plt.ylabel('log-likelihood'); outf = lambda pf: pf.logLt results = particles.multiSMC(fk={'boot':fk_boot, 'guid':fk_guided}, nruns=20, nprocs=1, out_func=outf) sb.boxplot(x=[r['fk'] for r in results], y=[r['output'] for r in results]) from particles.collectors import Moments alg_with_mom = particles.SMC(fk=fk_guided, N=100, collect=[Moments()]) alg_with_mom.run() plt.plot([m['mean'] for m in alg_with_mom.summaries.moments], label='filtered mean') plt.plot(y, label='data') plt.legend() alg = particles.SMC(fk=fk_guided, N=100, store_history=True) alg.run() trajectories = alg.hist.backward_sampling(5, linear_cost=False) plt.plot(trajectories); class ThetaLogistic_with_upper_bound(ThetaLogistic_with_prop): def upper_bound_log_pt(self, t): return -np.log(np.sqrt(2 * np.pi) * self.sigmaX) my_ssm = ThetaLogistic_with_upper_bound() alg = particles.SMC(fk=ssm.GuidedPF(ssm=my_ssm, data=y), N=100, store_history=True) alg.run() (more_trajectories, acc_rate) = alg.hist.backward_sampling(10, linear_cost=True, return_ar=True) print('acceptance rate was %1.3f' % acc_rate) plt.plot(more_trajectories);
0.575111
0.987782
# Calculus :label:`sec_calculus` Finding the area of a polygon had remained mysterious until at least 2,500 years ago, when ancient Greeks divided a polygon into triangles and summed their areas. To find the area of curved shapes, such as a circle, ancient Greeks inscribed polygons in such shapes. As shown in :numref:`fig_circle_area`, an inscribed polygon with more sides of equal length better approximates the circle. This process is also known as the *method of exhaustion*. ![Find the area of a circle with the method of exhaustion.](../img/polygon-circle.svg) :label:`fig_circle_area` In fact, the method of exhaustion is where *integral calculus* (will be described in :numref:`sec_integral_calculus`) originates from. More than 2,000 years later, the other branch of calculus, *differential calculus*, was invented. Among the most critical applications of differential calculus, optimization problems consider how to do something *the best*. As discussed in :numref:`subsec_norms_and_objectives`, such problems are ubiquitous in deep learning. In deep learning, we *train* models, updating them successively so that they get better and better as they see more and more data. Usually, getting better means minimizing a *loss function*, a score that answers the question "how *bad* is our model?" This question is more subtle than it appears. Ultimately, what we really care about is producing a model that performs well on data that we have never seen before. But we can only fit the model to data that we can actually see. Thus we can decompose the task of fitting models into two key concerns: (i) *optimization*: the process of fitting our models to observed data; (ii) *generalization*: the mathematical principles and practitioners' wisdom that guide as to how to produce models whose validity extends beyond the exact set of data examples used to train them. To help you understand optimization problems and methods in later chapters, here we give a very brief primer on differential calculus that is commonly used in deep learning. ## Derivatives and Differentiation We begin by addressing the calculation of derivatives, a crucial step in nearly all deep learning optimization algorithms. In deep learning, we typically choose loss functions that are differentiable with respect to our model's parameters. Put simply, this means that for each parameter, we can determine how rapidly the loss would increase or decrease, were we to *increase* or *decrease* that parameter by an infinitesimally small amount. Suppose that we have a function $f: \mathbb{R} \rightarrow \mathbb{R}$, whose input and output are both scalars. [**The *derivative* of $f$ is defined as**] (**$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h},$$**) :eqlabel:`eq_derivative` if this limit exists. If $f'(a)$ exists, $f$ is said to be *differentiable* at $a$. If $f$ is differentiable at every number of an interval, then this function is differentiable on this interval. We can interpret the derivative $f'(x)$ in :eqref:`eq_derivative` as the *instantaneous* rate of change of $f(x)$ with respect to $x$. The so-called instantaneous rate of change is based on the variation $h$ in $x$, which approaches $0$. To illustrate derivatives, let us experiment with an example. (**Define $u = f(x) = 3x^2-4x$.**) ``` %matplotlib inline import numpy as np from IPython import display from d2l import tensorflow as d2l def f(x): return 3 * x ** 2 - 4 * x ``` [**By setting $x=1$ and letting $h$ approach $0$, the numerical result of $\frac{f(x+h) - f(x)}{h}$**] in :eqref:`eq_derivative` (**approaches $2$.**) Though this experiment is not a mathematical proof, we will see later that the derivative $u'$ is $2$ when $x=1$. ``` def numerical_lim(f, x, h): return (f(x + h) - f(x)) / h h = 0.1 for i in range(5): print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}') h *= 0.1 ``` Let us familiarize ourselves with a few equivalent notations for derivatives. Given $y = f(x)$, where $x$ and $y$ are the independent variable and the dependent variable of the function $f$, respectively. The following expressions are equivalent: $$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx} f(x) = Df(x) = D_x f(x),$$ where symbols $\frac{d}{dx}$ and $D$ are *differentiation operators* that indicate operation of *differentiation*. We can use the following rules to differentiate common functions: * $DC = 0$ ($C$ is a constant), * $Dx^n = nx^{n-1}$ (the *power rule*, $n$ is any real number), * $De^x = e^x$, * $D\ln(x) = 1/x.$ To differentiate a function that is formed from a few simpler functions such as the above common functions, the following rules can be handy for us. Suppose that functions $f$ and $g$ are both differentiable and $C$ is a constant, we have the *constant multiple rule* $$\frac{d}{dx} [Cf(x)] = C \frac{d}{dx} f(x),$$ the *sum rule* $$\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} f(x) + \frac{d}{dx} g(x),$$ the *product rule* $$\frac{d}{dx} [f(x)g(x)] = f(x) \frac{d}{dx} [g(x)] + g(x) \frac{d}{dx} [f(x)],$$ and the *quotient rule* $$\frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$ Now we can apply a few of the above rules to find $u' = f'(x) = 3 \frac{d}{dx} x^2-4\frac{d}{dx}x = 6x-4$. Thus, by setting $x = 1$, we have $u' = 2$: this is supported by our earlier experiment in this section where the numerical result approaches $2$. This derivative is also the slope of the tangent line to the curve $u = f(x)$ when $x = 1$. [**To visualize such an interpretation of derivatives, we will use `matplotlib`,**] a popular plotting library in Python. To configure properties of the figures produced by `matplotlib`, we need to define a few functions. In the following, the `use_svg_display` function specifies the `matplotlib` package to output the svg figures for sharper images. Note that the comment `#@save` is a special mark where the following function, class, or statements are saved in the `d2l` package so later they can be directly invoked (e.g., `d2l.use_svg_display()`) without being redefined. ``` def use_svg_display(): #@save """Use the svg format to display a plot in Jupyter.""" display.set_matplotlib_formats('svg') ``` We define the `set_figsize` function to specify the figure sizes. Note that here we directly use `d2l.plt` since the import statement `from matplotlib import pyplot as plt` has been marked for being saved in the `d2l` package in the preface. ``` def set_figsize(figsize=(3.5, 2.5)): #@save """Set the figure size for matplotlib.""" use_svg_display() d2l.plt.rcParams['figure.figsize'] = figsize ``` The following `set_axes` function sets properties of axes of figures produced by `matplotlib`. ``` #@save def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend): """Set the axes for matplotlib.""" axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) axes.set_xscale(xscale) axes.set_yscale(yscale) axes.set_xlim(xlim) axes.set_ylim(ylim) if legend: axes.legend(legend) axes.grid() ``` With these three functions for figure configurations, we define the `plot` function to plot multiple curves succinctly since we will need to visualize many curves throughout the book. ``` #@save def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear', fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None): """Plot data points.""" if legend is None: legend = [] set_figsize(figsize) axes = axes if axes else d2l.plt.gca() # Return True if `X` (tensor or list) has 1 axis def has_one_axis(X): return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list) and not hasattr(X[0], "__len__")) if has_one_axis(X): X = [X] if Y is None: X, Y = [[]] * len(X), X elif has_one_axis(Y): Y = [Y] if len(X) != len(Y): X = X * len(Y) axes.cla() for x, y, fmt in zip(X, Y, fmts): if len(x): axes.plot(x, y, fmt) else: axes.plot(y, fmt) set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend) ``` Now we can [**plot the function $u = f(x)$ and its tangent line $y = 2x - 3$ at $x=1$**], where the coefficient $2$ is the slope of the tangent line. ``` x = np.arange(0, 3, 0.1) plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)']) ``` ## Partial Derivatives So far we have dealt with the differentiation of functions of just one variable. In deep learning, functions often depend on *many* variables. Thus, we need to extend the ideas of differentiation to these *multivariate* functions. Let $y = f(x_1, x_2, \ldots, x_n)$ be a function with $n$ variables. The *partial derivative* of $y$ with respect to its $i^\mathrm{th}$ parameter $x_i$ is $$ \frac{\partial y}{\partial x_i} = \lim_{h \rightarrow 0} \frac{f(x_1, \ldots, x_{i-1}, x_i+h, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_n)}{h}.$$ To calculate $\frac{\partial y}{\partial x_i}$, we can simply treat $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ as constants and calculate the derivative of $y$ with respect to $x_i$. For notation of partial derivatives, the following are equivalent: $$\frac{\partial y}{\partial x_i} = \frac{\partial f}{\partial x_i} = f_{x_i} = f_i = D_i f = D_{x_i} f.$$ ## Gradients :label:`subsec_calculus-grad` We can concatenate partial derivatives of a multivariate function with respect to all its variables to obtain the *gradient* vector of the function. Suppose that the input of function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is an $n$-dimensional vector $\mathbf{x} = [x_1, x_2, \ldots, x_n]^\top$ and the output is a scalar. The gradient of the function $f(\mathbf{x})$ with respect to $\mathbf{x}$ is a vector of $n$ partial derivatives: $$\nabla_{\mathbf{x}} f(\mathbf{x}) = \bigg[\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_n}\bigg]^\top,$$ where $\nabla_{\mathbf{x}} f(\mathbf{x})$ is often replaced by $\nabla f(\mathbf{x})$ when there is no ambiguity. Let $\mathbf{x}$ be an $n$-dimensional vector, the following rules are often used when differentiating multivariate functions: * For all $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\nabla_{\mathbf{x}} \mathbf{A} \mathbf{x} = \mathbf{A}^\top$, * For all $\mathbf{A} \in \mathbb{R}^{n \times m}$, $\nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} = \mathbf{A}$, * For all $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^\top)\mathbf{x}$, * $\nabla_{\mathbf{x}} \|\mathbf{x} \|^2 = \nabla_{\mathbf{x}} \mathbf{x}^\top \mathbf{x} = 2\mathbf{x}$. Similarly, for any matrix $\mathbf{X}$, we have $\nabla_{\mathbf{X}} \|\mathbf{X} \|_F^2 = 2\mathbf{X}$. As we will see later, gradients are useful for designing optimization algorithms in deep learning. ## Chain Rule However, such gradients can be hard to find. This is because multivariate functions in deep learning are often *composite*, so we may not apply any of the aforementioned rules to differentiate these functions. Fortunately, the *chain rule* enables us to differentiate composite functions. Let us first consider functions of a single variable. Suppose that functions $y=f(u)$ and $u=g(x)$ are both differentiable, then the chain rule states that $$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$ Now let us turn our attention to a more general scenario where functions have an arbitrary number of variables. Suppose that the differentiable function $y$ has variables $u_1, u_2, \ldots, u_m$, where each differentiable function $u_i$ has variables $x_1, x_2, \ldots, x_n$. Note that $y$ is a function of $x_1, x_2, \ldots, x_n$. Then the chain rule gives $$\frac{dy}{dx_i} = \frac{dy}{du_1} \frac{du_1}{dx_i} + \frac{dy}{du_2} \frac{du_2}{dx_i} + \cdots + \frac{dy}{du_m} \frac{du_m}{dx_i}$$ for any $i = 1, 2, \ldots, n$. ## Summary * Differential calculus and integral calculus are two branches of calculus, where the former can be applied to the ubiquitous optimization problems in deep learning. * A derivative can be interpreted as the instantaneous rate of change of a function with respect to its variable. It is also the slope of the tangent line to the curve of the function. * A gradient is a vector whose components are the partial derivatives of a multivariate function with respect to all its variables. * The chain rule enables us to differentiate composite functions. ## Exercises 1. Plot the function $y = f(x) = x^3 - \frac{1}{x}$ and its tangent line when $x = 1$. 1. Find the gradient of the function $f(\mathbf{x}) = 3x_1^2 + 5e^{x_2}$. 1. What is the gradient of the function $f(\mathbf{x}) = \|\mathbf{x}\|_2$? 1. Can you write out the chain rule for the case where $u = f(x, y, z)$ and $x = x(a, b)$, $y = y(a, b)$, and $z = z(a, b)$? [Discussions](https://discuss.d2l.ai/t/197)
github_jupyter
%matplotlib inline import numpy as np from IPython import display from d2l import tensorflow as d2l def f(x): return 3 * x ** 2 - 4 * x def numerical_lim(f, x, h): return (f(x + h) - f(x)) / h h = 0.1 for i in range(5): print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}') h *= 0.1 def use_svg_display(): #@save """Use the svg format to display a plot in Jupyter.""" display.set_matplotlib_formats('svg') def set_figsize(figsize=(3.5, 2.5)): #@save """Set the figure size for matplotlib.""" use_svg_display() d2l.plt.rcParams['figure.figsize'] = figsize #@save def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend): """Set the axes for matplotlib.""" axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) axes.set_xscale(xscale) axes.set_yscale(yscale) axes.set_xlim(xlim) axes.set_ylim(ylim) if legend: axes.legend(legend) axes.grid() #@save def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear', fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None): """Plot data points.""" if legend is None: legend = [] set_figsize(figsize) axes = axes if axes else d2l.plt.gca() # Return True if `X` (tensor or list) has 1 axis def has_one_axis(X): return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list) and not hasattr(X[0], "__len__")) if has_one_axis(X): X = [X] if Y is None: X, Y = [[]] * len(X), X elif has_one_axis(Y): Y = [Y] if len(X) != len(Y): X = X * len(Y) axes.cla() for x, y, fmt in zip(X, Y, fmts): if len(x): axes.plot(x, y, fmt) else: axes.plot(y, fmt) set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend) x = np.arange(0, 3, 0.1) plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
0.753557
0.989672
# BRONZE 5등급 문제풀이 ### 2021.12.23 > ### `1000번` ``` lista=['3454','342','223'] lista=list(map(int,lista)) lista [a,b] = map(int, input().split(' ')) print(a+b) ``` - input()만 하면 str 형태로 'a b' 이렇게 저장됨 - 따라서 split(' ') 또는 split()를 통해 list 형태 만듦. - 그리고 map 함수를 통해 list형태에서 int형으로 변환 할 수 있음 첫째줄에 동시에 입력해야 해서 map함수를 사용한 것 2338번과 비교하기 > ### `1001번` ``` (a,b) = map(int, input().split(' ')) print(a-b) ``` > ### `1271번` ``` (a,b) = map(int, input().split(' ')) print(a//b) print(a%b) ``` --- ### 2021.12.24 > `1550번` 16진수 이해 안 감 > `2338번` ``` a = int(input()) b = int(input()) print(a+b) print(a-b) print(a*b) ``` input만 하면 str으로 저장됨 > `2475번` ``` (a,b,c,d,e) = map(int, input().split(' ')) print((a**2+b**2+c**2+d**2+e**2)%10) res = 0 for n in list(map(int, input().split())): res += n**2 print(res%10) print(sum([n**2 for n in map(int, input().split())]) % 10) ``` > `2557번` 내 생각엔 이거 같은데.. ``` if (input()=="") : print('Hello World!') ``` 이거란다. ``` print('Hello World!') ``` > `2558번` ``` a = int(input()) b = int(input()) print(a+b) ``` > `2845번` ``` [a,b]=map(int,input().split()) [c,d,e,f,g]=map(int,input().split()) print(c-a*b,d-a*b,e-a*b,f-a*b,g-a*b) a, b = map(int, input().split()) people = list(map(int, input().split())) tot = a * b for i in people: print(i - tot, end=' ') ``` 위 셀을 보면 마지막 줄에서 포문을 실행하고 있는데, 한번씩 실행하므로 원래대로라면 하나 출력하고 다음줄에 출력 다음줄에 출력 이런식으로 진행이 된다. 그런데 print 옵션 중 end='' 안에 원래 \n 적당한 수를 입력해줘야 하는데 빈 문자열을 지정해주면 다음 번 출력이 아래로 가는 게 아니라 바로 뒤로 출력되게 해줄 수 있다. default값으로는 프린트해야되는 개수 만큼 \n이 입력되어 있고 빈문자열을 지정해줌으로써 강제로 \n을 지워주는 것이다. * 출력문 print는 두개의 옵션이 있음 > sep='' -> print문의 출력문들 사이에 원하는 내용을 넣을 수 있다, 기본값으로는 공백이 들어간다. 여기서 \n을 입력해주면 print해야하는 개수만큼 아래줄로 넘어가고 출력하게 된다 > end='' -> 출력을 완료한 뒤의 내용을 수정할 수 있다. 기본 값으로는 개행 ``` print('a','c','a','s',sep='\n') ``` > `2914번` ``` a,b=map(int,input().split()) print((a*(b-1))+1) ``` > `3003번` ``` a,b,c,d,e,f=map(int,input().split()) print(1-a,1-b,2-c,2-d,2-e,8-f) ``` > `3046번` ``` a,b=map(int,input().split()) print(-(a-2*b)) ``` > `5337번` ``` print("""\ . . . | | _ | _. _ ._ _ _ |/\|(/.|(_.(_)[ | )(/. """) ``` > print에서 줄 바꿈 하는 방법 - """\~""" 또는 print(asd\nasd\nasd)을 활용 - str에서만 활용가능해보임 ``` print("asd\nasd\nasd") ``` > `5338번` ``` print("""\ _.-;;-._ '-..-'| || | '-..-'|_.-;;-._| '-..-'| || | '-..-'|_.-''-._| """) ``` > `5522번` ``` a=int(input()) b=int(input()) c=int(input()) d=int(input()) e=int(input()) print(a+b+c+d+e) ``` > `5554번` ``` a=int(input()) b=int(input()) c=int(input()) d=int(input()) print((a+b+c+d)//60) print((a+b+c+d)%60) sum = 0 for _ in range(4) : sum += int(input()) print(sum // 60) print(sum % 60) ``` > `6749번` ``` a=int(input()) b=int(input()) print(b+b-a) ``` > `8393번` ``` a=int(input()) print(round((a*(a+1))/2)) round(555.3666,2) #반올림해서 나타낼 자릿수 ``` > `10699번` ``` import datetime print(str(datetime.datetime.now())[:10]) ``` > `10962번` ``` print(input()+"??!") ``` > `11283번` ``` print(ord(input())-44031) ``` > `14652번` ``` N, M, K = map(int, input().split()) n = K // M m = K % M print(n, m) ``` ### 2021.12.25 `MERRY CHISTMAS` > `15727번` ``` import math a=int(input())/5 print(math.ceil(a)) ``` > `15894번` ``` print(4*(int(input()))) ``` > `16430번` ``` from fractions import Fraction a,b=map(int,input().split()) c=str(1-Fraction(a,b)) print(c[0],c[2]) ``` - 분수!! ``` str(2-Fraction(2,3)) ``` > `17496번` ``` a,b,c,d=map(int,input().split()) if (a%b != 0) : print((a//b)*c*d) elif (a%b == 0): print(((a//b)-1)*c*d) ``` > `20492번` ``` a=int(input()) print(int(a*0.78),int(a-a*0.2*0.22)) ```
github_jupyter
lista=['3454','342','223'] lista=list(map(int,lista)) lista [a,b] = map(int, input().split(' ')) print(a+b) (a,b) = map(int, input().split(' ')) print(a-b) (a,b) = map(int, input().split(' ')) print(a//b) print(a%b) a = int(input()) b = int(input()) print(a+b) print(a-b) print(a*b) (a,b,c,d,e) = map(int, input().split(' ')) print((a**2+b**2+c**2+d**2+e**2)%10) res = 0 for n in list(map(int, input().split())): res += n**2 print(res%10) print(sum([n**2 for n in map(int, input().split())]) % 10) if (input()=="") : print('Hello World!') print('Hello World!') a = int(input()) b = int(input()) print(a+b) [a,b]=map(int,input().split()) [c,d,e,f,g]=map(int,input().split()) print(c-a*b,d-a*b,e-a*b,f-a*b,g-a*b) a, b = map(int, input().split()) people = list(map(int, input().split())) tot = a * b for i in people: print(i - tot, end=' ') print('a','c','a','s',sep='\n') a,b=map(int,input().split()) print((a*(b-1))+1) a,b,c,d,e,f=map(int,input().split()) print(1-a,1-b,2-c,2-d,2-e,8-f) a,b=map(int,input().split()) print(-(a-2*b)) print("""\ . . . | | _ | _. _ ._ _ _ |/\|(/.|(_.(_)[ | )(/. """) print("asd\nasd\nasd") print("""\ _.-;;-._ '-..-'| || | '-..-'|_.-;;-._| '-..-'| || | '-..-'|_.-''-._| """) a=int(input()) b=int(input()) c=int(input()) d=int(input()) e=int(input()) print(a+b+c+d+e) a=int(input()) b=int(input()) c=int(input()) d=int(input()) print((a+b+c+d)//60) print((a+b+c+d)%60) sum = 0 for _ in range(4) : sum += int(input()) print(sum // 60) print(sum % 60) a=int(input()) b=int(input()) print(b+b-a) a=int(input()) print(round((a*(a+1))/2)) round(555.3666,2) #반올림해서 나타낼 자릿수 import datetime print(str(datetime.datetime.now())[:10]) print(input()+"??!") print(ord(input())-44031) N, M, K = map(int, input().split()) n = K // M m = K % M print(n, m) import math a=int(input())/5 print(math.ceil(a)) print(4*(int(input()))) from fractions import Fraction a,b=map(int,input().split()) c=str(1-Fraction(a,b)) print(c[0],c[2]) str(2-Fraction(2,3)) a,b,c,d=map(int,input().split()) if (a%b != 0) : print((a//b)*c*d) elif (a%b == 0): print(((a//b)-1)*c*d) a=int(input()) print(int(a*0.78),int(a-a*0.2*0.22))
0.039853
0.895248
``` %load_ext watermark %watermark -a 'Sebastian Raschka' -v -p numpy,matplotlib,seaborn ``` # Exploratory Data Analysis ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn.apionly as sns %matplotlib inline ``` ## Histogram ``` # read dataset df = pd.read_csv('../datasets/winequality/winequality-red.csv', sep=';') # create histogram bin_edges = np.arange(0, df['residual sugar'].max() + 1, 1) fig = plt.hist(df['residual sugar'], bins=bin_edges) # add plot labels plt.xlabel('count') plt.ylabel('residual sugar') plt.show() ``` ## Scatterplot ``` # create scatterplot fig = plt.scatter(df['pH'], df['residual sugar']) # add plot labels plt.xlabel('pH') plt.ylabel('residual sugar') plt.show() ``` ## Scatterplot Matrix ``` df.columns # create scatterplot matrix fig = sns.pairplot(data=df[['alcohol', 'pH', 'residual sugar', 'quality']], hue='quality') # add plot labels plt.xlabel('pH') plt.ylabel('residual sugar') plt.show() ``` ## Bee Swarm Plot - useful for small datasets but can be slow on large datasets ``` # create bee swarm plot sns.swarmplot(x='quality', y='residual sugar', data=df[df['quality'] < 6]) plt.show() ``` ## Empirical Cumulative Distribution Function Plots ``` # sort and normalize data x = np.sort(df['residual sugar']) y = np.arange(1, x.shape[0] + 1) / x.shape[0] # create ecd fplot plt.plot(x, y, marker='o', linestyle='') # add plot labels plt.ylabel('ECDF') plt.xlabel('residual sugar') percent_four_or_less = y[x <= 4].max() print('%.2f percent have 4 or less units residual sugar' % (percent_four_or_less*100)) eightieth_percentile = x[y <= 0.8].max() plt.axhline(0.8, color='black', linestyle='--') plt.axvline(eightieth_percentile, color='black', label='80th percentile') plt.legend() plt.show() ``` ## Boxplots - Distribution of data in terms of median and percentiles (median is the 50th percentile) ``` percentiles = np.percentile(df['alcohol'], q=[25, 50, 75]) percentiles ``` manual approach: ``` for p in percentiles: plt.axhline(p, color='black', linestyle='-') plt.scatter(np.zeros(df.shape[0]) + 0.5, df['alcohol']) iqr = percentiles[-1] - percentiles[0] upper_whisker = min(df['alcohol'].max(), percentiles[-1] + iqr * 1.5) lower_whisker = max(df['alcohol'].min(), percentiles[0] - iqr * 1.5) plt.axhline(upper_whisker, color='black', linestyle='--') plt.axhline(lower_whisker, color='black', linestyle='--') plt.ylim([8, 16]) plt.ylabel('alcohol') fig = plt.gca() fig.axes.get_xaxis().set_ticks([]) plt.show() ``` using matplotlib.pyplot.boxplot: ``` plt.boxplot(df['alcohol']) plt.ylim([8, 16]) plt.ylabel('alcohol') fig = plt.gca() fig.axes.get_xaxis().set_ticks([]) plt.show() ``` ## Violin Plots ``` plt.violinplot(df['alcohol'], [0], points=100, bw_method='scott', showmeans=False, showextrema=True, showmedians=True) plt.ylim([8, 16]) plt.ylabel('alcohol') fig = plt.gca() fig.axes.get_xaxis().set_ticks([]) plt.show() ```
github_jupyter
%load_ext watermark %watermark -a 'Sebastian Raschka' -v -p numpy,matplotlib,seaborn import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn.apionly as sns %matplotlib inline # read dataset df = pd.read_csv('../datasets/winequality/winequality-red.csv', sep=';') # create histogram bin_edges = np.arange(0, df['residual sugar'].max() + 1, 1) fig = plt.hist(df['residual sugar'], bins=bin_edges) # add plot labels plt.xlabel('count') plt.ylabel('residual sugar') plt.show() # create scatterplot fig = plt.scatter(df['pH'], df['residual sugar']) # add plot labels plt.xlabel('pH') plt.ylabel('residual sugar') plt.show() df.columns # create scatterplot matrix fig = sns.pairplot(data=df[['alcohol', 'pH', 'residual sugar', 'quality']], hue='quality') # add plot labels plt.xlabel('pH') plt.ylabel('residual sugar') plt.show() # create bee swarm plot sns.swarmplot(x='quality', y='residual sugar', data=df[df['quality'] < 6]) plt.show() # sort and normalize data x = np.sort(df['residual sugar']) y = np.arange(1, x.shape[0] + 1) / x.shape[0] # create ecd fplot plt.plot(x, y, marker='o', linestyle='') # add plot labels plt.ylabel('ECDF') plt.xlabel('residual sugar') percent_four_or_less = y[x <= 4].max() print('%.2f percent have 4 or less units residual sugar' % (percent_four_or_less*100)) eightieth_percentile = x[y <= 0.8].max() plt.axhline(0.8, color='black', linestyle='--') plt.axvline(eightieth_percentile, color='black', label='80th percentile') plt.legend() plt.show() percentiles = np.percentile(df['alcohol'], q=[25, 50, 75]) percentiles for p in percentiles: plt.axhline(p, color='black', linestyle='-') plt.scatter(np.zeros(df.shape[0]) + 0.5, df['alcohol']) iqr = percentiles[-1] - percentiles[0] upper_whisker = min(df['alcohol'].max(), percentiles[-1] + iqr * 1.5) lower_whisker = max(df['alcohol'].min(), percentiles[0] - iqr * 1.5) plt.axhline(upper_whisker, color='black', linestyle='--') plt.axhline(lower_whisker, color='black', linestyle='--') plt.ylim([8, 16]) plt.ylabel('alcohol') fig = plt.gca() fig.axes.get_xaxis().set_ticks([]) plt.show() plt.boxplot(df['alcohol']) plt.ylim([8, 16]) plt.ylabel('alcohol') fig = plt.gca() fig.axes.get_xaxis().set_ticks([]) plt.show() plt.violinplot(df['alcohol'], [0], points=100, bw_method='scott', showmeans=False, showextrema=True, showmedians=True) plt.ylim([8, 16]) plt.ylabel('alcohol') fig = plt.gca() fig.axes.get_xaxis().set_ticks([]) plt.show()
0.556641
0.949342
# Example to compute photon-ALP conversions in constant magnetic field and in the GMF ``` from gammaALPs import Source, ALP, ModuleList from gammaALPs.base.transfer import w_pl_e9, EminGeV, EmaxGeV import numpy as np import matplotlib.pyplot as plt from astropy import constants as c from glob import glob %matplotlib inline m, g = 10., 2. alp = ALP(m,g) EGeV = np.logspace(0.,8.,1000) pin = np.diag((1.,0.,0.)) punpol = np.diag((1.,1.,0.)) * 0.5 px_in = np.diag((1.,0.,0.)) py_in = np.diag((0.,1.,0.)) pa_in = np.diag((0.,0.,1.)) src = Source(z = 0., l = 0., b = 0., ra = None, dec = None) m = ModuleList(alp, src, pin = pin, EGeV = EGeV, seed = 0) m.add_propagation(environ = 'ICMCell', order = 0, B0 = 1., L0 = 10., nsim = 1, n0 = 1e-3, r_abell = 11., beta = 0., eta = 0.) m.modules[0].psin = np.ones_like(m.modules[0].psin) * np.pi / 2. px,py,pa = m.run(multiprocess=1) plt.semilogx(EGeV, pa[0], lw = 2) plt.axvline(EminGeV(m_neV=m.alp.m, g11 = m.alp.g, BmuG=m.modules[0].B, n_cm3=m.modules[0].nel), lw = 1., ls = '--', color = 'k') plt.axvline(EmaxGeV(g11=m.alp.g, BmuG=m.modules[0].B/2), lw = 1., ls = '--', color = 'k') plt.xlabel("Energy (GeV)") plt.ylabel("$P_{a\gamma}$") plt.savefig("one_domain.pdf") ``` ### Now do the GMF ``` EGeV = np.logspace(-1.,4.,101) #src = Source(z = 0.017559, ra = '03h19m48.1s', dec = '+41d30m42s') src = Source(z = 0.017559, l = 30., b = 0.) m = ModuleList(alp, src, pin = pa_in, EGeV = EGeV, seed = 0) m.add_propagation("GMF",0, model = 'jansson12', model_sum = 'ASS') px,py,pa = m.run(multiprocess=1) prx = m.modules[0].show_conv_prob_vs_r(pa_in, px_in) pry = m.modules[0].show_conv_prob_vs_r(pa_in, py_in) pra = m.modules[0].show_conv_prob_vs_r(pa_in, pa_in) idx = 40 print EGeV[idx] ax = plt.subplot(111) ax.semilogy(m.modules[0]._r, (prx[:,idx] + pry[:,idx])[::-1], drawstyle = 'steps') plt.ylabel("$P_{a\gamma}$", color = plt.cm.tab10(0.)) plt.xlabel("$r$ (kpc)") ax.set_ylim(1e-6,1e-1) ax2 = ax.twinx() ax2.semilogy(m.modules[0]._r, m.modules[0].B[::-1], color = plt.cm.tab10(0.3), drawstyle = 'steps') plt.ylabel("$B_{\perp}$ ($\mu$G)", color = plt.cm.tab10(0.3)) plt.savefig("pag_gmf_vs_r.pdf") plt.semilogx(EGeV, px[0] + py[0], lw = 2) plt.xlabel("Energy (GeV)") plt.ylabel("$P_{a\gamma}$") plt.savefig("pag_gmf.pdf") ``` ### And the perseus cluster ``` EGeV = np.logspace(-1.,4.,101) src = Source(z = 0.017559, ra = '03h19m48.1s', dec = '+41d30m42s') m = ModuleList(alp, src, pin = punpol, EGeV = EGeV, seed = 0) m.add_propagation("ICMGaussTurb", 0, # position of module counted from the source. nsim = 10, # number of random B-field realizations B0 = 10., # rms of B field n0 = 39., # normalization of electron density n2 = 4.05, # second normalization of electron density, see Churazov et al. 2003, Eq. 4 r_abell = 500., # extension of the cluster r_core = 80., # electron density parameter, see Churazov et al. 2003, Eq. 4 r_core2 = 280., # electron density parameter, see Churazov et al. 2003, Eq. 4 beta = 1.2, # electron density parameter, see Churazov et al. 2003, Eq. 4 beta2= 0.58, # electron density parameter, see Churazov et al. 2003, Eq. 4 eta = 0.5, # scaling of B-field with electron denstiy kL = 0.18, # maximum turbulence scale in kpc^-1, taken from A2199 cool-core cluster, see Vacca et al. 2012 kH = 9., # minimum turbulence scale, taken from A2199 cool-core cluster, see Vacca et al. 2012 q = -2.80, # turbulence spectral index, taken from A2199 cool-core cluster, see Vacca et al. 2012 thinning = 4 # thin out distance array. Can lead to different results! ) px,py,pa = m.run(multiprocess=4) print px.shape, m.modules[0]._r.shape plt.semilogx(EGeV, px[0] + py[0], lw = 2) plt.xlabel("Energy (GeV)") plt.ylabel("$P_{\gamma\gamma}$") plt.savefig("pgg_perseus_one_real.pdf") for i in range(px.shape[0]): plt.semilogx(EGeV, px[i] + py[i], lw = 1 if i else 2, alpha = 0.3 if i else 1., color = plt.cm.tab10(0.) ) plt.xlabel("Energy (GeV)") plt.ylabel("$P_{\gamma\gamma}$") plt.savefig("pgg_perseus_ten_real.pdf") prx = m.modules[0].show_conv_prob_vs_r(punpol, pa_in) prx.shape idx = 40 print EGeV[idx] ax = plt.subplot(111) ax.semilogy(m.modules[0].r, (prx[:,idx]), drawstyle = 'steps') plt.ylabel("$P_{a\gamma}$", color = plt.cm.tab10(0.)) plt.xlabel("$r$ (kpc)") ax2 = ax.twinx() ax2.plot(m.modules[0].r, m.modules[0].B, color = plt.cm.tab10(0.3), drawstyle = 'steps', lw = 0.5) plt.ylabel("$B_{\perp}$ ($\mu$G)", color = plt.cm.tab10(0.3)) plt.savefig("pa_perseus_vs_r.pdf") ```
github_jupyter
from gammaALPs import Source, ALP, ModuleList from gammaALPs.base.transfer import w_pl_e9, EminGeV, EmaxGeV import numpy as np import matplotlib.pyplot as plt from astropy import constants as c from glob import glob %matplotlib inline m, g = 10., 2. alp = ALP(m,g) EGeV = np.logspace(0.,8.,1000) pin = np.diag((1.,0.,0.)) punpol = np.diag((1.,1.,0.)) * 0.5 px_in = np.diag((1.,0.,0.)) py_in = np.diag((0.,1.,0.)) pa_in = np.diag((0.,0.,1.)) src = Source(z = 0., l = 0., b = 0., ra = None, dec = None) m = ModuleList(alp, src, pin = pin, EGeV = EGeV, seed = 0) m.add_propagation(environ = 'ICMCell', order = 0, B0 = 1., L0 = 10., nsim = 1, n0 = 1e-3, r_abell = 11., beta = 0., eta = 0.) m.modules[0].psin = np.ones_like(m.modules[0].psin) * np.pi / 2. px,py,pa = m.run(multiprocess=1) plt.semilogx(EGeV, pa[0], lw = 2) plt.axvline(EminGeV(m_neV=m.alp.m, g11 = m.alp.g, BmuG=m.modules[0].B, n_cm3=m.modules[0].nel), lw = 1., ls = '--', color = 'k') plt.axvline(EmaxGeV(g11=m.alp.g, BmuG=m.modules[0].B/2), lw = 1., ls = '--', color = 'k') plt.xlabel("Energy (GeV)") plt.ylabel("$P_{a\gamma}$") plt.savefig("one_domain.pdf") EGeV = np.logspace(-1.,4.,101) #src = Source(z = 0.017559, ra = '03h19m48.1s', dec = '+41d30m42s') src = Source(z = 0.017559, l = 30., b = 0.) m = ModuleList(alp, src, pin = pa_in, EGeV = EGeV, seed = 0) m.add_propagation("GMF",0, model = 'jansson12', model_sum = 'ASS') px,py,pa = m.run(multiprocess=1) prx = m.modules[0].show_conv_prob_vs_r(pa_in, px_in) pry = m.modules[0].show_conv_prob_vs_r(pa_in, py_in) pra = m.modules[0].show_conv_prob_vs_r(pa_in, pa_in) idx = 40 print EGeV[idx] ax = plt.subplot(111) ax.semilogy(m.modules[0]._r, (prx[:,idx] + pry[:,idx])[::-1], drawstyle = 'steps') plt.ylabel("$P_{a\gamma}$", color = plt.cm.tab10(0.)) plt.xlabel("$r$ (kpc)") ax.set_ylim(1e-6,1e-1) ax2 = ax.twinx() ax2.semilogy(m.modules[0]._r, m.modules[0].B[::-1], color = plt.cm.tab10(0.3), drawstyle = 'steps') plt.ylabel("$B_{\perp}$ ($\mu$G)", color = plt.cm.tab10(0.3)) plt.savefig("pag_gmf_vs_r.pdf") plt.semilogx(EGeV, px[0] + py[0], lw = 2) plt.xlabel("Energy (GeV)") plt.ylabel("$P_{a\gamma}$") plt.savefig("pag_gmf.pdf") EGeV = np.logspace(-1.,4.,101) src = Source(z = 0.017559, ra = '03h19m48.1s', dec = '+41d30m42s') m = ModuleList(alp, src, pin = punpol, EGeV = EGeV, seed = 0) m.add_propagation("ICMGaussTurb", 0, # position of module counted from the source. nsim = 10, # number of random B-field realizations B0 = 10., # rms of B field n0 = 39., # normalization of electron density n2 = 4.05, # second normalization of electron density, see Churazov et al. 2003, Eq. 4 r_abell = 500., # extension of the cluster r_core = 80., # electron density parameter, see Churazov et al. 2003, Eq. 4 r_core2 = 280., # electron density parameter, see Churazov et al. 2003, Eq. 4 beta = 1.2, # electron density parameter, see Churazov et al. 2003, Eq. 4 beta2= 0.58, # electron density parameter, see Churazov et al. 2003, Eq. 4 eta = 0.5, # scaling of B-field with electron denstiy kL = 0.18, # maximum turbulence scale in kpc^-1, taken from A2199 cool-core cluster, see Vacca et al. 2012 kH = 9., # minimum turbulence scale, taken from A2199 cool-core cluster, see Vacca et al. 2012 q = -2.80, # turbulence spectral index, taken from A2199 cool-core cluster, see Vacca et al. 2012 thinning = 4 # thin out distance array. Can lead to different results! ) px,py,pa = m.run(multiprocess=4) print px.shape, m.modules[0]._r.shape plt.semilogx(EGeV, px[0] + py[0], lw = 2) plt.xlabel("Energy (GeV)") plt.ylabel("$P_{\gamma\gamma}$") plt.savefig("pgg_perseus_one_real.pdf") for i in range(px.shape[0]): plt.semilogx(EGeV, px[i] + py[i], lw = 1 if i else 2, alpha = 0.3 if i else 1., color = plt.cm.tab10(0.) ) plt.xlabel("Energy (GeV)") plt.ylabel("$P_{\gamma\gamma}$") plt.savefig("pgg_perseus_ten_real.pdf") prx = m.modules[0].show_conv_prob_vs_r(punpol, pa_in) prx.shape idx = 40 print EGeV[idx] ax = plt.subplot(111) ax.semilogy(m.modules[0].r, (prx[:,idx]), drawstyle = 'steps') plt.ylabel("$P_{a\gamma}$", color = plt.cm.tab10(0.)) plt.xlabel("$r$ (kpc)") ax2 = ax.twinx() ax2.plot(m.modules[0].r, m.modules[0].B, color = plt.cm.tab10(0.3), drawstyle = 'steps', lw = 0.5) plt.ylabel("$B_{\perp}$ ($\mu$G)", color = plt.cm.tab10(0.3)) plt.savefig("pa_perseus_vs_r.pdf")
0.524151
0.818773
``` import pandas as pd import numpy as np df1=pd.read_csv('F:/0Sem 7/ML Lab/amazon food review dataset/Reviews.csv') df1.head() score=df1.values[:,6] text=df1.values[:,9] reviews=np.vstack((score,text)).T print(score.shape, text.shape, reviews.shape) p=0 n=0 for i in range(reviews.shape[0]): if reviews[i,0] > 3: reviews[i,0]=0 #positive review p=p+1 else: reviews[i,0]=1 #negative review n=n+1 reviews = reviews[reviews[:,0].argsort()] #sort by 1st column train=[] for i in range(5000): train.append(reviews[i]) for i in range(443777,443777+5000): train.append(reviews[i]) train=np.asarray(train) train.shape my_reviews1=np.array([0,'This is a very good product. I am very happy with this item.']) my_reviews2=np.array([1,'The product is very bad. I am very unsatisfied with the appearance.']) my_reviews3=np.array([0,'It was one if the best items i have purchased. Very good.']) my_reviews4=np.array([0,'All members of my family enjoyed the item. It is well thought.']) my_reviews5=np.array([1,'Extremely poor quality. I hated the item and so did my brothers.']) #train=np.vstack((train,my_reviews1)) #train=np.vstack((train,my_reviews2)) #train=np.vstack((train,my_reviews3)) #train=np.vstack((train,my_reviews4)) #train=np.vstack((train,my_reviews5)) import random as r test=[] for i in range(2000): index=r.randint(0,reviews.shape[0]) test.append(reviews[index]) test=np.asarray(test) test.shape #test=np.vstack((test,my_reviews1)) #test=np.vstack((test,my_reviews2)) #test=np.vstack((test,my_reviews3)) #test=np.vstack((test,my_reviews4)) #test=np.vstack((test,my_reviews5)) train_all_words=[] for i in range(train.shape[0]): train_all_words.append(train[i,1].split()) train_all_words = [item for sublist in train_all_words for item in sublist] test_all_words=[] for i in range(test.shape[0]): test_all_words.append(test[i,1].split()) test_all_words = [item for sublist in test_all_words for item in sublist] from collections import Counter def common_words(words, number_of_words, reverse=False): counter = Counter(words) return sorted(counter, key = counter.get, reverse=reverse)[:number_of_words] train_least_common=common_words(train_all_words,200) train_most_common=common_words(train_all_words,200,reverse=True) test_least_common=common_words(test_all_words,200) test_most_common=common_words(test_all_words,200,reverse=True) for i in range(train.shape[0]): train[i,1]=train[i,1].split() for i in range(test.shape[0]): test[i,1]=test[i,1].split() for i in range(train.shape[0]): for item in train_most_common: if item in train[i,1]: train[i,1].remove(item) for item in train_least_common: if item in train[i,1]: train[i,1].remove(item) for i in range(test.shape[0]): for item in test_most_common: if item in test[i,1]: test[i,1].remove(item) for item in test_least_common: if item in test[i,1]: test[i,1].remove(item) for i in range(train.shape[0]): train[i,1]=" ".join(train[i,1]) for i in range(test.shape[0]): test[i,1]=" ".join(test[i,1]) train_docs=[] test_docs=[] train_label=[] test_label=[] for i in range(train.shape[0]): train_docs.append(train[i,1]) train_label.append(train[i,0]) for i in range(test.shape[0]): test_docs.append(test[i,1]) test_label.append(test[i,0]) from numpy import array from numpy import asarray from numpy import zeros from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers import Embedding # prepare tokenizer t = Tokenizer() t.fit_on_texts(train_docs) vocab_size = len(t.word_index) + 1 #integer encode the documents encoded_docs = t.texts_to_sequences(train_docs) #print(encoded_docs) #pad documents to a max length of 4 words max_length = 100 padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') #print(padded_docs) #load the whole embedding into memory embeddings_index = dict() f = open('F:/0Sem 7/ML Lab/glove/glove.6B.100d.txt',encoding='utf8') for line in f: values = line.split() word = values[0] coefs = asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() #print('Loaded %s word vectors.' % len(embeddings_index)) #create a weight matrix for words in training docs embedding_matrix = zeros((vocab_size, 100)) for word, i in t.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector embedding_matrix.shape import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential #define model model = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model.add(e) model.add(layers.Conv1D(32,4, activation='relu')) model.add(layers.Dropout(rate=0.8)) model.add(layers.MaxPooling1D(pool_size=2)) model.add(layers.LSTM(64, activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model.summary()) for layer in model.layers: print(layer.output_shape) train_label=np.asarray(train_label) train_label.shape padded_docs.shape # prepare tokenizer t1 = Tokenizer() t1.fit_on_texts(test_docs) vocab_size1 = len(t1.word_index) + 1 #integer encode the documents encoded_docs1 = t1.texts_to_sequences(test_docs) #print(encoded_docs) #pad documents to a max length of 4 words max_length1 = 100 padded_docs1 = pad_sequences(encoded_docs1, maxlen=max_length1, padding='post') test_label=np.asarray(test_label) #print(padded_docs) # fit the model history=model.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) "2nd LSTM Model" #define model model1 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model1.add(e) model1.add(layers.Conv1D(32,4, activation='relu')) model1.add(layers.Dropout(rate=0.8)) model1.add(layers.MaxPooling1D(pool_size=2)) model1.add(layers.LSTM(64, activation='tanh', return_sequences=True)) model1.add(layers.LSTM(128, activation='tanh', return_sequences=False)) model1.add(layers.Flatten()) model1.add(layers.Dense(256, activation ='tanh')) model1.add(layers.Dense(1, activation='sigmoid')) # compile the model model1.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model1.summary()) # fit the model history1=model1.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) "3rd LSTM Model" #define model model2 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model2.add(e) model2.add(layers.Conv1D(32,4, activation='relu')) model2.add(layers.Dropout(rate=0.8)) model2.add(layers.MaxPooling1D(pool_size=2)) model2.add(layers.LSTM(64, activation='relu', return_sequences=True)) model2.add(layers.LSTM(128, activation='relu', return_sequences=False)) model2.add(layers.Flatten()) model2.add(layers.Dense(256, activation='relu')) model2.add(layers.Dense(1, activation='sigmoid')) # compile the model model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model2.summary()) # fit the model history2=model2.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) #define model model3 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model3.add(e) model3.add(layers.Conv1D(32,4, activation='relu')) model3.add(layers.Dropout(rate=0.8)) model3.add(layers.MaxPooling1D(pool_size=2)) model3.add(layers.GRU(64, activation='relu', return_sequences=True)) model3.add(layers.GRU(128, activation='relu', return_sequences=False)) model3.add(layers.Flatten()) model3.add(layers.Dense(256, activation='relu')) model3.add(layers.Dense(1, activation='sigmoid')) # compile the model model3.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model3.summary()) # fit the model history3=model3.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) #define model model4 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model4.add(e) model4.add(layers.Conv1D(32,4, activation='relu')) model4.add(layers.Dropout(rate=0.8)) model4.add(layers.MaxPooling1D(pool_size=2)) model4.add(layers.Bidirectional(layers.LSTM(64, activation='relu', return_sequences=True))) model4.add(layers.Bidirectional(layers.LSTM(128, activation='relu', return_sequences=False))) model4.add(layers.Flatten()) model4.add(layers.Dense(256,activation='relu')) model4.add(layers.Dense(1, activation='sigmoid')) # compile the model model4.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model4.summary()) # fit the model history4=model4.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) ```
github_jupyter
import pandas as pd import numpy as np df1=pd.read_csv('F:/0Sem 7/ML Lab/amazon food review dataset/Reviews.csv') df1.head() score=df1.values[:,6] text=df1.values[:,9] reviews=np.vstack((score,text)).T print(score.shape, text.shape, reviews.shape) p=0 n=0 for i in range(reviews.shape[0]): if reviews[i,0] > 3: reviews[i,0]=0 #positive review p=p+1 else: reviews[i,0]=1 #negative review n=n+1 reviews = reviews[reviews[:,0].argsort()] #sort by 1st column train=[] for i in range(5000): train.append(reviews[i]) for i in range(443777,443777+5000): train.append(reviews[i]) train=np.asarray(train) train.shape my_reviews1=np.array([0,'This is a very good product. I am very happy with this item.']) my_reviews2=np.array([1,'The product is very bad. I am very unsatisfied with the appearance.']) my_reviews3=np.array([0,'It was one if the best items i have purchased. Very good.']) my_reviews4=np.array([0,'All members of my family enjoyed the item. It is well thought.']) my_reviews5=np.array([1,'Extremely poor quality. I hated the item and so did my brothers.']) #train=np.vstack((train,my_reviews1)) #train=np.vstack((train,my_reviews2)) #train=np.vstack((train,my_reviews3)) #train=np.vstack((train,my_reviews4)) #train=np.vstack((train,my_reviews5)) import random as r test=[] for i in range(2000): index=r.randint(0,reviews.shape[0]) test.append(reviews[index]) test=np.asarray(test) test.shape #test=np.vstack((test,my_reviews1)) #test=np.vstack((test,my_reviews2)) #test=np.vstack((test,my_reviews3)) #test=np.vstack((test,my_reviews4)) #test=np.vstack((test,my_reviews5)) train_all_words=[] for i in range(train.shape[0]): train_all_words.append(train[i,1].split()) train_all_words = [item for sublist in train_all_words for item in sublist] test_all_words=[] for i in range(test.shape[0]): test_all_words.append(test[i,1].split()) test_all_words = [item for sublist in test_all_words for item in sublist] from collections import Counter def common_words(words, number_of_words, reverse=False): counter = Counter(words) return sorted(counter, key = counter.get, reverse=reverse)[:number_of_words] train_least_common=common_words(train_all_words,200) train_most_common=common_words(train_all_words,200,reverse=True) test_least_common=common_words(test_all_words,200) test_most_common=common_words(test_all_words,200,reverse=True) for i in range(train.shape[0]): train[i,1]=train[i,1].split() for i in range(test.shape[0]): test[i,1]=test[i,1].split() for i in range(train.shape[0]): for item in train_most_common: if item in train[i,1]: train[i,1].remove(item) for item in train_least_common: if item in train[i,1]: train[i,1].remove(item) for i in range(test.shape[0]): for item in test_most_common: if item in test[i,1]: test[i,1].remove(item) for item in test_least_common: if item in test[i,1]: test[i,1].remove(item) for i in range(train.shape[0]): train[i,1]=" ".join(train[i,1]) for i in range(test.shape[0]): test[i,1]=" ".join(test[i,1]) train_docs=[] test_docs=[] train_label=[] test_label=[] for i in range(train.shape[0]): train_docs.append(train[i,1]) train_label.append(train[i,0]) for i in range(test.shape[0]): test_docs.append(test[i,1]) test_label.append(test[i,0]) from numpy import array from numpy import asarray from numpy import zeros from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers import Embedding # prepare tokenizer t = Tokenizer() t.fit_on_texts(train_docs) vocab_size = len(t.word_index) + 1 #integer encode the documents encoded_docs = t.texts_to_sequences(train_docs) #print(encoded_docs) #pad documents to a max length of 4 words max_length = 100 padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') #print(padded_docs) #load the whole embedding into memory embeddings_index = dict() f = open('F:/0Sem 7/ML Lab/glove/glove.6B.100d.txt',encoding='utf8') for line in f: values = line.split() word = values[0] coefs = asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() #print('Loaded %s word vectors.' % len(embeddings_index)) #create a weight matrix for words in training docs embedding_matrix = zeros((vocab_size, 100)) for word, i in t.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector embedding_matrix.shape import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential #define model model = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model.add(e) model.add(layers.Conv1D(32,4, activation='relu')) model.add(layers.Dropout(rate=0.8)) model.add(layers.MaxPooling1D(pool_size=2)) model.add(layers.LSTM(64, activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(1, activation='sigmoid')) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model.summary()) for layer in model.layers: print(layer.output_shape) train_label=np.asarray(train_label) train_label.shape padded_docs.shape # prepare tokenizer t1 = Tokenizer() t1.fit_on_texts(test_docs) vocab_size1 = len(t1.word_index) + 1 #integer encode the documents encoded_docs1 = t1.texts_to_sequences(test_docs) #print(encoded_docs) #pad documents to a max length of 4 words max_length1 = 100 padded_docs1 = pad_sequences(encoded_docs1, maxlen=max_length1, padding='post') test_label=np.asarray(test_label) #print(padded_docs) # fit the model history=model.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) "2nd LSTM Model" #define model model1 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model1.add(e) model1.add(layers.Conv1D(32,4, activation='relu')) model1.add(layers.Dropout(rate=0.8)) model1.add(layers.MaxPooling1D(pool_size=2)) model1.add(layers.LSTM(64, activation='tanh', return_sequences=True)) model1.add(layers.LSTM(128, activation='tanh', return_sequences=False)) model1.add(layers.Flatten()) model1.add(layers.Dense(256, activation ='tanh')) model1.add(layers.Dense(1, activation='sigmoid')) # compile the model model1.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model1.summary()) # fit the model history1=model1.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) "3rd LSTM Model" #define model model2 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model2.add(e) model2.add(layers.Conv1D(32,4, activation='relu')) model2.add(layers.Dropout(rate=0.8)) model2.add(layers.MaxPooling1D(pool_size=2)) model2.add(layers.LSTM(64, activation='relu', return_sequences=True)) model2.add(layers.LSTM(128, activation='relu', return_sequences=False)) model2.add(layers.Flatten()) model2.add(layers.Dense(256, activation='relu')) model2.add(layers.Dense(1, activation='sigmoid')) # compile the model model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model2.summary()) # fit the model history2=model2.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) #define model model3 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model3.add(e) model3.add(layers.Conv1D(32,4, activation='relu')) model3.add(layers.Dropout(rate=0.8)) model3.add(layers.MaxPooling1D(pool_size=2)) model3.add(layers.GRU(64, activation='relu', return_sequences=True)) model3.add(layers.GRU(128, activation='relu', return_sequences=False)) model3.add(layers.Flatten()) model3.add(layers.Dense(256, activation='relu')) model3.add(layers.Dense(1, activation='sigmoid')) # compile the model model3.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model3.summary()) # fit the model history3=model3.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1) #define model model4 = Sequential() e = tf.keras.layers.Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=100, trainable=False) model4.add(e) model4.add(layers.Conv1D(32,4, activation='relu')) model4.add(layers.Dropout(rate=0.8)) model4.add(layers.MaxPooling1D(pool_size=2)) model4.add(layers.Bidirectional(layers.LSTM(64, activation='relu', return_sequences=True))) model4.add(layers.Bidirectional(layers.LSTM(128, activation='relu', return_sequences=False))) model4.add(layers.Flatten()) model4.add(layers.Dense(256,activation='relu')) model4.add(layers.Dense(1, activation='sigmoid')) # compile the model model4.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model4.summary()) # fit the model history4=model4.fit(padded_docs, train_label, validation_data=(padded_docs1,test_label), epochs=30, verbose=1)
0.313525
0.390534
# Objectives ## Overview One of the key choices to make when training an ML model is what metric to choose by which to measure the efficacy of the model at learning the signal. Such metrics are useful for comparing how well the trained models generalize to new similar data. This choice of metric is a key component of AutoML because it defines the cost function the AutoML search will seek to optimize. In EvalML, these metrics are called **objectives**. AutoML will seek to minimize (or maximize) the objective score as it explores more pipelines and parameters and will use the feedback from scoring pipelines to tune the available hyperparameters and continue the search. Therefore, it is critical to have an objective function that represents how the model will be applied in the intended domain of use. EvalML supports a variety of objectives from traditional supervised ML including [mean squared error](https://en.wikipedia.org/wiki/Mean_squared_error) for regression problems and [cross entropy](https://en.wikipedia.org/wiki/Cross_entropy) or [area under the ROC curve](https://en.wikipedia.org/wiki/Receiver_operating_characteristic) for classification problems. EvalML also allows the user to define a custom objective using their domain expertise, so that AutoML can search for models which provide the most value for the user's problem. ## Core Objectives Use the `get_core_objectives` method to get a list of which objectives are included with EvalML for each problem type: ``` from evalml.objectives import get_core_objectives from evalml.problem_types import ProblemTypes for objective in get_core_objectives(ProblemTypes.BINARY): print(objective.name) ``` EvalML defines a base objective class for each problem type: `RegressionObjective`, `BinaryClassificationObjective` and `MulticlassClassificationObjective`. All EvalML objectives are a subclass of one of these. ### Binary Classification Objectives and Thresholds All binary classification objectives have a `threshold` property. Some binary classification objectives like log loss and AUC are unaffected by the choice of binary classification threshold, because they score based on predicted probabilities or examine a range of threshold values. These metrics are defined with `score_needs_proba` set to False. For all other binary classification objectives, we can compute the optimal binary classification threshold from the predicted probabilities and the target. ``` from evalml.pipelines import BinaryClassificationPipeline from evalml.demos import load_fraud from evalml.objectives import F1 X, y = load_fraud(n_rows=100) X.ww.init(logical_types={"provider": "Categorical", "region": "Categorical"}) objective = F1() pipeline = BinaryClassificationPipeline(component_graph=['Simple Imputer', 'DateTime Featurization Component', 'One Hot Encoder', 'Random Forest Classifier']) pipeline.fit(X, y) print(pipeline.threshold) print(pipeline.score(X, y, objectives=[objective])) y_pred_proba = pipeline.predict_proba(X)[True] pipeline.threshold = objective.optimize_threshold(y_pred_proba, y) print(pipeline.threshold) print(pipeline.score(X, y, objectives=[objective])) ``` ## Custom Objectives Often times, the objective function is very specific to the use-case or business problem. To get the right objective to optimize requires thinking through the decisions or actions that will be taken using the model and assigning a cost/benefit to doing that correctly or incorrectly based on known outcomes in the training data. Once you have determined the objective for your business, you can provide that to EvalML to optimize by defining a custom objective function. ### Defining a Custom Objective Function To create a custom objective class, we must define several elements: * `name`: The printable name of this objective. * `objective_function`: This function takes the predictions, true labels, and an optional reference to the inputs, and returns a score of how well the model performed. * `greater_is_better`: `True` if a higher `objective_function` value represents a better solution, and otherwise `False`. * `score_needs_proba`: Only for classification objectives. `True` if the objective is intended to function with predicted probabilities as opposed to predicted values (example: cross entropy for classifiers). * `decision_function`: Only for binary classification objectives. This function takes predicted probabilities that were output from the model and a binary classification threshold, and returns predicted values. * `perfect_score`: The score achieved by a perfect model on this objective. ### Example: Fraud Detection To give a concrete example, let's look at how the [fraud detection](../demos/fraud.ipynb) objective function is built. ``` from evalml.objectives.binary_classification_objective import BinaryClassificationObjective import pandas as pd class FraudCost(BinaryClassificationObjective): """Score the percentage of money lost of the total transaction amount process due to fraud""" name = "Fraud Cost" greater_is_better = False score_needs_proba = False perfect_score = 0.0 def __init__(self, retry_percentage=.5, interchange_fee=.02, fraud_payout_percentage=1.0, amount_col='amount'): """Create instance of FraudCost Arguments: retry_percentage (float): What percentage of customers that will retry a transaction if it is declined. Between 0 and 1. Defaults to .5 interchange_fee (float): How much of each successful transaction you can collect. Between 0 and 1. Defaults to .02 fraud_payout_percentage (float): Percentage of fraud you will not be able to collect. Between 0 and 1. Defaults to 1.0 amount_col (str): Name of column in data that contains the amount. Defaults to "amount" """ self.retry_percentage = retry_percentage self.interchange_fee = interchange_fee self.fraud_payout_percentage = fraud_payout_percentage self.amount_col = amount_col def decision_function(self, ypred_proba, threshold=0.0, X=None): """Determine if a transaction is fraud given predicted probabilities, threshold, and dataframe with transaction amount Arguments: ypred_proba (pd.Series): Predicted probablities X (pd.DataFrame): Dataframe containing transaction amount threshold (float): Dollar threshold to determine if transaction is fraud Returns: pd.Series: Series of predicted fraud labels using X and threshold """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(ypred_proba, pd.Series): ypred_proba = pd.Series(ypred_proba) transformed_probs = (ypred_proba.values * X[self.amount_col]) return transformed_probs > threshold def objective_function(self, y_true, y_predicted, X): """Calculate amount lost to fraud per transaction given predictions, true values, and dataframe with transaction amount Arguments: y_predicted (pd.Series): predicted fraud labels y_true (pd.Series): true fraud labels X (pd.DataFrame): dataframe with transaction amounts Returns: float: amount lost to fraud per transaction """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(y_predicted, pd.Series): y_predicted = pd.Series(y_predicted) if not isinstance(y_true, pd.Series): y_true = pd.Series(y_true) # extract transaction using the amount columns in users data try: transaction_amount = X[self.amount_col] except KeyError: raise ValueError("`{}` is not a valid column in X.".format(self.amount_col)) # amount paid if transaction is fraud fraud_cost = transaction_amount * self.fraud_payout_percentage # money made from interchange fees on transaction interchange_cost = transaction_amount * (1 - self.retry_percentage) * self.interchange_fee # calculate cost of missing fraudulent transactions false_negatives = (y_true & ~y_predicted) * fraud_cost # calculate money lost from fees false_positives = (~y_true & y_predicted) * interchange_cost loss = false_negatives.sum() + false_positives.sum() loss_per_total_processed = loss / transaction_amount.sum() return loss_per_total_processed ```
github_jupyter
from evalml.objectives import get_core_objectives from evalml.problem_types import ProblemTypes for objective in get_core_objectives(ProblemTypes.BINARY): print(objective.name) from evalml.pipelines import BinaryClassificationPipeline from evalml.demos import load_fraud from evalml.objectives import F1 X, y = load_fraud(n_rows=100) X.ww.init(logical_types={"provider": "Categorical", "region": "Categorical"}) objective = F1() pipeline = BinaryClassificationPipeline(component_graph=['Simple Imputer', 'DateTime Featurization Component', 'One Hot Encoder', 'Random Forest Classifier']) pipeline.fit(X, y) print(pipeline.threshold) print(pipeline.score(X, y, objectives=[objective])) y_pred_proba = pipeline.predict_proba(X)[True] pipeline.threshold = objective.optimize_threshold(y_pred_proba, y) print(pipeline.threshold) print(pipeline.score(X, y, objectives=[objective])) from evalml.objectives.binary_classification_objective import BinaryClassificationObjective import pandas as pd class FraudCost(BinaryClassificationObjective): """Score the percentage of money lost of the total transaction amount process due to fraud""" name = "Fraud Cost" greater_is_better = False score_needs_proba = False perfect_score = 0.0 def __init__(self, retry_percentage=.5, interchange_fee=.02, fraud_payout_percentage=1.0, amount_col='amount'): """Create instance of FraudCost Arguments: retry_percentage (float): What percentage of customers that will retry a transaction if it is declined. Between 0 and 1. Defaults to .5 interchange_fee (float): How much of each successful transaction you can collect. Between 0 and 1. Defaults to .02 fraud_payout_percentage (float): Percentage of fraud you will not be able to collect. Between 0 and 1. Defaults to 1.0 amount_col (str): Name of column in data that contains the amount. Defaults to "amount" """ self.retry_percentage = retry_percentage self.interchange_fee = interchange_fee self.fraud_payout_percentage = fraud_payout_percentage self.amount_col = amount_col def decision_function(self, ypred_proba, threshold=0.0, X=None): """Determine if a transaction is fraud given predicted probabilities, threshold, and dataframe with transaction amount Arguments: ypred_proba (pd.Series): Predicted probablities X (pd.DataFrame): Dataframe containing transaction amount threshold (float): Dollar threshold to determine if transaction is fraud Returns: pd.Series: Series of predicted fraud labels using X and threshold """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(ypred_proba, pd.Series): ypred_proba = pd.Series(ypred_proba) transformed_probs = (ypred_proba.values * X[self.amount_col]) return transformed_probs > threshold def objective_function(self, y_true, y_predicted, X): """Calculate amount lost to fraud per transaction given predictions, true values, and dataframe with transaction amount Arguments: y_predicted (pd.Series): predicted fraud labels y_true (pd.Series): true fraud labels X (pd.DataFrame): dataframe with transaction amounts Returns: float: amount lost to fraud per transaction """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(y_predicted, pd.Series): y_predicted = pd.Series(y_predicted) if not isinstance(y_true, pd.Series): y_true = pd.Series(y_true) # extract transaction using the amount columns in users data try: transaction_amount = X[self.amount_col] except KeyError: raise ValueError("`{}` is not a valid column in X.".format(self.amount_col)) # amount paid if transaction is fraud fraud_cost = transaction_amount * self.fraud_payout_percentage # money made from interchange fees on transaction interchange_cost = transaction_amount * (1 - self.retry_percentage) * self.interchange_fee # calculate cost of missing fraudulent transactions false_negatives = (y_true & ~y_predicted) * fraud_cost # calculate money lost from fees false_positives = (~y_true & y_predicted) * interchange_cost loss = false_negatives.sum() + false_positives.sum() loss_per_total_processed = loss / transaction_amount.sum() return loss_per_total_processed
0.845879
0.988514
# Data Exploration ``` import os import pandas as pd import matplotlib.pyplot as plt os.chdir(r'D:\Data\Projects\Business Analytics\E-Commerce Data') pd.set_option('display.float_format', lambda x: '%.3f' % x) from warnings import filterwarnings filterwarnings('ignore') df = pd.read_csv('dfclean.csv', parse_dates=['InvoiceDate']) print(df.shape) df.head() ``` ### Timeframe ``` df.InvoiceDate.min(), df.InvoiceDate.max() # Order by time of day df.InvoiceDate.dt.hour.value_counts() df.InvoiceDate.dt.hour.value_counts().sort_index().plot(kind='bar'); ``` ### Orders ``` # Invoice df['Invoice'] = df.UnitPrice * df.Quantity df.groupby('Country').InvoiceNo.nunique().sum() # Different products in one order df.groupby('InvoiceNo').size().sort_values(ascending=False).head(10) df.groupby('InvoiceNo').size().mean() # Orders per customer (including cancellations) df.groupby('CustomerID').InvoiceNo.nunique().\ sort_values(ascending=False).head(10) # cancelled orders df[df.InvoiceNo.str.startswith('C')] ``` ### Discounts ``` df[df.StockCode == 'D'] df[(df.Description == 'Manual') & (df.InvoiceNo.str.startswith('C'))] ``` ### Countries ``` # Customers per country df.groupby('Country').CustomerID.nunique().sort_values(ascending = False).head(20) # Orders per country df.groupby('Country').InvoiceNo.nunique().sort_values(ascending=False).head(20) # Spending per country df.groupby('Country')['Invoice'].sum().sort_values(ascending = False).head(10) ``` ### The customers ``` # How many customers are there? df.CustomerID.nunique() # Top 10 customers by number of items df.groupby('CustomerID').size().sort_values(ascending = False).head(10) # Top 10 customers by spending df.groupby(['Country','CustomerID'])['Invoice'].sum().sort_values(ascending = False).head(10) # Top 10 countries by spending df.groupby('Country')['Invoice'].sum().sort_values(ascending = False).head(10) # No of customers per country df.groupby('Country')['CustomerID'].nunique().sort_values(ascending= False).head(10) df.groupby('CustomerID')['InvoiceDate'].min().sort_values().head(5) # First order of customer newc= df.groupby('CustomerID')['InvoiceDate'].min().reset_index() newc a = newc.groupby(by = [newc.InvoiceDate.dt.month]).count() a a.plot() # Favorite products per country df.groupby('Country')['Description'].value_counts().sort_values(ascending=False) df[df.Country == 'Netherlands']['Description'].value_counts().sort_values(ascending=False).head() df[df.Country == 'EIRE']['Description'].value_counts().sort_values(ascending=False).head() df[df.Country == 'United Kingdom']['Description'].value_counts().sort_values(ascending=False).head() # Lieblingsprodukte des besten Kunden 14646 aus den Niederlanden df[df.CustomerID == '14646']['Description'].value_counts().sort_values(ascending = False).head(10) df[df.Invoice > 500] ``` ### Statistical parameters for Quantity and UnitPrice ``` df.describe() # Errors in Quantity, UnitPrice df.UnitPrice.value_counts().sort_index().tail(10) df.loc[df.CustomerID == 15098] df.loc[(df.InvoiceNo == '581483')|(df.InvoiceNo == 'C581484')] ``` Many typos in Quantity and UnitPrice, which were subsequently cancelled. Not all errors can be traced, though, like you can see above.
github_jupyter
import os import pandas as pd import matplotlib.pyplot as plt os.chdir(r'D:\Data\Projects\Business Analytics\E-Commerce Data') pd.set_option('display.float_format', lambda x: '%.3f' % x) from warnings import filterwarnings filterwarnings('ignore') df = pd.read_csv('dfclean.csv', parse_dates=['InvoiceDate']) print(df.shape) df.head() df.InvoiceDate.min(), df.InvoiceDate.max() # Order by time of day df.InvoiceDate.dt.hour.value_counts() df.InvoiceDate.dt.hour.value_counts().sort_index().plot(kind='bar'); # Invoice df['Invoice'] = df.UnitPrice * df.Quantity df.groupby('Country').InvoiceNo.nunique().sum() # Different products in one order df.groupby('InvoiceNo').size().sort_values(ascending=False).head(10) df.groupby('InvoiceNo').size().mean() # Orders per customer (including cancellations) df.groupby('CustomerID').InvoiceNo.nunique().\ sort_values(ascending=False).head(10) # cancelled orders df[df.InvoiceNo.str.startswith('C')] df[df.StockCode == 'D'] df[(df.Description == 'Manual') & (df.InvoiceNo.str.startswith('C'))] # Customers per country df.groupby('Country').CustomerID.nunique().sort_values(ascending = False).head(20) # Orders per country df.groupby('Country').InvoiceNo.nunique().sort_values(ascending=False).head(20) # Spending per country df.groupby('Country')['Invoice'].sum().sort_values(ascending = False).head(10) # How many customers are there? df.CustomerID.nunique() # Top 10 customers by number of items df.groupby('CustomerID').size().sort_values(ascending = False).head(10) # Top 10 customers by spending df.groupby(['Country','CustomerID'])['Invoice'].sum().sort_values(ascending = False).head(10) # Top 10 countries by spending df.groupby('Country')['Invoice'].sum().sort_values(ascending = False).head(10) # No of customers per country df.groupby('Country')['CustomerID'].nunique().sort_values(ascending= False).head(10) df.groupby('CustomerID')['InvoiceDate'].min().sort_values().head(5) # First order of customer newc= df.groupby('CustomerID')['InvoiceDate'].min().reset_index() newc a = newc.groupby(by = [newc.InvoiceDate.dt.month]).count() a a.plot() # Favorite products per country df.groupby('Country')['Description'].value_counts().sort_values(ascending=False) df[df.Country == 'Netherlands']['Description'].value_counts().sort_values(ascending=False).head() df[df.Country == 'EIRE']['Description'].value_counts().sort_values(ascending=False).head() df[df.Country == 'United Kingdom']['Description'].value_counts().sort_values(ascending=False).head() # Lieblingsprodukte des besten Kunden 14646 aus den Niederlanden df[df.CustomerID == '14646']['Description'].value_counts().sort_values(ascending = False).head(10) df[df.Invoice > 500] df.describe() # Errors in Quantity, UnitPrice df.UnitPrice.value_counts().sort_index().tail(10) df.loc[df.CustomerID == 15098] df.loc[(df.InvoiceNo == '581483')|(df.InvoiceNo == 'C581484')]
0.308398
0.826922
# Lesson 8 Practice: Seaborn Use this notebook to follow along with the lesson in the corresponding lesson notebook: [L08-Seaborn-Lesson.ipynb](./L08-Seaborn-Lesson.ipynb). ## Instructions Follow along with the teaching material in the lesson. Throughout the tutorial sections labeled as "Tasks" are interspersed and indicated with the icon: ![Task](http://icons.iconarchive.com/icons/sbstnblnd/plateau/16/Apps-gnome-info-icon.png). You should follow the instructions provided in these sections by performing them in the practice notebook. When the tutorial is completed you can turn in the final practice notebook. For each task, use the cell below it to write and test your code. You may add additional cells for any task as needed or desired. ## Task 1a Setup Import the following packages: + seaborn as sns + pandas as pd + numpy as np + matplotlib.pyplot as plt Activate the `%matplotlib inline` magic. ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline iris_df = sns.load_dataset('iris') iris_df.head(5) ``` ## Task 2a Load Data + View available datasets by calling `sns.get_dataset_names`. + Choose one of those datasets and explore it. What is the shape? ``` iris_df.shape ``` What are the columns? ``` sepal_length, sepal_width, petal_length, petal_width, species ``` What are the data types? ``` iris_df.dtypes ``` Are there missing values? ``` iris_df.isna().sum() ``` Are there duplicated rows? ``` iris_df.nunique() ``` For categorical columns find the unique set of categories. ``` iris_df.duplicated(subset='species') ``` Is the data tidy? ``` yes ``` ## Task 2b Preview Seaborn Take some time to peruse the Seaborn [example gallery](https://seaborn.pydata.org/examples/index.html). Indicate which plot types are most interesting to you. Which do you expect will be most useful with current research projects you may be working on? ## Task 3a Using `relplot` Experiment with the `size`, `hue` and `style` semantics by applying them to another example dataset of your choice. *You should produce three or more plots for this task.* ``` sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.relplot(x= 'sepal_width', y= 'sepal_length', hue= 'species', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.relplot(x= 'sepal_width', y= 'sepal_length', hue='species', aspect=2, data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.relplot(x= 'petal_width', y= 'petal_length', hue='species', aspect=2, data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) ``` ## Task 4a: Explore built-in styles Using a dataset of your choice, practice creating a plot for each of these different styles: + darkgrid + whitegrid + dark + white + ticks ``` sns.set_style('whitegrid') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('darkgrid') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('dark') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('white') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('ticks') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) ``` ## Task 4b Experiment with the style options and palettes introduced above. Create and demonstrate a style of your own using a dataset of your choice. ``` custom_style = {'figure.facecolor': 'white', 'axes.facecolor': 'black'} sns.palplot(sns.color_palette()) sns.set_style('whitegrid') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) ``` ## Task 5a Examine the [Seaborn gallery](https://seaborn.pydata.org/examples/index.html) and find **two to four plots** types that interest you. Re-create a version of those plots using a different data set (make any other style changes you wish). ``` sns.set_theme(style="whitegrid") iris = sns.load_dataset("iris") iris = pd.melt(iris, "species", var_name="measurement") f, ax = plt.subplots() sns.despine(bottom=True, left=True) sns.stripplot(x="value", y="measurement", hue="species", data=iris, dodge=True, alpha=.25, zorder=1) sns.pointplot(x="value", y="measurement", hue="species", data=iris, dodge=.532, join=False, palette="dark", markers="d", scale=.75, ci=None) handles, labels = ax.get_legend_handles_labels() ax.legend(handles[3:], labels[3:], title="species", handletextpad=0, columnspacing=1, loc="lower right", ncol=3, frameon=True) sns_plot.savefig("output.png", format='png', dpi=72) import seaborn as sns sns.set_theme(style="ticks") df = sns.load_dataset("anscombe") sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df, col_wrap=2, ci=None, palette="muted", height=4, scatter_kws={"s": 50, "alpha": 1}) sns_plot.savefig("output.png", format='png', dpi=72) sns.set_theme(style="ticks") rs = np.random.RandomState(4) pos = rs.randint(-1, 2, (20, 5)).cumsum(axis=1) pos -= pos[:, 0, np.newaxis] step = np.tile(range(5), 20) walk = np.repeat(range(20), 5) df = pd.DataFrame(np.c_[pos.flat, step, walk], columns=["position", "step", "walk"]) grid = sns.FacetGrid(df, col="walk", hue="walk", palette="tab20c", col_wrap=4, height=1.5) grid.map(plt.axhline, y=0, ls=":", c=".5") grid.map(plt.plot, "step", "position", marker="o") grid.set(xticks=np.arange(5), yticks=[-3, 3], xlim=(-.5, 4.5), ylim=(-3.5, 3.5)) grid.fig.tight_layout(w_pad=1) sns_plot.savefig("output.png", format='png', dpi=72) ```
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline iris_df = sns.load_dataset('iris') iris_df.head(5) iris_df.shape sepal_length, sepal_width, petal_length, petal_width, species iris_df.dtypes iris_df.isna().sum() iris_df.nunique() iris_df.duplicated(subset='species') yes sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.relplot(x= 'sepal_width', y= 'sepal_length', hue= 'species', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.relplot(x= 'sepal_width', y= 'sepal_length', hue='species', aspect=2, data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.relplot(x= 'petal_width', y= 'petal_length', hue='species', aspect=2, data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('whitegrid') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('darkgrid') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('dark') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('white') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_style('ticks') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) custom_style = {'figure.facecolor': 'white', 'axes.facecolor': 'black'} sns.palplot(sns.color_palette()) sns.set_style('whitegrid') sns.relplot(x= 'sepal_width', y= 'sepal_length', data=iris_df); sns_plot.savefig("output.png", format='png', dpi=72) sns.set_theme(style="whitegrid") iris = sns.load_dataset("iris") iris = pd.melt(iris, "species", var_name="measurement") f, ax = plt.subplots() sns.despine(bottom=True, left=True) sns.stripplot(x="value", y="measurement", hue="species", data=iris, dodge=True, alpha=.25, zorder=1) sns.pointplot(x="value", y="measurement", hue="species", data=iris, dodge=.532, join=False, palette="dark", markers="d", scale=.75, ci=None) handles, labels = ax.get_legend_handles_labels() ax.legend(handles[3:], labels[3:], title="species", handletextpad=0, columnspacing=1, loc="lower right", ncol=3, frameon=True) sns_plot.savefig("output.png", format='png', dpi=72) import seaborn as sns sns.set_theme(style="ticks") df = sns.load_dataset("anscombe") sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=df, col_wrap=2, ci=None, palette="muted", height=4, scatter_kws={"s": 50, "alpha": 1}) sns_plot.savefig("output.png", format='png', dpi=72) sns.set_theme(style="ticks") rs = np.random.RandomState(4) pos = rs.randint(-1, 2, (20, 5)).cumsum(axis=1) pos -= pos[:, 0, np.newaxis] step = np.tile(range(5), 20) walk = np.repeat(range(20), 5) df = pd.DataFrame(np.c_[pos.flat, step, walk], columns=["position", "step", "walk"]) grid = sns.FacetGrid(df, col="walk", hue="walk", palette="tab20c", col_wrap=4, height=1.5) grid.map(plt.axhline, y=0, ls=":", c=".5") grid.map(plt.plot, "step", "position", marker="o") grid.set(xticks=np.arange(5), yticks=[-3, 3], xlim=(-.5, 4.5), ylim=(-3.5, 3.5)) grid.fig.tight_layout(w_pad=1) sns_plot.savefig("output.png", format='png', dpi=72)
0.477554
0.95594
# Train an MNIST model with PyTorch MNIST is a widely used dataset for handwritten digit classification. It consists of 70,000 labeled 28x28 pixel grayscale images of hand-written digits. The dataset is split into 60,000 training images and 10,000 test images. There are 10 classes (one for each of the 10 digits). This tutorial shows how to train and test an MNIST model on SageMaker using PyTorch. ## Runtime This notebook takes approximately 5 minutes to run. ## Contents 1. [PyTorch Estimator](#PyTorch-Estimator) 1. [Implement the entry point for training](#Implement-the-entry-point-for-training) 1. [Set hyperparameters](#Set-hyperparameters) 1. [Set up channels for the training and testing data](#Set-up-channels-for-the-training-and-testing-data) 1. [Run the training script on SageMaker](#Run-the-training-script-on-SageMaker) 1. [Inspect and store model data](#Inspect-and-store-model-data) 1. [Test and debug the entry point before executing the training container](#Test-and-debug-the-entry-point-before-executing-the-training-container) 1. [Conclusion](#Conclusion) ``` import os import json import sagemaker from sagemaker.pytorch import PyTorch from sagemaker import get_execution_role sess = sagemaker.Session() role = get_execution_role() output_path = "s3://" + sess.default_bucket() + "/DEMO-mnist" ``` ## PyTorch Estimator The `PyTorch` class allows you to run your training script on SageMaker infrastracture in a containerized environment. In this notebook, we refer to this container as *training container*. You need to configure it with the following parameters to set up the environment: - `entry_point`: A user-defined Python file used by the training container as the instructions for training. We further discuss this file in the next subsection. - `role`: An IAM role to make AWS service requests - `instance_type`: The type of SageMaker instance to run your training script. Set it to `local` if you want to run the training job on the SageMaker instance you are using to run this notebook - `instance_count`: The number of instances to run your training job on. Multiple instances are needed for distributed training. - `output_path`: S3 bucket URI to save training output (model artifacts and output files) - `framework_version`: The version of PyTorch to use - `py_version`: The Python version to use For more information, see the [EstimatorBase API reference](https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html#sagemaker.estimator.EstimatorBase) ## Implement the entry point for training The entry point for training is a Python script that provides all the code for training a PyTorch model. It is used by the SageMaker PyTorch Estimator (`PyTorch` class above) as the entry point for running the training job. Under the hood, SageMaker PyTorch Estimator creates a docker image with runtime environemnts specified by the parameters you provide to initiate the estimator class, and it injects the training script into the docker image as the entry point to run the container. In the rest of the notebook, we use *training image* to refer to the docker image specified by the PyTorch Estimator and *training container* to refer to the container that runs the training image. This means your training script is very similar to a training script you might run outside Amazon SageMaker, but it can access the useful environment variables provided by the training image. See [the complete list of environment variables](https://github.com/aws/sagemaker-training-toolkit/blob/master/ENVIRONMENT_VARIABLES.md) for a complete description of all environment variables your training script can access. In this example, we use the training script `code/train.py` as the entry point for our PyTorch Estimator. ``` !pygmentize 'code/train.py' ``` ## Set hyperparameters In addition, the PyTorch estimator allows you to parse command line arguments to your training script via `hyperparameters`. Note: local mode is not supported in SageMaker Studio. ``` # Set local_mode to True to run the training script on the machine that runs this notebook local_mode = False if local_mode: instance_type = "local" else: instance_type = "ml.c4.xlarge" est = PyTorch( entry_point="train.py", source_dir="code", # directory of your training script role=role, framework_version="1.5.0", py_version="py3", instance_type=instance_type, instance_count=1, volume_size=250, output_path=output_path, hyperparameters={"batch-size": 128, "epochs": 1, "learning-rate": 1e-3, "log-interval": 100}, ) ``` The training container executes your training script like: ``` python train.py --batch-size 100 --epochs 1 --learning-rate 1e-3 --log-interval 100 ``` ## Set up channels for the training and testing data Tell the `PyTorch` estimator where to find the training and testing data. It can be a path to an S3 bucket, or a path in your local file system if you use local mode. In this example, we download the MNIST data from a public S3 bucket and upload it to your default bucket. ``` import logging import boto3 from botocore.exceptions import ClientError # Download training and testing data from a public S3 bucket def download_from_s3(data_dir="./data", train=True): """Download MNIST dataset and convert it to numpy array Args: data_dir (str): directory to save the data train (bool): download training set Returns: None """ if not os.path.exists(data_dir): os.makedirs(data_dir) if train: images_file = "train-images-idx3-ubyte.gz" labels_file = "train-labels-idx1-ubyte.gz" else: images_file = "t10k-images-idx3-ubyte.gz" labels_file = "t10k-labels-idx1-ubyte.gz" # download objects s3 = boto3.client("s3") bucket = f"sagemaker-sample-files" for obj in [images_file, labels_file]: key = os.path.join("datasets/image/MNIST", obj) dest = os.path.join(data_dir, obj) if not os.path.exists(dest): s3.download_file(bucket, key, dest) return download_from_s3("./data", True) download_from_s3("./data", False) # Upload to the default bucket prefix = "DEMO-mnist" bucket = sess.default_bucket() loc = sess.upload_data(path="./data", bucket=bucket, key_prefix=prefix) channels = {"training": loc, "testing": loc} ``` The keys of the `channels` dictionary are passed to the training image, and it creates the environment variable `SM_CHANNEL_<key name>`. In this example, `SM_CHANNEL_TRAINING` and `SM_CHANNEL_TESTING` are created in the training image (see how `code/train.py` accesses these variables). For more information, see: [SM_CHANNEL_{channel_name}](https://github.com/aws/sagemaker-training-toolkit/blob/master/ENVIRONMENT_VARIABLES.md#sm_channel_channel_name). If you want, you can create a channel for validation: ``` channels = { 'training': train_data_loc, 'validation': val_data_loc, 'test': test_data_loc } ``` You can then access this channel within your training script via `SM_CHANNEL_VALIDATION`. ## Run the training script on SageMaker Now, the training container has everything to execute your training script. Start the container by calling the `fit()` method. ``` est.fit(inputs=channels) ``` ## Inspect and store model data Now, the training is finished, and the model artifact has been saved in the `output_path`. ``` pt_mnist_model_data = est.model_data print("Model artifact saved at:\n", pt_mnist_model_data) ``` We store the variable `pt_mnist_model_data` in the current notebook kernel. ``` %store pt_mnist_model_data ``` ## Test and debug the entry point before executing the training container The entry point `code/train.py` can be executed in the training container. When you develop your own training script, it is a good practice to simulate the container environment in the local shell and test it before sending it to SageMaker, because debugging in a containerized environment is rather cumbersome. The following script shows how you can test your training script: ``` !pygmentize code/test_train.py ``` ## Conclusion In this notebook, we trained a PyTorch model on the MNIST dataset by fitting a SageMaker estimator. For next steps on how to deploy the trained model and perform inference, see [Deploy a Trained PyTorch Model](https://sagemaker-examples.readthedocs.io/en/latest/frameworks/pytorch/get_started_mnist_deploy.html).
github_jupyter
import os import json import sagemaker from sagemaker.pytorch import PyTorch from sagemaker import get_execution_role sess = sagemaker.Session() role = get_execution_role() output_path = "s3://" + sess.default_bucket() + "/DEMO-mnist" !pygmentize 'code/train.py' # Set local_mode to True to run the training script on the machine that runs this notebook local_mode = False if local_mode: instance_type = "local" else: instance_type = "ml.c4.xlarge" est = PyTorch( entry_point="train.py", source_dir="code", # directory of your training script role=role, framework_version="1.5.0", py_version="py3", instance_type=instance_type, instance_count=1, volume_size=250, output_path=output_path, hyperparameters={"batch-size": 128, "epochs": 1, "learning-rate": 1e-3, "log-interval": 100}, ) python train.py --batch-size 100 --epochs 1 --learning-rate 1e-3 --log-interval 100 import logging import boto3 from botocore.exceptions import ClientError # Download training and testing data from a public S3 bucket def download_from_s3(data_dir="./data", train=True): """Download MNIST dataset and convert it to numpy array Args: data_dir (str): directory to save the data train (bool): download training set Returns: None """ if not os.path.exists(data_dir): os.makedirs(data_dir) if train: images_file = "train-images-idx3-ubyte.gz" labels_file = "train-labels-idx1-ubyte.gz" else: images_file = "t10k-images-idx3-ubyte.gz" labels_file = "t10k-labels-idx1-ubyte.gz" # download objects s3 = boto3.client("s3") bucket = f"sagemaker-sample-files" for obj in [images_file, labels_file]: key = os.path.join("datasets/image/MNIST", obj) dest = os.path.join(data_dir, obj) if not os.path.exists(dest): s3.download_file(bucket, key, dest) return download_from_s3("./data", True) download_from_s3("./data", False) # Upload to the default bucket prefix = "DEMO-mnist" bucket = sess.default_bucket() loc = sess.upload_data(path="./data", bucket=bucket, key_prefix=prefix) channels = {"training": loc, "testing": loc} channels = { 'training': train_data_loc, 'validation': val_data_loc, 'test': test_data_loc } est.fit(inputs=channels) pt_mnist_model_data = est.model_data print("Model artifact saved at:\n", pt_mnist_model_data) %store pt_mnist_model_data !pygmentize code/test_train.py
0.505615
0.980876
#Derivation of MKS Localization Equation The goal of this notebook is to derivate the Materials Knowledge Systems (MKS) equation from elastostatic equilibrium equation. Note that the MKS equation can be derivated from other partial differential equations. ### Definitions Let $C(x)$ be the local stiffness tensor for a two phase material with stiffness tensors $C_A$ and $C_B$. The stiffness tensor at location $x$ can be represented at a perturbation from a reference stiffness tensor. $$C(x) = C^R + C'(x)$$ The strain field at location $(x)$ can also be defined in terms of a simular perturbation. $$\varepsilon(x) = \bar{\varepsilon} + \varepsilon '(x)$$ where $\bar{\varepsilon}$ is the average strain and $\varepsilon '(x)$ is the local strain perturbation from $\bar{\varepsilon}$. The constitutive equation is therefore. $$\sigma_{ij}(x) = \big(C^R_{ijlk} + C'_{ijlk}(x) \big ) \big (\bar{\varepsilon}_{lk} + \varepsilon'_{lk}(x) \big )$$ ### Equilibrium Condition The equilibrium condition is defined below. $$\sigma_{ij,j}(x) = \Big [\big(C^R_{ijlk} + C'_{ijlk}(x) \big ) \big (\bar{\varepsilon}_{lk} + \varepsilon'_{lk}(x) \big )\Big ]_{,j} = 0$$ $$\sigma_{ij,j}(x) = C^R_{ijlk}\varepsilon'_{lk,j}(x) + C'_{ijlk,j}(x)\bar{\varepsilon}_{lk} + \Big [C'_{ijlk}(x) \varepsilon'_{lk}(x)\Big ]_{,j} = 0$$ Let $$F_i(x) = C'_{ijlk,j}(x)\bar{\varepsilon}_{lk} + \Big [C'_{ijlk}(x) \varepsilon'_{lk}(x)\Big ]_{,j} $$ Using the definitation of $F(x)$ above, the equilibrium equation above can be rearranged in the form of an inhomogenous differential equation. $$C^R_{ijlk}\varepsilon'_{lk,j}(x) + F_i(x) = 0$$ ###Strain, Displacement, and Green's Functions By using the relationship between strain and displacement, the equilibrium equation can be rewritten as follows. $$ \varepsilon_{kl}(x) = \frac{\big (u_{k,l}(x) + u_{l,k}(x) \big)}{2} $$ $$C^R_{ijkl} \frac{\big (u'_{k,lj}(x) + u'_{l,kj}(x) \big)}{2} + F_i(x) = 0$$ The solution to the displacements can be found using green's functions. $$C^R_{ijkl} G_{km,lj}(r) + \delta_{im}\delta(x-r) = 0$$ $$u'_k(x) = \int_V G_{ik}(r) F_i (x-r)dr = \int_V G_{ik}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]_{,j}dr$$ and $$u'_l(x) = \int_V G_{il}(r) F_i (x - r)dr = \int_V G_{ik}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]_{,j}dr$$ therefore the strain can also be found interns of green's functions. $$\varepsilon'_{kl}(x) = \int_V \frac{\big (G_{ik,l}(r) + G_{il,k}(r) \big)}{2} F_i (x-r)dr = \int_V \frac{\big (G_{ik,l}(r) + G_{il,k}(r) \big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]_{,j}dr$$ Note that the $G(r)$ terms depend on the reference medium $C^R$. ### Integration by Parts The equation above can be recast with all of the derivatives on the green's functions by integrating by parts. $$ \varepsilon'_{kl}(x) = \Bigg [ \int_S \frac{\big (G_{ik,l}(r) + G_{il,k}(r) \big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ] n_j dS\Bigg ]_{r \rightarrow 0}^{r \rightarrow \infty} - $$ $$ \int_V \frac{\big (G_{ik,lj}(r) + G_{il,kj}(r) \big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]dr $$ ###Principal Value Singularity In the equation above, the surface term tending to zero is a principal value integral because of the singularity in the green's functions at $r = 0$. As a result, the integrand is not differentiable. Torquato shows that by excluding a sphere at the origin and using integration by parts and the divergence theorem we can arrive at the following equation [1]. $$\varepsilon'_{kl}(x) = I_{ikjl} - E_{ikjl} + \int_V \Phi_{ikjl}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]dr $$ where $$\Phi_{ikjl}(r) = - \frac{\big (G_{ik,lj}(r) + G_{il,kj}(r) \big)}{2} $$ is the green's function terms, and $$I_{ikjl}^{\infty} = \lim_{r \rightarrow \infty} \int_S\frac{\big (G_{ik,l}(r) + G_{il,k}(r)\big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]n_l dS $$ $$E_{ikjl}(x) = \lim_{r \rightarrow 0} \int_S\frac{\big (G_{ik,l}(r) + G_{il,k}(r)\big)}{2} n_l dS $$ are the contribution from the surface integrals at $\infty$ and from the singularity. Finally let $$\Gamma_{iklj}(r) = I_{ikjl}^{\infty}\delta(r)-E_{ikjl}\delta(r) + \Phi_{ikjl}(r)$$ the strain can then be written in the following form. $$\varepsilon'_{kl}(x) = \int_V \Gamma_{ikjl}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]dr $$ ###Weak Contrast Expansion $$\varepsilon'(x) =\int_V \Gamma(r) C'(x-r) [ \bar{\varepsilon} + \varepsilon'(x-r)]dr $$ By recursively inserting $\varepsilon'(x)$ into the LHS of the equation, we get the following series. $$ \varepsilon'(x) =\int_V \Gamma(r) C'(x-r) \bar{\varepsilon} dr +\int_V \int_V \Big[ \Gamma(r) C'(x-r)\bar{\varepsilon}\Big ]\Big [\Gamma(r') C'(x-r') \bar{\varepsilon}\Big] dr'dr + ...$$ As long as $$\Gamma(r) C'(x)\bar{\varepsilon} << 1$$ the series can be truncated after a few terms and still provide resonable accuracy. ###Materials Knowledge Systems Let $$ C'(x-r) = \int_H h m(h, x-r) dh$$ where $m(h, r)$ is the microstructure function which is a probablity density that spans both the local state space $h$ and real space $x$. The expectation of local state variable for the microstructure function is the integral over the local state space $H$ and discribes the expected local state $h$ which is equal to $C'(r)$. Also let $$\alpha(h, r) = \Gamma(r) h \bar{\varepsilon} $$ $$\alpha(h, h', r, r') = \Gamma(r) h \bar{\varepsilon} \Gamma(r') h' \bar{\varepsilon} $$ $$ etc... $$ where again $h$ is the local state variable. Plugging these definitations into the Weak Contrast Expansion recasts the series in the following form. $$\varepsilon '(x) =\int_V \int_H \alpha(h, r) m(h, x-r) dr dh + \int_V \int_V \int_H \int_H\alpha_(h, h', r, r') m(h, x-r) m(h', x-r') dr'dr dh dh'+ ...$$ The discrete version of this equation is the MKS localization. $$\varepsilon'[s] = \sum_{l=0}^{L-1} \sum_{r=0}^{S-1} \alpha[l, r] m[l, s-r] +\sum_{l=0}^{L-1} \sum_{l'=0}^{L-1} \sum_{r=0}^{S-1} \sum_{r'=0}^{S-1} \alpha[l, l', r, r'] m[l, s-r] m_[l', s-r'] + ... $$ ##References [1] Torquato, S., 1997. *Effective stiffness tensor of composite media. I. Exact series expansions.* J. Mech. Phys. Solids 45, 1421–1448. [2] Brent L.Adams, Surya Kalidindi, David T. Fullwood. *Microstructure Sensitive Design for Performance Optimization.* [3] David T. Fullwood, Brent L.Adams, Surya Kalidindi. *A strong contrast homogenization formulation for multi-phase anisotropic materials.*
github_jupyter
#Derivation of MKS Localization Equation The goal of this notebook is to derivate the Materials Knowledge Systems (MKS) equation from elastostatic equilibrium equation. Note that the MKS equation can be derivated from other partial differential equations. ### Definitions Let $C(x)$ be the local stiffness tensor for a two phase material with stiffness tensors $C_A$ and $C_B$. The stiffness tensor at location $x$ can be represented at a perturbation from a reference stiffness tensor. $$C(x) = C^R + C'(x)$$ The strain field at location $(x)$ can also be defined in terms of a simular perturbation. $$\varepsilon(x) = \bar{\varepsilon} + \varepsilon '(x)$$ where $\bar{\varepsilon}$ is the average strain and $\varepsilon '(x)$ is the local strain perturbation from $\bar{\varepsilon}$. The constitutive equation is therefore. $$\sigma_{ij}(x) = \big(C^R_{ijlk} + C'_{ijlk}(x) \big ) \big (\bar{\varepsilon}_{lk} + \varepsilon'_{lk}(x) \big )$$ ### Equilibrium Condition The equilibrium condition is defined below. $$\sigma_{ij,j}(x) = \Big [\big(C^R_{ijlk} + C'_{ijlk}(x) \big ) \big (\bar{\varepsilon}_{lk} + \varepsilon'_{lk}(x) \big )\Big ]_{,j} = 0$$ $$\sigma_{ij,j}(x) = C^R_{ijlk}\varepsilon'_{lk,j}(x) + C'_{ijlk,j}(x)\bar{\varepsilon}_{lk} + \Big [C'_{ijlk}(x) \varepsilon'_{lk}(x)\Big ]_{,j} = 0$$ Let $$F_i(x) = C'_{ijlk,j}(x)\bar{\varepsilon}_{lk} + \Big [C'_{ijlk}(x) \varepsilon'_{lk}(x)\Big ]_{,j} $$ Using the definitation of $F(x)$ above, the equilibrium equation above can be rearranged in the form of an inhomogenous differential equation. $$C^R_{ijlk}\varepsilon'_{lk,j}(x) + F_i(x) = 0$$ ###Strain, Displacement, and Green's Functions By using the relationship between strain and displacement, the equilibrium equation can be rewritten as follows. $$ \varepsilon_{kl}(x) = \frac{\big (u_{k,l}(x) + u_{l,k}(x) \big)}{2} $$ $$C^R_{ijkl} \frac{\big (u'_{k,lj}(x) + u'_{l,kj}(x) \big)}{2} + F_i(x) = 0$$ The solution to the displacements can be found using green's functions. $$C^R_{ijkl} G_{km,lj}(r) + \delta_{im}\delta(x-r) = 0$$ $$u'_k(x) = \int_V G_{ik}(r) F_i (x-r)dr = \int_V G_{ik}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]_{,j}dr$$ and $$u'_l(x) = \int_V G_{il}(r) F_i (x - r)dr = \int_V G_{ik}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]_{,j}dr$$ therefore the strain can also be found interns of green's functions. $$\varepsilon'_{kl}(x) = \int_V \frac{\big (G_{ik,l}(r) + G_{il,k}(r) \big)}{2} F_i (x-r)dr = \int_V \frac{\big (G_{ik,l}(r) + G_{il,k}(r) \big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]_{,j}dr$$ Note that the $G(r)$ terms depend on the reference medium $C^R$. ### Integration by Parts The equation above can be recast with all of the derivatives on the green's functions by integrating by parts. $$ \varepsilon'_{kl}(x) = \Bigg [ \int_S \frac{\big (G_{ik,l}(r) + G_{il,k}(r) \big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ] n_j dS\Bigg ]_{r \rightarrow 0}^{r \rightarrow \infty} - $$ $$ \int_V \frac{\big (G_{ik,lj}(r) + G_{il,kj}(r) \big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]dr $$ ###Principal Value Singularity In the equation above, the surface term tending to zero is a principal value integral because of the singularity in the green's functions at $r = 0$. As a result, the integrand is not differentiable. Torquato shows that by excluding a sphere at the origin and using integration by parts and the divergence theorem we can arrive at the following equation [1]. $$\varepsilon'_{kl}(x) = I_{ikjl} - E_{ikjl} + \int_V \Phi_{ikjl}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]dr $$ where $$\Phi_{ikjl}(r) = - \frac{\big (G_{ik,lj}(r) + G_{il,kj}(r) \big)}{2} $$ is the green's function terms, and $$I_{ikjl}^{\infty} = \lim_{r \rightarrow \infty} \int_S\frac{\big (G_{ik,l}(r) + G_{il,k}(r)\big)}{2} \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]n_l dS $$ $$E_{ikjl}(x) = \lim_{r \rightarrow 0} \int_S\frac{\big (G_{ik,l}(r) + G_{il,k}(r)\big)}{2} n_l dS $$ are the contribution from the surface integrals at $\infty$ and from the singularity. Finally let $$\Gamma_{iklj}(r) = I_{ikjl}^{\infty}\delta(r)-E_{ikjl}\delta(r) + \Phi_{ikjl}(r)$$ the strain can then be written in the following form. $$\varepsilon'_{kl}(x) = \int_V \Gamma_{ikjl}(r) \Big [C'_{ijlk}(x-r)\bar{\varepsilon}_{lk} + \big [C'_{ijlk}(x-r)\varepsilon'_{lk}(x-r)\big ]\Big ]dr $$ ###Weak Contrast Expansion $$\varepsilon'(x) =\int_V \Gamma(r) C'(x-r) [ \bar{\varepsilon} + \varepsilon'(x-r)]dr $$ By recursively inserting $\varepsilon'(x)$ into the LHS of the equation, we get the following series. $$ \varepsilon'(x) =\int_V \Gamma(r) C'(x-r) \bar{\varepsilon} dr +\int_V \int_V \Big[ \Gamma(r) C'(x-r)\bar{\varepsilon}\Big ]\Big [\Gamma(r') C'(x-r') \bar{\varepsilon}\Big] dr'dr + ...$$ As long as $$\Gamma(r) C'(x)\bar{\varepsilon} << 1$$ the series can be truncated after a few terms and still provide resonable accuracy. ###Materials Knowledge Systems Let $$ C'(x-r) = \int_H h m(h, x-r) dh$$ where $m(h, r)$ is the microstructure function which is a probablity density that spans both the local state space $h$ and real space $x$. The expectation of local state variable for the microstructure function is the integral over the local state space $H$ and discribes the expected local state $h$ which is equal to $C'(r)$. Also let $$\alpha(h, r) = \Gamma(r) h \bar{\varepsilon} $$ $$\alpha(h, h', r, r') = \Gamma(r) h \bar{\varepsilon} \Gamma(r') h' \bar{\varepsilon} $$ $$ etc... $$ where again $h$ is the local state variable. Plugging these definitations into the Weak Contrast Expansion recasts the series in the following form. $$\varepsilon '(x) =\int_V \int_H \alpha(h, r) m(h, x-r) dr dh + \int_V \int_V \int_H \int_H\alpha_(h, h', r, r') m(h, x-r) m(h', x-r') dr'dr dh dh'+ ...$$ The discrete version of this equation is the MKS localization. $$\varepsilon'[s] = \sum_{l=0}^{L-1} \sum_{r=0}^{S-1} \alpha[l, r] m[l, s-r] +\sum_{l=0}^{L-1} \sum_{l'=0}^{L-1} \sum_{r=0}^{S-1} \sum_{r'=0}^{S-1} \alpha[l, l', r, r'] m[l, s-r] m_[l', s-r'] + ... $$ ##References [1] Torquato, S., 1997. *Effective stiffness tensor of composite media. I. Exact series expansions.* J. Mech. Phys. Solids 45, 1421–1448. [2] Brent L.Adams, Surya Kalidindi, David T. Fullwood. *Microstructure Sensitive Design for Performance Optimization.* [3] David T. Fullwood, Brent L.Adams, Surya Kalidindi. *A strong contrast homogenization formulation for multi-phase anisotropic materials.*
0.884651
0.991692
# Data Hacker Survey 2019 Resultados da pesquisa de mercado de Data Science feita pelo Data Hackers ## Sobre a base de dados O dataset é criado a partir de uma pesquisa de mercado de Data Science no Brasil feita pela comunidade Data Hacker e foi retirado do site kaggle no link: [Data Hackers Survey 2019](https://www.kaggle.com/datahackers/pesquisa-data-hackers-2019) em 8 de agosto de 2020. A pesquisa foi conduzida de forma online durante o mês de Novembro de 2019, e consistia em um questionário com 39 perguntas. O dataset é composto por 1765 registros e 170 colunas. ## Variáveis que podem ser úteis na análise Idade, Gênero, Nível de graduação, Salário, Tempo de experiência com Ciência de Dados, Linguagens de programação mais utilizadas, Estado, Emprego, Número de Funcionários e Setor do mercado. ## Questões que possam ser respondidas através da análise ### Sobre a pesquisa - Qual é a distribuição de idade e gênero? - Quantos cientistas de dados vivem no Brasil? - Qual a distribuição dos participantes por estado? - Maioria das pessoas que responderam a pesquisa são cientista de dados? - Qual a situação profissional os participantes se encontram? - Distribuição das pessoas que responderam a pesquisa por área de atuação? - Qual o tamanho das empresas que os participantes trabalham pelo número de funcionários? - Qual o nível de ensino mais popular entre os cientistas de dados? ### Mercado de trabalho - Qual setor do mercado que contrata mais profissionais de ciência de dados? - Qual plataforma os cientista de dados utilizam para se atualizar sobre o mercado de trabalho? ### Formação/Estudo e Ferramentas - Quais as linguagens de programação mais utilizadas? - Qual a distribuição entre profissionais e não profissionais em relação ao nível de ensino? - É necessário ter um mestrado para ser cientista de dados? ### Salário - Distribuição dos salários entre ciêntistas de dados - Quais são os maiores e os menores salários? - Qual a maior faixa de salários? - Qual setor do mercado de trabalho paga os melhores salários para cientistas de dados? - Qual linguagem de programação tem os melhores salários? - Quantos profissionais ganham mais que 25 mil? Quais as características de quem ganha esse salário? - Nivel de ensino dos profissionais que ganham mais que 25 mil reais ``` import pandas as pd df = pd.read_csv('/content/datahackers-survey-2019-anonymous-responses.csv', sep=',') df.head() df.shape # Limpando o nome das colunas df.columns = [cols.replace("(","").replace(")","").replace(",","").replace("'","").replace(" ","_") for cols in df.columns] por_cargo = df['D6_anonymized_role'].value_counts().reset_index() por_cargo.columns = [ 'Cargo', 'Quantidade de pessoas' ] por_cargo df['P21_python'].value_counts().reset_index() ``` Quais das linguagens de programação listadas abaixo você utiliza no trabalho? ``` colunas_linguagem_de_programacao = [] linguagens_de_programacao = [] for column in df.columns: if 'P21' in column: colunas_linguagem_de_programacao.append(column) linguagens_de_programacao.append(column.replace('P21', '').replace('_', ' ').strip().capitalize()) print(linguagens_de_programacao) ``` # Sobre a pesquisa ## Qual é a distribuição de idade e gênero? ``` por_genero = df['P2_gender'].value_counts(normalize=True) * 100 por_genero = por_genero.reset_index() por_genero.columns = ['Gênero', 'Porcentagem'] por_genero por_genero.plot.barh(x='Gênero', y='Porcentagem', rot=0, title='Distribuição de gênero', color='green') por_idade = df['P1_age'].value_counts(sort=False, bins=5).reset_index() por_idade.columns = ['Idade', 'Porcentagem'] por_idade.plot.bar(x='Idade', y='Porcentagem', rot=0, title='Distribuição de idade', color='cyan') ``` ## Quantos cientistas de dados vivem no Brasil? ``` mora_no_brasil = df['P3_living_in_brasil'].value_counts(normalize=True) * 100 mora_no_brasil = mora_no_brasil.reset_index() mora_no_brasil = mora_no_brasil.replace(1, 'Sim').replace(0, 'Não') mora_no_brasil.columns = ['Vive no Brasil?', 'Porcentagem'] mora_no_brasil.plot.bar(x='Vive no Brasil?', y='Porcentagem', rot=0, title='Ciêntistas de dados que vivem no Brasil') ``` ## Qual a distribuição dos participantes por estado? ``` por_estado = df['P5_living_state'].value_counts(normalize=True) * 100 por_estado = por_estado.reset_index() por_estado.columns = ['Estado', 'Porcentagem'] por_estado.plot.bar(x='Estado', y='Porcentagem', rot=0, figsize=(15, 5), title='Ciêntistas de dados por Estado', color='magenta') ``` ## Maioria das pessoas que responderam a pesquisa são cientista de dados? ``` por_cargo = df['D6_anonymized_role'].value_counts(normalize=True) * 100 por_cargo = por_cargo.reset_index() por_cargo ``` ## Qual a situação profissional os participantes se encontram? ``` situacao_profissional = df['P10_job_situation'].value_counts(normalize=True) * 100 situacao_profissional = situacao_profissional.reset_index() situacao_profissional.columns = ['Cargo', 'Porcentagem'] situacao_profissional ``` ## Distribuição das pessoas que responderam a pesquisa por área de atuação? ``` area_de_atuacao = df['D6_anonymized_role'].value_counts(normalize=True) * 100 area_de_atuacao = area_de_atuacao.reset_index() area_de_atuacao.columns = ['Cargo', 'Porcentagem'] area_de_atuacao ``` ## Qual o tamanho das empresas que os participantes trabalham pelo número de funcionários? ``` numero_de_funcionarios = df['P12_workers_number'].value_counts().reset_index() numero_de_funcionarios.columns = ['Números de funcionários na empresa', 'Número de participantes'] numero_de_funcionarios ``` ## Qual o nível de ensino mais popular entre os cientistas de dados? ``` degree_level = df[df['P19_is_data_science_professional'].astype(int) == 1] degree_level = degree_level['P8_degreee_level'].value_counts().reset_index() degree_level.columns = ['Nível de ensino', 'Participantes'] degree_level.plot.barh(x='Nível de ensino', y='Participantes', rot=0, figsize=(15, 5), title='Nível de ensino dos Ciêntistas de Dados', color='green') ``` # Mercado de trabalho ## Qual setor do mercado que contrata mais profissionais de ciência de dados? ``` setor_de_mercado = df[df['P19_is_data_science_professional'].astype(int) == 1] setor_de_mercado = setor_de_mercado['D4_anonymized_market_sector'].value_counts().reset_index() setor_de_mercado.columns = ['Setor do Mercado', 'Número de profissionais'] setor_de_mercado ``` O setor que mais contrata profissionais de ciência de dados é o setor de Tecnologia/Fábrica de Software ## Qual plataforma os ciêntista de dados utilizam para se atualizar sobre o mercado de trabalho? ``` plataforma_mais_usada_por_cientistas_de_dados = df[df['P19_is_data_science_professional'].astype(int) == 1] plataforma_mais_usada_por_cientistas_de_dados = plataforma_mais_usada_por_cientistas_de_dados['P35_data_science_plataforms_preference'].value_counts().reset_index() plataforma_mais_usada_por_cientistas_de_dados.columns = ['Plataformas', 'Número de profissionais'] plataforma_mais_usada_por_cientistas_de_dados.plot.bar(x='Plataformas', y='Número de profissionais', rot=0, figsize=(15, 5), title='Plataformas utilizadas por ciêntistas de dados') ``` A plataforma que os ciêntitas de dados mais utilizam é a Udemy # Formação/Estudo e Ferramentas ``` linguagens_de_programacao_mais_usadas = df['P22_most_used_proggraming_languages'].value_counts().reset_index() linguagens_de_programacao_mais_usadas.columns = ['Linguagem de programação', 'Quantidade de participantes'] linguagens_de_programacao_mais_usadas linguagens_de_programacao_mais_usadas.plot.barh(x='Linguagem de programação', y='Quantidade de participantes', rot=0, title='Linguagens de programação mais usadas', color='green') ``` ## Qual a distribuição entre profissionais e não profissionais em relação ao nível de ensino? ``` cientistas_de_dados = df[df['P19_is_data_science_professional'].astype(int) == 1] nao_cientistas_de_dados = df[df['P19_is_data_science_professional'].astype(int) == 0] total = len(cientistas_de_dados) + len(nao_cientistas_de_dados) print(f'Número de ciêntistas de dados: {(len(cientistas_de_dados) / total) * 100:.2f}%') print(f'Número de participantes que não são ciêntistas de dados: {(len(nao_cientistas_de_dados) / total) * 100:.2f}%') ``` ## É necessário ter um mestrado para ser cientista de dados? ``` degree_level = df[df['P19_is_data_science_professional'].astype(int) == 1] degree_level = degree_level['P8_degreee_level'].value_counts().reset_index() degree_level.columns = ['Nível de ensino', 'Participantes'] degree_level.plot.bar(x='Nível de ensino', y='Participantes', rot=0, figsize=(15, 5), title='Nível de ensino dos Ciêntistas de Dados') ``` Não, pois a maioria dos ciêntistas de dados tem apenas Graduação/Bacharelado ou Pós-graduação # Salário ## Análise dos salários ### Distribuição dos salários entre ciêntistas de dados ``` maior_menor_salario = df['P16_salary_range'].value_counts().reset_index() maior_menor_salario.columns = ['Salários', 'Participantes'] maior_menor_salario ``` ### Quais são os maiores e os menores salários? Os menores salários são de 1.001/mês a 2.000/mês reais Os maiores salários são acima de 25.001/mês reais ### Qual a maior faixa de salários? Os melhores salários estão acima de R$ 25.001/mês ## Qual setor do mercado de trabalho paga os melhores salários para cientistas de dados? ``` maiores_salarios = df[(df['P16_salary_range'] == 'Acima de R$ 25.001/mês') | (df['P16_salary_range'] == 'de R$ 20.001/mês a R$ 25.000/mês') | (df['P16_salary_range'] == 'de R$ 16.001/mês a R$ 20.000/mês')] setor_do_mercado = maiores_salarios['D4_anonymized_market_sector'].value_counts().reset_index() setor_do_mercado.columns = ['Setores', 'Participantes'] setor_do_mercado.head(5) ``` ## Qual linguagem de programação tem os melhores salários? ``` linguagens_com_melhor_salario = maiores_salarios['P22_most_used_proggraming_languages'].value_counts().reset_index() linguagens_com_melhor_salario.columns = ['Linguagem', 'Participantes'] linguagens_com_melhor_salario ``` ## Quantos profissionais ganham mais que 25 mil? Quais as características de quem ganha esse salário? ``` profissionais_com_salario_alto = df[df['P16_salary_range'] == 'Acima de R$ 25.001/mês'] print(f'Número de profissionais que ganham mais que 25 mil: {len(profissionais_com_salario_alto)}') def exibe_grafico(coluna_principal, coluna1, coluna2, titulo): novo_df = df[coluna_principal].value_counts().reset_index() novo_df.columns = [coluna1, coluna2] novo_df.plot.bar(x=coluna1, y=coluna2, rot=0, figsize=(25, 5), title=titulo, color='green') exibe_grafico('P8_degreee_level', 'Nivel de ensino', 'Profissionais', 'Nivel de ensino dos profissionais que gnaham mais que 25 mil reais') exibe_grafico('P17_time_experience_data_science', 'Experiencia com ciência de dados', 'Profissionais', 'Nivel de ensino dos profissionais que gnaham mais que 25 mil reais') ```
github_jupyter
import pandas as pd df = pd.read_csv('/content/datahackers-survey-2019-anonymous-responses.csv', sep=',') df.head() df.shape # Limpando o nome das colunas df.columns = [cols.replace("(","").replace(")","").replace(",","").replace("'","").replace(" ","_") for cols in df.columns] por_cargo = df['D6_anonymized_role'].value_counts().reset_index() por_cargo.columns = [ 'Cargo', 'Quantidade de pessoas' ] por_cargo df['P21_python'].value_counts().reset_index() colunas_linguagem_de_programacao = [] linguagens_de_programacao = [] for column in df.columns: if 'P21' in column: colunas_linguagem_de_programacao.append(column) linguagens_de_programacao.append(column.replace('P21', '').replace('_', ' ').strip().capitalize()) print(linguagens_de_programacao) por_genero = df['P2_gender'].value_counts(normalize=True) * 100 por_genero = por_genero.reset_index() por_genero.columns = ['Gênero', 'Porcentagem'] por_genero por_genero.plot.barh(x='Gênero', y='Porcentagem', rot=0, title='Distribuição de gênero', color='green') por_idade = df['P1_age'].value_counts(sort=False, bins=5).reset_index() por_idade.columns = ['Idade', 'Porcentagem'] por_idade.plot.bar(x='Idade', y='Porcentagem', rot=0, title='Distribuição de idade', color='cyan') mora_no_brasil = df['P3_living_in_brasil'].value_counts(normalize=True) * 100 mora_no_brasil = mora_no_brasil.reset_index() mora_no_brasil = mora_no_brasil.replace(1, 'Sim').replace(0, 'Não') mora_no_brasil.columns = ['Vive no Brasil?', 'Porcentagem'] mora_no_brasil.plot.bar(x='Vive no Brasil?', y='Porcentagem', rot=0, title='Ciêntistas de dados que vivem no Brasil') por_estado = df['P5_living_state'].value_counts(normalize=True) * 100 por_estado = por_estado.reset_index() por_estado.columns = ['Estado', 'Porcentagem'] por_estado.plot.bar(x='Estado', y='Porcentagem', rot=0, figsize=(15, 5), title='Ciêntistas de dados por Estado', color='magenta') por_cargo = df['D6_anonymized_role'].value_counts(normalize=True) * 100 por_cargo = por_cargo.reset_index() por_cargo situacao_profissional = df['P10_job_situation'].value_counts(normalize=True) * 100 situacao_profissional = situacao_profissional.reset_index() situacao_profissional.columns = ['Cargo', 'Porcentagem'] situacao_profissional area_de_atuacao = df['D6_anonymized_role'].value_counts(normalize=True) * 100 area_de_atuacao = area_de_atuacao.reset_index() area_de_atuacao.columns = ['Cargo', 'Porcentagem'] area_de_atuacao numero_de_funcionarios = df['P12_workers_number'].value_counts().reset_index() numero_de_funcionarios.columns = ['Números de funcionários na empresa', 'Número de participantes'] numero_de_funcionarios degree_level = df[df['P19_is_data_science_professional'].astype(int) == 1] degree_level = degree_level['P8_degreee_level'].value_counts().reset_index() degree_level.columns = ['Nível de ensino', 'Participantes'] degree_level.plot.barh(x='Nível de ensino', y='Participantes', rot=0, figsize=(15, 5), title='Nível de ensino dos Ciêntistas de Dados', color='green') setor_de_mercado = df[df['P19_is_data_science_professional'].astype(int) == 1] setor_de_mercado = setor_de_mercado['D4_anonymized_market_sector'].value_counts().reset_index() setor_de_mercado.columns = ['Setor do Mercado', 'Número de profissionais'] setor_de_mercado plataforma_mais_usada_por_cientistas_de_dados = df[df['P19_is_data_science_professional'].astype(int) == 1] plataforma_mais_usada_por_cientistas_de_dados = plataforma_mais_usada_por_cientistas_de_dados['P35_data_science_plataforms_preference'].value_counts().reset_index() plataforma_mais_usada_por_cientistas_de_dados.columns = ['Plataformas', 'Número de profissionais'] plataforma_mais_usada_por_cientistas_de_dados.plot.bar(x='Plataformas', y='Número de profissionais', rot=0, figsize=(15, 5), title='Plataformas utilizadas por ciêntistas de dados') linguagens_de_programacao_mais_usadas = df['P22_most_used_proggraming_languages'].value_counts().reset_index() linguagens_de_programacao_mais_usadas.columns = ['Linguagem de programação', 'Quantidade de participantes'] linguagens_de_programacao_mais_usadas linguagens_de_programacao_mais_usadas.plot.barh(x='Linguagem de programação', y='Quantidade de participantes', rot=0, title='Linguagens de programação mais usadas', color='green') cientistas_de_dados = df[df['P19_is_data_science_professional'].astype(int) == 1] nao_cientistas_de_dados = df[df['P19_is_data_science_professional'].astype(int) == 0] total = len(cientistas_de_dados) + len(nao_cientistas_de_dados) print(f'Número de ciêntistas de dados: {(len(cientistas_de_dados) / total) * 100:.2f}%') print(f'Número de participantes que não são ciêntistas de dados: {(len(nao_cientistas_de_dados) / total) * 100:.2f}%') degree_level = df[df['P19_is_data_science_professional'].astype(int) == 1] degree_level = degree_level['P8_degreee_level'].value_counts().reset_index() degree_level.columns = ['Nível de ensino', 'Participantes'] degree_level.plot.bar(x='Nível de ensino', y='Participantes', rot=0, figsize=(15, 5), title='Nível de ensino dos Ciêntistas de Dados') maior_menor_salario = df['P16_salary_range'].value_counts().reset_index() maior_menor_salario.columns = ['Salários', 'Participantes'] maior_menor_salario maiores_salarios = df[(df['P16_salary_range'] == 'Acima de R$ 25.001/mês') | (df['P16_salary_range'] == 'de R$ 20.001/mês a R$ 25.000/mês') | (df['P16_salary_range'] == 'de R$ 16.001/mês a R$ 20.000/mês')] setor_do_mercado = maiores_salarios['D4_anonymized_market_sector'].value_counts().reset_index() setor_do_mercado.columns = ['Setores', 'Participantes'] setor_do_mercado.head(5) linguagens_com_melhor_salario = maiores_salarios['P22_most_used_proggraming_languages'].value_counts().reset_index() linguagens_com_melhor_salario.columns = ['Linguagem', 'Participantes'] linguagens_com_melhor_salario profissionais_com_salario_alto = df[df['P16_salary_range'] == 'Acima de R$ 25.001/mês'] print(f'Número de profissionais que ganham mais que 25 mil: {len(profissionais_com_salario_alto)}') def exibe_grafico(coluna_principal, coluna1, coluna2, titulo): novo_df = df[coluna_principal].value_counts().reset_index() novo_df.columns = [coluna1, coluna2] novo_df.plot.bar(x=coluna1, y=coluna2, rot=0, figsize=(25, 5), title=titulo, color='green') exibe_grafico('P8_degreee_level', 'Nivel de ensino', 'Profissionais', 'Nivel de ensino dos profissionais que gnaham mais que 25 mil reais') exibe_grafico('P17_time_experience_data_science', 'Experiencia com ciência de dados', 'Profissionais', 'Nivel de ensino dos profissionais que gnaham mais que 25 mil reais')
0.189821
0.946498
``` from numpy import array from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.embeddings import Embedding import pandas as pd # define the corpus corpus = ['This is good pizza', 'I love Italian pizza', 'The best pizza', 'nice pizza', 'Excellent pizza', 'I love pizza', 'The pizza was alright', 'disgusting pineapple pizza', 'not good pizza', 'bad pizza', 'very bad pizza', 'I had better pizza'] # creating class labels for our labels = array([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) output_dim = 8 pd.DataFrame({'text': corpus, 'sentiment':labels}) # we extract the vocabulary from our corpus sentences = [voc.split() for voc in corpus] vocabulary = set([word for sentence in sentences for word in sentence]) vocab_size = len(vocabulary) encoded_corpus = [one_hot(d, vocab_size) for d in corpus] encoded_corpus # we now pad the documents to # the max length of the longest sentences # to have an uniform length max_length = 5 padded_docs = pad_sequences(encoded_corpus, maxlen=max_length, padding='post') print(padded_docs) # model definition model = Sequential() model.add(Embedding(vocab_size, output_dim, input_length=max_length, name='embedding')) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) # summarize the model print(model.summary()) # fit the model model.fit(padded_docs, labels, epochs=50, verbose=0) # evaluate the model loss, accuracy = model.evaluate(padded_docs, labels, verbose=0) print('Accuracy: %f' % (accuracy * 100)) type(model) from numpy import array from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.embeddings import Embedding # define documents docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!', 'Weak', 'Poor effort!', 'not good', 'poor work', 'Could have done better.'] # define class labels labels = array([1,1,1,1,1,0,0,0,0,0]) vocabulary = set(docs) # integer encode the documents vocab_size = len(set(docs)) encoded_corpus = [one_hot(d, vocab_size) for d in docs] print(encoded_corpus) # pad documents to a max length of 4 words max_length = 4 padded_docs = pad_sequences(encoded_corpus, maxlen=max_length, padding='post') print(padded_docs) # define the model model = Sequential() model.add(Embedding(vocab_size, 8, input_length=max_length)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) # summarize the model print(model.summary()) # fit the model model.fit(padded_docs, labels, epochs=50, verbose=0) # evaluate the model loss, accuracy = model.evaluate(padded_docs, labels, verbose=0) print('Accuracy: %f' % (accuracy * 100)) import nltk nltk.download('punkt') tokens = nltk.word_tokenize('This is a beautiful sentence') print(tokens) pos_tagget_tokens = nltk.pos_tag(tokens) print(pos_tagget_tokens) ```
github_jupyter
from numpy import array from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.embeddings import Embedding import pandas as pd # define the corpus corpus = ['This is good pizza', 'I love Italian pizza', 'The best pizza', 'nice pizza', 'Excellent pizza', 'I love pizza', 'The pizza was alright', 'disgusting pineapple pizza', 'not good pizza', 'bad pizza', 'very bad pizza', 'I had better pizza'] # creating class labels for our labels = array([1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]) output_dim = 8 pd.DataFrame({'text': corpus, 'sentiment':labels}) # we extract the vocabulary from our corpus sentences = [voc.split() for voc in corpus] vocabulary = set([word for sentence in sentences for word in sentence]) vocab_size = len(vocabulary) encoded_corpus = [one_hot(d, vocab_size) for d in corpus] encoded_corpus # we now pad the documents to # the max length of the longest sentences # to have an uniform length max_length = 5 padded_docs = pad_sequences(encoded_corpus, maxlen=max_length, padding='post') print(padded_docs) # model definition model = Sequential() model.add(Embedding(vocab_size, output_dim, input_length=max_length, name='embedding')) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) # summarize the model print(model.summary()) # fit the model model.fit(padded_docs, labels, epochs=50, verbose=0) # evaluate the model loss, accuracy = model.evaluate(padded_docs, labels, verbose=0) print('Accuracy: %f' % (accuracy * 100)) type(model) from numpy import array from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers.embeddings import Embedding # define documents docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!', 'Weak', 'Poor effort!', 'not good', 'poor work', 'Could have done better.'] # define class labels labels = array([1,1,1,1,1,0,0,0,0,0]) vocabulary = set(docs) # integer encode the documents vocab_size = len(set(docs)) encoded_corpus = [one_hot(d, vocab_size) for d in docs] print(encoded_corpus) # pad documents to a max length of 4 words max_length = 4 padded_docs = pad_sequences(encoded_corpus, maxlen=max_length, padding='post') print(padded_docs) # define the model model = Sequential() model.add(Embedding(vocab_size, 8, input_length=max_length)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc']) # summarize the model print(model.summary()) # fit the model model.fit(padded_docs, labels, epochs=50, verbose=0) # evaluate the model loss, accuracy = model.evaluate(padded_docs, labels, verbose=0) print('Accuracy: %f' % (accuracy * 100)) import nltk nltk.download('punkt') tokens = nltk.word_tokenize('This is a beautiful sentence') print(tokens) pos_tagget_tokens = nltk.pos_tag(tokens) print(pos_tagget_tokens)
0.729905
0.47171
Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/reinforcement-learning/atari-on-distributed-compute/pong_rllib.png) # Reinforcement Learning in Azure Machine Learning - Pong problem Reinforcement Learning in Azure Machine Learning is a managed service for running distributed reinforcement learning training and simulation using the open source Ray framework. This example uses Ray RLlib to train a Pong playing agent on a multi-node cluster. ## Pong problem [Pong](https://en.wikipedia.org/wiki/Pong) is a two-dimensional sports game that simulates table tennis. The player controls an in-game paddle by moving it vertically across the left or right side of the screen. They can compete against another player controlling a second paddle on the opposing side. Players use the paddles to hit a ball back and forth. <table style="width:50%"> <tr> <th style="text-align: center;"><img src="./images/pong.gif" alt="Pong image" align="middle" margin-left="auto" margin-right="auto"/></th> </tr> <tr style="text-align: center;"> <th>Fig 1. Pong game animation (from <a href="https://towardsdatascience.com/intro-to-reinforcement-learning-pong-92a94aa0f84d">towardsdatascience.com</a>).</th> </tr> </table> The goal here is to train an agent to win an episode of Pong game against opponent with the score of at least 18 points. An episode in Pong runs until one of the players reaches a score of 21. Episodes are a terminology that is used across all the [OpenAI gym](https://gym.openai.com/envs/Pong-v0/) environments that contains a strictly defined task. Training a Pong agent is a compute-intensive task and this example demonstrates the use of Reinforcement Learning in Azure Machine Learning service to train an agent faster in a distributed, parallel environment. You'll learn more about using the head and the worker compute targets to train an agent in this notebook below. ## Prerequisite It is highly recommended that the user should go through the [Reinforcement Learning in Azure Machine Learning - Cartpole Problem on Single Compute](../cartpole-on-single-compute/cartpole_sc.ipynb) to understand the basics of Reinforcement Learning in Azure Machine Learning and Ray RLlib used in this notebook. ## Set up Development Environment The following subsections show typical steps to setup your development environment. Setup includes: * Connecting to a workspace to enable communication between your local machine and remote resources * Creating an experiment to track all your runs * Setting up a virtual network * Creating remote head and worker compute target on a virtual network to use for training ### Azure Machine Learning SDK Display the Azure Machine Learning SDK version. ``` %matplotlib inline # Azure Machine Learning core imports import azureml.core # Check core SDK version number print("Azure Machine Learning SDK Version: ", azureml.core.VERSION) ``` ### Get Azure Machine Learning workspace Get a reference to an existing Azure Machine Learning workspace. ``` from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.location, ws.resource_group, sep = ' | ') ``` ### Create Azure Machine Learning experiment Create an experiment to track the runs in your workspace. ``` from azureml.core.experiment import Experiment # Experiment name experiment_name = 'rllib-pong-multi-node' exp = Experiment(workspace=ws, name=experiment_name) ``` ### Create Virtual Network If you are using separate compute targets for the Ray head and worker, a virtual network must be created in the resource group. If you have alraeady created a virtual network in the resource group, you can skip this step. To do this, you first must install the Azure Networking API. `pip install --upgrade azure-mgmt-network==12.0.0` ``` # If you need to install the Azure Networking SDK, uncomment the following line. #!pip install --upgrade azure-mgmt-network==12.0.0 from azure.mgmt.network import NetworkManagementClient # Virtual network name vnet_name ="rl_pong_vnet" # Default subnet subnet_name ="default" # The Azure subscription you are using subscription_id=ws.subscription_id # The resource group for the reinforcement learning cluster resource_group=ws.resource_group # Azure region of the resource group location=ws.location network_client = NetworkManagementClient(ws._auth_object, subscription_id) async_vnet_creation = network_client.virtual_networks.create_or_update( resource_group, vnet_name, { 'location': location, 'address_space': { 'address_prefixes': ['10.0.0.0/16'] } } ) async_vnet_creation.wait() print("Virtual network created successfully: ", async_vnet_creation.result()) ``` ### Set up Network Security Group on Virtual Network Depending on your Azure setup, you may need to open certain ports to make it possible for Azure to manage the compute targets that you create. The ports that need to be opened are described [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-enable-virtual-network). A common situation is that ports `29876-29877` are closed. The following code will add a security rule to open these ports. Or you can do this manually in the [Azure portal](https://portal.azure.com). You may need to modify the code below to match your scenario. ``` import azure.mgmt.network.models security_group_name = vnet_name + '-' + "nsg" security_rule_name = "AllowAML" # Create a network security group nsg_params = azure.mgmt.network.models.NetworkSecurityGroup( location=location, security_rules=[ azure.mgmt.network.models.SecurityRule( name=security_rule_name, access=azure.mgmt.network.models.SecurityRuleAccess.allow, description='Reinforcement Learning in Azure Machine Learning rule', destination_address_prefix='*', destination_port_range='29876-29877', direction=azure.mgmt.network.models.SecurityRuleDirection.inbound, priority=400, protocol=azure.mgmt.network.models.SecurityRuleProtocol.tcp, source_address_prefix='BatchNodeManagement', source_port_range='*' ), ], ) async_nsg_creation = network_client.network_security_groups.create_or_update( resource_group, security_group_name, nsg_params, ) async_nsg_creation.wait() print("Network security group created successfully:", async_nsg_creation.result()) network_security_group = network_client.network_security_groups.get( resource_group, security_group_name, ) # Define a subnet to be created with network security group subnet = azure.mgmt.network.models.Subnet( id='default', address_prefix='10.0.0.0/24', network_security_group=network_security_group ) # Create subnet on virtual network async_subnet_creation = network_client.subnets.create_or_update( resource_group_name=resource_group, virtual_network_name=vnet_name, subnet_name=subnet_name, subnet_parameters=subnet ) async_subnet_creation.wait() print("Subnet created successfully:", async_subnet_creation.result()) ``` ### Review the virtual network security rules Ensure that the virtual network is configured correctly with required ports open. It is possible that you have configured rules with broader range of ports that allows ports 29876-29877 to be opened. Kindly review your network security group rules. ``` from files.networkutils import * check_vnet_security_rules(ws._auth_object, ws.subscription_id, ws.resource_group, vnet_name, True) ``` ### Create head compute target In this example, we show how to set up separate compute targets for the Ray head and Ray worker nodes. First we define the head cluster with GPU for the Ray head node. One CPU of the head node will be used for the Ray head process and the rest of the CPUs will be used by the Ray worker processes. ``` from azureml.core.compute import AmlCompute, ComputeTarget # Choose a name for the Ray head cluster head_compute_name = 'head-gpu' head_compute_min_nodes = 0 head_compute_max_nodes = 2 # This example uses GPU VM. For using CPU VM, set SKU to STANDARD_D2_V2 head_vm_size = 'STANDARD_NC6' if head_compute_name in ws.compute_targets: head_compute_target = ws.compute_targets[head_compute_name] if head_compute_target and type(head_compute_target) is AmlCompute: if head_compute_target.provisioning_state == 'Succeeded': print('found head compute target. just use it', head_compute_name) else: raise Exception( 'found head compute target but it is in state', head_compute_target.provisioning_state) else: print('creating a new head compute target...') provisioning_config = AmlCompute.provisioning_configuration( vm_size=head_vm_size, min_nodes=head_compute_min_nodes, max_nodes=head_compute_max_nodes, vnet_resourcegroup_name=ws.resource_group, vnet_name=vnet_name, subnet_name='default') # Create the cluster head_compute_target = ComputeTarget.create(ws, head_compute_name, provisioning_config) # Can poll for a minimum number of nodes and for a specific timeout. # If no min node count is provided it will use the scale settings for the cluster head_compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20) # For a more detailed view of current AmlCompute status, use get_status() print(head_compute_target.get_status().serialize()) ``` ### Create worker compute target Now we create a compute target with CPUs for the additional Ray worker nodes. CPUs in these worker nodes are used by Ray worker processes. Each Ray worker node, depending on the CPUs on the node, may have multiple Ray worker processes. There can be multiple worker tasks on each worker process (core). ``` # Choose a name for your Ray worker compute target worker_compute_name = 'worker-cpu' worker_compute_min_nodes = 0 worker_compute_max_nodes = 4 # This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6 worker_vm_size = 'STANDARD_D2_V2' # Create the compute target if it hasn't been created already if worker_compute_name in ws.compute_targets: worker_compute_target = ws.compute_targets[worker_compute_name] if worker_compute_target and type(worker_compute_target) is AmlCompute: if worker_compute_target.provisioning_state == 'Succeeded': print('found worker compute target. just use it', worker_compute_name) else: raise Exception( 'found worker compute target but it is in state', head_compute_target.provisioning_state) else: print('creating a new worker compute target...') provisioning_config = AmlCompute.provisioning_configuration( vm_size=worker_vm_size, min_nodes=worker_compute_min_nodes, max_nodes=worker_compute_max_nodes, vnet_resourcegroup_name=ws.resource_group, vnet_name=vnet_name, subnet_name='default') # Create the compute target worker_compute_target = ComputeTarget.create(ws, worker_compute_name, provisioning_config) # Can poll for a minimum number of nodes and for a specific timeout. # If no min node count is provided it will use the scale settings for the cluster worker_compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20) # For a more detailed view of current AmlCompute status, use get_status() print(worker_compute_target.get_status().serialize()) ``` ## Train Pong Agent To facilitate reinforcement learning, Azure Machine Learning Python SDK provides a high level abstraction, the _ReinforcementLearningEstimator_ class, which allows users to easily construct reinforcement learning run configurations for the underlying reinforcement learning framework. Reinforcement Learning in Azure Machine Learning supports the open source [Ray framework](https://ray.io/) and its highly customizable [RLLib](https://ray.readthedocs.io/en/latest/rllib.html#rllib-scalable-reinforcement-learning). In this section we show how to use _ReinforcementLearningEstimator_ and Ray/RLLib framework to train a Pong playing agent. ### Define worker configuration Define a `WorkerConfiguration` using your worker compute target. We specify the number of nodes in the worker compute target to be used for training and additional PIP packages to install on those nodes as a part of setup. In this case, we define the PIP packages as dependencies for both head and worker nodes. With this setup, the game simulations will run directly on the worker compute nodes. ``` from azureml.contrib.train.rl import WorkerConfiguration # Specify the Ray worker configuration worker_conf = WorkerConfiguration( # Azure Machine Learning compute target to run Ray workers compute_target=worker_compute_target, # Number of worker nodes node_count=4, # GPU use_gpu=False, # PIP packages to use ) ``` ### Create reinforcement learning estimator The `ReinforcementLearningEstimator` is used to submit a job to Azure Machine Learning to start the Ray experiment run. We define the training script parameters here that will be passed to the estimator. We specify `episode_reward_mean` to 18 as we want to stop the training as soon as the trained agent reaches an average win margin of at least 18 point over opponent over all episodes in the training epoch. Number of Ray worker processes are defined by parameter `num_workers`. We set it to 13 as we have 13 CPUs available in our compute targets. Multiple Ray worker processes parallelizes agent training and helps in achieving our goal faster. ``` Number of CPUs in head_compute_target = 6 CPUs in 1 node = 6 Number of CPUs in worker_compute_target = 2 CPUs in each of 4 nodes = 8 Number of CPUs available = (Number of CPUs in head_compute_target) + (Number of CPUs in worker_compute_target) - (1 CPU for head node) = 6 + 8 - 1 = 13 ``` ``` from azureml.contrib.train.rl import ReinforcementLearningEstimator, Ray training_algorithm = "IMPALA" rl_environment = "PongNoFrameskip-v4" # Training script parameters script_params = { # Training algorithm, IMPALA in this case "--run": training_algorithm, # Environment, Pong in this case "--env": rl_environment, # Add additional single quotes at the both ends of string values as we have spaces in the # string parameters, outermost quotes are not passed to scripts as they are not actually part of string # Number of GPUs # Number of ray workers "--config": '\'{"num_gpus": 1, "num_workers": 13}\'', # Target episode reward mean to stop the training # Total training time in seconds "--stop": '\'{"episode_reward_mean": 18, "time_total_s": 3600}\'', } # Reinforcement learning estimator rl_estimator = ReinforcementLearningEstimator( # Location of source files source_directory='files', # Python script file entry_script="pong_rllib.py", # Parameters to pass to the script file # Defined above. script_params=script_params, # The Azure Machine Learning compute target set up for Ray head nodes compute_target=head_compute_target, # GPU usage use_gpu=True, # Reinforcement learning framework. Currently must be Ray. rl_framework=Ray('0.8.3'), # Ray worker configuration defined above. worker_configuration=worker_conf, # How long to wait for whole cluster to start cluster_coordination_timeout_seconds=3600, # Maximum time for the whole Ray job to run # This will cut off the run after an hour max_run_duration_seconds=3600, # Allow the docker container Ray runs in to make full use # of the shared memory available from the host OS. shm_size=24*1024*1024*1024 ) ``` ### Training script As recommended in [RLlib](https://ray.readthedocs.io/en/latest/rllib.html) documentations, we use Ray [Tune](https://ray.readthedocs.io/en/latest/tune.html) API to run the training algorithm. All the RLlib built-in trainers are compatible with the Tune API. Here we use tune.run() to execute a built-in training algorithm. For convenience, down below you can see part of the entry script where we make this call. ```python tune.run( run_or_experiment=args.run, config={ "env": args.env, "num_gpus": args.config["num_gpus"], "num_workers": args.config["num_workers"], "callbacks": {"on_train_result": callbacks.on_train_result}, "sample_batch_size": 50, "train_batch_size": 1000, "num_sgd_iter": 2, "num_data_loader_buffers": 2, "model": {"dim": 42}, }, stop=args.stop, local_dir='./logs') ``` ### Submit the estimator to start a run Now we use the rl_estimator configured above to submit a run. ``` run = exp.submit(config=rl_estimator) ``` ### Monitor the run Azure Machine Learning provides a Jupyter widget to show the status of an experiment run. You could use this widget to monitor the status of the runs. The widget shows the list of two child runs, one for head compute target run and one for worker compute target run. You can click on the link under **Status** to see the details of the child run. It will also show the metrics being logged. ``` from azureml.widgets import RunDetails RunDetails(run).show() ``` ### Stop the run To stop the run, call `run.cancel()`. ``` # Uncomment line below to cancel the run # run.cancel() ``` ### Wait for completion Wait for the run to complete before proceeding. If you want to stop the run, you may skip this and move to next section below. **Note: The run may take anywhere from 30 minutes to 45 minutes to complete.** ``` run.wait_for_completion() ``` ### Performance of the agent during training Let's get the reward metrics for the training run agent and observe how the agent's rewards improved over the training iterations and how the agent learns to win the Pong game. Collect the episode reward metrics from the worker run's metrics. ``` # Get the reward metrics from worker run episode_reward_mean = run.get_metrics(name='episode_reward_mean') ``` Plot the reward metrics. ``` import matplotlib.pyplot as plt plt.plot(episode_reward_mean['episode_reward_mean']) plt.xlabel('training_iteration') plt.ylabel('episode_reward_mean') plt.show() ``` We observe that during the training over multiple episodes, the agent learns to win the Pong game against opponent with our target of 18 points in each episode of 21 points. **Congratulations!! You have trained your Pong agent to win a game.** ## Cleaning up For your convenience, below you can find code snippets to clean up any resources created as part of this tutorial that you don't wish to retain. ``` # To archive the created experiment: #experiment.archive() # To delete the compute targets: #head_compute_target.delete() #worker_compute_target.delete() ``` ## Next In this example, you learned how to solve distributed reinforcement learning training problems using head and worker compute targets. This was an introductory tutorial on Reinforement Learning in Azure Machine Learning service offering. We would love to hear your feedback to build the features you need!
github_jupyter
%matplotlib inline # Azure Machine Learning core imports import azureml.core # Check core SDK version number print("Azure Machine Learning SDK Version: ", azureml.core.VERSION) from azureml.core import Workspace ws = Workspace.from_config() print(ws.name, ws.location, ws.resource_group, sep = ' | ') from azureml.core.experiment import Experiment # Experiment name experiment_name = 'rllib-pong-multi-node' exp = Experiment(workspace=ws, name=experiment_name) # If you need to install the Azure Networking SDK, uncomment the following line. #!pip install --upgrade azure-mgmt-network==12.0.0 from azure.mgmt.network import NetworkManagementClient # Virtual network name vnet_name ="rl_pong_vnet" # Default subnet subnet_name ="default" # The Azure subscription you are using subscription_id=ws.subscription_id # The resource group for the reinforcement learning cluster resource_group=ws.resource_group # Azure region of the resource group location=ws.location network_client = NetworkManagementClient(ws._auth_object, subscription_id) async_vnet_creation = network_client.virtual_networks.create_or_update( resource_group, vnet_name, { 'location': location, 'address_space': { 'address_prefixes': ['10.0.0.0/16'] } } ) async_vnet_creation.wait() print("Virtual network created successfully: ", async_vnet_creation.result()) import azure.mgmt.network.models security_group_name = vnet_name + '-' + "nsg" security_rule_name = "AllowAML" # Create a network security group nsg_params = azure.mgmt.network.models.NetworkSecurityGroup( location=location, security_rules=[ azure.mgmt.network.models.SecurityRule( name=security_rule_name, access=azure.mgmt.network.models.SecurityRuleAccess.allow, description='Reinforcement Learning in Azure Machine Learning rule', destination_address_prefix='*', destination_port_range='29876-29877', direction=azure.mgmt.network.models.SecurityRuleDirection.inbound, priority=400, protocol=azure.mgmt.network.models.SecurityRuleProtocol.tcp, source_address_prefix='BatchNodeManagement', source_port_range='*' ), ], ) async_nsg_creation = network_client.network_security_groups.create_or_update( resource_group, security_group_name, nsg_params, ) async_nsg_creation.wait() print("Network security group created successfully:", async_nsg_creation.result()) network_security_group = network_client.network_security_groups.get( resource_group, security_group_name, ) # Define a subnet to be created with network security group subnet = azure.mgmt.network.models.Subnet( id='default', address_prefix='10.0.0.0/24', network_security_group=network_security_group ) # Create subnet on virtual network async_subnet_creation = network_client.subnets.create_or_update( resource_group_name=resource_group, virtual_network_name=vnet_name, subnet_name=subnet_name, subnet_parameters=subnet ) async_subnet_creation.wait() print("Subnet created successfully:", async_subnet_creation.result()) from files.networkutils import * check_vnet_security_rules(ws._auth_object, ws.subscription_id, ws.resource_group, vnet_name, True) from azureml.core.compute import AmlCompute, ComputeTarget # Choose a name for the Ray head cluster head_compute_name = 'head-gpu' head_compute_min_nodes = 0 head_compute_max_nodes = 2 # This example uses GPU VM. For using CPU VM, set SKU to STANDARD_D2_V2 head_vm_size = 'STANDARD_NC6' if head_compute_name in ws.compute_targets: head_compute_target = ws.compute_targets[head_compute_name] if head_compute_target and type(head_compute_target) is AmlCompute: if head_compute_target.provisioning_state == 'Succeeded': print('found head compute target. just use it', head_compute_name) else: raise Exception( 'found head compute target but it is in state', head_compute_target.provisioning_state) else: print('creating a new head compute target...') provisioning_config = AmlCompute.provisioning_configuration( vm_size=head_vm_size, min_nodes=head_compute_min_nodes, max_nodes=head_compute_max_nodes, vnet_resourcegroup_name=ws.resource_group, vnet_name=vnet_name, subnet_name='default') # Create the cluster head_compute_target = ComputeTarget.create(ws, head_compute_name, provisioning_config) # Can poll for a minimum number of nodes and for a specific timeout. # If no min node count is provided it will use the scale settings for the cluster head_compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20) # For a more detailed view of current AmlCompute status, use get_status() print(head_compute_target.get_status().serialize()) # Choose a name for your Ray worker compute target worker_compute_name = 'worker-cpu' worker_compute_min_nodes = 0 worker_compute_max_nodes = 4 # This example uses CPU VM. For using GPU VM, set SKU to STANDARD_NC6 worker_vm_size = 'STANDARD_D2_V2' # Create the compute target if it hasn't been created already if worker_compute_name in ws.compute_targets: worker_compute_target = ws.compute_targets[worker_compute_name] if worker_compute_target and type(worker_compute_target) is AmlCompute: if worker_compute_target.provisioning_state == 'Succeeded': print('found worker compute target. just use it', worker_compute_name) else: raise Exception( 'found worker compute target but it is in state', head_compute_target.provisioning_state) else: print('creating a new worker compute target...') provisioning_config = AmlCompute.provisioning_configuration( vm_size=worker_vm_size, min_nodes=worker_compute_min_nodes, max_nodes=worker_compute_max_nodes, vnet_resourcegroup_name=ws.resource_group, vnet_name=vnet_name, subnet_name='default') # Create the compute target worker_compute_target = ComputeTarget.create(ws, worker_compute_name, provisioning_config) # Can poll for a minimum number of nodes and for a specific timeout. # If no min node count is provided it will use the scale settings for the cluster worker_compute_target.wait_for_completion(show_output=True, min_node_count=None, timeout_in_minutes=20) # For a more detailed view of current AmlCompute status, use get_status() print(worker_compute_target.get_status().serialize()) from azureml.contrib.train.rl import WorkerConfiguration # Specify the Ray worker configuration worker_conf = WorkerConfiguration( # Azure Machine Learning compute target to run Ray workers compute_target=worker_compute_target, # Number of worker nodes node_count=4, # GPU use_gpu=False, # PIP packages to use ) Number of CPUs in head_compute_target = 6 CPUs in 1 node = 6 Number of CPUs in worker_compute_target = 2 CPUs in each of 4 nodes = 8 Number of CPUs available = (Number of CPUs in head_compute_target) + (Number of CPUs in worker_compute_target) - (1 CPU for head node) = 6 + 8 - 1 = 13 from azureml.contrib.train.rl import ReinforcementLearningEstimator, Ray training_algorithm = "IMPALA" rl_environment = "PongNoFrameskip-v4" # Training script parameters script_params = { # Training algorithm, IMPALA in this case "--run": training_algorithm, # Environment, Pong in this case "--env": rl_environment, # Add additional single quotes at the both ends of string values as we have spaces in the # string parameters, outermost quotes are not passed to scripts as they are not actually part of string # Number of GPUs # Number of ray workers "--config": '\'{"num_gpus": 1, "num_workers": 13}\'', # Target episode reward mean to stop the training # Total training time in seconds "--stop": '\'{"episode_reward_mean": 18, "time_total_s": 3600}\'', } # Reinforcement learning estimator rl_estimator = ReinforcementLearningEstimator( # Location of source files source_directory='files', # Python script file entry_script="pong_rllib.py", # Parameters to pass to the script file # Defined above. script_params=script_params, # The Azure Machine Learning compute target set up for Ray head nodes compute_target=head_compute_target, # GPU usage use_gpu=True, # Reinforcement learning framework. Currently must be Ray. rl_framework=Ray('0.8.3'), # Ray worker configuration defined above. worker_configuration=worker_conf, # How long to wait for whole cluster to start cluster_coordination_timeout_seconds=3600, # Maximum time for the whole Ray job to run # This will cut off the run after an hour max_run_duration_seconds=3600, # Allow the docker container Ray runs in to make full use # of the shared memory available from the host OS. shm_size=24*1024*1024*1024 ) tune.run( run_or_experiment=args.run, config={ "env": args.env, "num_gpus": args.config["num_gpus"], "num_workers": args.config["num_workers"], "callbacks": {"on_train_result": callbacks.on_train_result}, "sample_batch_size": 50, "train_batch_size": 1000, "num_sgd_iter": 2, "num_data_loader_buffers": 2, "model": {"dim": 42}, }, stop=args.stop, local_dir='./logs') run = exp.submit(config=rl_estimator) from azureml.widgets import RunDetails RunDetails(run).show() # Uncomment line below to cancel the run # run.cancel() run.wait_for_completion() # Get the reward metrics from worker run episode_reward_mean = run.get_metrics(name='episode_reward_mean') import matplotlib.pyplot as plt plt.plot(episode_reward_mean['episode_reward_mean']) plt.xlabel('training_iteration') plt.ylabel('episode_reward_mean') plt.show() # To archive the created experiment: #experiment.archive() # To delete the compute targets: #head_compute_target.delete() #worker_compute_target.delete()
0.552298
0.977328
<a href="https://colab.research.google.com/github/JSJeong-me/KOSA-Python_Algorithm/blob/main/concurrent/Faster.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` # SuperFastPython.com # download document files concurrently and save the files locally concurrently from os import makedirs from os.path import basename from os.path import join from urllib.request import urlopen from concurrent.futures import ThreadPoolExecutor from concurrent.futures import as_completed # download a url and return the raw data, or None on error def download_url(url): try: # open a connection to the server with urlopen(url, timeout=3) as connection: # read the contents of the html doc return (connection.read(), url) except: # bad url, socket timeout, http forbidden, etc. return (None, url) # save data to a local file def save_file(url, data, path): # get the name of the file from the url filename = basename(url) # construct a local path for saving the file outpath = join(path, filename) # save to file with open(outpath, 'wb') as file: file.write(data) return outpath # download a list of URLs to local files def download_docs(urls, path): # create the local directory, if needed makedirs(path, exist_ok=True) # create the thread pool n_threads = len(urls) with ThreadPoolExecutor(n_threads) as executor: # download each url and save as a local file futures = [executor.submit(download_url, url) for url in urls] # process each result as it is available for future in as_completed(futures): # get the downloaded url data data, url = future.result() # check for no data if data is None: print(f'>Error downloading {url}') continue # save the data to a local file outpath = save_file(url, data, path) # report progress print(f'>Saved {url} to {outpath}') # python concurrency API docs URLS = ['https://docs.python.org/3/library/concurrency.html', 'https://docs.python.org/3/library/concurrent.html', 'https://docs.python.org/3/library/concurrent.futures.html', 'https://docs.python.org/3/library/threading.html', 'https://docs.python.org/3/library/multiprocessing.html', 'https://docs.python.org/3/library/multiprocessing.shared_memory.html', 'https://docs.python.org/3/library/subprocess.html', 'https://docs.python.org/3/library/queue.html', 'https://docs.python.org/3/library/sched.html', 'https://docs.python.org/3/library/contextvars.html'] # local path for saving the files PATH = './' # download all docs download_docs(URLS, PATH) ```
github_jupyter
# SuperFastPython.com # download document files concurrently and save the files locally concurrently from os import makedirs from os.path import basename from os.path import join from urllib.request import urlopen from concurrent.futures import ThreadPoolExecutor from concurrent.futures import as_completed # download a url and return the raw data, or None on error def download_url(url): try: # open a connection to the server with urlopen(url, timeout=3) as connection: # read the contents of the html doc return (connection.read(), url) except: # bad url, socket timeout, http forbidden, etc. return (None, url) # save data to a local file def save_file(url, data, path): # get the name of the file from the url filename = basename(url) # construct a local path for saving the file outpath = join(path, filename) # save to file with open(outpath, 'wb') as file: file.write(data) return outpath # download a list of URLs to local files def download_docs(urls, path): # create the local directory, if needed makedirs(path, exist_ok=True) # create the thread pool n_threads = len(urls) with ThreadPoolExecutor(n_threads) as executor: # download each url and save as a local file futures = [executor.submit(download_url, url) for url in urls] # process each result as it is available for future in as_completed(futures): # get the downloaded url data data, url = future.result() # check for no data if data is None: print(f'>Error downloading {url}') continue # save the data to a local file outpath = save_file(url, data, path) # report progress print(f'>Saved {url} to {outpath}') # python concurrency API docs URLS = ['https://docs.python.org/3/library/concurrency.html', 'https://docs.python.org/3/library/concurrent.html', 'https://docs.python.org/3/library/concurrent.futures.html', 'https://docs.python.org/3/library/threading.html', 'https://docs.python.org/3/library/multiprocessing.html', 'https://docs.python.org/3/library/multiprocessing.shared_memory.html', 'https://docs.python.org/3/library/subprocess.html', 'https://docs.python.org/3/library/queue.html', 'https://docs.python.org/3/library/sched.html', 'https://docs.python.org/3/library/contextvars.html'] # local path for saving the files PATH = './' # download all docs download_docs(URLS, PATH)
0.395718
0.717061
``` from fastai.vision.all import * pd.options.display.max_columns = 100 datapath = Path("/../rsna_data/") train_df = pd.read_csv(datapath/'train.csv') train_df.pe_present_on_image.mean() ``` #### Load All Image Files ``` imgdatapath = (datapath/'full_raw_512') files = get_image_files(imgdatapath) filesdict = defaultdict(list) for o in files: filesdict[o.parent.name] += [o] len(filesdict) labels_dict = dict(zip(train_df['SOPInstanceUID'], train_df['pe_present_on_image'])) len(files), len(labels_dict) def get_label(o): return labels_dict[o.stem.split("_")[1]] ``` #### Load Metadata ``` metadata_path = datapath/'metadata' metadata_files = get_files(metadata_path, extensions='.csv') metadata_files pid2metadata = {o.stem:pd.read_csv(o) for o in metadata_files} ``` #### Load Fold PIDs ``` resize = 512 # resize = 256 do_cv = True FOLD = 0 if do_cv: cv_pids_dir = (datapath/'cv_pids') if not cv_pids_dir.exists(): cv_pids_dir.mkdir() cv_df = train_df[['StudyInstanceUID', 'negative_exam_for_pe']].drop_duplicates().reset_index(drop=True) all_pids = cv_df['StudyInstanceUID'].values valid_pids = pd.read_pickle(datapath/f'cv_pids/pids_fold{FOLD}.pkl') train_pids = list(set(all_pids).difference(valid_pids)) len(train_pids), len(valid_pids), len(train_pids+valid_pids) train_metadf = pd.concat([pid2metadata[o] for o in train_pids]).reset_index(drop=True) valid_metadf = pd.concat([pid2metadata[o] for o in valid_pids]).reset_index(drop=True) ``` #### Get Valid Files ``` train_files,valid_files = [],[] for o in train_pids: train_files += filesdict[o] for o in valid_pids: valid_files += filesdict[o] len(train_files), len(valid_files), len(train_files+valid_files) ``` #### Load Model ``` # learn = load_learner(f"./models/xresnet34-{resize}-PR-fold{FOLD}-export.pkl", cpu=False) learn = load_learner(f"./models/effb3-{resize}-PR-fold{FOLD}-export.pkl", cpu=False) ``` #### Get preds & Visual Embeddings ``` class EmbeddingHook: def __init__(self, m, savedir, filename, csz=500000): store_attr("m,savedir,filename,csz") if len(m._forward_hooks) > 0: self.reset() self.embeddings = tensor([]) self.hook = Hook(m, self.hook_fn, cpu=True) self.save_iter = 0 savedir = Path(savedir) if not savedir.exists(): savedir.mkdir() def hook_fn(self, m, inp, out): "Stack and save computed embeddings" self.embeddings = torch.cat([self.embeddings, out]) if self.embeddings.shape[0] > self.csz: self.save() self.embeddings = tensor([]) def reset(self): self.m._forward_hooks = OrderedDict() def save(self): torch.save(self.embeddings, self.savedir/f"{self.filename}_part{self.save_iter}.pth") self.save_iter += 1 len(train_files), len(valid_files) all_files = train_files + valid_files len(all_files) all_dl = learn.dls.test_dl(all_files, with_labels=True, bs=64) folder = f"full_EFFNETB3_{resize}_ALL_FROM_FOLD{FOLD}"; folder # embhook = EmbeddingHook(learn.model[1][1], datapath/f'cnn_embs/{folder}', 'xresnet34_embeddings') embhook = EmbeddingHook(learn.model._avg_pooling, datapath/f'cnn_embs/{folder}', 'effb3_embeddings') preds, targs = learn.get_preds(dl=all_dl, act=noop) # # Save preds, embeddings and ordered valid filenames # torch.save(embhook.embeddings, datapath/f'cnn_embs/{folder}'/'xresnet34_embeddings_finalpart.pth') # torch.save(preds, datapath/f'cnn_embs/{folder}'/'preds.pth') # torch.save(all_dl.dataset.items, datapath/f'cnn_embs/{folder}'/'files.pth') # Save preds, embeddings and ordered valid filenames torch.save(embhook.embeddings, datapath/f'cnn_embs/{folder}'/'effb3_embeddings_finalpart.pth') torch.save(preds, datapath/f'cnn_embs/{folder}'/'preds.pth') torch.save(all_dl.dataset.items, datapath/f'cnn_embs/{folder}'/'files.pth') # embeddings = torch.cat([torch.load(o) for o in [o for o in (datapath/f'cnn_embs/{folder}').ls() if 'embeddings' in str(o)]]) # embeddings.shape, preds.shape ``` embeddings qi = proportion of positive images ### Image Weighted Log Loss (Competition Metric) - 2D CNN models sz 256 Xresnet34 Fold 0, sz=256, temp=1.3, 0.3881 / Effnetb3 Fold 0, sz=256 temp=1.2 0.3356 Xresnet34 Fold 1, sz=256, temp = 1.3, 0.3684 sz 512 Xresnet34 Fold 0, sz=512, temp =0.8 0.2639 / Effnetb3 Fold 0, sz=512, temp=1.5 0.2655 Xresnet34 Fold 1, sz=512, temp = 1.5, 0.2679 Xresnet34 Fold 2 sz=512, temp = 1.4, 0.2686 Xresnet34 Fold 3 sz=512, temp = 1.1, 0.2373 Xresnet34 Fold 4 sz=512, temp = 1.1, 0.2533 ``` valid_labels = L(valid_files).map(get_label) valid_p = np.mean(valid_labels) 1-valid_p accuracy(preds, targs) sids = L(valid_files).map(lambda o: o.parent.name) sid2qi =dict(pd.DataFrame({"sid":sids, "labels": valid_labels}).groupby("sid")['labels'].mean()) qis = tensor([sid2qi[o] for o in sids]) for temp in np.linspace(0.1, 2, 20): l = F.cross_entropy(preds.float()/temp, targs, reduction='none') avg_logloss = (l*qis).sum()/qis.sum() print(temp, avg_logloss.item()) qis.sum() plt.hist((preds.float()/.8).softmax(1)[:, 1]) img_losses = F.cross_entropy(preds.float()/0.8, targs, reduction='none') tot_img_loss = (img_losses*qis).sum() tot_img_wgts = qis.sum() avg_logloss = tot_img_loss/tot_img_wgts;avg_logloss tot_img_loss, tot_img_wgts ``` ### Exam Weighted Log Loss **Mean baseline** Fold 1 0.3518 ``` exam_targets = L([ # 'positive_exam_for_pe' 'negative_exam_for_pe', 'indeterminate', 'rv_lv_ratio_gte_1', 'rv_lv_ratio_lt_1', # none 'leftsided_pe', 'rightsided_pe', 'central_pe', 'chronic_pe', 'acute_and_chronic_pe', # neither chronic or acute_and_chronic # 'qa_motion', # 'qa_contrast', # 'flow_artifact', # 'true_filling_defect_not_pe', ]); exam_targets neg_pe_wgt = 0.0736196319 indeterminate_wgt = 0.09202453988 rv_lv_gte_1_wgt = 0.2346625767 rv_lv_lt_1_wgt = 0.0782208589 left_pe_wgt = 0.06257668712 right_pe_wgt = 0.06257668712 central_pe_wgt = 0.1877300613 chronic_wgt = 0.1042944785 acute_chronic_wgt = 0.1042944785 exam_wgts = tensor([0.0736196319,0.09202453988,0.2346625767,0.0782208589,0.06257668712,0.06257668712,0.1877300613,0.1042944785, 0.1042944785]) train_targsdf = train_df[train_df.StudyInstanceUID.isin(train_pids)][["StudyInstanceUID"]+exam_targets].drop_duplicates() valid_targsdf = train_df[train_df.StudyInstanceUID.isin(valid_pids)][["StudyInstanceUID"]+exam_targets].drop_duplicates() exam_mean_preds = dict(train_targsdf[exam_targets].mean()) exam_mean_preds exam_losses = F.binary_cross_entropy(tensor(list(exam_mean_preds.values()))[None,...].repeat(len(valid_pids),1), tensor(valid_targsdf[exam_targets].values).float(), reduction='none') tot_exam_loss = (exam_losses*exam_wgts).sum() tot_exam_wgts = (len(valid_pids)*exam_wgts.sum()) avg_exam_loss = tot_exam_loss/tot_exam_wgts; avg_exam_loss ``` ### Combine both Almost equal weights just take mean of two ``` img_wgt = 0.07361963 (tot_img_loss*img_wgt + tot_exam_loss) / (tot_img_wgts*img_wgt + tot_exam_wgts) ```
github_jupyter
from fastai.vision.all import * pd.options.display.max_columns = 100 datapath = Path("/../rsna_data/") train_df = pd.read_csv(datapath/'train.csv') train_df.pe_present_on_image.mean() imgdatapath = (datapath/'full_raw_512') files = get_image_files(imgdatapath) filesdict = defaultdict(list) for o in files: filesdict[o.parent.name] += [o] len(filesdict) labels_dict = dict(zip(train_df['SOPInstanceUID'], train_df['pe_present_on_image'])) len(files), len(labels_dict) def get_label(o): return labels_dict[o.stem.split("_")[1]] metadata_path = datapath/'metadata' metadata_files = get_files(metadata_path, extensions='.csv') metadata_files pid2metadata = {o.stem:pd.read_csv(o) for o in metadata_files} resize = 512 # resize = 256 do_cv = True FOLD = 0 if do_cv: cv_pids_dir = (datapath/'cv_pids') if not cv_pids_dir.exists(): cv_pids_dir.mkdir() cv_df = train_df[['StudyInstanceUID', 'negative_exam_for_pe']].drop_duplicates().reset_index(drop=True) all_pids = cv_df['StudyInstanceUID'].values valid_pids = pd.read_pickle(datapath/f'cv_pids/pids_fold{FOLD}.pkl') train_pids = list(set(all_pids).difference(valid_pids)) len(train_pids), len(valid_pids), len(train_pids+valid_pids) train_metadf = pd.concat([pid2metadata[o] for o in train_pids]).reset_index(drop=True) valid_metadf = pd.concat([pid2metadata[o] for o in valid_pids]).reset_index(drop=True) train_files,valid_files = [],[] for o in train_pids: train_files += filesdict[o] for o in valid_pids: valid_files += filesdict[o] len(train_files), len(valid_files), len(train_files+valid_files) # learn = load_learner(f"./models/xresnet34-{resize}-PR-fold{FOLD}-export.pkl", cpu=False) learn = load_learner(f"./models/effb3-{resize}-PR-fold{FOLD}-export.pkl", cpu=False) class EmbeddingHook: def __init__(self, m, savedir, filename, csz=500000): store_attr("m,savedir,filename,csz") if len(m._forward_hooks) > 0: self.reset() self.embeddings = tensor([]) self.hook = Hook(m, self.hook_fn, cpu=True) self.save_iter = 0 savedir = Path(savedir) if not savedir.exists(): savedir.mkdir() def hook_fn(self, m, inp, out): "Stack and save computed embeddings" self.embeddings = torch.cat([self.embeddings, out]) if self.embeddings.shape[0] > self.csz: self.save() self.embeddings = tensor([]) def reset(self): self.m._forward_hooks = OrderedDict() def save(self): torch.save(self.embeddings, self.savedir/f"{self.filename}_part{self.save_iter}.pth") self.save_iter += 1 len(train_files), len(valid_files) all_files = train_files + valid_files len(all_files) all_dl = learn.dls.test_dl(all_files, with_labels=True, bs=64) folder = f"full_EFFNETB3_{resize}_ALL_FROM_FOLD{FOLD}"; folder # embhook = EmbeddingHook(learn.model[1][1], datapath/f'cnn_embs/{folder}', 'xresnet34_embeddings') embhook = EmbeddingHook(learn.model._avg_pooling, datapath/f'cnn_embs/{folder}', 'effb3_embeddings') preds, targs = learn.get_preds(dl=all_dl, act=noop) # # Save preds, embeddings and ordered valid filenames # torch.save(embhook.embeddings, datapath/f'cnn_embs/{folder}'/'xresnet34_embeddings_finalpart.pth') # torch.save(preds, datapath/f'cnn_embs/{folder}'/'preds.pth') # torch.save(all_dl.dataset.items, datapath/f'cnn_embs/{folder}'/'files.pth') # Save preds, embeddings and ordered valid filenames torch.save(embhook.embeddings, datapath/f'cnn_embs/{folder}'/'effb3_embeddings_finalpart.pth') torch.save(preds, datapath/f'cnn_embs/{folder}'/'preds.pth') torch.save(all_dl.dataset.items, datapath/f'cnn_embs/{folder}'/'files.pth') # embeddings = torch.cat([torch.load(o) for o in [o for o in (datapath/f'cnn_embs/{folder}').ls() if 'embeddings' in str(o)]]) # embeddings.shape, preds.shape valid_labels = L(valid_files).map(get_label) valid_p = np.mean(valid_labels) 1-valid_p accuracy(preds, targs) sids = L(valid_files).map(lambda o: o.parent.name) sid2qi =dict(pd.DataFrame({"sid":sids, "labels": valid_labels}).groupby("sid")['labels'].mean()) qis = tensor([sid2qi[o] for o in sids]) for temp in np.linspace(0.1, 2, 20): l = F.cross_entropy(preds.float()/temp, targs, reduction='none') avg_logloss = (l*qis).sum()/qis.sum() print(temp, avg_logloss.item()) qis.sum() plt.hist((preds.float()/.8).softmax(1)[:, 1]) img_losses = F.cross_entropy(preds.float()/0.8, targs, reduction='none') tot_img_loss = (img_losses*qis).sum() tot_img_wgts = qis.sum() avg_logloss = tot_img_loss/tot_img_wgts;avg_logloss tot_img_loss, tot_img_wgts exam_targets = L([ # 'positive_exam_for_pe' 'negative_exam_for_pe', 'indeterminate', 'rv_lv_ratio_gte_1', 'rv_lv_ratio_lt_1', # none 'leftsided_pe', 'rightsided_pe', 'central_pe', 'chronic_pe', 'acute_and_chronic_pe', # neither chronic or acute_and_chronic # 'qa_motion', # 'qa_contrast', # 'flow_artifact', # 'true_filling_defect_not_pe', ]); exam_targets neg_pe_wgt = 0.0736196319 indeterminate_wgt = 0.09202453988 rv_lv_gte_1_wgt = 0.2346625767 rv_lv_lt_1_wgt = 0.0782208589 left_pe_wgt = 0.06257668712 right_pe_wgt = 0.06257668712 central_pe_wgt = 0.1877300613 chronic_wgt = 0.1042944785 acute_chronic_wgt = 0.1042944785 exam_wgts = tensor([0.0736196319,0.09202453988,0.2346625767,0.0782208589,0.06257668712,0.06257668712,0.1877300613,0.1042944785, 0.1042944785]) train_targsdf = train_df[train_df.StudyInstanceUID.isin(train_pids)][["StudyInstanceUID"]+exam_targets].drop_duplicates() valid_targsdf = train_df[train_df.StudyInstanceUID.isin(valid_pids)][["StudyInstanceUID"]+exam_targets].drop_duplicates() exam_mean_preds = dict(train_targsdf[exam_targets].mean()) exam_mean_preds exam_losses = F.binary_cross_entropy(tensor(list(exam_mean_preds.values()))[None,...].repeat(len(valid_pids),1), tensor(valid_targsdf[exam_targets].values).float(), reduction='none') tot_exam_loss = (exam_losses*exam_wgts).sum() tot_exam_wgts = (len(valid_pids)*exam_wgts.sum()) avg_exam_loss = tot_exam_loss/tot_exam_wgts; avg_exam_loss img_wgt = 0.07361963 (tot_img_loss*img_wgt + tot_exam_loss) / (tot_img_wgts*img_wgt + tot_exam_wgts)
0.41739
0.648355
## DataFrames ------- Explore all methods and feautures available for DataFrame based operations ### Background ----- ``` import sys import pandas as pd import numpy as np from io import StringIO from pandas.io.json import json_normalize import json pd.show_versions() ``` ### Create a DataFrame ------ - _DataFrame of m rows and n cols_ ``` pd.DataFrame(np.random.randn(6,4), columns=list('ABCD')) pd.DataFrame({ 'A' : 1, 'B1' : pd.Timestamp('20130102'), 'B2' : pd.date_range('20130101', periods=4), 'C' : pd.Series(1, index=list(range(4)), dtype='float32'), 'D' : np.array([3] * 4,dtype='int32'), 'E' : pd.Categorical(["test","train","test","train"]) }) data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3' pd.read_csv(StringIO(data)) data = 'col1;col2;col3\na;b;1\na;b;2\nc;d;3' pd.read_csv(StringIO(data), sep=";") example = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, ".", "."], 'postTestScore': ["25,000", "94,000", 57, 62, 70]} df = pd.DataFrame(example, columns = ['first_name', 'last_name', 'age', 'preTestScore', 'postTestScore']) df.to_csv('../data/example.csv') df pd.read_csv pd.read_csv('../data/example.csv') pd.read_csv('../data/example.csv', header=None) pd.read_csv('../data/example.csv', names=['UID', 'First Name', 'Last Name', 'Age', 'Pre-Test Score', 'Post-Test Score']) pd.read_csv('../data/example.csv', index_col=['First Name', 'Last Name'], names=['UID', 'First Name', 'Last Name', 'Age', 'Pre-Test Score', 'Post-Test Score']) ``` ## ISSUES ### Inner Join [Link](https://github.com/ZNClub-PA-ML-AI/DataFrames/issues/3) ``` df1 = pd.read_csv('../data/source1.csv') df2 = pd.read_csv('../data/source2.csv') df1.shape, df2.shape pd.merge(left=df1, right=df2, on='id') df1.join(other=df2, on=['id']) # ?df1.join df1.merge(right=df2, on='id').sort_values(['id','name_x'], ascending=[False, True]) # ?df1.sort_values ``` ### Sort and Set comparison ``` df1 = pd.read_excel('../data/dsource1.xlsx', sheetname='Sheet1') df2 = pd.read_excel('../data/dsource2.xlsx', sheetname='Sheet1') df1.shape, df2.shape df1.index, df2.index df3 = df1.sort_values(by='child') df4 = df2.sort_values(by='child') df3.head(), df4.head() ``` ### Summarize set membership of column ``` set(df3['child']).intersection(set(df4['child'])) set(df3['child']).difference(set(df4['child'])) set(df4['child']).difference(set(df3['child'])) ```
github_jupyter
import sys import pandas as pd import numpy as np from io import StringIO from pandas.io.json import json_normalize import json pd.show_versions() pd.DataFrame(np.random.randn(6,4), columns=list('ABCD')) pd.DataFrame({ 'A' : 1, 'B1' : pd.Timestamp('20130102'), 'B2' : pd.date_range('20130101', periods=4), 'C' : pd.Series(1, index=list(range(4)), dtype='float32'), 'D' : np.array([3] * 4,dtype='int32'), 'E' : pd.Categorical(["test","train","test","train"]) }) data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3' pd.read_csv(StringIO(data)) data = 'col1;col2;col3\na;b;1\na;b;2\nc;d;3' pd.read_csv(StringIO(data), sep=";") example = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'last_name': ['Miller', 'Jacobson', ".", 'Milner', 'Cooze'], 'age': [42, 52, 36, 24, 73], 'preTestScore': [4, 24, 31, ".", "."], 'postTestScore': ["25,000", "94,000", 57, 62, 70]} df = pd.DataFrame(example, columns = ['first_name', 'last_name', 'age', 'preTestScore', 'postTestScore']) df.to_csv('../data/example.csv') df pd.read_csv pd.read_csv('../data/example.csv') pd.read_csv('../data/example.csv', header=None) pd.read_csv('../data/example.csv', names=['UID', 'First Name', 'Last Name', 'Age', 'Pre-Test Score', 'Post-Test Score']) pd.read_csv('../data/example.csv', index_col=['First Name', 'Last Name'], names=['UID', 'First Name', 'Last Name', 'Age', 'Pre-Test Score', 'Post-Test Score']) df1 = pd.read_csv('../data/source1.csv') df2 = pd.read_csv('../data/source2.csv') df1.shape, df2.shape pd.merge(left=df1, right=df2, on='id') df1.join(other=df2, on=['id']) # ?df1.join df1.merge(right=df2, on='id').sort_values(['id','name_x'], ascending=[False, True]) # ?df1.sort_values df1 = pd.read_excel('../data/dsource1.xlsx', sheetname='Sheet1') df2 = pd.read_excel('../data/dsource2.xlsx', sheetname='Sheet1') df1.shape, df2.shape df1.index, df2.index df3 = df1.sort_values(by='child') df4 = df2.sort_values(by='child') df3.head(), df4.head() set(df3['child']).intersection(set(df4['child'])) set(df3['child']).difference(set(df4['child'])) set(df4['child']).difference(set(df3['child']))
0.110735
0.789802
# 9장 계산복잡도와 다루기 난이도: NP 이론 소개 ## 주요 내용 * 1절 계산복잡도와 다루기 난이도 * 3절 다루기 난이도 분류 * 4절 NP 이론 ## 1절 계산복잡도와 다루기 난이도 ### 계산복잡도(computational complexity) * 계산복잡도 연구: 주어진 문제를 풀 수 있는 가능한 모든 알고리즘에 대한 연구 * 계산복잡도 분석: 같은 문제를 푸는 모든 알고리즘의 효율설(복잡도)의 하한 구하기 #### 예제: 행렬곱셈 문제 * 행렬곱셈 문제를 푸는 하한(lower bound): $\Omega(n^2)$ * 지금까지 알려진 최고 성능 알고리즘 * Le Gall (2014) * $\Theta(n^{2.3728639})$ #### 하한의 의미 * 행렬 곱셈을 실행하는 어떤 알고리즘도 $\Theta(n^2)$ 보다 좋을 수는 없음. * 하지만 $\Theta(n^2)$의 복잡도를 갖는 알고리즘을 찾을 수 있다는 것을 보장하지는 않음. #### 예제: 정렬 문제 * 알려진 하한 만큼 좋은 알고리즘 존재 * 정렬 문제의 하한: $\Omega(n \lg n)$ <div align="center"><img src="./images/algo09/algo09-01.png" width="650"/></div> ### 다루기 난이도(Intractability) #### 다차시간 알고리즘(polynomial-time algorithm) * 최악 시간복잡도의 상한이 다항식인 알고리즘 $$ W(n) \in O(p(n)) $$ 여기서, $p(n)$은 다항식. * 최악 시간복잡도가 아래와 같은 알고리즘은 모두 다차시간 알고리즘임: $$ 2n \qquad 3 n^3 + 4n \qquad 5n+n^{10} \qquad n \lg n $$ * 주의: $n\lg n < n^2$ * 최악 시간복잡도가 아래와 같은 알고리즘은 모두 다차시간 알고리즘 아님: $$ 2^n \qquad 2^{0.01 n} \qquad 2^{\sqrt{n}} \qquad n! $$ * 비다차시간 알고리즘도 경우에 따라 효율적으로 실행되는 사례가 많음. * 예제: 되추적 알고리즘 * 반대로 경우에 따라 다차시간 알고리즘이 있는 문제가 그렇지 않은 문제보다 실제 상황에서 더 어려운 경우 있음. * 따라서 다루기 난이도를 실제로 다루기 힘들 수 있다는 정도로만 해석할 필요 있음. ## 3절 문제 분류 1) 다차시간 알고리즘을 찾은 문제 2) 다루기 힘들다고 증명된 문제 3) 다루기 힘들다고 증명되지 않았지만 다차시간 알고리즘도 찾지 못한 문제 ### 다차시간 알고리즘을 찾은 문제 * 다차시간 알고리즘이 알려진 문제 * 예제: 정렬된 배열검색, $\Theta(\lg n)$ * 예제: 행렬 곱셈, $\Theta(n^{2.3728639})$ ### 다루기 힘들다고 증명된 문제 * 두 종류로 분류됨 * 지수 이상의 출력을 요구하는 문제: 예를 들어 모든 경로를 다 출력하는 문제 * 지수 이상의 출력을 요구하지 않지만 문제를 다차시간 내에 풀 수 없음이 증명된 문제 * 예제: 정지문제(Halting problem) 등 진위판별문제 관련 문제 다수 존재 ### 다루기 힘들다고 증명되지 않았지만 다차시간 알고리즘도 찾지 못한 문제 * 다차시간 알고리즘이 알려지지 않았지만 그렇다고 해서 다차시간 알고리즘이 존재하지 않는다는 증명도 없는 문제 * 다수 존재. 지금까지 알려진 다루기 어려운 문제의 대다수가 이런 문제임 * 예제: 0-1 배낭채우기 문제, 외판원 문제, m-색칠하기 문제(m > 2) 등등 ## NP 이론 * 다차시간 알고리즘 문제와 비다차시간 알고리즘을 분류하는 기준에 대한 이론 ### P 와 NP #### 집합 P * 다차시간 알고리즘으로 풀 수 있는 모든 진위판별 문제의 집합 * 예제: 특정 항목이 주어진 배열에 포함되었는지 여부 판단하는 문제 * 외판원 특정 시간 안에 모든 도시를 방문하고 돌아올 수 있는지를 판멸하는 문제 * 이 문제에 대해 다차시간 알고리즘이 알려지지 않았으며, 그리고 그런 다차시간 알고리즘이 존재하지 않는다는 증명도 아직 없음. #### 집합 NP * NP: 다차시간 비결정 알고리즘 풀 수 있는 모든 진위판별 문제들의 집합 * NP = nondeterministical polynomial * 다차시간 비결정 알고리즘: 검증단계가 다차시간 알고리즘인 비결정 알고리즘 * 비결정 알고리즘 작동법 * (비결정) 추측 단계: 문제의 답을 임의로 추측하여 생성 * (결정) 검증 단계: 임의로 추측된 답의 참/거짓 여부 판단 #### P 이면 NP! * P 에 속하는 문제는 모두 NP에도 속한다. #### 축소변환 가능성 * 진위판별 문제 A를 진위판별 문제 B로 변환하는 다차시간 변환 알고리즘이 존해할 때 문제 A는 문제 B로 **다차시간 다일 축소변환가능**(polynomial-time many-one reducible)이다라고 함. * 간단하게 **축소변환 가능**이라 말하며 아래와 같이 표시함: $$A \propto B$$ #### NP-complete 문제 * 아래 두 조건을 만족하는 문제 B를 NP-complete 라 함. 1. NP에 속함. 1. NP에 속한 임의의 다른 문제 A를 다차시간 내에 B의 문제로 축소변환 가능함. * 예제: 외판원 문제, 0-1 배낭채우기 등등 지금까지 알려진 다루기 어려운 문제 대다수 #### NP-hard 문제 * 최소 NP-complete 만큼 다루기 어려운 문제 #### P, NP, NP-complete, NP-hard 의 현재 상태 * 주의: 아직 P = NP 여부 모름 <div align="center"><img src="./images/algo09/algo09-03.png" width="600"/></div> <그림 출처: [위키피디아: P versus NP problem](https://en.wikipedia.org/wiki/P_versus_NP_problem)>
github_jupyter
# 9장 계산복잡도와 다루기 난이도: NP 이론 소개 ## 주요 내용 * 1절 계산복잡도와 다루기 난이도 * 3절 다루기 난이도 분류 * 4절 NP 이론 ## 1절 계산복잡도와 다루기 난이도 ### 계산복잡도(computational complexity) * 계산복잡도 연구: 주어진 문제를 풀 수 있는 가능한 모든 알고리즘에 대한 연구 * 계산복잡도 분석: 같은 문제를 푸는 모든 알고리즘의 효율설(복잡도)의 하한 구하기 #### 예제: 행렬곱셈 문제 * 행렬곱셈 문제를 푸는 하한(lower bound): $\Omega(n^2)$ * 지금까지 알려진 최고 성능 알고리즘 * Le Gall (2014) * $\Theta(n^{2.3728639})$ #### 하한의 의미 * 행렬 곱셈을 실행하는 어떤 알고리즘도 $\Theta(n^2)$ 보다 좋을 수는 없음. * 하지만 $\Theta(n^2)$의 복잡도를 갖는 알고리즘을 찾을 수 있다는 것을 보장하지는 않음. #### 예제: 정렬 문제 * 알려진 하한 만큼 좋은 알고리즘 존재 * 정렬 문제의 하한: $\Omega(n \lg n)$ <div align="center"><img src="./images/algo09/algo09-01.png" width="650"/></div> ### 다루기 난이도(Intractability) #### 다차시간 알고리즘(polynomial-time algorithm) * 최악 시간복잡도의 상한이 다항식인 알고리즘 $$ W(n) \in O(p(n)) $$ 여기서, $p(n)$은 다항식. * 최악 시간복잡도가 아래와 같은 알고리즘은 모두 다차시간 알고리즘임: $$ 2n \qquad 3 n^3 + 4n \qquad 5n+n^{10} \qquad n \lg n $$ * 주의: $n\lg n < n^2$ * 최악 시간복잡도가 아래와 같은 알고리즘은 모두 다차시간 알고리즘 아님: $$ 2^n \qquad 2^{0.01 n} \qquad 2^{\sqrt{n}} \qquad n! $$ * 비다차시간 알고리즘도 경우에 따라 효율적으로 실행되는 사례가 많음. * 예제: 되추적 알고리즘 * 반대로 경우에 따라 다차시간 알고리즘이 있는 문제가 그렇지 않은 문제보다 실제 상황에서 더 어려운 경우 있음. * 따라서 다루기 난이도를 실제로 다루기 힘들 수 있다는 정도로만 해석할 필요 있음. ## 3절 문제 분류 1) 다차시간 알고리즘을 찾은 문제 2) 다루기 힘들다고 증명된 문제 3) 다루기 힘들다고 증명되지 않았지만 다차시간 알고리즘도 찾지 못한 문제 ### 다차시간 알고리즘을 찾은 문제 * 다차시간 알고리즘이 알려진 문제 * 예제: 정렬된 배열검색, $\Theta(\lg n)$ * 예제: 행렬 곱셈, $\Theta(n^{2.3728639})$ ### 다루기 힘들다고 증명된 문제 * 두 종류로 분류됨 * 지수 이상의 출력을 요구하는 문제: 예를 들어 모든 경로를 다 출력하는 문제 * 지수 이상의 출력을 요구하지 않지만 문제를 다차시간 내에 풀 수 없음이 증명된 문제 * 예제: 정지문제(Halting problem) 등 진위판별문제 관련 문제 다수 존재 ### 다루기 힘들다고 증명되지 않았지만 다차시간 알고리즘도 찾지 못한 문제 * 다차시간 알고리즘이 알려지지 않았지만 그렇다고 해서 다차시간 알고리즘이 존재하지 않는다는 증명도 없는 문제 * 다수 존재. 지금까지 알려진 다루기 어려운 문제의 대다수가 이런 문제임 * 예제: 0-1 배낭채우기 문제, 외판원 문제, m-색칠하기 문제(m > 2) 등등 ## NP 이론 * 다차시간 알고리즘 문제와 비다차시간 알고리즘을 분류하는 기준에 대한 이론 ### P 와 NP #### 집합 P * 다차시간 알고리즘으로 풀 수 있는 모든 진위판별 문제의 집합 * 예제: 특정 항목이 주어진 배열에 포함되었는지 여부 판단하는 문제 * 외판원 특정 시간 안에 모든 도시를 방문하고 돌아올 수 있는지를 판멸하는 문제 * 이 문제에 대해 다차시간 알고리즘이 알려지지 않았으며, 그리고 그런 다차시간 알고리즘이 존재하지 않는다는 증명도 아직 없음. #### 집합 NP * NP: 다차시간 비결정 알고리즘 풀 수 있는 모든 진위판별 문제들의 집합 * NP = nondeterministical polynomial * 다차시간 비결정 알고리즘: 검증단계가 다차시간 알고리즘인 비결정 알고리즘 * 비결정 알고리즘 작동법 * (비결정) 추측 단계: 문제의 답을 임의로 추측하여 생성 * (결정) 검증 단계: 임의로 추측된 답의 참/거짓 여부 판단 #### P 이면 NP! * P 에 속하는 문제는 모두 NP에도 속한다. #### 축소변환 가능성 * 진위판별 문제 A를 진위판별 문제 B로 변환하는 다차시간 변환 알고리즘이 존해할 때 문제 A는 문제 B로 **다차시간 다일 축소변환가능**(polynomial-time many-one reducible)이다라고 함. * 간단하게 **축소변환 가능**이라 말하며 아래와 같이 표시함: $$A \propto B$$ #### NP-complete 문제 * 아래 두 조건을 만족하는 문제 B를 NP-complete 라 함. 1. NP에 속함. 1. NP에 속한 임의의 다른 문제 A를 다차시간 내에 B의 문제로 축소변환 가능함. * 예제: 외판원 문제, 0-1 배낭채우기 등등 지금까지 알려진 다루기 어려운 문제 대다수 #### NP-hard 문제 * 최소 NP-complete 만큼 다루기 어려운 문제 #### P, NP, NP-complete, NP-hard 의 현재 상태 * 주의: 아직 P = NP 여부 모름 <div align="center"><img src="./images/algo09/algo09-03.png" width="600"/></div> <그림 출처: [위키피디아: P versus NP problem](https://en.wikipedia.org/wiki/P_versus_NP_problem)>
0.371593
0.985524
# Custom environment tutorial This tutorial demonstrates how to create and use a custom environment in nnabla-rl.\ ## Preparation Let's start by first installing nnabla-rl and importing required packages for training. ``` !pip install nnabla-rl import nnabla as nn from nnabla import functions as NF from nnabla import parametric_functions as NPF import nnabla.solvers as NS import nnabla_rl import nnabla_rl.algorithms as A import nnabla_rl.hooks as H from nnabla_rl.utils.evaluator import EpisodicEvaluator from nnabla_rl.models.q_function import DiscreteQFunction from nnabla_rl.builders import ModelBuilder, SolverBuilder import nnabla_rl.functions as RF ``` ## Understanding gym.Env If you don't know what gym library is, [gym documentation](https://gym.openai.com/docs/) will be helpful. Please read it before creating an original enviroment. Referring to the [gym.Env implementation](https://github.com/openai/gym/blob/master/gym/core.py), gym Env has following five methods. - `step(action): Run one timestep of the environment's dynamics.` This method's argument is action and this should return next_state, reward, done, and info. - `reset(): Resets the environment to an initial state and returns an initial observation.` - `render(): Renders the environment.` (Optional) - `close(): Override close in your subclass to perform any necessary cleanup.` (Optional) - `seed(): Sets the seed for this env's random number generator(s).` (Optional) In addition, there are three key attributes. - `action_space: The Space object corresponding to valid actions.` - `observation_space: The Space object corresponding to valid observations` - `reward_range: A tuple corresponding to the min and max possible rewards` (Optional) action_space and observation_space should be defined by using [gym.Spaces](https://github.com/openai/gym/tree/master/gym/spaces). These methods and attributes will decide how environment works, so let's implement them!! ## Creating a Simple Enviroment As an example case, we will create a simple enviroment called CliffEnv which has following settings. <img src="./assets/CliffEnv.png" width="500"> - In this enviroment, task goal is to reach the place where is 10.0 <= x and 0.0 <= y <= 5.0 - State is continuous and has 2 dimension (i.e., x and y). - There are two discrete actions, up (y+=5), right (x+=5). - If agent reaches the cliff region (x > 5.0 and x < 10.0 and y > 0.0 and y < 5.0) or (x < 0.0) or (y > 10.0) or (y < 0.0), -100 is given as reward. - For all timesteps the agent gets -1 as reward. - If agent reaches the goal (x >= 10.0 and y >= 5.0 and y <= 10.0), 100 is given as reward. - Initial states are x=2.5, y=2.5. We can easily guess the optimal actions are \[ "up", "right", "right" \] and the optimal score will be 98 (-1 + -1 + 100). ``` import gym from gym import spaces import numpy as np class CliffEnv(gym.Env): def __init__(self): # action is defined as follows: # 0 = up, 1 = right self.action_space = spaces.Discrete(2) self.observation_space = spaces.Box(shape=(2,), low=-np.inf, high=np.inf, dtype=np.float32) self._state = np.array([2.5, 2.5]) def reset(self): self._state = np.array([2.5, 2.5]) return self._state def step(self, action): if action == 0: # up (y+=5) self._state[1] += 5. elif action == 1: # right (x+=5) self._state[0] += 5. else: raise ValueError x, y = self._state if (x > 5.0 and y < 5.0) or (x < 0.0) or (y > 10.0) or (y < 0.0): done = True reward = -100 elif x >= 10.0 and y >= 5.0 and y <= 10.0: done = True reward = 100 else: done = False reward = -1 info = {} return self._state, reward, done, info ``` After defining an original enviroment, it would be nice to confirm if your implementation is correct by running this code. ``` env = CliffEnv() # first call reset and every internal state will be initialized state = env.reset() done = False while not done: action = env.action_space.sample() # random sample from the action space next_state, reward, done, info = env.step(action) print('next_state=', next_state, 'action=', action, 'reward=', reward, 'done=', done) if done: print("Episode is Done") break ``` ## Appling nnabla-rl to an original environment Environment is now ready to run the training!!\ Let's apply nnabla-rl algorithms to the created enviroment and train the agent!! Define a Q function, a Q function solver and a solver builder. ``` class CliffQFunction(DiscreteQFunction): def __init__(self, scope_name: str, n_action: int): super(CliffQFunction, self).__init__(scope_name) self._n_action = n_action def all_q(self, s: nn.Variable) -> nn.Variable: with nn.parameter_scope(self.scope_name): h = NF.tanh(NPF.affine(s, 64, name="affine-1")) h = NF.tanh(NPF.affine(h, 64, name="affine-2")) q = NPF.affine(h, self._n_action, name="pred-q") return q class CliffQFunctionBuilder(ModelBuilder[DiscreteQFunction]): def build_model(self, scope_name, env_info, algorithm_config, **kwargs): return CliffQFunction(scope_name, env_info.action_dim) class CliffSolverBuilder(SolverBuilder): def build_solver(self, # type: ignore[override] env_info, algorithm_config, **kwargs): return NS.Adam(alpha=algorithm_config.learning_rate) ``` Instantiate your env and run the training !! ``` train_env = CliffEnv() eval_env = CliffEnv() iteration_num_hook = H.IterationNumHook(timing=100) evaluator = EpisodicEvaluator(run_per_evaluation=10) evaluation_hook = H.EvaluationHook(eval_env, evaluator, timing=100) total_timesteps = 10000 config = A.DQNConfig( gpu_id=0, gamma=0.99, learning_rate=1e-5, batch_size=32, learner_update_frequency=1, target_update_frequency=1000, start_timesteps=1000, replay_buffer_size=1000, max_explore_steps=10000, initial_epsilon=1.0, final_epsilon=0.0, test_epsilon=0.0, ) dqn = A.DQN(train_env, config=config, q_func_builder=CliffQFunctionBuilder(), q_solver_builder=CliffSolverBuilder()) hooks = [iteration_num_hook, evaluation_hook] dqn.set_hooks(hooks) dqn.train_online(train_env, total_iterations=total_timesteps) eval_env.close() train_env.close() ``` We can see the agent gets 98 score in evaluation enviroment!! That means we solved the task. Congratuations!!
github_jupyter
!pip install nnabla-rl import nnabla as nn from nnabla import functions as NF from nnabla import parametric_functions as NPF import nnabla.solvers as NS import nnabla_rl import nnabla_rl.algorithms as A import nnabla_rl.hooks as H from nnabla_rl.utils.evaluator import EpisodicEvaluator from nnabla_rl.models.q_function import DiscreteQFunction from nnabla_rl.builders import ModelBuilder, SolverBuilder import nnabla_rl.functions as RF import gym from gym import spaces import numpy as np class CliffEnv(gym.Env): def __init__(self): # action is defined as follows: # 0 = up, 1 = right self.action_space = spaces.Discrete(2) self.observation_space = spaces.Box(shape=(2,), low=-np.inf, high=np.inf, dtype=np.float32) self._state = np.array([2.5, 2.5]) def reset(self): self._state = np.array([2.5, 2.5]) return self._state def step(self, action): if action == 0: # up (y+=5) self._state[1] += 5. elif action == 1: # right (x+=5) self._state[0] += 5. else: raise ValueError x, y = self._state if (x > 5.0 and y < 5.0) or (x < 0.0) or (y > 10.0) or (y < 0.0): done = True reward = -100 elif x >= 10.0 and y >= 5.0 and y <= 10.0: done = True reward = 100 else: done = False reward = -1 info = {} return self._state, reward, done, info env = CliffEnv() # first call reset and every internal state will be initialized state = env.reset() done = False while not done: action = env.action_space.sample() # random sample from the action space next_state, reward, done, info = env.step(action) print('next_state=', next_state, 'action=', action, 'reward=', reward, 'done=', done) if done: print("Episode is Done") break class CliffQFunction(DiscreteQFunction): def __init__(self, scope_name: str, n_action: int): super(CliffQFunction, self).__init__(scope_name) self._n_action = n_action def all_q(self, s: nn.Variable) -> nn.Variable: with nn.parameter_scope(self.scope_name): h = NF.tanh(NPF.affine(s, 64, name="affine-1")) h = NF.tanh(NPF.affine(h, 64, name="affine-2")) q = NPF.affine(h, self._n_action, name="pred-q") return q class CliffQFunctionBuilder(ModelBuilder[DiscreteQFunction]): def build_model(self, scope_name, env_info, algorithm_config, **kwargs): return CliffQFunction(scope_name, env_info.action_dim) class CliffSolverBuilder(SolverBuilder): def build_solver(self, # type: ignore[override] env_info, algorithm_config, **kwargs): return NS.Adam(alpha=algorithm_config.learning_rate) train_env = CliffEnv() eval_env = CliffEnv() iteration_num_hook = H.IterationNumHook(timing=100) evaluator = EpisodicEvaluator(run_per_evaluation=10) evaluation_hook = H.EvaluationHook(eval_env, evaluator, timing=100) total_timesteps = 10000 config = A.DQNConfig( gpu_id=0, gamma=0.99, learning_rate=1e-5, batch_size=32, learner_update_frequency=1, target_update_frequency=1000, start_timesteps=1000, replay_buffer_size=1000, max_explore_steps=10000, initial_epsilon=1.0, final_epsilon=0.0, test_epsilon=0.0, ) dqn = A.DQN(train_env, config=config, q_func_builder=CliffQFunctionBuilder(), q_solver_builder=CliffSolverBuilder()) hooks = [iteration_num_hook, evaluation_hook] dqn.set_hooks(hooks) dqn.train_online(train_env, total_iterations=total_timesteps) eval_env.close() train_env.close()
0.654895
0.953492
# Mentoria Evolution - Data Analysis <font color=blue><b> Minerando Dados</b></font><br> www.minerandodados.com.br **Importante**: Antes de executar as seguintes células verifique se **todos os arquivos** estão no mesmo diretório **Importe o Pandas** ``` import pandas as pd ``` **Ler a base de dados em memória** ``` dataset = pd.read_csv('kc_house_data.csv', sep=',') ``` ** Tipo: DataFrame** ``` type(dataset) ``` **Imprime informações do Dataframe** ``` dataset.info() ``` ## Mapeamento SQL para Pandas ``` dataset.head(10) from IPython.display import Image Image("tabela-sql-pandas.png") ``` **Retorna todas os registros do dataframe** ``` dataset ``` **Retorna os top 10 registros** ``` dataset.head(10) ``` **Retorna os imóveis com 3 quartos** ``` dataset.loc[dataset['bedrooms']==3] ``` **Retorna imóveis únicos na base de dados** ``` dataset.id.unique() dataset.bedrooms.unique() dataset.bathrooms.head(10) dataset.bathrooms.mean() ``` **Retorna a contagem de todos os registros por colunas** ``` dataset.count() ``` **Imprime o nome das colunas do dataframe** ``` dataset.columns ``` **Informações estatisticas da base de dados** ``` dataset.describe() ``` ## Fazendo Querys no Dataframe **Lista imóveis com 3 quartos e com banheiros maior igual a 2** ``` dataset.loc[(dataset['bedrooms']==3) & (dataset['bathrooms'] > 2)] ``` ** Conta a quantidade de imóveis com 4 quartos** ``` dataset[dataset['bedrooms']==4].count() ``` ** Ordena Dataframe pela coluna preço por ordem decrescente** ``` dataset.sort_values(by='price', ascending=False) ``` **Agrupa e conta quantidade de imóveis por tamanho de quartos** ``` dataset.bedrooms.value_counts() dataset.bathrooms.value_counts() ``` ## Consulta os dados em mais de um dataset * Utiliza o método merge() para união dos dataframes * União do tipo **inner join**, **left join** e **right join** * Especifica a coluna chave para união **Carregando o dataset de pedidos** ``` orders = pd.read_csv('olist_orders_dataset.csv') orders.head() ``` - Carregando o dataset de itens pedidos ``` orders_items = pd.read_csv('olist_order_items_dataset.csv') orders_items.head() ``` ** Consultando os dados nos dois datasets e juntando através da chave order_id** - Selecionando os atributos do dataset **orders (pedidos)** > - order_id (id do pedido) > - order_status (status do pedido) > - order_approved_at (data e hora da aprovação do pedido) - Selecionando os atributos do dataset **orders_items (itens do pedidos)** > - product_id (id do produto) > - seller_id (id do vendedor) > - price (preço do produto) > - freight_value (valor do frete) ``` df_query = pd.merge(orders[['order_id','order_status','order_approved_at']], orders_items[['order_id','product_id','seller_id','price','freight_value']], on='order_id') df_query.head() ``` ** Left Join** ``` df_query = pd.merge(orders[['order_id','order_status','order_approved_at']], orders_items[['order_id','product_id','seller_id','price','freight_value']], on='order_id', how='left') df_query.head() ``` **Right Join** ``` df_query = pd.merge(orders[['order_id','order_status','order_approved_at']], orders_items[['order_id','product_id','seller_id','price','freight_value']], , how='right',right_on='id_pedido' ) df_query.head() ``` * Pratique o que foi aprendido refazendo todos os passos * Consulte a documentação para aprender mais sobre os métodos e recursos utilizados. * **Dúvidas?** Mande um e-mail para mim em contato@minerandodados.com.br
github_jupyter
import pandas as pd dataset = pd.read_csv('kc_house_data.csv', sep=',') type(dataset) dataset.info() dataset.head(10) from IPython.display import Image Image("tabela-sql-pandas.png") dataset dataset.head(10) dataset.loc[dataset['bedrooms']==3] dataset.id.unique() dataset.bedrooms.unique() dataset.bathrooms.head(10) dataset.bathrooms.mean() dataset.count() dataset.columns dataset.describe() dataset.loc[(dataset['bedrooms']==3) & (dataset['bathrooms'] > 2)] dataset[dataset['bedrooms']==4].count() dataset.sort_values(by='price', ascending=False) dataset.bedrooms.value_counts() dataset.bathrooms.value_counts() orders = pd.read_csv('olist_orders_dataset.csv') orders.head() orders_items = pd.read_csv('olist_order_items_dataset.csv') orders_items.head() df_query = pd.merge(orders[['order_id','order_status','order_approved_at']], orders_items[['order_id','product_id','seller_id','price','freight_value']], on='order_id') df_query.head() df_query = pd.merge(orders[['order_id','order_status','order_approved_at']], orders_items[['order_id','product_id','seller_id','price','freight_value']], on='order_id', how='left') df_query.head() df_query = pd.merge(orders[['order_id','order_status','order_approved_at']], orders_items[['order_id','product_id','seller_id','price','freight_value']], , how='right',right_on='id_pedido' ) df_query.head()
0.142769
0.910784
A neural network consist of 2 cnn layers and 4 fully connected layers. Source: https://github.com/jojonki/cnn-for-sentence-classification ``` from google.colab import drive drive.mount('/content/drive') import os os.chdir('/content/drive/MyDrive/sharif/DeepLearning/ipython(guide)') import numpy as np import codecs import os import random import pandas from keras import backend as K from keras.models import Model from keras.layers.embeddings import Embedding from keras.layers import Input, Dense, Lambda, Permute, Dropout from keras.layers import Conv2D, MaxPooling1D,Conv1D from keras.optimizers import SGD import ast import re from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split import gensim from keras.models import load_model from keras.callbacks import EarlyStopping, ModelCheckpoint limit_number = 750 data = pandas.read_csv('../Data/limited_to_'+str(limit_number)+'.csv',index_col=0,converters={'body': eval}) data = data.dropna().reset_index(drop=True) X = data["body"].values.tolist() y = pandas.read_csv('../Data/limited_to_'+str(limit_number)+'.csv') labels = [] tag=[] for item in y['tag']: labels += [i for i in re.sub('\"|\[|\]|\'| |=','',item.lower()).split(",") if i!='' and i!=' '] tag.append([i for i in re.sub('\"|\[|\]|\'| |=','',item.lower()).split(",") if i!='' and i!=' ']) labels = list(set(labels)) mlb = MultiLabelBinarizer() Y=mlb.fit_transform(tag) len(labels) sentence_maxlen = max(map(len, (d for d in X))) print('sentence maxlen', sentence_maxlen) freq_dist = pandas.read_csv('../Data/FreqDist_sorted.csv',index_col=False) vocab=[] for item in freq_dist["word"]: try: word=re.sub(r"[\u200c-\u200f]","",item.replace(" ","")) vocab.append(word) except: pass print(vocab[10]) vocab = sorted(vocab) vocab_size = len(vocab) print('vocab size', len(vocab)) w2i = {w:i for i,w in enumerate(vocab)} # i2w = {i:w for i,w in enumerate(vocab)} print(w2i["زبان"]) def vectorize(data, sentence_maxlen, w2i): vec_data = [] for d in data: vec = [w2i[w] for w in d if w in w2i] pad_len = max(0, sentence_maxlen - len(vec)) vec += [0] * pad_len vec_data.append(vec) # print(d) vec_data = np.array(vec_data) return vec_data vecX = vectorize(X, sentence_maxlen, w2i) vecY=Y X_train, X_test, y_train, y_test = train_test_split(vecX, vecY, test_size=0.2) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25) print('train: ', X_train.shape , '\ntest: ', X_test.shape , '\nval: ', X_val.shape ,"\ny_tain:",y_train.shape ) # print(vecX[0]) embd_dim = 300 ``` # ***If the word2vec model is not generated before, we should run the next block.*** ``` # embed_model = gensim.models.Word2Vec(X, size=embd_dim, window=5, min_count=5) # embed_model.save('word2vec_model') ``` # ***Otherwise, we can run the next block.*** ``` embed_model=gensim.models.Word2Vec.load('word2vec_model') word2vec_embd_w = np.zeros((vocab_size, embd_dim)) for word, i in w2i.items(): if word in embed_model.wv.vocab: embedding_vector =embed_model[word] # words not found in embedding index will be all-zeros. word2vec_embd_w[i] = embedding_vector def Net(vocab_size, embd_size, sentence_maxlen, glove_embd_w): sentence = Input((sentence_maxlen,), name='SentenceInput') # embedding embd_layer = Embedding(input_dim=vocab_size, output_dim=embd_size, weights=[word2vec_embd_w], trainable=False, name='shared_embd') embd_sentence = embd_layer(sentence) embd_sentence = Permute((2,1))(embd_sentence) embd_sentence = Lambda(lambda x: K.expand_dims(x, -1))(embd_sentence) # cnn cnn = Conv2D(1, kernel_size=(5, sentence_maxlen), activation='relu')(embd_sentence) print(cnn.shape) cnn = Lambda(lambda x: K.sum(x, axis=3))(cnn) print(cnn.shape) cnn = MaxPooling1D(3)(cnn) print(cnn.shape) cnn1 = Conv1D(1, kernel_size=(3), activation='relu')(cnn) print(cnn1.shape) # cnn1 = Lambda(lambda x: K.sum(x, axis=3))(cnn1) print(cnn1.shape) cnn1 = MaxPooling1D(3)(cnn1) print(cnn1.shape) cnn1 = Lambda(lambda x: K.sum(x, axis=2))(cnn1) print(cnn1.shape) hidden1=Dense(400,activation="relu")(cnn1) hidden2=Dense(300,activation="relu")(hidden1) hidden3=Dense(200,activation="relu")(hidden2) hidden4=Dense(150,activation="relu")(hidden3) out = Dense(len(labels), activation='sigmoid')(hidden4) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model = Model(inputs=sentence, outputs=out, name='sentence_claccification') model.compile(optimizer=sgd, loss='binary_crossentropy',metrics=["accuracy","categorical_accuracy"]) return model model = Net(vocab_size, embd_dim, sentence_maxlen,word2vec_embd_w) print(model.summary()) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5) # Model stop training after 5 epoch where validation loss didnt decrease mc = ModelCheckpoint('best_2cnn_4fc.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True) #You save model weight at the epoch where validation loss is minimal model.fit(X_train, y_train, batch_size=32,epochs=250,verbose=1,validation_data=(X_val, y_val),callbacks=[es,mc])#you can run for 1000 epoch btw model will stop after 50 epoch without better validation loss ``` # ***If the model is generated before:*** ``` model = load_model('best_2cnn_4fc.h5') # model.save('CNN_1_no_binary.h5') pred=model.predict(X_test) # For evaluation: If the probability > 0.5 you can say that it belong to the class. print(pred[0])#example y_pred=[] measure = np.mean(pred[0]) + 1.15*np.sqrt(np.var(pred[0])) for l in pred: temp=[] for value in l: if value >= measure: temp.append(1) else: temp.append(0) y_pred.append(temp) measure from sklearn.metrics import classification_report,accuracy_score print("accuracy=",accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) from sklearn.metrics import classification_report,accuracy_score print("accuracy=",accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) ```
github_jupyter
from google.colab import drive drive.mount('/content/drive') import os os.chdir('/content/drive/MyDrive/sharif/DeepLearning/ipython(guide)') import numpy as np import codecs import os import random import pandas from keras import backend as K from keras.models import Model from keras.layers.embeddings import Embedding from keras.layers import Input, Dense, Lambda, Permute, Dropout from keras.layers import Conv2D, MaxPooling1D,Conv1D from keras.optimizers import SGD import ast import re from sklearn.preprocessing import MultiLabelBinarizer from sklearn.model_selection import train_test_split import gensim from keras.models import load_model from keras.callbacks import EarlyStopping, ModelCheckpoint limit_number = 750 data = pandas.read_csv('../Data/limited_to_'+str(limit_number)+'.csv',index_col=0,converters={'body': eval}) data = data.dropna().reset_index(drop=True) X = data["body"].values.tolist() y = pandas.read_csv('../Data/limited_to_'+str(limit_number)+'.csv') labels = [] tag=[] for item in y['tag']: labels += [i for i in re.sub('\"|\[|\]|\'| |=','',item.lower()).split(",") if i!='' and i!=' '] tag.append([i for i in re.sub('\"|\[|\]|\'| |=','',item.lower()).split(",") if i!='' and i!=' ']) labels = list(set(labels)) mlb = MultiLabelBinarizer() Y=mlb.fit_transform(tag) len(labels) sentence_maxlen = max(map(len, (d for d in X))) print('sentence maxlen', sentence_maxlen) freq_dist = pandas.read_csv('../Data/FreqDist_sorted.csv',index_col=False) vocab=[] for item in freq_dist["word"]: try: word=re.sub(r"[\u200c-\u200f]","",item.replace(" ","")) vocab.append(word) except: pass print(vocab[10]) vocab = sorted(vocab) vocab_size = len(vocab) print('vocab size', len(vocab)) w2i = {w:i for i,w in enumerate(vocab)} # i2w = {i:w for i,w in enumerate(vocab)} print(w2i["زبان"]) def vectorize(data, sentence_maxlen, w2i): vec_data = [] for d in data: vec = [w2i[w] for w in d if w in w2i] pad_len = max(0, sentence_maxlen - len(vec)) vec += [0] * pad_len vec_data.append(vec) # print(d) vec_data = np.array(vec_data) return vec_data vecX = vectorize(X, sentence_maxlen, w2i) vecY=Y X_train, X_test, y_train, y_test = train_test_split(vecX, vecY, test_size=0.2) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25) print('train: ', X_train.shape , '\ntest: ', X_test.shape , '\nval: ', X_val.shape ,"\ny_tain:",y_train.shape ) # print(vecX[0]) embd_dim = 300 # embed_model = gensim.models.Word2Vec(X, size=embd_dim, window=5, min_count=5) # embed_model.save('word2vec_model') embed_model=gensim.models.Word2Vec.load('word2vec_model') word2vec_embd_w = np.zeros((vocab_size, embd_dim)) for word, i in w2i.items(): if word in embed_model.wv.vocab: embedding_vector =embed_model[word] # words not found in embedding index will be all-zeros. word2vec_embd_w[i] = embedding_vector def Net(vocab_size, embd_size, sentence_maxlen, glove_embd_w): sentence = Input((sentence_maxlen,), name='SentenceInput') # embedding embd_layer = Embedding(input_dim=vocab_size, output_dim=embd_size, weights=[word2vec_embd_w], trainable=False, name='shared_embd') embd_sentence = embd_layer(sentence) embd_sentence = Permute((2,1))(embd_sentence) embd_sentence = Lambda(lambda x: K.expand_dims(x, -1))(embd_sentence) # cnn cnn = Conv2D(1, kernel_size=(5, sentence_maxlen), activation='relu')(embd_sentence) print(cnn.shape) cnn = Lambda(lambda x: K.sum(x, axis=3))(cnn) print(cnn.shape) cnn = MaxPooling1D(3)(cnn) print(cnn.shape) cnn1 = Conv1D(1, kernel_size=(3), activation='relu')(cnn) print(cnn1.shape) # cnn1 = Lambda(lambda x: K.sum(x, axis=3))(cnn1) print(cnn1.shape) cnn1 = MaxPooling1D(3)(cnn1) print(cnn1.shape) cnn1 = Lambda(lambda x: K.sum(x, axis=2))(cnn1) print(cnn1.shape) hidden1=Dense(400,activation="relu")(cnn1) hidden2=Dense(300,activation="relu")(hidden1) hidden3=Dense(200,activation="relu")(hidden2) hidden4=Dense(150,activation="relu")(hidden3) out = Dense(len(labels), activation='sigmoid')(hidden4) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model = Model(inputs=sentence, outputs=out, name='sentence_claccification') model.compile(optimizer=sgd, loss='binary_crossentropy',metrics=["accuracy","categorical_accuracy"]) return model model = Net(vocab_size, embd_dim, sentence_maxlen,word2vec_embd_w) print(model.summary()) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5) # Model stop training after 5 epoch where validation loss didnt decrease mc = ModelCheckpoint('best_2cnn_4fc.h5', monitor='val_loss', mode='min', verbose=1, save_best_only=True) #You save model weight at the epoch where validation loss is minimal model.fit(X_train, y_train, batch_size=32,epochs=250,verbose=1,validation_data=(X_val, y_val),callbacks=[es,mc])#you can run for 1000 epoch btw model will stop after 50 epoch without better validation loss model = load_model('best_2cnn_4fc.h5') # model.save('CNN_1_no_binary.h5') pred=model.predict(X_test) # For evaluation: If the probability > 0.5 you can say that it belong to the class. print(pred[0])#example y_pred=[] measure = np.mean(pred[0]) + 1.15*np.sqrt(np.var(pred[0])) for l in pred: temp=[] for value in l: if value >= measure: temp.append(1) else: temp.append(0) y_pred.append(temp) measure from sklearn.metrics import classification_report,accuracy_score print("accuracy=",accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred)) from sklearn.metrics import classification_report,accuracy_score print("accuracy=",accuracy_score(y_test, y_pred)) print(classification_report(y_test, y_pred))
0.433262
0.688658
<a href="https://colab.research.google.com/github/Warvito/Normative-modelling-using-deep-autoencoders/blob/master/notebooks/freesurfer_organizer.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Organize freesurfer data In this notebook, we prepared a Python code to create your freesurferData.csv that can be used in our models. Mainly, this code is loading the output of the Freesurfer functions ([link1](https://surfer.nmr.mgh.harvard.edu/fswiki/aparcstats2table), [link2](https://surfer.nmr.mgh.harvard.edu/fswiki/asegstats2table)): > aparcstats2table --skip --hemi rh --meas volume --tablefile rh_aparc_stats.txt --subjects $list > aparcstats2table --skip --hemi lh --meas volume --tablefile lh_aparc_stats.txt --subjects $list > asegstats2table --skip --meas volume --tablefile aseg_stats.txt --subjects $list where $list indicates your subjects name that are in the SUBJECTS_DIR. --- First step, import necessary python libraries. ``` from google.colab import files import pandas as pd ``` ## RH_APARC file Upload the stats text file of the right hemisphere. ``` uploaded = files.upload() for rh_aparc_filename in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=rh_aparc_filename, length=len(uploaded[rh_aparc_filename]))) ``` ## LH_APARC file Upload the stats text file of the left hemisphere. ``` uploaded = files.upload() for lh_aparc_filename in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=lh_aparc_filename, length=len(uploaded[lh_aparc_filename]))) ``` ## ASEG file Upload the stats text file of the anatomical structures. ``` uploaded = files.upload() for aseg_filename in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=aseg_filename, length=len(uploaded[aseg_filename]))) ``` Here, we have a list with all brain regions to be used. ``` #@title Columns name COLUMNS_NAME = ['EstimatedTotalIntraCranialVol', 'Left-Lateral-Ventricle', 'Left-Inf-Lat-Vent', 'Left-Cerebellum-White-Matter', 'Left-Cerebellum-Cortex', 'Left-Thalamus-Proper', 'Left-Caudate', 'Left-Putamen', 'Left-Pallidum', '3rd-Ventricle', '4th-Ventricle', 'Brain-Stem', 'Left-Hippocampus', 'Left-Amygdala', 'CSF', 'Left-Accumbens-area', 'Left-VentralDC', 'Right-Lateral-Ventricle', 'Right-Inf-Lat-Vent', 'Right-Cerebellum-White-Matter', 'Right-Cerebellum-Cortex', 'Right-Thalamus-Proper', 'Right-Caudate', 'Right-Putamen', 'Right-Pallidum', 'Right-Hippocampus', 'Right-Amygdala', 'Right-Accumbens-area', 'Right-VentralDC', 'CC_Posterior', 'CC_Mid_Posterior', 'CC_Central', 'CC_Mid_Anterior', 'CC_Anterior', 'lh_bankssts_volume', 'lh_caudalanteriorcingulate_volume', 'lh_caudalmiddlefrontal_volume', 'lh_cuneus_volume', 'lh_entorhinal_volume', 'lh_fusiform_volume', 'lh_inferiorparietal_volume', 'lh_inferiortemporal_volume', 'lh_isthmuscingulate_volume', 'lh_lateraloccipital_volume', 'lh_lateralorbitofrontal_volume', 'lh_lingual_volume', 'lh_medialorbitofrontal_volume', 'lh_middletemporal_volume', 'lh_parahippocampal_volume', 'lh_paracentral_volume', 'lh_parsopercularis_volume', 'lh_parsorbitalis_volume', 'lh_parstriangularis_volume', 'lh_pericalcarine_volume', 'lh_postcentral_volume', 'lh_posteriorcingulate_volume', 'lh_precentral_volume', 'lh_precuneus_volume', 'lh_rostralanteriorcingulate_volume', 'lh_rostralmiddlefrontal_volume', 'lh_superiorfrontal_volume', 'lh_superiorparietal_volume', 'lh_superiortemporal_volume', 'lh_supramarginal_volume', 'lh_frontalpole_volume', 'lh_temporalpole_volume', 'lh_transversetemporal_volume', 'lh_insula_volume', 'rh_bankssts_volume', 'rh_caudalanteriorcingulate_volume', 'rh_caudalmiddlefrontal_volume', 'rh_cuneus_volume', 'rh_entorhinal_volume', 'rh_fusiform_volume', 'rh_inferiorparietal_volume', 'rh_inferiortemporal_volume', 'rh_isthmuscingulate_volume', 'rh_lateraloccipital_volume', 'rh_lateralorbitofrontal_volume', 'rh_lingual_volume', 'rh_medialorbitofrontal_volume', 'rh_middletemporal_volume', 'rh_parahippocampal_volume', 'rh_paracentral_volume', 'rh_parsopercularis_volume', 'rh_parsorbitalis_volume', 'rh_parstriangularis_volume', 'rh_pericalcarine_volume', 'rh_postcentral_volume', 'rh_posteriorcingulate_volume', 'rh_precentral_volume', 'rh_precuneus_volume', 'rh_rostralanteriorcingulate_volume', 'rh_rostralmiddlefrontal_volume', 'rh_superiorfrontal_volume', 'rh_superiorparietal_volume', 'rh_superiortemporal_volume', 'rh_supramarginal_volume', 'rh_frontalpole_volume', 'rh_temporalpole_volume', 'rh_transversetemporal_volume', 'rh_insula_volume'] ``` Then, we merge all the files and select the columns used by our models. ``` aseg_stats = pd.read_csv(aseg_filename, delimiter='\t') lh_aparc_stats = pd.read_csv(lh_aparc_filename, delimiter='\t') rh_aparc_stats = pd.read_csv(rh_aparc_filename, delimiter='\t') combined = pd.merge(aseg_stats, lh_aparc_stats, left_on='Measure:volume', right_on='lh.aparc.volume') combined = pd.merge(combined, rh_aparc_stats, left_on='Measure:volume', right_on='rh.aparc.volume') combined.rename(columns={'Measure:volume': 'Image_ID'}, inplace=True) combined = combined.set_index('Image_ID')[COLUMNS_NAME] combined.to_csv('freesurferData.csv') ``` Finally, you can download the file. ``` files.download('freesurferData.csv') ```
github_jupyter
from google.colab import files import pandas as pd uploaded = files.upload() for rh_aparc_filename in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=rh_aparc_filename, length=len(uploaded[rh_aparc_filename]))) uploaded = files.upload() for lh_aparc_filename in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=lh_aparc_filename, length=len(uploaded[lh_aparc_filename]))) uploaded = files.upload() for aseg_filename in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format(name=aseg_filename, length=len(uploaded[aseg_filename]))) #@title Columns name COLUMNS_NAME = ['EstimatedTotalIntraCranialVol', 'Left-Lateral-Ventricle', 'Left-Inf-Lat-Vent', 'Left-Cerebellum-White-Matter', 'Left-Cerebellum-Cortex', 'Left-Thalamus-Proper', 'Left-Caudate', 'Left-Putamen', 'Left-Pallidum', '3rd-Ventricle', '4th-Ventricle', 'Brain-Stem', 'Left-Hippocampus', 'Left-Amygdala', 'CSF', 'Left-Accumbens-area', 'Left-VentralDC', 'Right-Lateral-Ventricle', 'Right-Inf-Lat-Vent', 'Right-Cerebellum-White-Matter', 'Right-Cerebellum-Cortex', 'Right-Thalamus-Proper', 'Right-Caudate', 'Right-Putamen', 'Right-Pallidum', 'Right-Hippocampus', 'Right-Amygdala', 'Right-Accumbens-area', 'Right-VentralDC', 'CC_Posterior', 'CC_Mid_Posterior', 'CC_Central', 'CC_Mid_Anterior', 'CC_Anterior', 'lh_bankssts_volume', 'lh_caudalanteriorcingulate_volume', 'lh_caudalmiddlefrontal_volume', 'lh_cuneus_volume', 'lh_entorhinal_volume', 'lh_fusiform_volume', 'lh_inferiorparietal_volume', 'lh_inferiortemporal_volume', 'lh_isthmuscingulate_volume', 'lh_lateraloccipital_volume', 'lh_lateralorbitofrontal_volume', 'lh_lingual_volume', 'lh_medialorbitofrontal_volume', 'lh_middletemporal_volume', 'lh_parahippocampal_volume', 'lh_paracentral_volume', 'lh_parsopercularis_volume', 'lh_parsorbitalis_volume', 'lh_parstriangularis_volume', 'lh_pericalcarine_volume', 'lh_postcentral_volume', 'lh_posteriorcingulate_volume', 'lh_precentral_volume', 'lh_precuneus_volume', 'lh_rostralanteriorcingulate_volume', 'lh_rostralmiddlefrontal_volume', 'lh_superiorfrontal_volume', 'lh_superiorparietal_volume', 'lh_superiortemporal_volume', 'lh_supramarginal_volume', 'lh_frontalpole_volume', 'lh_temporalpole_volume', 'lh_transversetemporal_volume', 'lh_insula_volume', 'rh_bankssts_volume', 'rh_caudalanteriorcingulate_volume', 'rh_caudalmiddlefrontal_volume', 'rh_cuneus_volume', 'rh_entorhinal_volume', 'rh_fusiform_volume', 'rh_inferiorparietal_volume', 'rh_inferiortemporal_volume', 'rh_isthmuscingulate_volume', 'rh_lateraloccipital_volume', 'rh_lateralorbitofrontal_volume', 'rh_lingual_volume', 'rh_medialorbitofrontal_volume', 'rh_middletemporal_volume', 'rh_parahippocampal_volume', 'rh_paracentral_volume', 'rh_parsopercularis_volume', 'rh_parsorbitalis_volume', 'rh_parstriangularis_volume', 'rh_pericalcarine_volume', 'rh_postcentral_volume', 'rh_posteriorcingulate_volume', 'rh_precentral_volume', 'rh_precuneus_volume', 'rh_rostralanteriorcingulate_volume', 'rh_rostralmiddlefrontal_volume', 'rh_superiorfrontal_volume', 'rh_superiorparietal_volume', 'rh_superiortemporal_volume', 'rh_supramarginal_volume', 'rh_frontalpole_volume', 'rh_temporalpole_volume', 'rh_transversetemporal_volume', 'rh_insula_volume'] aseg_stats = pd.read_csv(aseg_filename, delimiter='\t') lh_aparc_stats = pd.read_csv(lh_aparc_filename, delimiter='\t') rh_aparc_stats = pd.read_csv(rh_aparc_filename, delimiter='\t') combined = pd.merge(aseg_stats, lh_aparc_stats, left_on='Measure:volume', right_on='lh.aparc.volume') combined = pd.merge(combined, rh_aparc_stats, left_on='Measure:volume', right_on='rh.aparc.volume') combined.rename(columns={'Measure:volume': 'Image_ID'}, inplace=True) combined = combined.set_index('Image_ID')[COLUMNS_NAME] combined.to_csv('freesurferData.csv') files.download('freesurferData.csv')
0.333937
0.875148
# 3.2 Strings & String-Funktionen ## 3.2.1 - 3.2.4 Namenskonventionen, Strings verbinden & konvertieren Im Anschluss dieser Übungseinheit kannst du ... + Variablen entsprechend der Python-Namenskonventionen benennen + Variablen mit String-Werten anlegen + den Datentyp String konvertieren + Strings und Characters verbinden ## 3.2.1 Python-Namenskonventionen für Variablen Wenn du irgendwo in einem Programm eine Variable namens "x" siehst, weißt du dann, wofür diese Variable da ist und was sie beinhaltet? <br> Bei einem einfachen numerischen Wert und in einem kurzen Programm mag es keine Rolle spielen, wenn die Variable mit "x" benannt ist. Doch wenn das Programm komplexer wird und dort viele verschiedene Variablen vorkommen, die "x", "y", "z" usw. heißen, verlieren du und jemand, der mit deinem Code weiterarbeiten möchte, schnell den Überblick. <br> > Um dies zu verhindern, gibt es in Python sowie in anderen Programmiersprachen bestimmte Namenskonventionen. Diese Konventionen einzuhalten, gehört zum guten Ton bzw. zum guten Code. Du kannst sie dir als eine Vereinbarung unter ProgrammschreiberInnen vorstellen. Wenn alle sich an diese Vereinbarung halten, kann jeder jeden Code aller anderen besser lesen und verstehen. <br> In allen Programmiersprachen gilt: **Benenne Variablen möglichst eindeutig nach dem, was sie beinhalten/bewirken.** <br> Legst du beispielsweise eine Variable an, die die das Produkt von Kosten und Menge einer Ware beinhalten soll, wäre eine eindeutige Bezeichnung "Gesamtkosten". Da es darüber hinaus jedoch üblich ist, Variablen auf Englisch zu benennen, wäre eine noch bessere Bezeichnung: "total_costs". Anhand dieses Namens lassen sich weitere Namenskonventionen ableiten. <br> Die **Python-Namenskonventionen** lauten zusammengefasst: * englische Variablennamen, z.B.: ``income = 2500`` * durchgängige Kleinschreibung der Variablen, außer bei Konstanten (Variablen, deren Wert sich nie ändern soll), z.B.: ``PI = 3.14`` * Trennung von Doppel-Namen mit einem Unterstrich (bei mehr als zwei Namen entsprechend mehr Unterstriche, doch zu lange Namen sollten vermieden werden), z.B.: ``total_customers = 1448`` * Variablen dürfen keine Sonderzeichen enthalten. Z.B. nicht zulässig ist "room13@floor3", doch zulässig ist: ``room13floor3 = 150`` * Variablennamen sollten in sich konsistent sein. Heißt eine Variable z.B. "firstname" (Vorname), sollte die Variable für den Nachnamen nicht "last_name" benannt werden, sondern ebenso ohne Unterstrich: ``lastname = 'Sander'`` * die folgenden beiden Konventionen **müssen eingehalten werden**, da sie sonst zu Programmfehlern führen: * Variablen dürfen mit keiner Zahl und keinem Sonderzeichen beginnen, z.B. "1total_costs" wäre kein zulässiger Name und ergäbe einen <font color = "darkred">SyntaxError</font> (Zeichenfehler) * verwende keine Variablennamen, die bereits intern von Python belegt sind, wie <b>int</b>, <b>float</b> und <b>str</b> (String). Dies führt nicht bei der Deklarierung und Initialisierung (Benennung und Wertzuweisung) zu einem Fehler, aber bei der Weiterverwendung früher oder später zu einem <font color = "darkred">TypeError</font> (Datentypfehler). Weitere reservierte Namen findest du hier: https://docs.python.org/3/reference/lexical_analysis.html#keywords <br> <div class="alert alert-block alert-info"> <font size="3"><b>Tipp:</b></font> Namenskonventionen einzuhalten bedeutet, den Code einheitlicher und ihn damit leichter erfassbar für alle ihn Lesenden zu gestalten. Hältst du dich nicht an die Namenskonventionen, wird in den meisten Fällen kein Fehler auftreten. Doch bedenke, dass andere und auch du selbst deinen Code nach längerer Zeit immer noch schnell verstehen möchten. Außerdem sieht dein Code damit professionell aus. </div> <br> >Die Trennung mit einem Unterstrich wie bei "hello_world" nennt man auch **Snake Case** (wie eine am Boden kriechende Schlange). In anderen Programmiersprachen gibt es ähnliche, auf die Tierwelt bezogene Bezeichnungen. Zum Beispiel ist in Java hingegen "Camel Case" Konvention. Dort würde man dieselbe Variable so schreiben: helloWorld (großer Anfangsbuchstabe des zweiten Wortes, wie ein Kamelbuckel). <br> <div class="alert alert-block alert-warning"> <font size="3"><b>Übung:</b></font> Der folgende Code könnte durch eine eindeutigere Namensgebung der Variablen verbessert werden. Gib in der Codezelle darunter bessere Namen für <b>z</b>, <b>w</b> und <b>r</b> an. <br> Diese Übung hat keine eindeutige Lösung. Hier geht es eher darum, sinnvolle Namen zu finden und sie entsprechend der Namenskonventionen zu schreiben. Die Lösung zu dieser Übung dient dir nachträglich zur Orientierung. </div> ``` first_name = 'Tim' z = 'Schneider' w = '015643287593' r = 'Berlin' ``` ## 3.2.2 Variablen mit String-Werten anlegen Bisher haben wir uns vor allem mit den numerischen Datentypen Float (float) und Integer (int) befasst. Weil sie Zahlen darstellen und miteinander verrechnet werden, werden sie ohne Anführungsstriche geschrieben. <br> Strings, also Text bzw. Wörter sind dir als Variablenwerte schon ein paar Mal in diesem Kurs begegnet, auch in der vorhergehenden Aufgabe. Du hast bereits gesehen, dass **Strings in Python immer in Anführungsstrichen** geschrieben werden. Innerhalb dieser Anführungsstriche werden Zahlen, Operanden etc. von Python als Teil des Strings betrachtet. Du kannst für Strings einfache oder doppelte Anführungsstriche verwenden; zum Beispiel sind beide dieser Varianten korrekt: <br> ``firstname = 'Tom'`` <br> ``firstname = "Tom"`` <br> Jedoch ist es auch eine **Python-Konvention**, bevorzugt **einfache Anführungsstriche** zu verwenden, also eher: <br> ``firstname = 'Tom'`` <br> Weiterhin ist wichtig zu beachten, dass beide **nicht gemixt** werden dürfen, denn das ergäbe einen Fehler, wie: ``` firstname = 'Tom" ``` Schreibst du einen String, in welchem wiederum Anführungsstriche vorkommen, zum Beispiel ... ``` sentence = 'Roberts Lieblingsfilm ist "Terminator".' print(sentence) ``` ..., ist es erforderlich, innerhalb des Satzes die andere Variante der Anführungsstriche zu verwenden. Der gleiche Satz könnte also auch so geschrieben werden (Eigennamen werden im Deutschen allerdings in doppelte Anführungsstriche gesetzt): ``` sentence = "Roberts Lieblingsfilm ist 'Terminator'." print(sentence) ``` ## 3.2.3 Konvertierung von/zu Strings Hast du einen String mit einem numerischen Wert angelegt, kannst du diesen zu einem Integer oder Float **konvertieren**, zum Beispiel: ``` number = '123' number = int(number) type(number) ``` Umgekehrt kannst du auch Zahlen zu Strings konvertieren, mit ``str()``. <br> <div class="alert alert-block alert-info"> <font size="3"><b>Tipp:</b></font> Konvertierung von Datentypen wird auch <b>Casten</b> genannt bzw. im Englischen <b>Type Casting</b>. Man sagt zum Beispiel: "Die Zahl wird zu Float gecastet." <br> Die Operation zur Umwandlung wird als <b>Cast-Operator</b> (engl.: cast operator) bezeichnet, wie z.B.: <b>int()</b> </div> <br> <div class="alert alert-block alert-warning"> <font size="3"><b>Übung:</b></font> Caste die untenstehende Zahl zu String und überprüfe ihren Datentyp. </div> ``` number = 7.7 ``` Die Konvertierung zu String funktioniert in jedem Fall, selbst, wenn bereits ein String vorliegt: ``` test_string = 'string' converted_string = str(test_string) type(converted_string) ``` ## 3.2.4 Strings verbinden (Concatenation) ### 3.2.4 a) Strings mit + und * verbinden Wenn du einzelne Strings weiterverarbeiten möchtest, kann es nötig werden, dass du diese verbindest/konkatenierst. Dies geschieht mit Hilfe des <font color = "green">+</font>-Operators. Ein Beispiel: ``` city = 'Berlin' street = 'Chaussestraße 7' address = city + street print(address) ``` An diesem Beispiel siehst du, dass zwar die Strings verbunden wurden, doch sollten noch ein Komma und/oder Leerzeichen zwischen den Strings platziert sein, müssten diese bereits in den Strings selbst vorhanden sein. <br> Allerdings wäre es nicht üblich, ein Komma und Leerzeichen direkt in die Variablenwerte einzubauen, wie: street = ', Chaussestraße 7' <br> Der Standard ist, die Print-Funktion wie folgt anzupassen: ``` print(city + ', ' + street) ``` Das gleiche könntest du auch direkt in der Variable **address** schreiben und dann über ``print()`` ausgeben lassen: ``` address = city + ', ' + street print(address) ``` Strings kannst du auch über verschiedene Formatierungsmöglichkeiten verbinden, die Python bietet. Dazu kommen wir gleich noch ausführlicher. <br> Wie du es schon bei numerischen Datentypen gesehen hast, kannst du auch Strings addieren bzw. verbinden, indem du das <font color = "green">+</font> vor das <font color = "green">=</font> setzt: <br> ``` singing = 'la' singing += 'la' print(singing) ``` <div class="alert alert-block alert-info"> <font size="3"><b>Tipp:</b></font> Zu beachten ist hierbei, dass du der Variablen zuerst mit <b>=</b> einen Wert zuweist, bevor du sie erhöhst/erweiterst. Sonst weiß Python nicht, zu was es den Wert bei <b>+=</b> hinzufügen soll und es gibt einen <b>NameError</b> wegen einer undefinierten Variablen. <br> Deshalb wird <b>singing</b> in dem obigen Beispiel zuerst mit dem Anfangswert <b>'la'</b> initialisiert. </div> <br> Um Strings zu vervielfachen, kannst du <font color = green>*</font> bei einer Wertzuweisung an eine Variable oder direkt in ``print()`` verwenden: ``` # als Wertzuweisung an eine folgende Variable singing = 'la' choir = singing*12 print(choir) # direkt in print() singing = 'la' print(singing*8) ``` <div class="alert alert-block alert-info"> <font size="3"><b>Achtung:</b></font> Das Muliplikationszeichen funktioniert bei Strings <b>nicht</b> so: <b>s *= 'la'</b>. Python versteht das als rechnerische Multiplikation und bei Strings führt das zu einem <b>TypeError</b> (Fehler wegen inkompatibler Datentypen). Ein String kann mit <b>*</b> wie in den zwei obigen Beispielen zwar vervielfacht werden, aber im Zusammenhang mit <b>=</b> entsteht für Python eine unlösbare Rechnung, da Text nicht mit Text multipliziert werden kann. </div> <br> <div class="alert alert-block alert-warning"> <font size="3"><b>Übung:</b></font> Such dir einen der vorgestellten Wege aus, um den String in der folgenden Code-Zelle zu verdreifachen. </div> ``` joke = 'ha' ``` ### 3.2.4 b) Characters mit join() verbinden Einzelne Buchstaben eines Strings werden als **Characters** bzeichnet. Es ist möglich, Zeichen und Buchstaben nach Characters mit der Funktion ``join()`` zu platzieren, wie hier zum Beispiel ein Komma nach jedem Character: ``` numbers = '0123456789' print(','.join(numbers)) ``` <div class="alert alert-block alert-info"> <font size="3"><b>Tipp:</b></font> Funktionen wie <b>join()</b> werden über den Punkt-Operator (einfacher Punkt) an den Wert bzw. die Variable angehängt, auf die sie angewendet werden sollen. Es gibt keine eindeutige Regel dafür, wann Variablen in die Klammern eingetragen und wann Funktionen mit einem Punkt angehängt werden. Es ist wie beim Sprachenlernen - über Praxiserfahrung wird die richtige Anwendung zur Gewohnheit. </div> <br> Du kannst mit ``join()`` auch einzelne Strings (auch in Form von Listeneinträgen) zu einem gesamten verbinden. Das wird in einer der folgenden Einheiten behandelt, in der wir mehrere Strings vorliegen haben. Syntax: <font color = green>'Zeichen, mit dem/denen verbunden werden soll'.join(String/Liste)</font> <div class="alert alert-block alert-warning"> <font size="3"><b>Übung:</b></font> Gegeben ist die Variable <b>alphabet</b> in der folgenden Code-Zelle. <br> Deine Aufgabe ist es, sie zu dieser gewünschten Ausgabe zu formatieren: <b>a & b & c</b> <br> Was müsste in <b>print()</b> stehen, um diese zu erhalten? <br> Achte auf die Leerzeichen vor und nach dem Kaufmanns-Und. </div> ``` alphabet = 'abc' ``` <div class="alert alert-block alert-success"> <b>Großartig!</b> Du kannst jetzt allen Werten wie Zahlen und Strings passenden, Python-konformen Variablennamen zuweisen. Du kannst nun sogar Strings mit numerischen Werten zu Integers und Floats konvertieren und umgekehrt. Außerdem weißt du, wie du sie miteinander verbindest. <br> Als nächstes wird dir gezeigt, wie du Strings für eine visuell ansprechende Ausgabe formatieren kannst. <div class="alert alert-block alert-info"> <h3>Das kannst du dir aus dieser Übung mitnehmen:</h3> * **Python-Namenskonventionen für Variablen** * eindeutige, leicht zuzuordnende Bezeichnung * auf Englisch * in Kleinbuchstaben * Großschreibung nur bei Konstanten (unveränderliche Variablen), z.B.: ``PI = 3.14`` * bei mehr als einem Namen in der Bezeichnung Trennung mit Unterstrich (genannt Snake Case), z.B.: <font color = green>zwei_namen</font> oder: <font color = green>sogar_drei_namen</font> * zu lange Namen vermeiden * keine Verwendung von Sonderzeichen wie <font color = green>@</font>, nur Buchstaben und Zahlen * in sich konsistente Namen entsprechend bereits benannter Variablen, z.B. <font color = green>firstname</font> passend zu <font color = green>lastname</font> (nicht last_name) * Vermeidung von Fehlermeldungen bei ... * keiner Verwendung von Zahlen sowie Sonderzeichen am Variablenanfang, z.B.: <font color = darkred>1customer = 'Evelyn'</font> * keiner Verwendung von bereits von Python reservierten Namen wie <font color = darkred>str</font>, <font color = darkred>int</font>, <font color = darkred>float</font>, <font color = darkred>type</font> usw. <br> * **Strings** * ... sind Zeichenketten, die aus allen möglichen Zeichen bestehen können, auch Zahlen, doch sie werden trotzdem immer als Text/Strings von Python interpretiert * ... ihre Datentyp-Bezeichnung innerhalb von Python ist **str** * die einzelnen Zeichen eines Strings werden als **Characters** bezeichnet, sie stellen jedoch jedoch keinen eigenen Datentyp dar. Einzelzeichen, wie 'z', sind stets auch Strings <br> * **Strings werden in Anführungsstrichen angelegt** * entweder in einfachen **oder** doppelten (nicht mixen), so: <font color = green>'String'</font> (empfohlen) oder so: <font color = green>"String"</font> * verwendest du Anführungsstriche innerhalb von Strings, wählst du dafür die genau anderen: <font color = green>"Film: 'Strings'"</font> oder <font color = green>'Film: "Strings"'</font> <br> * **Strings können konvertiert werden** * eine Zahl wird in einen String konvertiert mit: ``str(123)`` oder auch ``str(1.0234)`` * ein String wird in einen Float konvertiert mit: ``float('12.3')`` * Ein String wird in einen Integer konvertiert mit: ``int('123')`` <br> * **Strings können verbunden werden** * ... über **<font color = green>+</font>** : ``print('String' + 'nächster String')`` => Output: Stringnächster String * Kommas, Leerzeichen und weitere Zeichen sind zusätzlich einzuzufügen, z.B.: ``print('String' + ', ' + 'nächster String')`` => Output: String, nächster String * vervielfacht mit **<font color = green>*</font>**: ``a = 'Aha!'`` => ``print(a*3)`` => Output: Aha!Aha!Aha! <br> * **Characters können über join() verbunden werden** * als Strings gespeicherte Listeneinträge können auch über ``join()`` verbunden werden * Syntax: <font color = green>'Zeichen, mit dem/denen verbunden werden soll'.join(String/Liste)</font> </div>
github_jupyter
first_name = 'Tim' z = 'Schneider' w = '015643287593' r = 'Berlin' firstname = 'Tom" sentence = 'Roberts Lieblingsfilm ist "Terminator".' print(sentence) sentence = "Roberts Lieblingsfilm ist 'Terminator'." print(sentence) number = '123' number = int(number) type(number) number = 7.7 test_string = 'string' converted_string = str(test_string) type(converted_string) city = 'Berlin' street = 'Chaussestraße 7' address = city + street print(address) print(city + ', ' + street) address = city + ', ' + street print(address) singing = 'la' singing += 'la' print(singing) # als Wertzuweisung an eine folgende Variable singing = 'la' choir = singing*12 print(choir) # direkt in print() singing = 'la' print(singing*8) joke = 'ha' numbers = '0123456789' print(','.join(numbers)) alphabet = 'abc'
0.228587
0.780391
``` import pandas as pd import numpy as np import matplotlib.pyplot as plt s=pd.Series([1,23,4,np.nan,8]) print(s) dates=pd.date_range('20190213',periods=6) print(dates) df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df) dict={'a':[1,7,835,88],'b':[2,55,42,12],'c':[3,4,5,9],'d':[1,2,3,6]} df=pd.DataFrame(dict) print(df) # print(df.dtypes) # print(df.index) # print(df.columns) # print(df.describe()) # print(df.T) # print(df.sort_index(axis=1,ascending=False)) # print(df.sort_index(axis=0,ascending=False)) print(df.sort_values(by='b')) #pandas选择数据,类似于列表索引用[] dates=pd.date_range('20190213',periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['a','b','c','d']) print(df) # print(df['a']) # print(df.a) # print(df[0:3]) #通过标签选择(loc) print(df.loc['20190215']) print(df.loc[:,['a','b']]) print(df.loc['20190215',['a','b']]) #通过位置选择(iloc) print(df) print(df.iloc[1:2,2]) print(df.iloc[[1,3,5],3]) #通过位置与标签选择(ix) print(df.ix[:3,['c','a']]) #是或否选择 print(df) print(df[df.a>8]) #pandas设置值 dates=pd.date_range('20190213',periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['a','b','c','d']) print(df) # df.iloc[0,0]=12581 # print(df) df.loc['20190215','a']=12581 print(df) # df[df.a>4]=0 # print(df) df.a[df.a>4]=0 print(df) df['e']=np.nan print(df) df['f']=pd.Series([1,2,3,4,5,6],index=dates) print(df) #pandas处理丢失数据 #的容纳()丢掉缺失值 dates=pd.date_range('20190213',periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['a','b','c','d']) df.iloc[0,0]=np.nan df.iloc[5,3]=np.nan print(df) print(df.dropna(axis=0)) #丢掉NaN所在行 print(df.dropna(axis=1)) #丢掉NaN所在列 print(df.dropna(axis=1,how='any')) print(df.dropna(axis=1,how='all')) #fillna()填充缺失值 print(df.fillna(value=0)) #判断是否由缺失值isnull print(df.isnull()) print(np.any(df.isnull())==True) # pandas导入导出数据 # 读取数据read_csv,存储数据to_csv,其他格式类似 file=pd.read_csv('文件名') print(file) file.to_csv('路径') #pandas数据合并 #concat()合并 df1=pd.DataFrame(np.zeros((3,4)),columns=['a','b','c','d']) df2=pd.DataFrame(np.ones((3,4)),columns=['a','b','c','d']) df3=pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print(df1) print(df2) print(df3) res=pd.concat([df1,df2,df3],axis=0,ignore_index=True) print(res) #concat中的属性join['inner','outer'] df1=pd.DataFrame(np.zeros((3,4)),index=[1,2,3],columns=['a','b','c','d']) df2=pd.DataFrame(np.ones((3,4)),index=[2,3,4],columns=['b','c','d','e']) print(df1) print(df2) print(pd.concat([df1,df2],axis=0,sort=True,join='outer')) print(pd.concat([df1,df2],axis=0,sort=False,join='inner',ignore_index=True)) #属性join_axes print(pd.concat([df1,df2],axis=1)) print(pd.concat([df1,df2],axis=1,join_axes=[df1.index])) #append()适用于列标签相同的情况,纵向合并 df1=pd.DataFrame(np.zeros((3,4)),columns=['a','b','c','d']) df2=pd.DataFrame(np.ones((3,4)),columns=['a','b','c','d']) df3=pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) res1=df1.append(df2,ignore_index=True) print(res1) res2=df1.append([df2,df3],ignore_index=True) print(res2) df1=pd.DataFrame(np.zeros((3,4)),columns=['a','b','c','d']) s1=pd.Series([1,2,3,4],index=['a','b','c','d']) res=df1.append(s1,ignore_index=True) print(res) #pandas中的merge合并,横向合并 df1=pd.DataFrame({'key':['K0','K1','K2','K3'],'A':['A0','A1','A2','A3'],'B':['B0','B1','B2','B3']}) df2=pd.DataFrame({'key':['K0','K1','K2','K3'],'C':['C0','C1','C2','C3'],'D':['D0','D1','D2','D3']}) print(df1) print(df2) res=pd.merge(df1,df2,on='key') print(res) #考虑两个key的情况 df1=pd.DataFrame({'key1':['K0','K0','K1','K2'],'key2':['K0','K1','K0','K1'],'A':['A0','A1','A2','A3'],'B':['B0','B1','B2','B3']}) df2=pd.DataFrame({'key1':['K0','K1','K1','K2'],'key2':['K0','K0','K0','K0'],'C':['C0','C1','C2','C3'],'D':['D0','D1','D2','D3']}) print(df1) print(df2) print('---------------------1-----------------------') res1=pd.merge(df1,df2,on=['key1','key2']) print(res1) print('--------------------2------------------------') res2=pd.merge(df1,df2,on=['key1','key2'],how='inner') #how可取left,right,inner,outer print(res2) print('--------------------3------------------------') res3=pd.merge(df1,df2,on=['key1','key2'],how='outer') print(res3) print('--------------------4------------------------') res4=pd.merge(df1,df2,on=['key1','key2'],how='left') #以key1为主 print(res4) print('--------------------5------------------------') res5=pd.merge(df1,df2,on=['key1','key2'],how='right') #以key2为主 print(res5) df1=pd.DataFrame({'col1':[0,1],'col_left':['a','b']}) df2=pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]}) print(df1) print(df2) res=pd.merge(df1,df2,on='col1',how='outer',indicator=True) print(res) #不具有公共列的情况 df1=pd.DataFrame({'A':['A0','A1','A2'],'B':['B0','B1','B2']},index=['K0','K1','K2']) df2=pd.DataFrame({'C':['C0','C1','C2'],'D':['D0','D1','D2']},index=['K0','K2','K3']) print(df1) print(df2) res1=pd.merge(df1,df2,left_index=True,right_index=True,how='outer') print(res1) boys=pd.DataFrame({'k':['K0','K1','K2'],'age':[1,2,3]}) girls=pd.DataFrame({'k':['K0','K0','K3'],'age':[4,5,6]}) print(boys) print(girls) res1=pd.merge(boys,girls,on='k') #若不指定suffixes,会产生默认x,y print(res1) res2=pd.merge(boys,girls,on='k',suffixes=['_boy','_girl'],how='inner') res2 #pandas的可视化 data=pd.Series(np.random.randn(1000)) data=data.cumsum() data.plot() data=pd.DataFrame(np.random.randn(1000,4),columns=list('abcd')) print(data.head()) data=data.cumsum() data.plot() ```
github_jupyter
import pandas as pd import numpy as np import matplotlib.pyplot as plt s=pd.Series([1,23,4,np.nan,8]) print(s) dates=pd.date_range('20190213',periods=6) print(dates) df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df) dict={'a':[1,7,835,88],'b':[2,55,42,12],'c':[3,4,5,9],'d':[1,2,3,6]} df=pd.DataFrame(dict) print(df) # print(df.dtypes) # print(df.index) # print(df.columns) # print(df.describe()) # print(df.T) # print(df.sort_index(axis=1,ascending=False)) # print(df.sort_index(axis=0,ascending=False)) print(df.sort_values(by='b')) #pandas选择数据,类似于列表索引用[] dates=pd.date_range('20190213',periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['a','b','c','d']) print(df) # print(df['a']) # print(df.a) # print(df[0:3]) #通过标签选择(loc) print(df.loc['20190215']) print(df.loc[:,['a','b']]) print(df.loc['20190215',['a','b']]) #通过位置选择(iloc) print(df) print(df.iloc[1:2,2]) print(df.iloc[[1,3,5],3]) #通过位置与标签选择(ix) print(df.ix[:3,['c','a']]) #是或否选择 print(df) print(df[df.a>8]) #pandas设置值 dates=pd.date_range('20190213',periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['a','b','c','d']) print(df) # df.iloc[0,0]=12581 # print(df) df.loc['20190215','a']=12581 print(df) # df[df.a>4]=0 # print(df) df.a[df.a>4]=0 print(df) df['e']=np.nan print(df) df['f']=pd.Series([1,2,3,4,5,6],index=dates) print(df) #pandas处理丢失数据 #的容纳()丢掉缺失值 dates=pd.date_range('20190213',periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['a','b','c','d']) df.iloc[0,0]=np.nan df.iloc[5,3]=np.nan print(df) print(df.dropna(axis=0)) #丢掉NaN所在行 print(df.dropna(axis=1)) #丢掉NaN所在列 print(df.dropna(axis=1,how='any')) print(df.dropna(axis=1,how='all')) #fillna()填充缺失值 print(df.fillna(value=0)) #判断是否由缺失值isnull print(df.isnull()) print(np.any(df.isnull())==True) # pandas导入导出数据 # 读取数据read_csv,存储数据to_csv,其他格式类似 file=pd.read_csv('文件名') print(file) file.to_csv('路径') #pandas数据合并 #concat()合并 df1=pd.DataFrame(np.zeros((3,4)),columns=['a','b','c','d']) df2=pd.DataFrame(np.ones((3,4)),columns=['a','b','c','d']) df3=pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print(df1) print(df2) print(df3) res=pd.concat([df1,df2,df3],axis=0,ignore_index=True) print(res) #concat中的属性join['inner','outer'] df1=pd.DataFrame(np.zeros((3,4)),index=[1,2,3],columns=['a','b','c','d']) df2=pd.DataFrame(np.ones((3,4)),index=[2,3,4],columns=['b','c','d','e']) print(df1) print(df2) print(pd.concat([df1,df2],axis=0,sort=True,join='outer')) print(pd.concat([df1,df2],axis=0,sort=False,join='inner',ignore_index=True)) #属性join_axes print(pd.concat([df1,df2],axis=1)) print(pd.concat([df1,df2],axis=1,join_axes=[df1.index])) #append()适用于列标签相同的情况,纵向合并 df1=pd.DataFrame(np.zeros((3,4)),columns=['a','b','c','d']) df2=pd.DataFrame(np.ones((3,4)),columns=['a','b','c','d']) df3=pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) res1=df1.append(df2,ignore_index=True) print(res1) res2=df1.append([df2,df3],ignore_index=True) print(res2) df1=pd.DataFrame(np.zeros((3,4)),columns=['a','b','c','d']) s1=pd.Series([1,2,3,4],index=['a','b','c','d']) res=df1.append(s1,ignore_index=True) print(res) #pandas中的merge合并,横向合并 df1=pd.DataFrame({'key':['K0','K1','K2','K3'],'A':['A0','A1','A2','A3'],'B':['B0','B1','B2','B3']}) df2=pd.DataFrame({'key':['K0','K1','K2','K3'],'C':['C0','C1','C2','C3'],'D':['D0','D1','D2','D3']}) print(df1) print(df2) res=pd.merge(df1,df2,on='key') print(res) #考虑两个key的情况 df1=pd.DataFrame({'key1':['K0','K0','K1','K2'],'key2':['K0','K1','K0','K1'],'A':['A0','A1','A2','A3'],'B':['B0','B1','B2','B3']}) df2=pd.DataFrame({'key1':['K0','K1','K1','K2'],'key2':['K0','K0','K0','K0'],'C':['C0','C1','C2','C3'],'D':['D0','D1','D2','D3']}) print(df1) print(df2) print('---------------------1-----------------------') res1=pd.merge(df1,df2,on=['key1','key2']) print(res1) print('--------------------2------------------------') res2=pd.merge(df1,df2,on=['key1','key2'],how='inner') #how可取left,right,inner,outer print(res2) print('--------------------3------------------------') res3=pd.merge(df1,df2,on=['key1','key2'],how='outer') print(res3) print('--------------------4------------------------') res4=pd.merge(df1,df2,on=['key1','key2'],how='left') #以key1为主 print(res4) print('--------------------5------------------------') res5=pd.merge(df1,df2,on=['key1','key2'],how='right') #以key2为主 print(res5) df1=pd.DataFrame({'col1':[0,1],'col_left':['a','b']}) df2=pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]}) print(df1) print(df2) res=pd.merge(df1,df2,on='col1',how='outer',indicator=True) print(res) #不具有公共列的情况 df1=pd.DataFrame({'A':['A0','A1','A2'],'B':['B0','B1','B2']},index=['K0','K1','K2']) df2=pd.DataFrame({'C':['C0','C1','C2'],'D':['D0','D1','D2']},index=['K0','K2','K3']) print(df1) print(df2) res1=pd.merge(df1,df2,left_index=True,right_index=True,how='outer') print(res1) boys=pd.DataFrame({'k':['K0','K1','K2'],'age':[1,2,3]}) girls=pd.DataFrame({'k':['K0','K0','K3'],'age':[4,5,6]}) print(boys) print(girls) res1=pd.merge(boys,girls,on='k') #若不指定suffixes,会产生默认x,y print(res1) res2=pd.merge(boys,girls,on='k',suffixes=['_boy','_girl'],how='inner') res2 #pandas的可视化 data=pd.Series(np.random.randn(1000)) data=data.cumsum() data.plot() data=pd.DataFrame(np.random.randn(1000,4),columns=list('abcd')) print(data.head()) data=data.cumsum() data.plot()
0.038811
0.372534
# Design ## Members นาย ธนวัฒน์ ใจมอย 1620706612 <br/> นาย นราธิป มิ่งรัตนา 1620706471 <br/> นางสาว นันทัชภรณ์ ลูกจันทร์ 1620707651 ##CRISP-DM![11111111111111.png]() ## DNA Framework ![rrrrrrrrrrrrrrrrrrrr.png]() ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go import warnings warnings.filterwarnings("ignore") path = 'https://raw.githubusercontent.com/dear3089/CS434_Data_Mining_finalExam/main/E_Commerce_Shipping_Data.csv' from sklearn.feature_selection import VarianceThreshold from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import tree df_orignal = pd.read_csv(path) df = df_orignal.copy() df.head(10) ``` ### ควมหมายของแต่ละ columns ### ID : หมายเลขประจำตัวลูกค้า ### Warehouse_block : โกดังแบ่งออกเป็น บล็อก A B C D F ### Mode_of_Shipment : การจัดส่งสินค้า เช่น ทางเรือ บนถนน เครื่องบิน ### Customer_care_calls : จำนวนที่ลูกค้าโทรหา Call center ### Customer_rating : บริษัทให้คะแนนลูกค้า โดย 1 = แย่สุด, 5 = ดีสุด ### Cost_of_the_Product : ต้นทุนผลิตภัณฑ์ หน่วยเป็น USD ### Prior_purchases : จำนวนการซื้อก่อนหน้า ### Product_importance : ความสำคัญของสินค้า เช่น ต่ำ, กลาง, สูง ### Gender : เพศ ### Discount_offered : ส่วนลดในการนำเสนอผลิตภัณฑ์ ### Weight_in_gms : น้ำหนักหน่วยเป็น กรัม ### Reached.on.Time_Y.N : การจัดส่งสินค้า 1 = ส่งไม่ตรงเวลา, 0 = ส่งตรงเวลา #Data Preprocessing ## Check-up ### ตรวจสอบข้อมูลที่ได้นำเข้ามาใช้ ``` df.shape # Check Type df.info() #Checking for null values using df.isna().sum() # ดูความหลากหลายของข้อมูล df.nunique()/df.shape[0] ``` ## Cleaning ### ลบข้อมูลที่ไม่ได้ใช้งานออก ``` #Dropping unwanted column using drop method df.drop('ID', axis = 1, inplace = True) df.head(10) ``` #Exploratory Data Analysis ##Checking value counts of categorical columns ``` cols = ['Warehouse_block', 'Mode_of_Shipment', 'Customer_care_calls', 'Customer_rating', 'Prior_purchases', 'Product_importance', 'Gender', 'Reached.on.Time_Y.N'] plt.figure(figsize = (25, 12)) plotnumber = 1 # plotting the countplot of each categorical column. for i in range(len(cols)): if plotnumber <= 8: ax = plt.subplot(2, 4, plotnumber) sns.countplot(x = cols[i], data = df, ax = ax, palette='rocket') plotnumber += 1 #plt.tight_layout() plt.show() ``` ##Ware_house block ``` object_columns = df.select_dtypes(include=['object']) warehouse = object_columns["Warehouse_block"].value_counts().reset_index() warehouse.columns = ['warehouse',"values"] fig = px.pie(warehouse,names='warehouse',values='values',color_discrete_sequence=px.colors.sequential.matter_r) fig.show() #Making a countplot of warehouse column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ warehouse plt.figure(figsize = (17, 6)) sns.countplot('Warehouse_block', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ##Gender ``` gender = object_columns['Gender'].value_counts().reset_index() gender.columns = ["Gender","Counts"] gender.drop("Gender",axis=1,inplace=True) gender["Gender"] = ["Male","Female"] fig = px.pie(gender,names='Gender',values='Counts',color_discrete_sequence=px.colors.sequential.Electric) fig.update_traces(textinfo='percent+label') #Making a countplot of gender column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ gender plt.figure(figsize = (17, 6)) sns.countplot('Gender', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ## Mode of shipment ``` transport = object_columns["Mode_of_Shipment"].value_counts().reset_index() transport.columns = ["Mode","Values"] fig = px.pie(transport,names='Mode',values='Values',color_discrete_sequence=px.colors.sequential.Magenta_r) fig.update_traces(textinfo='percent+label') # Making a countplot of mode of shipment column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ mode of shipment plt.figure(figsize = (17, 6)) sns.countplot('Mode_of_Shipment', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ##Product importance ``` product = object_columns['Product_importance'].value_counts().reset_index() product.columns = ['Importance','Values'] fig = px.pie(product,names='Importance',values='Values',color_discrete_sequence=px.colors.sequential.Emrld_r) fig.update_traces(textinfo='percent+label') # Making a countplot of product importance column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ product importance plt.figure(figsize = (17, 6)) sns.countplot('Product_importance', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ##Customer_care calls ``` customer = df['Customer_care_calls'].value_counts() fig = go.Figure() fig.add_trace(go.Bar(x=customer.index, y=customer.values, marker_color='#00cec9') ) fig.update_layout( height=500, title_text='Customer care calls', yaxis_title='count', title_x = 0.5, font=dict( family="Courier New, monospace", size=14, color="black") ) fig.show() customer = df["Customer_care_calls"].value_counts().reset_index() customer.columns = ["Number of times","Value"] fig = px.pie(customer,names="Number of times",values="Value") fig.update_traces(textinfo='percent+label') # Making a countplot of customer care calls column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ customer care calls plt.figure(figsize = (17, 6)) sns.countplot('Customer_care_calls', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ##Customer ratings ``` customer = df["Customer_rating"].value_counts().reset_index() customer.columns = ["Ratings","Value"] customer["Ratings"] = ["Rating_"+str(i) for i in customer["Ratings"].tolist()] fig = px.pie(customer,names="Ratings",values="Value",color_discrete_sequence=px.colors.sequential.algae_r) fig.update_traces(textinfo='percent+label') #Making a countplot of customer ratings calls column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ customer ratings calls plt.figure(figsize = (17, 6)) sns.countplot('Customer_rating', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ##Prior Purchases ``` prior_purchases = df['Prior_purchases'].value_counts() fig = go.Figure() fig.add_trace(go.Bar(x=prior_purchases.index, y=prior_purchases.values, marker_color='#00cec9') ) fig.update_layout( height=500, title_text='prior_purchases', yaxis_title='count', title_x = 0.5, font=dict( family="Courier New, monospace", size=14, color="black") ) fig.show() prior_purchases = df['Prior_purchases'].value_counts().reset_index() prior_purchases.columns = ['Prior_purchases', 'value_counts'] fig = px.pie(prior_purchases, names = 'Prior_purchases', values = 'value_counts', color_discrete_sequence = px.colors.sequential.matter_r, width = 650, height = 400) fig.update_traces(textinfo = 'percent+label') # Making a countplot of prior purchases column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ prior purchases plt.figure(figsize = (17, 6)) sns.countplot('Prior_purchases', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() ``` ## Reached On time delivery ``` reached_on_time_y_n = df['Reached.on.Time_Y.N'].value_counts().reset_index() reached_on_time_y_n.columns = ['Reached.on.Time_Y.N', 'value_counts'] fig = px.pie(reached_on_time_y_n, names = 'Reached.on.Time_Y.N', values = 'value_counts', color_discrete_sequence = px.colors.sequential.Darkmint_r, width = 650, height = 400, hole = 0.3) fig.update_traces(textinfo = 'percent+label') ``` # Encoding categorical variables ### ทำการแปลงค่าของข้อมูล จากตัวอักษร ให้เป็นตัวเลข และทำการ drop gender column ทิ้ง เพื่อเตรียมความพร้อมของข้อมูลก่อนเข้าสู่ models ``` df_model = df.copy() df.head() # ทำการแปลงค่าของข้อมูล จากตัวอักษร ให้เป็นตัวเลข และทำการ drop gender column ทิ้ง เพื่อเตรียมความพร้อมของข้อมูลก่อนเข้าสู่ models df_model['Warehouse_block'] = df['Warehouse_block'].map({'A' : 0, 'B': 1, 'C': 2, 'D':3, 'F': 4}) df_model['Mode_of_Shipment'] = df['Mode_of_Shipment'].map({'Flight' : 0, 'Ship': 1, 'Road': 2}) df_model['Product_importance'] = df['Product_importance'].map({'low' : 0, 'medium': 1, 'high': 2}) # df_model.drop['Gender'] = df['Gender'].apply(lambda val: 1 if val == 'M' else 0) df_model.drop(['Gender'], axis =1,inplace=True) df_model.head() df_model.info() # creating features and label target = 'Reached.on.Time_Y.N' X = df_model.drop(target, axis=1) y = df_model[target] # spiltting our data into training and test data # แบ่งข้อมูลเพื่อที่จะนำไปใช้ Train และทดสอบกับโมเดล โดยข้อมูลที่จะใช้ทดสอบจะถูกแบ่งออก 25% from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) df_model.head() # Scaling the data using standardscaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) ``` #Models ### ทดสอบหาโมเดลที่มีความแม่นยำสูง ## Naive Bayes Classification ``` from sklearn.metrics import classification_report,confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import GaussianNB model1 = GaussianNB() model1.fit(X_train, y_train) test_pred1 = model1.predict(X_test) print('Classification Report of test_data \n',classification_report(y_test,test_pred1)) confusion_matrix = plot_confusion_matrix(model1, X_test, y_test) ``` ## Random Forest Classifier ``` from sklearn.ensemble import RandomForestClassifier model2 = RandomForestClassifier(random_state = 0) model2.fit(X_train, y_train) test_pred2 = model2.predict(X_test) print('Classification Report of test_data \n',classification_report(y_test,test_pred2)) confusion_matrix = plot_confusion_matrix(model2, X_test, y_test) ``` ## AdaBoost Classifier ``` from sklearn.ensemble import AdaBoostClassifier model3 = AdaBoostClassifier(random_state = 0) model3.fit(X_train, y_train) test_pred3 = model3.predict(X_test) print('Classification Report of test_data \n',classification_report(y_test,test_pred3)) confusion_matrix = plot_confusion_matrix(model3, X_test, y_test) # ในส่วนของ recall จะได้ RandomForestClassifier เป็นโมเดลที่มีประสิทธิภาพสูงที่สุด from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score def fit_predict_score(Model, X_train, y_train, X_test, y_test): """Fit the model of your choice, predict for test data, and returns classification metrics.""" model = Model model.fit(X_train, y_train) y_pred = model.predict(X_test) return accuracy_score(y_test, y_pred), precision_score(y_test, y_pred), recall_score(y_test, y_pred), f1_score(y_test, y_pred) def model_comparison(X, y): """Creates a DataFrame comparing Naive Bayes, Random Forest, AdaBoost.""" # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) nbc_accuracy_score, nbc_pr, nbc_re, nbc_f1 = fit_predict_score(GaussianNB(), X_train, y_train, X_test, y_test) rfc_accuracy_score, rfc_pr, rfc_re, rfc_f1 = fit_predict_score(RandomForestClassifier(random_state = 0), X_train, y_train, X_test, y_test) ada_accuracy_score, ada_pr, ada_re, ada_f1 = fit_predict_score(AdaBoostClassifier(random_state = 0), X_train, y_train, X_test, y_test) models = ['Naive Bayes', 'Random Forest', 'AdaBoost'] accuracy = [nbc_accuracy_score, rfc_accuracy_score, ada_accuracy_score] precision = [nbc_pr, rfc_pr, ada_pr] recall = [nbc_re, rfc_re, ada_re] f1 = [nbc_f1, rfc_f1, ada_f1] model_comparison = pd.DataFrame(data=[models, accuracy, precision, recall, f1]).T.rename({0: 'Model', 1: 'Accuracy', 2: 'Precision', 3: 'Recall', 4: 'F1 Score' }, axis=1) return model_comparison model_comparison(X, y) ``` ##ROC Test ``` from sklearn.metrics import roc_curve, roc_auc_score, auc models = [ { 'label': 'Naive Bayes Classification', 'model': model1 }, { 'label' : 'Random Forest Classifier', 'model': model2 }, { 'label': 'AdaBoost Classifier', 'model': model3 } ] plt.clf() plt.figure(figsize=(8,6)) for m in models: m['model'].probability = True probas = m['model'].fit(X_train,y_train).predict_proba(X_test) fpr, tpr, thresholds = roc_curve(y_test, probas[:, 1]) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label='%s ROC (area = %0.2f)' % (m['label'], roc_auc)) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc=0, fontsize='small') plt.show() ``` ##Tuning ### ปรับโมเดลให้มีประสิทธิภาพดีที่สุด ``` from sklearn.model_selection import GridSearchCV # model = RandomForestClassifier(random_state=555, n_jobs=-1) param_grid = [ {'n_estimators': [10, 25], 'max_features': [5, 10], 'max_depth': [10, 50, None], 'bootstrap': [True, False]} ] grid_search_forest = GridSearchCV(model2, param_grid, cv=10, scoring='recall') grid_search_forest.fit(X_train, y_train) grid_search_forest.best_estimator_ print(classification_report(y_test, grid_search_forest.best_estimator_.predict(X_test), target_names=['0','1'])) ``` ## Feature importance ``` # หา Features ที่มีผลต่อโมเดลในการทำนายมากที่สุด model_tuning = grid_search_forest.best_estimator_ importances = grid_search_forest.best_estimator_.feature_importances_ importances indices = np.argsort(importances)[::-1] indices names = [X.columns[i] for i in np.argsort(model_tuning.feature_importances_)] names pd.DataFrame({ 'column' : X.columns, 'importances' : importances }).sort_values(by='importances', ascending=False)['importances'].cumsum() mod_imp = pd.DataFrame({ 'column' : X.columns, 'importances' : importances }).sort_values(by='importances', ascending=False) mod_imp['cumsum'] = mod_imp['importances'].cumsum() mod_imp # Create plot plt.figure(figsize=(16,8)) # Create plot title plt.title("Feature Importance") # Add bars plt.bar(range(X.shape[1]), importances[indices]) # Add feature names as x-axis labels plt.xticks(range(X.shape[1]), names, rotation=45) # Show plot plt.show() ``` #Pipelines ``` from sklearn.preprocessing import LabelEncoder class PipeLine(): def __init__(self): self.mapping = {} self.columns = ['Warehouse_block', 'Mode_of_Shipment', 'Customer_care_calls', 'Customer_rating', 'Cost_of_the_Product', 'Prior_purchases', 'Product_importance', 'Discount_offered', 'Weight_in_gms'] self.target = 'Reached.on.Time_Y.N' self.scaler = StandardScaler() def encoding(self, data): data['Warehouse_block'] = data['Warehouse_block'].map({'A' : 0, 'B': 1, 'C': 2, 'D':3, 'F': 4}) data['Mode_of_Shipment'] = data['Mode_of_Shipment'].map({'Flight' : 0, 'Ship': 1, 'Road': 2}) data['Product_importance'] = data['Product_importance'].map({'low' : 0, 'medium': 1, 'high': 2}) return data def build_trian(self, data): targets = data[self.target].copy() data = data[self.columns].copy() data = self.encoding(data) data = self.scaler.fit_transform(data) return data, targets def build_predict(self, data): data = data[self.columns].copy() data = self.encoding(data) return self.scaler.transform(data) # สร้างตัวแปลขึ้นมา 2 ตัว เพื่อเตรียมไว้ train ผ่าน function build_trian ของ Pipeline โดยใช้ไฟล์ df_orignal pipeLine = PipeLine() X_deploy, y_deploy = pipeLine.build_trian(df_orignal) # สร้างตัวแปล rft_deploy ขึ้นมารับค่าจากค่าที่ Tuning rft_deploy = RandomForestClassifier(bootstrap=False, max_depth=50, max_features=5, n_estimators=25, random_state=0) # นำ rft_deploy มาทำการ fit หรือ train ข้อมูล rft_deploy.fit(X_deploy, y_deploy) df_orignal.head() test_df = pd.DataFrame({ 'ID': np.nan, 'Warehouse_block': 'F', 'Mode_of_Shipment': 'Flight', 'Customer_care_calls': 4, 'Customer_rating': 5, 'Cost_of_the_Product': 216, 'Prior_purchases': 2, 'Product_importance': 'low', 'Gender': np.nan, 'Discount_offered': 59, 'Weight_in_gms': 3088, 'Reached.on.Time_Y.N': np.nan },index=[0]) # ทำการแปลข้อมูลผ่าน build_predict แล้วนำค่าไป predict ด้วย rft_deploy rft_deploy.predict(pipeLine.build_predict(test_df))[0] pipeLine.encoding(test_df) ``` # Evaluation ### ประเมินผลการทำโมเดล ``` print(classification_report(y_test, grid_search_forest.best_estimator_.predict(X_test), target_names=['0','1'])) ``` #Deployment ``` !pip install gradio -q import gradio as gr # udf def predict_shipping(Warehouse_block, Mode_of_Shipment, Customer_care_calls,Customer_rating, Cost_of_the_product, Prior_purchases,Product_importance,Discount_offered,Weight_in_gms): input_df = pd.DataFrame({ 'ID': np.nan, 'Warehouse_block': Warehouse_block, 'Mode_of_Shipment': Mode_of_Shipment, 'Customer_care_calls': Customer_care_calls, 'Customer_rating': Customer_rating, 'Cost_of_the_Product': Cost_of_the_product, 'Prior_purchases': Prior_purchases, 'Product_importance': Product_importance, 'Gender': np.nan, 'Discount_offered': Discount_offered, 'Weight_in_gms': Weight_in_gms },index=[0]) pred = rft_deploy.predict(pipeLine.build_predict(input_df))[0] if pred == 0: return 'On time' else: return 'Delay' # inputs Warehouse_block = gr.inputs.Dropdown(list(df['Warehouse_block'].unique()), default='A', label='Warehouse block') Mode_of_Shipment = gr.inputs.Dropdown(list(df['Mode_of_Shipment'].unique()), default='Flight', label='Mode of Shipment') Customer_care_calls = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label='Customer_care_calls') Customer_rating = gr.inputs.Slider(minimum=1, maximum=5, step=1, default=1, label='Customer_rating') Cost_of_the_product = gr.inputs.Textbox(default=1, label='Cost of the product') Prior_purchases = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label='Prior purchases') Product_importance = gr.inputs.Radio(list(df['Product_importance'].unique()), label='Product importance') Discount_offered = gr.inputs.Textbox(default=1, label='Discount offered') Weight_in_gms = gr.inputs.Textbox(default=1000, label='Weight in gms') iface = gr.Interface( fn=predict_shipping, inputs=[Warehouse_block, Mode_of_Shipment, Customer_care_calls,Customer_rating, Cost_of_the_product, Prior_purchases,Product_importance,Discount_offered,Weight_in_gms], live=False, outputs='text') iface.launch() ``` # Reference DataSet: <br/> * https://www.kaggle.com/prachi13/customer-analytics/code * https://www.kaggle.com/niteshyadav3103/eda-e-commerce-shipping-data * https://www.kaggle.com/lys620/e-commerce-shipping-eda Article * https://medium.com/@tong3089/data-mining-ครั้งแรก-cebebf88f2b2 ``` ```
github_jupyter
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import plotly.graph_objects as go import warnings warnings.filterwarnings("ignore") path = 'https://raw.githubusercontent.com/dear3089/CS434_Data_Mining_finalExam/main/E_Commerce_Shipping_Data.csv' from sklearn.feature_selection import VarianceThreshold from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import tree df_orignal = pd.read_csv(path) df = df_orignal.copy() df.head(10) df.shape # Check Type df.info() #Checking for null values using df.isna().sum() # ดูความหลากหลายของข้อมูล df.nunique()/df.shape[0] #Dropping unwanted column using drop method df.drop('ID', axis = 1, inplace = True) df.head(10) cols = ['Warehouse_block', 'Mode_of_Shipment', 'Customer_care_calls', 'Customer_rating', 'Prior_purchases', 'Product_importance', 'Gender', 'Reached.on.Time_Y.N'] plt.figure(figsize = (25, 12)) plotnumber = 1 # plotting the countplot of each categorical column. for i in range(len(cols)): if plotnumber <= 8: ax = plt.subplot(2, 4, plotnumber) sns.countplot(x = cols[i], data = df, ax = ax, palette='rocket') plotnumber += 1 #plt.tight_layout() plt.show() object_columns = df.select_dtypes(include=['object']) warehouse = object_columns["Warehouse_block"].value_counts().reset_index() warehouse.columns = ['warehouse',"values"] fig = px.pie(warehouse,names='warehouse',values='values',color_discrete_sequence=px.colors.sequential.matter_r) fig.show() #Making a countplot of warehouse column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ warehouse plt.figure(figsize = (17, 6)) sns.countplot('Warehouse_block', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() gender = object_columns['Gender'].value_counts().reset_index() gender.columns = ["Gender","Counts"] gender.drop("Gender",axis=1,inplace=True) gender["Gender"] = ["Male","Female"] fig = px.pie(gender,names='Gender',values='Counts',color_discrete_sequence=px.colors.sequential.Electric) fig.update_traces(textinfo='percent+label') #Making a countplot of gender column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ gender plt.figure(figsize = (17, 6)) sns.countplot('Gender', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() transport = object_columns["Mode_of_Shipment"].value_counts().reset_index() transport.columns = ["Mode","Values"] fig = px.pie(transport,names='Mode',values='Values',color_discrete_sequence=px.colors.sequential.Magenta_r) fig.update_traces(textinfo='percent+label') # Making a countplot of mode of shipment column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ mode of shipment plt.figure(figsize = (17, 6)) sns.countplot('Mode_of_Shipment', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() product = object_columns['Product_importance'].value_counts().reset_index() product.columns = ['Importance','Values'] fig = px.pie(product,names='Importance',values='Values',color_discrete_sequence=px.colors.sequential.Emrld_r) fig.update_traces(textinfo='percent+label') # Making a countplot of product importance column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ product importance plt.figure(figsize = (17, 6)) sns.countplot('Product_importance', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() customer = df['Customer_care_calls'].value_counts() fig = go.Figure() fig.add_trace(go.Bar(x=customer.index, y=customer.values, marker_color='#00cec9') ) fig.update_layout( height=500, title_text='Customer care calls', yaxis_title='count', title_x = 0.5, font=dict( family="Courier New, monospace", size=14, color="black") ) fig.show() customer = df["Customer_care_calls"].value_counts().reset_index() customer.columns = ["Number of times","Value"] fig = px.pie(customer,names="Number of times",values="Value") fig.update_traces(textinfo='percent+label') # Making a countplot of customer care calls column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ customer care calls plt.figure(figsize = (17, 6)) sns.countplot('Customer_care_calls', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() customer = df["Customer_rating"].value_counts().reset_index() customer.columns = ["Ratings","Value"] customer["Ratings"] = ["Rating_"+str(i) for i in customer["Ratings"].tolist()] fig = px.pie(customer,names="Ratings",values="Value",color_discrete_sequence=px.colors.sequential.algae_r) fig.update_traces(textinfo='percent+label') #Making a countplot of customer ratings calls column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ customer ratings calls plt.figure(figsize = (17, 6)) sns.countplot('Customer_rating', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() prior_purchases = df['Prior_purchases'].value_counts() fig = go.Figure() fig.add_trace(go.Bar(x=prior_purchases.index, y=prior_purchases.values, marker_color='#00cec9') ) fig.update_layout( height=500, title_text='prior_purchases', yaxis_title='count', title_x = 0.5, font=dict( family="Courier New, monospace", size=14, color="black") ) fig.show() prior_purchases = df['Prior_purchases'].value_counts().reset_index() prior_purchases.columns = ['Prior_purchases', 'value_counts'] fig = px.pie(prior_purchases, names = 'Prior_purchases', values = 'value_counts', color_discrete_sequence = px.colors.sequential.matter_r, width = 650, height = 400) fig.update_traces(textinfo = 'percent+label') # Making a countplot of prior purchases column and see the effect of Reached on time or not on the warehouse column. # เปรียบเทียบค่า Reached on time or not ของแต่ละ prior purchases plt.figure(figsize = (17, 6)) sns.countplot('Prior_purchases', hue = 'Reached.on.Time_Y.N', data = df, palette='rocket') plt.show() reached_on_time_y_n = df['Reached.on.Time_Y.N'].value_counts().reset_index() reached_on_time_y_n.columns = ['Reached.on.Time_Y.N', 'value_counts'] fig = px.pie(reached_on_time_y_n, names = 'Reached.on.Time_Y.N', values = 'value_counts', color_discrete_sequence = px.colors.sequential.Darkmint_r, width = 650, height = 400, hole = 0.3) fig.update_traces(textinfo = 'percent+label') df_model = df.copy() df.head() # ทำการแปลงค่าของข้อมูล จากตัวอักษร ให้เป็นตัวเลข และทำการ drop gender column ทิ้ง เพื่อเตรียมความพร้อมของข้อมูลก่อนเข้าสู่ models df_model['Warehouse_block'] = df['Warehouse_block'].map({'A' : 0, 'B': 1, 'C': 2, 'D':3, 'F': 4}) df_model['Mode_of_Shipment'] = df['Mode_of_Shipment'].map({'Flight' : 0, 'Ship': 1, 'Road': 2}) df_model['Product_importance'] = df['Product_importance'].map({'low' : 0, 'medium': 1, 'high': 2}) # df_model.drop['Gender'] = df['Gender'].apply(lambda val: 1 if val == 'M' else 0) df_model.drop(['Gender'], axis =1,inplace=True) df_model.head() df_model.info() # creating features and label target = 'Reached.on.Time_Y.N' X = df_model.drop(target, axis=1) y = df_model[target] # spiltting our data into training and test data # แบ่งข้อมูลเพื่อที่จะนำไปใช้ Train และทดสอบกับโมเดล โดยข้อมูลที่จะใช้ทดสอบจะถูกแบ่งออก 25% from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) df_model.head() # Scaling the data using standardscaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.metrics import classification_report,confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import GaussianNB model1 = GaussianNB() model1.fit(X_train, y_train) test_pred1 = model1.predict(X_test) print('Classification Report of test_data \n',classification_report(y_test,test_pred1)) confusion_matrix = plot_confusion_matrix(model1, X_test, y_test) from sklearn.ensemble import RandomForestClassifier model2 = RandomForestClassifier(random_state = 0) model2.fit(X_train, y_train) test_pred2 = model2.predict(X_test) print('Classification Report of test_data \n',classification_report(y_test,test_pred2)) confusion_matrix = plot_confusion_matrix(model2, X_test, y_test) from sklearn.ensemble import AdaBoostClassifier model3 = AdaBoostClassifier(random_state = 0) model3.fit(X_train, y_train) test_pred3 = model3.predict(X_test) print('Classification Report of test_data \n',classification_report(y_test,test_pred3)) confusion_matrix = plot_confusion_matrix(model3, X_test, y_test) # ในส่วนของ recall จะได้ RandomForestClassifier เป็นโมเดลที่มีประสิทธิภาพสูงที่สุด from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score def fit_predict_score(Model, X_train, y_train, X_test, y_test): """Fit the model of your choice, predict for test data, and returns classification metrics.""" model = Model model.fit(X_train, y_train) y_pred = model.predict(X_test) return accuracy_score(y_test, y_pred), precision_score(y_test, y_pred), recall_score(y_test, y_pred), f1_score(y_test, y_pred) def model_comparison(X, y): """Creates a DataFrame comparing Naive Bayes, Random Forest, AdaBoost.""" # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) nbc_accuracy_score, nbc_pr, nbc_re, nbc_f1 = fit_predict_score(GaussianNB(), X_train, y_train, X_test, y_test) rfc_accuracy_score, rfc_pr, rfc_re, rfc_f1 = fit_predict_score(RandomForestClassifier(random_state = 0), X_train, y_train, X_test, y_test) ada_accuracy_score, ada_pr, ada_re, ada_f1 = fit_predict_score(AdaBoostClassifier(random_state = 0), X_train, y_train, X_test, y_test) models = ['Naive Bayes', 'Random Forest', 'AdaBoost'] accuracy = [nbc_accuracy_score, rfc_accuracy_score, ada_accuracy_score] precision = [nbc_pr, rfc_pr, ada_pr] recall = [nbc_re, rfc_re, ada_re] f1 = [nbc_f1, rfc_f1, ada_f1] model_comparison = pd.DataFrame(data=[models, accuracy, precision, recall, f1]).T.rename({0: 'Model', 1: 'Accuracy', 2: 'Precision', 3: 'Recall', 4: 'F1 Score' }, axis=1) return model_comparison model_comparison(X, y) from sklearn.metrics import roc_curve, roc_auc_score, auc models = [ { 'label': 'Naive Bayes Classification', 'model': model1 }, { 'label' : 'Random Forest Classifier', 'model': model2 }, { 'label': 'AdaBoost Classifier', 'model': model3 } ] plt.clf() plt.figure(figsize=(8,6)) for m in models: m['model'].probability = True probas = m['model'].fit(X_train,y_train).predict_proba(X_test) fpr, tpr, thresholds = roc_curve(y_test, probas[:, 1]) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label='%s ROC (area = %0.2f)' % (m['label'], roc_auc)) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc=0, fontsize='small') plt.show() from sklearn.model_selection import GridSearchCV # model = RandomForestClassifier(random_state=555, n_jobs=-1) param_grid = [ {'n_estimators': [10, 25], 'max_features': [5, 10], 'max_depth': [10, 50, None], 'bootstrap': [True, False]} ] grid_search_forest = GridSearchCV(model2, param_grid, cv=10, scoring='recall') grid_search_forest.fit(X_train, y_train) grid_search_forest.best_estimator_ print(classification_report(y_test, grid_search_forest.best_estimator_.predict(X_test), target_names=['0','1'])) # หา Features ที่มีผลต่อโมเดลในการทำนายมากที่สุด model_tuning = grid_search_forest.best_estimator_ importances = grid_search_forest.best_estimator_.feature_importances_ importances indices = np.argsort(importances)[::-1] indices names = [X.columns[i] for i in np.argsort(model_tuning.feature_importances_)] names pd.DataFrame({ 'column' : X.columns, 'importances' : importances }).sort_values(by='importances', ascending=False)['importances'].cumsum() mod_imp = pd.DataFrame({ 'column' : X.columns, 'importances' : importances }).sort_values(by='importances', ascending=False) mod_imp['cumsum'] = mod_imp['importances'].cumsum() mod_imp # Create plot plt.figure(figsize=(16,8)) # Create plot title plt.title("Feature Importance") # Add bars plt.bar(range(X.shape[1]), importances[indices]) # Add feature names as x-axis labels plt.xticks(range(X.shape[1]), names, rotation=45) # Show plot plt.show() from sklearn.preprocessing import LabelEncoder class PipeLine(): def __init__(self): self.mapping = {} self.columns = ['Warehouse_block', 'Mode_of_Shipment', 'Customer_care_calls', 'Customer_rating', 'Cost_of_the_Product', 'Prior_purchases', 'Product_importance', 'Discount_offered', 'Weight_in_gms'] self.target = 'Reached.on.Time_Y.N' self.scaler = StandardScaler() def encoding(self, data): data['Warehouse_block'] = data['Warehouse_block'].map({'A' : 0, 'B': 1, 'C': 2, 'D':3, 'F': 4}) data['Mode_of_Shipment'] = data['Mode_of_Shipment'].map({'Flight' : 0, 'Ship': 1, 'Road': 2}) data['Product_importance'] = data['Product_importance'].map({'low' : 0, 'medium': 1, 'high': 2}) return data def build_trian(self, data): targets = data[self.target].copy() data = data[self.columns].copy() data = self.encoding(data) data = self.scaler.fit_transform(data) return data, targets def build_predict(self, data): data = data[self.columns].copy() data = self.encoding(data) return self.scaler.transform(data) # สร้างตัวแปลขึ้นมา 2 ตัว เพื่อเตรียมไว้ train ผ่าน function build_trian ของ Pipeline โดยใช้ไฟล์ df_orignal pipeLine = PipeLine() X_deploy, y_deploy = pipeLine.build_trian(df_orignal) # สร้างตัวแปล rft_deploy ขึ้นมารับค่าจากค่าที่ Tuning rft_deploy = RandomForestClassifier(bootstrap=False, max_depth=50, max_features=5, n_estimators=25, random_state=0) # นำ rft_deploy มาทำการ fit หรือ train ข้อมูล rft_deploy.fit(X_deploy, y_deploy) df_orignal.head() test_df = pd.DataFrame({ 'ID': np.nan, 'Warehouse_block': 'F', 'Mode_of_Shipment': 'Flight', 'Customer_care_calls': 4, 'Customer_rating': 5, 'Cost_of_the_Product': 216, 'Prior_purchases': 2, 'Product_importance': 'low', 'Gender': np.nan, 'Discount_offered': 59, 'Weight_in_gms': 3088, 'Reached.on.Time_Y.N': np.nan },index=[0]) # ทำการแปลข้อมูลผ่าน build_predict แล้วนำค่าไป predict ด้วย rft_deploy rft_deploy.predict(pipeLine.build_predict(test_df))[0] pipeLine.encoding(test_df) print(classification_report(y_test, grid_search_forest.best_estimator_.predict(X_test), target_names=['0','1'])) !pip install gradio -q import gradio as gr # udf def predict_shipping(Warehouse_block, Mode_of_Shipment, Customer_care_calls,Customer_rating, Cost_of_the_product, Prior_purchases,Product_importance,Discount_offered,Weight_in_gms): input_df = pd.DataFrame({ 'ID': np.nan, 'Warehouse_block': Warehouse_block, 'Mode_of_Shipment': Mode_of_Shipment, 'Customer_care_calls': Customer_care_calls, 'Customer_rating': Customer_rating, 'Cost_of_the_Product': Cost_of_the_product, 'Prior_purchases': Prior_purchases, 'Product_importance': Product_importance, 'Gender': np.nan, 'Discount_offered': Discount_offered, 'Weight_in_gms': Weight_in_gms },index=[0]) pred = rft_deploy.predict(pipeLine.build_predict(input_df))[0] if pred == 0: return 'On time' else: return 'Delay' # inputs Warehouse_block = gr.inputs.Dropdown(list(df['Warehouse_block'].unique()), default='A', label='Warehouse block') Mode_of_Shipment = gr.inputs.Dropdown(list(df['Mode_of_Shipment'].unique()), default='Flight', label='Mode of Shipment') Customer_care_calls = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label='Customer_care_calls') Customer_rating = gr.inputs.Slider(minimum=1, maximum=5, step=1, default=1, label='Customer_rating') Cost_of_the_product = gr.inputs.Textbox(default=1, label='Cost of the product') Prior_purchases = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label='Prior purchases') Product_importance = gr.inputs.Radio(list(df['Product_importance'].unique()), label='Product importance') Discount_offered = gr.inputs.Textbox(default=1, label='Discount offered') Weight_in_gms = gr.inputs.Textbox(default=1000, label='Weight in gms') iface = gr.Interface( fn=predict_shipping, inputs=[Warehouse_block, Mode_of_Shipment, Customer_care_calls,Customer_rating, Cost_of_the_product, Prior_purchases,Product_importance,Discount_offered,Weight_in_gms], live=False, outputs='text') iface.launch()
0.569134
0.239761
``` %pylab inline from constantLowSkill2 import * Vgrid = np.load("LowSkillWorker2.npy") gamma num = 10000 ''' x = [w,n,m,s,e,o] x = [5,0,0,0,0,0] ''' from jax import random def simulation(key): initE = random.choice(a = nE, p=E_distribution, key = key) initS = random.choice(a = nS, p=S_distribution, key = key) x = [5, 0, 0, initS, initE, 0] path = [] move = [] for t in range(T_min, T_max): _, key = random.split(key) if t == T_max-1: _,a = V(t,Vgrid[:,:,:,:,:,:,t],x) else: _,a = V(t,Vgrid[:,:,:,:,:,:,t+1],x) xp = transition(t,a.reshape((1,-1)),x) p = xp[:,-1] x_next = xp[:,:-1] path.append(x) move.append(a) x = x_next[random.choice(a = nS*nE, p=p, key = key)] path.append(x) return jnp.array(path), jnp.array(move) %%time # simulation part keys = vmap(random.PRNGKey)(jnp.arange(num)) Paths, Moves = vmap(simulation)(keys) # x = [w,n,m,s,e,o] # x = [0,1,2,3,4,5] ws = Paths[:,:,0].T ns = Paths[:,:,1].T ms = Paths[:,:,2].T ss = Paths[:,:,3].T es = Paths[:,:,4].T os = Paths[:,:,5].T cs = Moves[:,:,0].T bs = Moves[:,:,1].T ks = Moves[:,:,2].T hs = Moves[:,:,3].T actions = Moves[:,:,4].T plt.plot(detEarning) plt.figure(figsize = [16,8]) plt.title("The mean values of simulation") plt.plot(range(20, T_max + 21),jnp.mean(ws + H*pt*os - ms,axis = 1), label = "wealth + home equity") plt.plot(range(20, T_max + 21),jnp.mean(ws,axis = 1), label = "wealth") plt.plot(range(20, T_max + 20),jnp.mean(cs,axis = 1), label = "consumption") plt.plot(range(20, T_max + 20),jnp.mean(bs,axis = 1), label = "bond") plt.plot(range(20, T_max + 20),jnp.mean(ks,axis = 1), label = "stock") plt.legend() plt.title("housing consumption") plt.plot(range(20, T_max + 20),(hs).mean(axis = 1), label = "housing") plt.title("housing consumption for renting peole") plt.plot(hs[:, jnp.where(os.sum(axis = 0) == 0)[0]].mean(axis = 1), label = "housing") plt.title("house owner percentage in the population") plt.plot(range(20, T_max + 21),(os).mean(axis = 1), label = "owning") jnp.where(os[T_max - 1, :] == 0) # agent number, x = [w,n,m,s,e,o] agentNum = 35 plt.figure(figsize = [16,8]) plt.plot(range(20, T_max + 21),(ws + os*(H*pt - ms))[:,agentNum], label = "wealth + home equity") plt.plot(range(20, T_max + 21),ws[:,agentNum], label = "wealth") plt.plot(range(20, T_max + 21),ns[:,agentNum], label = "401k") plt.plot(range(20, T_max + 21),ms[:,agentNum], label = "mortgage") plt.plot(range(20, T_max + 20),cs[:,agentNum], label = "consumption") plt.plot(range(20, T_max + 20),bs[:,agentNum], label = "bond") plt.plot(range(20, T_max + 20),ks[:,agentNum], label = "stock") plt.plot(range(20, T_max + 21),os[:,agentNum]*100, label = "ownership", color = "k") plt.legend() # agent number, x = [w,n,m,s,e,o] agentNum = 29 plt.figure(figsize = [16,8]) plt.plot(range(20, T_max + 21),(ws + os*(H*pt - ms))[:,agentNum], label = "wealth + home equity") plt.plot(range(20, T_max + 21),ws[:,agentNum], label = "wealth") plt.plot(range(20, T_max + 21),ns[:,agentNum], label = "401k") plt.plot(range(20, T_max + 21),ms[:,agentNum], label = "mortgage") plt.plot(range(20, T_max + 20),cs[:,agentNum], label = "consumption") plt.plot(range(20, T_max + 20),bs[:,agentNum], label = "bond") plt.plot(range(20, T_max + 20),ks[:,agentNum], label = "stock") plt.plot(range(20, T_max + 21),os[:,agentNum]*100, label = "ownership", color = "k") plt.legend() # agent selling time collection agentTime = [] for t in range(30): if ((os[t,:] == 0) & (os[t+1,:] == 1)).sum()>0: for agentNum in jnp.where((os[t,:] == 0) & (os[t+1,:] == 1))[0]: agentTime.append([t, agentNum]) agentTime = jnp.array(agentTime) # agent selling time collection agentHold = [] for t in range(30): if ((os[t,:] == 0) & (os[t+1,:] == 0)).sum()>0: for agentNum in jnp.where((os[t,:] == 0) & (os[t+1,:] == 0))[0]: agentHold.append([t, agentNum]) agentHold = jnp.array(agentHold) plt.title("weath level for buyer and renter") www = (os*(ws+H*pt - ms)).sum(axis = 1)/(os).sum(axis = 1) for age in range(30): buyer = agentTime[agentTime[:,0] == age] renter = agentHold[agentHold[:,0] == age] plt.scatter(age, ws[buyer[:,0], buyer[:,1]].mean(),color = "b") plt.scatter(age, www[age], color = "green") plt.scatter(age, ws[renter[:,0], renter[:,1]].mean(),color = "r") plt.title("employement status for buyer and renter") for age in range(31): buyer = agentTime[agentTime[:,0] == age] renter = agentHold[agentHold[:,0] == age] plt.scatter(age, es[buyer[:,0], buyer[:,1]].mean(),color = "b") plt.scatter(age, es[renter[:,0], renter[:,1]].mean(),color = "r") # At every age plt.plot((os[:T_max,:]*ks/(ks+bs)).sum(axis = 1)/os[:T_max,:].sum(axis = 1), label = "owner") plt.plot(((1-os[:T_max,:])*ks/(ks+bs)).sum(axis = 1)/(1-os)[:T_max,:].sum(axis = 1), label = "renter") plt.legend() ```
github_jupyter
%pylab inline from constantLowSkill2 import * Vgrid = np.load("LowSkillWorker2.npy") gamma num = 10000 ''' x = [w,n,m,s,e,o] x = [5,0,0,0,0,0] ''' from jax import random def simulation(key): initE = random.choice(a = nE, p=E_distribution, key = key) initS = random.choice(a = nS, p=S_distribution, key = key) x = [5, 0, 0, initS, initE, 0] path = [] move = [] for t in range(T_min, T_max): _, key = random.split(key) if t == T_max-1: _,a = V(t,Vgrid[:,:,:,:,:,:,t],x) else: _,a = V(t,Vgrid[:,:,:,:,:,:,t+1],x) xp = transition(t,a.reshape((1,-1)),x) p = xp[:,-1] x_next = xp[:,:-1] path.append(x) move.append(a) x = x_next[random.choice(a = nS*nE, p=p, key = key)] path.append(x) return jnp.array(path), jnp.array(move) %%time # simulation part keys = vmap(random.PRNGKey)(jnp.arange(num)) Paths, Moves = vmap(simulation)(keys) # x = [w,n,m,s,e,o] # x = [0,1,2,3,4,5] ws = Paths[:,:,0].T ns = Paths[:,:,1].T ms = Paths[:,:,2].T ss = Paths[:,:,3].T es = Paths[:,:,4].T os = Paths[:,:,5].T cs = Moves[:,:,0].T bs = Moves[:,:,1].T ks = Moves[:,:,2].T hs = Moves[:,:,3].T actions = Moves[:,:,4].T plt.plot(detEarning) plt.figure(figsize = [16,8]) plt.title("The mean values of simulation") plt.plot(range(20, T_max + 21),jnp.mean(ws + H*pt*os - ms,axis = 1), label = "wealth + home equity") plt.plot(range(20, T_max + 21),jnp.mean(ws,axis = 1), label = "wealth") plt.plot(range(20, T_max + 20),jnp.mean(cs,axis = 1), label = "consumption") plt.plot(range(20, T_max + 20),jnp.mean(bs,axis = 1), label = "bond") plt.plot(range(20, T_max + 20),jnp.mean(ks,axis = 1), label = "stock") plt.legend() plt.title("housing consumption") plt.plot(range(20, T_max + 20),(hs).mean(axis = 1), label = "housing") plt.title("housing consumption for renting peole") plt.plot(hs[:, jnp.where(os.sum(axis = 0) == 0)[0]].mean(axis = 1), label = "housing") plt.title("house owner percentage in the population") plt.plot(range(20, T_max + 21),(os).mean(axis = 1), label = "owning") jnp.where(os[T_max - 1, :] == 0) # agent number, x = [w,n,m,s,e,o] agentNum = 35 plt.figure(figsize = [16,8]) plt.plot(range(20, T_max + 21),(ws + os*(H*pt - ms))[:,agentNum], label = "wealth + home equity") plt.plot(range(20, T_max + 21),ws[:,agentNum], label = "wealth") plt.plot(range(20, T_max + 21),ns[:,agentNum], label = "401k") plt.plot(range(20, T_max + 21),ms[:,agentNum], label = "mortgage") plt.plot(range(20, T_max + 20),cs[:,agentNum], label = "consumption") plt.plot(range(20, T_max + 20),bs[:,agentNum], label = "bond") plt.plot(range(20, T_max + 20),ks[:,agentNum], label = "stock") plt.plot(range(20, T_max + 21),os[:,agentNum]*100, label = "ownership", color = "k") plt.legend() # agent number, x = [w,n,m,s,e,o] agentNum = 29 plt.figure(figsize = [16,8]) plt.plot(range(20, T_max + 21),(ws + os*(H*pt - ms))[:,agentNum], label = "wealth + home equity") plt.plot(range(20, T_max + 21),ws[:,agentNum], label = "wealth") plt.plot(range(20, T_max + 21),ns[:,agentNum], label = "401k") plt.plot(range(20, T_max + 21),ms[:,agentNum], label = "mortgage") plt.plot(range(20, T_max + 20),cs[:,agentNum], label = "consumption") plt.plot(range(20, T_max + 20),bs[:,agentNum], label = "bond") plt.plot(range(20, T_max + 20),ks[:,agentNum], label = "stock") plt.plot(range(20, T_max + 21),os[:,agentNum]*100, label = "ownership", color = "k") plt.legend() # agent selling time collection agentTime = [] for t in range(30): if ((os[t,:] == 0) & (os[t+1,:] == 1)).sum()>0: for agentNum in jnp.where((os[t,:] == 0) & (os[t+1,:] == 1))[0]: agentTime.append([t, agentNum]) agentTime = jnp.array(agentTime) # agent selling time collection agentHold = [] for t in range(30): if ((os[t,:] == 0) & (os[t+1,:] == 0)).sum()>0: for agentNum in jnp.where((os[t,:] == 0) & (os[t+1,:] == 0))[0]: agentHold.append([t, agentNum]) agentHold = jnp.array(agentHold) plt.title("weath level for buyer and renter") www = (os*(ws+H*pt - ms)).sum(axis = 1)/(os).sum(axis = 1) for age in range(30): buyer = agentTime[agentTime[:,0] == age] renter = agentHold[agentHold[:,0] == age] plt.scatter(age, ws[buyer[:,0], buyer[:,1]].mean(),color = "b") plt.scatter(age, www[age], color = "green") plt.scatter(age, ws[renter[:,0], renter[:,1]].mean(),color = "r") plt.title("employement status for buyer and renter") for age in range(31): buyer = agentTime[agentTime[:,0] == age] renter = agentHold[agentHold[:,0] == age] plt.scatter(age, es[buyer[:,0], buyer[:,1]].mean(),color = "b") plt.scatter(age, es[renter[:,0], renter[:,1]].mean(),color = "r") # At every age plt.plot((os[:T_max,:]*ks/(ks+bs)).sum(axis = 1)/os[:T_max,:].sum(axis = 1), label = "owner") plt.plot(((1-os[:T_max,:])*ks/(ks+bs)).sum(axis = 1)/(1-os)[:T_max,:].sum(axis = 1), label = "renter") plt.legend()
0.273089
0.608769
``` import numpy as np from qutip import * import matplotlib.pyplot as plt import time import scipy.integrate as integrate wv=1 # Frequency associated to the variation of the magnetic field T=2*np.pi/wv; # Magnetic field period wR=0.5 Ne=10; e0=0.01; ef=0.2; elist=np.linspace(e0,ef,Ne); # Larmor frequency args = {'wv': wv} nT=100; tlist= np.linspace(0, T, nT); qe1=np.zeros(len(elist)) # Empty vector to save quasienergies for each value of wR qe2=np.zeros(len(elist)) # Empty vector to save quasienergies for each value of wR fD1=np.zeros(len(elist)); fD2=np.zeros(len(elist)); fG1=np.zeros(len(elist)); fG2=np.zeros(len(elist)); b = Bloch(); def fx(t,args): return np.cos(args["wv"]*t) def fy(t,args): return np.sin(args["wv"]*t) for n, e in enumerate(elist): # Iterative process to obtain quasienergies p,pe= integrate.quad(lambda t: np.sqrt(1-(e*np.cos(t))**2),0,2*np.pi) Hx = 1/2*wR*p*np.sqrt(1-e**2)*sigmax() Hy = 1/2*wR*p*sigmay() H = [[Hx, fx], [Hy, fy]]; f_modes_0, f_energies = floquet_modes(H, T, args) qe1[n]=f_energies[0] qe2[n]=f_energies[1] f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args); # Calculate floquet states in all tlists e1=np.zeros(len(tlist)) e2=np.zeros(len(tlist)) nx1 = np.zeros(len(tlist)) ny1 = np.zeros(len(tlist)) nz1 = np.zeros(len(tlist)) nx2 = np.zeros(len(tlist)) ny2 = np.zeros(len(tlist)) nz2 = np.zeros(len(tlist)) for i, t in enumerate(tlist): psi_t_1,psi_t_2 = floquet_modes_t_lookup(f_modes_table_t, t, T) # Hd=Hx*fx(t,args)+Hy*fy(t,args) e1[i] = expect(Hd, psi_t_1) e2[i] = expect(Hd, psi_t_2) fDN1=-T/nT*np.sum(e1) fDN2=-T/nT*np.sum(e2) nx1[i] = expect(sigmax(), psi_t_1) ny1[i] = expect(sigmay(), psi_t_1) nz1[i] = expect(sigmaz(), psi_t_1) nx2[i] = expect(sigmax(), psi_t_2) ny2[i] = expect(sigmay(), psi_t_2) nz2[i] = expect(sigmaz(), psi_t_2) PN1=[nx1,ny1,nz1] PN2=[nx2,ny2,nz2] b.add_points(PN1,'l') b.add_points(PN2,'l') fD1[n]=fDN1 fD2[n]=fDN2 fG1[n]=f_energies[0]-fDN1 fG2[n]=f_energies[1]-fDN2 fig, ((ax1, ax2),( ax3, ax4),(ax5,ax6)) = plt.subplots(nrows=3, ncols=2, sharex=True) ax1.plot(elist,qe1,'+') ax1.set_ylabel('Quasienergie1') ax2.plot(elist,qe2,'+') ax3.plot(elist,fD1,'+') ax3.set_ylabel('Dynamic') ax4.plot(elist,fD2,'+') ax5.plot(elist,fG1,'+') ax5.set_xlabel('$\epsilon$') ax5.set_ylabel('Geometric') ax6.plot(elist,fG2,'+') ax6.set_xlabel('$\epsilon$') b.make_sphere() ```
github_jupyter
import numpy as np from qutip import * import matplotlib.pyplot as plt import time import scipy.integrate as integrate wv=1 # Frequency associated to the variation of the magnetic field T=2*np.pi/wv; # Magnetic field period wR=0.5 Ne=10; e0=0.01; ef=0.2; elist=np.linspace(e0,ef,Ne); # Larmor frequency args = {'wv': wv} nT=100; tlist= np.linspace(0, T, nT); qe1=np.zeros(len(elist)) # Empty vector to save quasienergies for each value of wR qe2=np.zeros(len(elist)) # Empty vector to save quasienergies for each value of wR fD1=np.zeros(len(elist)); fD2=np.zeros(len(elist)); fG1=np.zeros(len(elist)); fG2=np.zeros(len(elist)); b = Bloch(); def fx(t,args): return np.cos(args["wv"]*t) def fy(t,args): return np.sin(args["wv"]*t) for n, e in enumerate(elist): # Iterative process to obtain quasienergies p,pe= integrate.quad(lambda t: np.sqrt(1-(e*np.cos(t))**2),0,2*np.pi) Hx = 1/2*wR*p*np.sqrt(1-e**2)*sigmax() Hy = 1/2*wR*p*sigmay() H = [[Hx, fx], [Hy, fy]]; f_modes_0, f_energies = floquet_modes(H, T, args) qe1[n]=f_energies[0] qe2[n]=f_energies[1] f_modes_table_t = floquet_modes_table(f_modes_0, f_energies, tlist, H, T, args); # Calculate floquet states in all tlists e1=np.zeros(len(tlist)) e2=np.zeros(len(tlist)) nx1 = np.zeros(len(tlist)) ny1 = np.zeros(len(tlist)) nz1 = np.zeros(len(tlist)) nx2 = np.zeros(len(tlist)) ny2 = np.zeros(len(tlist)) nz2 = np.zeros(len(tlist)) for i, t in enumerate(tlist): psi_t_1,psi_t_2 = floquet_modes_t_lookup(f_modes_table_t, t, T) # Hd=Hx*fx(t,args)+Hy*fy(t,args) e1[i] = expect(Hd, psi_t_1) e2[i] = expect(Hd, psi_t_2) fDN1=-T/nT*np.sum(e1) fDN2=-T/nT*np.sum(e2) nx1[i] = expect(sigmax(), psi_t_1) ny1[i] = expect(sigmay(), psi_t_1) nz1[i] = expect(sigmaz(), psi_t_1) nx2[i] = expect(sigmax(), psi_t_2) ny2[i] = expect(sigmay(), psi_t_2) nz2[i] = expect(sigmaz(), psi_t_2) PN1=[nx1,ny1,nz1] PN2=[nx2,ny2,nz2] b.add_points(PN1,'l') b.add_points(PN2,'l') fD1[n]=fDN1 fD2[n]=fDN2 fG1[n]=f_energies[0]-fDN1 fG2[n]=f_energies[1]-fDN2 fig, ((ax1, ax2),( ax3, ax4),(ax5,ax6)) = plt.subplots(nrows=3, ncols=2, sharex=True) ax1.plot(elist,qe1,'+') ax1.set_ylabel('Quasienergie1') ax2.plot(elist,qe2,'+') ax3.plot(elist,fD1,'+') ax3.set_ylabel('Dynamic') ax4.plot(elist,fD2,'+') ax5.plot(elist,fG1,'+') ax5.set_xlabel('$\epsilon$') ax5.set_ylabel('Geometric') ax6.plot(elist,fG2,'+') ax6.set_xlabel('$\epsilon$') b.make_sphere()
0.304765
0.562177
# Classifying Fashion-MNIST Now it's your turn to build and train a neural network. You'll be using the [Fashion-MNIST dataset](https://github.com/zalandoresearch/fashion-mnist), a drop-in replacement for the MNIST dataset. MNIST is actually quite trivial with neural networks where you can easily achieve better than 97% accuracy. Fashion-MNIST is a set of 28x28 greyscale images of clothes. It's more complex than MNIST, so it's a better representation of the actual performance of your network, and a better representation of datasets you'll use in the real world. <img src='assets/fashion-mnist-sprite.png' width=500px> In this notebook, you'll build your own neural network. For the most part, you could just copy and paste the code from Part 3, but you wouldn't be learning. It's important for you to write the code yourself and get it to work. Feel free to consult the previous notebooks though as you work through this. First off, let's load the dataset through torchvision. ``` import torch from torchvision import datasets, transforms import helper # Define a transform to normalize the data transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # Download and load the training data trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) # Download and load the test data testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=False, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True) ``` Here we can see one of the images. ``` image, label = next(iter(trainloader)) helper.imshow(image[0,:]); ``` ## Building the network Here you should define your network. As with MNIST, each image is 28x28 which is a total of 784 pixels, and there are 10 classes. You should include at least one hidden layer. We suggest you use ReLU activations for the layers and to return the logits or log-softmax from the forward pass. It's up to you how many layers you add and the size of those layers. ``` # TODO: Define your network architecture here import torch from torch import nn import torch.nn.functional as F from torchvision import datasets, transforms from torch import optim model = nn.Sequential(nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 10), nn.LogSoftmax(dim=1)) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.004) epochs = 10 for e in range(epochs): running_loss = 0 for images, labels in trainloader: # Clear the gradients, do this because gradients are accumulated optimizer.zero_grad() # Flatten MNIST images into a 784 long vector images = images.view(images.shape[0], -1) # Forward pass output = model(images) # Loss calculation loss = criterion(output, labels) # Backpropagation loss.backward() # Gradient descent optimizer.step() running_loss += loss.item() else: print(f"Training loss: {running_loss/len(trainloader)}") ``` # Train the network Now you should create your network and train it. First you'll want to define [the criterion](http://pytorch.org/docs/master/nn.html#loss-functions) ( something like `nn.CrossEntropyLoss`) and [the optimizer](http://pytorch.org/docs/master/optim.html) (typically `optim.SGD` or `optim.Adam`). Then write the training code. Remember the training pass is a fairly straightforward process: * Make a forward pass through the network to get the logits * Use the logits to calculate the loss * Perform a backward pass through the network with `loss.backward()` to calculate the gradients * Take a step with the optimizer to update the weights By adjusting the hyperparameters (hidden units, learning rate, etc), you should be able to get the training loss below 0.4. ``` # TODO: Create the network, define the criterion and optimizer # TODO: Train the network here %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper # Test out your network! dataiter = iter(testloader) images, labels = dataiter.next() img = images[0] # Convert 2D image to 1D vector img = img.resize_(1, 784) with torch.no_grad(): logps = model(img) # Output of the network are log-probabilities, need to take exponential for probabilities ps = torch.exp(logps) # TODO: Calculate the class probabilities (softmax) for img # Plot the image and probabilities helper.view_classify(img.resize_(1, 28, 28), ps, version='Fashion') ```
github_jupyter
import torch from torchvision import datasets, transforms import helper # Define a transform to normalize the data transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # Download and load the training data trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) # Download and load the test data testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=False, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True) image, label = next(iter(trainloader)) helper.imshow(image[0,:]); # TODO: Define your network architecture here import torch from torch import nn import torch.nn.functional as F from torchvision import datasets, transforms from torch import optim model = nn.Sequential(nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 10), nn.LogSoftmax(dim=1)) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.004) epochs = 10 for e in range(epochs): running_loss = 0 for images, labels in trainloader: # Clear the gradients, do this because gradients are accumulated optimizer.zero_grad() # Flatten MNIST images into a 784 long vector images = images.view(images.shape[0], -1) # Forward pass output = model(images) # Loss calculation loss = criterion(output, labels) # Backpropagation loss.backward() # Gradient descent optimizer.step() running_loss += loss.item() else: print(f"Training loss: {running_loss/len(trainloader)}") # TODO: Create the network, define the criterion and optimizer # TODO: Train the network here %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper # Test out your network! dataiter = iter(testloader) images, labels = dataiter.next() img = images[0] # Convert 2D image to 1D vector img = img.resize_(1, 784) with torch.no_grad(): logps = model(img) # Output of the network are log-probabilities, need to take exponential for probabilities ps = torch.exp(logps) # TODO: Calculate the class probabilities (softmax) for img # Plot the image and probabilities helper.view_classify(img.resize_(1, 28, 28), ps, version='Fashion')
0.592667
0.991015
<a href="https://colab.research.google.com/github/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_02_2_pandas_cat.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # T81-558: Applications of Deep Neural Networks **Module 2: Python for Machine Learning** * Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx) * For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). # Module 2 Material Main video lecture: * Part 2.1: Introduction to Pandas [[Video]](https://www.youtube.com/watch?v=bN4UuCBdpZc&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_02_1_python_pandas.ipynb) * **Part 2.2: Categorical Values** [[Video]](https://www.youtube.com/watch?v=4a1odDpG0Ho&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_02_2_pandas_cat.ipynb) * Part 2.3: Grouping, Sorting, and Shuffling in Python Pandas [[Video]](https://www.youtube.com/watch?v=YS4wm5gD8DM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_02_3_pandas_grouping.ipynb) * Part 2.4: Using Apply and Map in Pandas for Keras [[Video]](https://www.youtube.com/watch?v=XNCEZ4WaPBY&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_02_4_pandas_functional.ipynb) * Part 2.5: Feature Engineering in Pandas for Deep Learning in Keras [[Video]](https://www.youtube.com/watch?v=BWPTj4_Mi9E&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](t81_558_class_02_5_pandas_features.ipynb) # Google CoLab Instructions The following code ensures that Google CoLab is running the correct version of TensorFlow. ``` try: %tensorflow_version 2.x COLAB = True print("Note: using Google CoLab") except: print("Note: not using Google CoLab") COLAB = False ``` # Part 2.2: Categorical and Continuous Values Neural networks require their input to be a fixed number of columns. This input format is very similar to spreadsheet data. This input must be entirely numeric. It is essential to represent the data in a way that the neural network can train from it. In class 6, we will see even more ways to preprocess data. For now, we will look at several of the most basic ways to transform data for a neural network. Before we look at specific ways to preprocess data, it is important to consider four basic types of data, as defined by [[Cite:stevens1946theory]](http://psychology.okstate.edu/faculty/jgrice/psyc3214/Stevens_FourScales_1946.pdf). Statisticians commonly refer to as the [levels of measure](https://en.wikipedia.org/wiki/Level_of_measurement): * Character Data (strings) * **Nominal** - Individual discrete items, no order. For example, color, zip code, shape. * **Ordinal** - Individual distinct items have an implied order. For example grade level, job title, Starbucks(tm) coffee size (tall, vente, grande) * Numeric Data * **Interval** - Numeric values, no defined start. For example, temperature. You would never say, "yesterday was twice as hot as today." * **Ratio** - Numeric values, clearly defined start. For example, speed. You would say that "The first car is going twice as fast as the second." ### Encoding Continuous Values One common transformation is to normalize the inputs. It is sometimes valuable to normalization numeric inputs to be put in a standard form so that the program can easily compare these two values. Consider if a friend told you that he received a 10 dollar discount. Is this a good deal? Maybe. But the cost is not normalized. If your friend purchased a car, then the discount is not that good. If your friend bought dinner, this is an excellent discount! Percentages are a prevalent form of normalization. If your friend tells you they got 10% off, we know that this is a better discount than 5%. It does not matter how much the purchase price was. One widespread machine learning normalization is the Z-Score: $z = \frac{x - \mu}{\sigma} $ To calculate the Z-Score you need to also calculate the mean($\mu$) and the standard deviation ($\sigma$). The mean is calculated as follows: $\mu = \bar{x} = \frac{x_1+x_2+\cdots +x_n}{n}$ The standard deviation is calculated as follows: $\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \mu)^2}, {\rm \ \ where\ \ } \mu = \frac{1}{N} \sum_{i=1}^N x_i$ The following Python code replaces the mpg with a z-score. Cars with average MPG will be near zero, above zero is above average, and below zero is below average. Z-Scores above/below -3/3 are very rare, these are outliers. ``` import os import pandas as pd from scipy.stats import zscore df = pd.read_csv( "https://data.heatonresearch.com/data/t81-558/auto-mpg.csv", na_values=['NA','?']) pd.set_option('display.max_columns', 7) pd.set_option('display.max_rows', 5) display(df) df['mpg'] = zscore(df['mpg']) display(df) ``` ### Encoding Categorical Values as Dummies The traditional means of encoding categorical values is to make them dummy variables. This technique is also called one-hot-encoding. Consider the following data set. ``` import pandas as pd df = pd.read_csv( "https://data.heatonresearch.com/data/t81-558/jh-simple-dataset.csv", na_values=['NA','?']) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 0) display(df) areas = list(df['area'].unique()) print(f'Areas:{areas}') areas = set(df['area']) print(f'Number of areas: {len(areas)}') print(f'Areas: {areas}') ``` There are four unique values in the areas column. To encode these to dummy variables, we would use four columns, each of which would represent one of the areas. For each row, one column would have a value of one, the rest zeros. For this reason, this type of encoding is sometimes called one-hot encoding. The following code shows how you might encode the values "a" through "d." The value A becomes [1,0,0,0] and the value B becomes [0,1,0,0]. ``` dummies = pd.get_dummies(['a','b','c','d'],prefix='area') print(dummies) dummies = pd.get_dummies(df['area'],prefix='area') print(dummies[0:10]) # Just show the first 10 df = pd.concat([df,dummies],axis=1) # hmm this code removes original columns # df = pd.get_dummies(df, columns=['area']) ``` To encode the "area" column, we use the following. Note that it is necessary to merge these dummies back into the data frame. ``` pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 10) display(df[['id','job','area','income','area_a', 'area_b','area_c','area_d']]) ``` Usually, you will remove the original column ('area'), because it is the goal to get the data frame to be entirely numeric for the neural network. ``` pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 5) df.drop('area', axis=1, inplace=True) display(df[['id','job','income','area_a', 'area_b','area_c','area_d']]) ``` ### Target Encoding for Categoricals Target encoding can sometimes increase the predictive power of a machine learning model. However, it also dramatically increases the risk of overfitting. Because of this risk, you must take care if you are using this method. Target encoding is a popular technique for Kaggle competitions. Generally, target encoding can only be used on a categorical feature when the output of the machine learning model is numeric (regression). The concept of target encoding is straightforward. For each category, we calculate the average target value for that category. Then to encode, we substitute the percent that corresponds to the category that the categorical value has. Unlike dummy variables, where you have a column for each category, with target encoding, the program only needs a single column. In this way, target coding is more efficient than dummy variables ``` # Create a small sample dataset import pandas as pd import numpy as np np.random.seed(43) df = pd.DataFrame({ 'cont_9': np.random.rand(10)*100, 'cat_0': ['dog'] * 5 + ['cat'] * 5, 'cat_1': ['wolf'] * 9 + ['tiger'] * 1, 'y': [1, 0, 1, 1, 1, 1, 0, 0, 0, 0] }) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 0) display(df) ``` Rather than creating dummy variables for "dog" and "cat," we would like to change it to a number. We could use 0 for cat, 1 for dog. However, we can encode more information than just that. The simple 0 or 1 would also only work for one animal. Consider what the mean target value is for cat and dog. ``` means0 = df.groupby('cat_0')['y'].mean().to_dict() means0 ``` The danger is that we are now using the target value for training. This technique will potentially lead to overfitting. The possibility of overfitting is even greater if there are a small number of a particular category. To prevent this from happening, we use a weighting factor. The stronger the weight, the more than categories with a small number of values will tend towards the overall average of y. You can perform this calculation as follows. ``` df['y'].mean() ``` You can implement target encoding as follows. For more information on Target Encoding, refer to the article ["Target Encoding Done the Right Way"](https://maxhalford.github.io/blog/target-encoding-done-the-right-way/), that I based this code upon. ``` def calc_smooth_mean(df1, df2, cat_name, target, weight): # Compute the global mean mean = df[target].mean() print(f'---mean is {mean}') # Compute the number of values and the mean of each group agg = df.groupby(cat_name)[target].agg(['count', 'mean']) print(f'---agg is {agg}') counts = agg['count'] print(f'---counts is {counts}') means = agg['mean'] print(f'---means is {means}') print('------------') print('---weight---') print(weight) print('------------') print('------------') print('------------') # Compute the "smoothed" means smooth = (counts * means + weight * mean) / (counts + weight) print(f'---smooth is {smooth}') # Replace each value by the according smoothed mean if df2 is None: return df1[cat_name].map(smooth) else: return df1[cat_name].map(smooth),df2[cat_name].map(smooth.to_dict()) ``` The following code encodes these two categories. ``` WEIGHT = 5 df['cat_0_enc'] = calc_smooth_mean(df1=df, df2=None, cat_name='cat_0', target='y', weight=WEIGHT) df['cat_1_enc'] = calc_smooth_mean(df1=df, df2=None, cat_name='cat_1', target='y', weight=WEIGHT) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 0) display(df) ``` ### Encoding Categorical Values as Ordinal Typically categoricals will be encoded as dummy variables. However, there might be other techniques to convert categoricals to numeric. Any time there is an order to the categoricals, a number should be used. Consider if you had a categorical that described the current education level of an individual. * Kindergarten (0) * First Grade (1) * Second Grade (2) * Third Grade (3) * Fourth Grade (4) * Fifth Grade (5) * Sixth Grade (6) * Seventh Grade (7) * Eighth Grade (8) * High School Freshman (9) * High School Sophomore (10) * High School Junior (11) * High School Senior (12) * College Freshman (13) * College Sophomore (14) * College Junior (15) * College Senior (16) * Graduate Student (17) * PhD Candidate (18) * Doctorate (19) * Post Doctorate (20) The above list has 21 levels. This would take 21 dummy variables. However, simply encoding this to dummies would lose the order information. Perhaps the easiest approach would be to assign simply number them and assign the category a single number that is equal to the value in parenthesis above. However, we might be able to do even better. Graduate student is likely more than a year, so you might increase more than just one value.
github_jupyter
try: %tensorflow_version 2.x COLAB = True print("Note: using Google CoLab") except: print("Note: not using Google CoLab") COLAB = False import os import pandas as pd from scipy.stats import zscore df = pd.read_csv( "https://data.heatonresearch.com/data/t81-558/auto-mpg.csv", na_values=['NA','?']) pd.set_option('display.max_columns', 7) pd.set_option('display.max_rows', 5) display(df) df['mpg'] = zscore(df['mpg']) display(df) import pandas as pd df = pd.read_csv( "https://data.heatonresearch.com/data/t81-558/jh-simple-dataset.csv", na_values=['NA','?']) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 0) display(df) areas = list(df['area'].unique()) print(f'Areas:{areas}') areas = set(df['area']) print(f'Number of areas: {len(areas)}') print(f'Areas: {areas}') dummies = pd.get_dummies(['a','b','c','d'],prefix='area') print(dummies) dummies = pd.get_dummies(df['area'],prefix='area') print(dummies[0:10]) # Just show the first 10 df = pd.concat([df,dummies],axis=1) # hmm this code removes original columns # df = pd.get_dummies(df, columns=['area']) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 10) display(df[['id','job','area','income','area_a', 'area_b','area_c','area_d']]) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 5) df.drop('area', axis=1, inplace=True) display(df[['id','job','income','area_a', 'area_b','area_c','area_d']]) # Create a small sample dataset import pandas as pd import numpy as np np.random.seed(43) df = pd.DataFrame({ 'cont_9': np.random.rand(10)*100, 'cat_0': ['dog'] * 5 + ['cat'] * 5, 'cat_1': ['wolf'] * 9 + ['tiger'] * 1, 'y': [1, 0, 1, 1, 1, 1, 0, 0, 0, 0] }) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 0) display(df) means0 = df.groupby('cat_0')['y'].mean().to_dict() means0 df['y'].mean() def calc_smooth_mean(df1, df2, cat_name, target, weight): # Compute the global mean mean = df[target].mean() print(f'---mean is {mean}') # Compute the number of values and the mean of each group agg = df.groupby(cat_name)[target].agg(['count', 'mean']) print(f'---agg is {agg}') counts = agg['count'] print(f'---counts is {counts}') means = agg['mean'] print(f'---means is {means}') print('------------') print('---weight---') print(weight) print('------------') print('------------') print('------------') # Compute the "smoothed" means smooth = (counts * means + weight * mean) / (counts + weight) print(f'---smooth is {smooth}') # Replace each value by the according smoothed mean if df2 is None: return df1[cat_name].map(smooth) else: return df1[cat_name].map(smooth),df2[cat_name].map(smooth.to_dict()) WEIGHT = 5 df['cat_0_enc'] = calc_smooth_mean(df1=df, df2=None, cat_name='cat_0', target='y', weight=WEIGHT) df['cat_1_enc'] = calc_smooth_mean(df1=df, df2=None, cat_name='cat_1', target='y', weight=WEIGHT) pd.set_option('display.max_columns', 0) pd.set_option('display.max_rows', 0) display(df)
0.4206
0.993123
#### New to Plotly? Plotly's Python library is free and open source! [Get started](https://plot.ly/python/getting-started/) by downloading the client and [reading the primer](https://plot.ly/python/getting-started/). <br>You can set up Plotly to work in [online](https://plot.ly/python/getting-started/#initialization-for-online-plotting) or [offline](https://plot.ly/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plot.ly/python/getting-started/#start-plotting-online). <br>We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! #### Version Check Note: Animations are available in version 1.12.10+ Run `pip install plotly --upgrade` to update your Plotly version. ``` import plotly plotly.__version__ ``` #### Frames Now, along with `data` and `layout`, `frames` is added to the keys that `figure` allows. Your `frames` key points to a list of figures, each of which will be cycled through upon instantiation of the plot. #### Online Mode You can use `plotly.plotly.icreate_animations()` or `plotly.plotly.create_animations()` to make `online` animations that you save on the Plotly cloud. There are two steps for making an online animation: 1. Make a grid 2. Make the plot with data from the grid The reason for making a grid is because animations are created through our [v2 api](https://api.plot.ly/v2/). In this process, we create a [grid](https://api.plot.ly/v2/#grids) composed of columns, and then make a plot which contains referenced data from the grid columns. You can learn how to upload a grid at the [grid endpoint](https://api.plot.ly/v2/grids#create) of the and how to make a plot with a grid at the [plot endpoint](https://api.plot.ly/v2/plots#create) of the v2 api. A grid consists of columns which fundamentally are 1D lists of numerical data with an associated name. They are instantiated with the `grid_objs` class `Column`. To make a column, simply assign a varaible with a Column: $$ \begin{align*} Column([...], name) \end{align*} $$ The `Grid` class is also part of the `grid_objs` module. A `Grid` takes a list of columns: $$ \begin{align*} grid = Grid([column_1, column_2, ...]) \end{align*} $$ **Please Note:** filenames MUST BE unique. An error will be thrown if a grid is not created with a unique filename. Therefore we reccomend appending a timestamp to your grid filename to ensure the filename is unique. ``` import plotly.plotly as py from plotly.grid_objs import Grid, Column import time column_1 = Column([0.5], 'x') column_2 = Column([0.5], 'y') column_3 = Column([1.5], 'x2') column_4 = Column([1.5], 'y2') grid = Grid([column_1, column_2, column_3, column_4]) py.grid_ops.upload(grid, 'ping_pong_grid'+str(time.time()), auto_open=False) ``` Now you need to reference the columns from the grid that you just uploaded. You can do so by using the built-in grid method `get_column_reference()` which takes the *column name* as its argument and returns the reference to the data in the grid. Since we are dealing with *referenced data* which is pointing to data and not *raw data*, we use `xsrc` and `ysrc` in the `figure` to represent the `x` and `y` analogues that are normally used. Make your figure and create an animated plot! ``` figure = { 'data': [ { 'xsrc': grid.get_column_reference('x'), 'ysrc': grid.get_column_reference('y'), 'mode': 'markers', } ], 'layout': {'title': 'Ping Pong Animation', 'xaxis': {'range': [0, 2], 'autorange': False}, 'yaxis': {'range': [0, 2], 'autorange': False}, 'updatemenus': [{ 'buttons': [ {'args': [None], 'label': 'Play', 'method': 'animate'} ], 'pad': {'r': 10, 't': 87}, 'showactive': False, 'type': 'buttons' }]}, 'frames': [ { 'data': [ { 'xsrc': grid.get_column_reference('x2'), 'ysrc': grid.get_column_reference('y2'), 'mode': 'markers', } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x'), 'ysrc': grid.get_column_reference('y'), 'mode': 'markers', } ] } ] } py.icreate_animations(figure, 'ping_pong'+str(time.time())) ``` #### Adding Control Buttons to Animations You can add play and pause buttons to control your animated charts by adding an `updatemenus` array to the `layout` of your `figure`. More information on style and placement of the buttons is available in Plotly's [`updatemenus` reference](https://plot.ly/python/reference/#layout-updatemenus). <br> The buttons are defined as follows: ``` 'updatemenus': [{'type': 'buttons', 'buttons': [{'label': 'Your Label', 'method': 'animate', 'args': [See Below]}]}] ``` #### Defining Button Arguments - `None`: Setting `'args'` to undefined (i.e. `'args': [None]`) will create a simple play button that will animate all frames. - string: Animate all frames with group `'<some string>'`. This is a way of scoping the animations in case you would prefer to animate without explicitly enumerating all frames. - `['frame1', 'frame2', ...]`: Animate a sequence of named frames. - `[{data: [], layout: {}, traces: []}, {...}]`: Nearly identical to animating named frames; though this variant lets you inline data instead of adding it as named frames. This can be useful for interaction where it's undesirable to add and manage named frames for ephemeral changes. - `[null]`: A simple way to create a pause button (requires `mode: 'immediate'`). This argument dumps the currently queued frames (`mode: 'immediate'`), and then animates an empty sequence of frames (`[null]`). - <b>Please Note:</b> We <b>do not</b> recommend using: `[ ]`. This syntax may cause confusion because it looks indistinguishable from a "pause button", but nested properties have logic that treats empty arrays as entirely removable, so it will function as a play button.<br><br> Refer to the examples below to see the buttons in action! #### Points Changing Size ``` import plotly.plotly as py from plotly.grid_objs import Grid, Column import time column_1 = Column([0.9, 1.1], 'x') column_2 = Column([1.0, 1.0], 'y') column_3 = Column([0.8, 1.2], 'x2') column_4 = Column([1.2, 0.8], 'y2') column_5 = Column([0.7, 1.3], 'x3') column_6 = Column([0.7, 1.3], 'y3') column_7 = Column([0.6, 1.4], 'x4') column_8 = Column([1.5, 0.5], 'y4') column_9 = Column([0.4, 1.6], 'x5') column_10 = Column([1.2, 0.8], 'y5') grid = Grid([column_1, column_2, column_3, column_4, column_5, column_6, column_7, column_8, column_9, column_10]) py.grid_ops.upload(grid, 'points_changing_size_grid'+str(time.time()), auto_open=False) # create figure figure = { 'data': [ { 'xsrc': grid.get_column_reference('x'), 'ysrc': grid.get_column_reference('y'), 'mode': 'markers', 'marker': {'color': '#48186a', 'size': 10} } ], 'layout': {'title': 'Growing Circles', 'xaxis': {'range': [0, 2], 'autorange': False}, 'yaxis': {'range': [0, 2], 'autorange': False}, 'updatemenus': [{ 'buttons': [ {'args': [None], 'label': 'Play', 'method': 'animate'} ], 'pad': {'r': 10, 't': 87}, 'showactive': False, 'type': 'buttons' }]}, 'frames': [ { 'data': [ { 'xsrc': grid.get_column_reference('x2'), 'ysrc': grid.get_column_reference('y2'), 'mode': 'markers', 'marker': {'color': '#3b528b', 'size': 25} } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x3'), 'ysrc': grid.get_column_reference('y3'), 'mode': 'markers', 'marker': {'color': '#26828e', 'size': 50} } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x4'), 'ysrc': grid.get_column_reference('y4'), 'mode': 'markers', 'marker': {'color': '#5ec962', 'size': 80} } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x5'), 'ysrc': grid.get_column_reference('y5'), 'mode': 'markers', 'marker': {'color': '#d8e219', 'size': 100} } ] } ] } py.icreate_animations(figure, 'points_changing_size'+str(time.time())) ``` #### Offline Mode `Animations` can be created either `offline` or `online`. To learn about how to set up working offline, check out the [offline documentation](https://plot.ly/python/offline/). #### Basic Example To re-run the animation see the following example with a play button. ``` from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML init_notebook_mode(connected=True) figure = {'data': [{'x': [0, 1], 'y': [0, 1]}], 'layout': {'xaxis': {'range': [0, 5], 'autorange': False}, 'yaxis': {'range': [0, 5], 'autorange': False}, 'title': 'Start Title'}, 'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]}, {'data': [{'x': [1, 4], 'y': [1, 4]}]}, {'data': [{'x': [3, 4], 'y': [3, 4]}], 'layout': {'title': 'End Title'}}]} iplot(figure) ``` #### Simple Play Button ``` from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML init_notebook_mode(connected=True) figure = {'data': [{'x': [0, 1], 'y': [0, 1]}], 'layout': {'xaxis': {'range': [0, 5], 'autorange': False}, 'yaxis': {'range': [0, 5], 'autorange': False}, 'title': 'Start Title', 'updatemenus': [{'type': 'buttons', 'buttons': [{'label': 'Play', 'method': 'animate', 'args': [None]}]}] }, 'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]}, {'data': [{'x': [1, 4], 'y': [1, 4]}]}, {'data': [{'x': [3, 4], 'y': [3, 4]}], 'layout': {'title': 'End Title'}}]} iplot(figure) ``` #### Moving Point on a Curve ``` from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML import numpy as np init_notebook_mode(connected=True) t=np.linspace(-1,1,100) x=t+t**2 y=t-t**2 xm=np.min(x)-1.5 xM=np.max(x)+1.5 ym=np.min(y)-1.5 yM=np.max(y)+1.5 N=50 s=np.linspace(-1,1,N) xx=s+s**2 yy=s-s**2 data=[dict(x=x, y=y, mode='lines', line=dict(width=2, color='blue') ), dict(x=x, y=y, mode='lines', line=dict(width=2, color='blue') ) ] layout=dict(xaxis=dict(range=[xm, xM], autorange=False, zeroline=False), yaxis=dict(range=[ym, yM], autorange=False, zeroline=False), title='Kinematic Generation of a Planar Curve', hovermode='closest', updatemenus= [{'type': 'buttons', 'buttons': [{'label': 'Play', 'method': 'animate', 'args': [None]}]}]) frames=[dict(data=[dict(x=[xx[k]], y=[yy[k]], mode='markers', marker=dict(color='red', size=10) ) ]) for k in range(N)] figure1=dict(data=data, layout=layout, frames=frames) iplot(figure1) ``` #### Moving Frenet Frame Along a Planar Curve ``` from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML import numpy as np init_notebook_mode(connected=True) N=50 s=np.linspace(-1,1,N) vx=1+2*s vy=1-2*s #v=(vx, vy) is the velocity speed=np.sqrt(vx**2+vy**2) ux=vx/speed #(ux, uy) unit tangent vector, (-uy, ux) unit normal vector uy=vy/speed xend=xx+ux #end coordinates for the unit tangent vector at (xx, yy) yend=yy+uy xnoe=xx-uy #end coordinates for the unit normal vector at (xx,yy) ynoe=yy+ux data=[dict(x=x, y=y, name='frame', mode='lines', line=dict(width=2, color='blue')), dict(x=x, y=y, name='curve', mode='lines', line=dict(width=2, color='blue')) ] layout=dict(width=600, height=600, xaxis=dict(range=[xm, xM], autorange=False, zeroline=False), yaxis=dict(range=[ym, yM], autorange=False, zeroline=False), title='Moving Frenet Frame Along a Planar Curve', hovermode='closest', updatemenus= [{'type': 'buttons', 'buttons': [{'label': 'Play', 'method': 'animate', 'args': [None]}]}]) frames=[dict(data=[dict(x=[xx[k], xend[k], None, xx[k], xnoe[k]], y=[yy[k], yend[k], None, yy[k], ynoe[k]], mode='lines', line=dict(color='red', width=2)) ]) for k in range(N)] figure2=dict(data=data, layout=layout, frames=frames) iplot(figure2) ``` #### Using a Slider and Buttons The following example uses the well known [Gapminder dataset](https://www.gapminder.org/tag/gdp-per-capita/) to exemplify animation capabilites. This bubble chart animation shows the change in 'GDP per Capita' against the 'Life Expectancy' of several countries from the year 1952 to 2007, colored by their respective continent and sized by population. ``` from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML import pandas as pd init_notebook_mode(connected=True) url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv' dataset = pd.read_csv(url) years = ['1952', '1962', '1967', '1972', '1977', '1982', '1987', '1992', '1997', '2002', '2007'] # make list of continents continents = [] for continent in dataset['continent']: if continent not in continents: continents.append(continent) # make figure figure = { 'data': [], 'layout': {}, 'frames': [] } # fill in most of layout figure['layout']['xaxis'] = {'range': [30, 85], 'title': 'Life Expectancy'} figure['layout']['yaxis'] = {'title': 'GDP per Capita', 'type': 'log'} figure['layout']['hovermode'] = 'closest' figure['layout']['sliders'] = { 'args': [ 'transition', { 'duration': 400, 'easing': 'cubic-in-out' } ], 'initialValue': '1952', 'plotlycommand': 'animate', 'values': years, 'visible': True } figure['layout']['updatemenus'] = [ { 'buttons': [ { 'args': [None, {'frame': {'duration': 500, 'redraw': False}, 'fromcurrent': True, 'transition': {'duration': 300, 'easing': 'quadratic-in-out'}}], 'label': 'Play', 'method': 'animate' }, { 'args': [[None], {'frame': {'duration': 0, 'redraw': False}, 'mode': 'immediate', 'transition': {'duration': 0}}], 'label': 'Pause', 'method': 'animate' } ], 'direction': 'left', 'pad': {'r': 10, 't': 87}, 'showactive': False, 'type': 'buttons', 'x': 0.1, 'xanchor': 'right', 'y': 0, 'yanchor': 'top' } ] sliders_dict = { 'active': 0, 'yanchor': 'top', 'xanchor': 'left', 'currentvalue': { 'font': {'size': 20}, 'prefix': 'Year:', 'visible': True, 'xanchor': 'right' }, 'transition': {'duration': 300, 'easing': 'cubic-in-out'}, 'pad': {'b': 10, 't': 50}, 'len': 0.9, 'x': 0.1, 'y': 0, 'steps': [] } # make data year = 1952 for continent in continents: dataset_by_year = dataset[dataset['year'] == year] dataset_by_year_and_cont = dataset_by_year[dataset_by_year['continent'] == continent] data_dict = { 'x': list(dataset_by_year_and_cont['lifeExp']), 'y': list(dataset_by_year_and_cont['gdpPercap']), 'mode': 'markers', 'text': list(dataset_by_year_and_cont['country']), 'marker': { 'sizemode': 'area', 'sizeref': 200000, 'size': list(dataset_by_year_and_cont['pop']) }, 'name': continent } figure['data'].append(data_dict) # make frames for year in years: frame = {'data': [], 'name': str(year)} for continent in continents: dataset_by_year = dataset[dataset['year'] == int(year)] dataset_by_year_and_cont = dataset_by_year[dataset_by_year['continent'] == continent] data_dict = { 'x': list(dataset_by_year_and_cont['lifeExp']), 'y': list(dataset_by_year_and_cont['gdpPercap']), 'mode': 'markers', 'text': list(dataset_by_year_and_cont['country']), 'marker': { 'sizemode': 'area', 'sizeref': 200000, 'size': list(dataset_by_year_and_cont['pop']) }, 'name': continent } frame['data'].append(data_dict) figure['frames'].append(frame) slider_step = {'args': [ [year], {'frame': {'duration': 300, 'redraw': False}, 'mode': 'immediate', 'transition': {'duration': 300}} ], 'label': year, 'method': 'animate'} sliders_dict['steps'].append(slider_step) figure['layout']['sliders'] = [sliders_dict] iplot(figure) ``` #### Important Notes - Defining `redraw`: Setting `redraw: false` is an optimization for scatter plots so that animate just makes changes without redrawing the whole plot. For other plot types, such as contour plots, every frame <b>must</b> be a total plot redraw, i.e. `redraw: true`. #### Reference For additional information and attributes for creating bubble charts in Plotly see: https://plot.ly/python/bubble-charts/. For more documentation on creating animations with Plotly, see https://plot.ly/python/#animations. ``` from IPython.display import display, HTML display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) !pip install git+https://github.com/plotly/publisher.git --upgrade import publisher publisher.publish( 'intro-to-animations.ipynb', 'python/animations/', 'Intro to Animations | plotly', 'An introduction to creating animations with Plotly in Python.', title='Intro to Animations in Python | plotly', name='Intro to Animations', language='python', page_type='example_index', has_thumbnail='true', thumbnail='thumbnail/animations.gif', display_as='animations', ipynb= '~notebook_demo/131', order=1) ```
github_jupyter
import plotly plotly.__version__ import plotly.plotly as py from plotly.grid_objs import Grid, Column import time column_1 = Column([0.5], 'x') column_2 = Column([0.5], 'y') column_3 = Column([1.5], 'x2') column_4 = Column([1.5], 'y2') grid = Grid([column_1, column_2, column_3, column_4]) py.grid_ops.upload(grid, 'ping_pong_grid'+str(time.time()), auto_open=False) figure = { 'data': [ { 'xsrc': grid.get_column_reference('x'), 'ysrc': grid.get_column_reference('y'), 'mode': 'markers', } ], 'layout': {'title': 'Ping Pong Animation', 'xaxis': {'range': [0, 2], 'autorange': False}, 'yaxis': {'range': [0, 2], 'autorange': False}, 'updatemenus': [{ 'buttons': [ {'args': [None], 'label': 'Play', 'method': 'animate'} ], 'pad': {'r': 10, 't': 87}, 'showactive': False, 'type': 'buttons' }]}, 'frames': [ { 'data': [ { 'xsrc': grid.get_column_reference('x2'), 'ysrc': grid.get_column_reference('y2'), 'mode': 'markers', } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x'), 'ysrc': grid.get_column_reference('y'), 'mode': 'markers', } ] } ] } py.icreate_animations(figure, 'ping_pong'+str(time.time())) 'updatemenus': [{'type': 'buttons', 'buttons': [{'label': 'Your Label', 'method': 'animate', 'args': [See Below]}]}] import plotly.plotly as py from plotly.grid_objs import Grid, Column import time column_1 = Column([0.9, 1.1], 'x') column_2 = Column([1.0, 1.0], 'y') column_3 = Column([0.8, 1.2], 'x2') column_4 = Column([1.2, 0.8], 'y2') column_5 = Column([0.7, 1.3], 'x3') column_6 = Column([0.7, 1.3], 'y3') column_7 = Column([0.6, 1.4], 'x4') column_8 = Column([1.5, 0.5], 'y4') column_9 = Column([0.4, 1.6], 'x5') column_10 = Column([1.2, 0.8], 'y5') grid = Grid([column_1, column_2, column_3, column_4, column_5, column_6, column_7, column_8, column_9, column_10]) py.grid_ops.upload(grid, 'points_changing_size_grid'+str(time.time()), auto_open=False) # create figure figure = { 'data': [ { 'xsrc': grid.get_column_reference('x'), 'ysrc': grid.get_column_reference('y'), 'mode': 'markers', 'marker': {'color': '#48186a', 'size': 10} } ], 'layout': {'title': 'Growing Circles', 'xaxis': {'range': [0, 2], 'autorange': False}, 'yaxis': {'range': [0, 2], 'autorange': False}, 'updatemenus': [{ 'buttons': [ {'args': [None], 'label': 'Play', 'method': 'animate'} ], 'pad': {'r': 10, 't': 87}, 'showactive': False, 'type': 'buttons' }]}, 'frames': [ { 'data': [ { 'xsrc': grid.get_column_reference('x2'), 'ysrc': grid.get_column_reference('y2'), 'mode': 'markers', 'marker': {'color': '#3b528b', 'size': 25} } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x3'), 'ysrc': grid.get_column_reference('y3'), 'mode': 'markers', 'marker': {'color': '#26828e', 'size': 50} } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x4'), 'ysrc': grid.get_column_reference('y4'), 'mode': 'markers', 'marker': {'color': '#5ec962', 'size': 80} } ] }, { 'data': [ { 'xsrc': grid.get_column_reference('x5'), 'ysrc': grid.get_column_reference('y5'), 'mode': 'markers', 'marker': {'color': '#d8e219', 'size': 100} } ] } ] } py.icreate_animations(figure, 'points_changing_size'+str(time.time())) from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML init_notebook_mode(connected=True) figure = {'data': [{'x': [0, 1], 'y': [0, 1]}], 'layout': {'xaxis': {'range': [0, 5], 'autorange': False}, 'yaxis': {'range': [0, 5], 'autorange': False}, 'title': 'Start Title'}, 'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]}, {'data': [{'x': [1, 4], 'y': [1, 4]}]}, {'data': [{'x': [3, 4], 'y': [3, 4]}], 'layout': {'title': 'End Title'}}]} iplot(figure) from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML init_notebook_mode(connected=True) figure = {'data': [{'x': [0, 1], 'y': [0, 1]}], 'layout': {'xaxis': {'range': [0, 5], 'autorange': False}, 'yaxis': {'range': [0, 5], 'autorange': False}, 'title': 'Start Title', 'updatemenus': [{'type': 'buttons', 'buttons': [{'label': 'Play', 'method': 'animate', 'args': [None]}]}] }, 'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]}, {'data': [{'x': [1, 4], 'y': [1, 4]}]}, {'data': [{'x': [3, 4], 'y': [3, 4]}], 'layout': {'title': 'End Title'}}]} iplot(figure) from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML import numpy as np init_notebook_mode(connected=True) t=np.linspace(-1,1,100) x=t+t**2 y=t-t**2 xm=np.min(x)-1.5 xM=np.max(x)+1.5 ym=np.min(y)-1.5 yM=np.max(y)+1.5 N=50 s=np.linspace(-1,1,N) xx=s+s**2 yy=s-s**2 data=[dict(x=x, y=y, mode='lines', line=dict(width=2, color='blue') ), dict(x=x, y=y, mode='lines', line=dict(width=2, color='blue') ) ] layout=dict(xaxis=dict(range=[xm, xM], autorange=False, zeroline=False), yaxis=dict(range=[ym, yM], autorange=False, zeroline=False), title='Kinematic Generation of a Planar Curve', hovermode='closest', updatemenus= [{'type': 'buttons', 'buttons': [{'label': 'Play', 'method': 'animate', 'args': [None]}]}]) frames=[dict(data=[dict(x=[xx[k]], y=[yy[k]], mode='markers', marker=dict(color='red', size=10) ) ]) for k in range(N)] figure1=dict(data=data, layout=layout, frames=frames) iplot(figure1) from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML import numpy as np init_notebook_mode(connected=True) N=50 s=np.linspace(-1,1,N) vx=1+2*s vy=1-2*s #v=(vx, vy) is the velocity speed=np.sqrt(vx**2+vy**2) ux=vx/speed #(ux, uy) unit tangent vector, (-uy, ux) unit normal vector uy=vy/speed xend=xx+ux #end coordinates for the unit tangent vector at (xx, yy) yend=yy+uy xnoe=xx-uy #end coordinates for the unit normal vector at (xx,yy) ynoe=yy+ux data=[dict(x=x, y=y, name='frame', mode='lines', line=dict(width=2, color='blue')), dict(x=x, y=y, name='curve', mode='lines', line=dict(width=2, color='blue')) ] layout=dict(width=600, height=600, xaxis=dict(range=[xm, xM], autorange=False, zeroline=False), yaxis=dict(range=[ym, yM], autorange=False, zeroline=False), title='Moving Frenet Frame Along a Planar Curve', hovermode='closest', updatemenus= [{'type': 'buttons', 'buttons': [{'label': 'Play', 'method': 'animate', 'args': [None]}]}]) frames=[dict(data=[dict(x=[xx[k], xend[k], None, xx[k], xnoe[k]], y=[yy[k], yend[k], None, yy[k], ynoe[k]], mode='lines', line=dict(color='red', width=2)) ]) for k in range(N)] figure2=dict(data=data, layout=layout, frames=frames) iplot(figure2) from plotly.offline import init_notebook_mode, iplot from IPython.display import display, HTML import pandas as pd init_notebook_mode(connected=True) url = 'https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv' dataset = pd.read_csv(url) years = ['1952', '1962', '1967', '1972', '1977', '1982', '1987', '1992', '1997', '2002', '2007'] # make list of continents continents = [] for continent in dataset['continent']: if continent not in continents: continents.append(continent) # make figure figure = { 'data': [], 'layout': {}, 'frames': [] } # fill in most of layout figure['layout']['xaxis'] = {'range': [30, 85], 'title': 'Life Expectancy'} figure['layout']['yaxis'] = {'title': 'GDP per Capita', 'type': 'log'} figure['layout']['hovermode'] = 'closest' figure['layout']['sliders'] = { 'args': [ 'transition', { 'duration': 400, 'easing': 'cubic-in-out' } ], 'initialValue': '1952', 'plotlycommand': 'animate', 'values': years, 'visible': True } figure['layout']['updatemenus'] = [ { 'buttons': [ { 'args': [None, {'frame': {'duration': 500, 'redraw': False}, 'fromcurrent': True, 'transition': {'duration': 300, 'easing': 'quadratic-in-out'}}], 'label': 'Play', 'method': 'animate' }, { 'args': [[None], {'frame': {'duration': 0, 'redraw': False}, 'mode': 'immediate', 'transition': {'duration': 0}}], 'label': 'Pause', 'method': 'animate' } ], 'direction': 'left', 'pad': {'r': 10, 't': 87}, 'showactive': False, 'type': 'buttons', 'x': 0.1, 'xanchor': 'right', 'y': 0, 'yanchor': 'top' } ] sliders_dict = { 'active': 0, 'yanchor': 'top', 'xanchor': 'left', 'currentvalue': { 'font': {'size': 20}, 'prefix': 'Year:', 'visible': True, 'xanchor': 'right' }, 'transition': {'duration': 300, 'easing': 'cubic-in-out'}, 'pad': {'b': 10, 't': 50}, 'len': 0.9, 'x': 0.1, 'y': 0, 'steps': [] } # make data year = 1952 for continent in continents: dataset_by_year = dataset[dataset['year'] == year] dataset_by_year_and_cont = dataset_by_year[dataset_by_year['continent'] == continent] data_dict = { 'x': list(dataset_by_year_and_cont['lifeExp']), 'y': list(dataset_by_year_and_cont['gdpPercap']), 'mode': 'markers', 'text': list(dataset_by_year_and_cont['country']), 'marker': { 'sizemode': 'area', 'sizeref': 200000, 'size': list(dataset_by_year_and_cont['pop']) }, 'name': continent } figure['data'].append(data_dict) # make frames for year in years: frame = {'data': [], 'name': str(year)} for continent in continents: dataset_by_year = dataset[dataset['year'] == int(year)] dataset_by_year_and_cont = dataset_by_year[dataset_by_year['continent'] == continent] data_dict = { 'x': list(dataset_by_year_and_cont['lifeExp']), 'y': list(dataset_by_year_and_cont['gdpPercap']), 'mode': 'markers', 'text': list(dataset_by_year_and_cont['country']), 'marker': { 'sizemode': 'area', 'sizeref': 200000, 'size': list(dataset_by_year_and_cont['pop']) }, 'name': continent } frame['data'].append(data_dict) figure['frames'].append(frame) slider_step = {'args': [ [year], {'frame': {'duration': 300, 'redraw': False}, 'mode': 'immediate', 'transition': {'duration': 300}} ], 'label': year, 'method': 'animate'} sliders_dict['steps'].append(slider_step) figure['layout']['sliders'] = [sliders_dict] iplot(figure) from IPython.display import display, HTML display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) !pip install git+https://github.com/plotly/publisher.git --upgrade import publisher publisher.publish( 'intro-to-animations.ipynb', 'python/animations/', 'Intro to Animations | plotly', 'An introduction to creating animations with Plotly in Python.', title='Intro to Animations in Python | plotly', name='Intro to Animations', language='python', page_type='example_index', has_thumbnail='true', thumbnail='thumbnail/animations.gif', display_as='animations', ipynb= '~notebook_demo/131', order=1)
0.681939
0.990329
<a href="https://colab.research.google.com/github/3dsf/SkinDeep/blob/master/videoProcessor.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Video Processing with AI models based on the ffmpeg-python tensorflow implementation and using the models of https://github.com/vijishmadhavan # Install Libs ``` !pip install youtube-dl fastai==1.0.61 ffmpeg-python ``` # Select ## -- Model ## -- Video ## -- Output Name *and collect metadata* ``` import os modelToRun = "SkinDeep_1280.pkl" #@param ["ArtLine_500.pkl", "ArtLine_650.pkl", "ArtLine_1024.pkl", "SkinDeep.pkl", "SkinDeep_1280.pkl"] pathToModel = os.path.join("/content/drive/",modelToRun) downloadModel = { "ArtLine_500.pkl": "https://www.dropbox.com/s/p9lynpwygjmeed2/ArtLine_500.pkl", "ArtLine_650.pkl": "https://www.dropbox.com/s/starqc9qd2e1lg1/ArtLine_650.pkl", "ArtLine_1024.pkl": "https://www.dropbox.com/s/rq90q9lr9arwdp8/ArtLine_1024%20%281%29.pkl", "SkinDeep.pkl": "https://www.dropbox.com/s/5mmcqao4mozpube/SkinDeep.pkl?dl=1", "SkinDeep_1280.pkl": "https://www.dropbox.com/s/wxty56nhidusojr/SkinDeep_1280.pkl" } if os.path.isfile(pathToModel) == False : if os.path.isfile(modelToRun) == False : print("Downloading Model") download = downloadModel[modelToRun] !wget -O $modelToRun $download pathToModel = modelToRun else : print("Found Local Version") pathToModel = modelToRun videoURL = "https://www.youtube.com/watch?v=olnqoL-yLZE" #@param {type:"string"} !rm input.mp4 #required !time(youtube-dl -f 'bestvideo[ext=mp4]+bestaudio[ext=acc]/mp4' --output "input.%(ext)s" $videoURL) output_name = "postMalone.sd1280.mp4" #@param {type:"string"} import subprocess AUDIO = False process = subprocess.Popen(['ffmpeg', '-hide_banner', '-i', 'input.mp4', '-y' ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT,universal_newlines=True) for line in process.stdout: print(line) if ' Video:' in line: l_split = line.split(',') #print('---------printing line ", line) for segment in l_split[1:]: if 'fps' in segment: s = segment.strip().split(' ') fps = float(s[0]) if 'x' in segment: s = segment.strip().split('x') width = int(s[0]) s2 = s[1].split(' ') height = int(s2[0]) if 'Duration:' in line: s = line.split(',') ss = s[0].split(' ') sss = ss[3].strip().split(':') seconds = float(sss[0])*60*60 + float(sss[1])*60 + float(sss[2]) if 'Audio:' in line: AUDIO = True print('fps = ', str(fps)) print('width = ', str(width)) print('height = ', str(height)) print('seconds = ', str(seconds)) print('AUDIO = ', AUDIO) ``` # Process Video ``` import os import logging as logger from torchvision import transforms as T from fastai.utils.mem import * from fastai.vision import open_image, load_learner, Image, torch, pil2tensor, image2np import ffmpeg, cv2 import numpy as np #progress bar from IPython.display import HTML, display from tqdm import * #There is scaling warning that might come up, and this block supresses user warnings #Comment out this block if your don't mind seeing the warnings import warnings warnings.filterwarnings("ignore", category=UserWarning) ### Progress bar def progress(value, max=100): return HTML(""" <progress value='{value}' max='{max}', style='width: 100%' > {value} </progress> """.format(value=value, max=max)) ### Class required for model class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() ### DETERMINE IF CUDA AVAILABLE and LOAD MODEL def modelDeviceLoadSelect(): if torch.cuda.is_available(): def load_model(): global USEgPU learn = load_learner('.', pathToModel, device=0 ) USEgPU = True print("INFERENCE DEVICE : cuda") return learn else: def load_model(): learn = load_learner('.', pathToModel, device='cpu') print("INFERENCE DEVICE : cpu") return learn learn=load_model() return learn ### Functions based on ffmpeg-python video tensorflow example def readFrameAsNp(ffmpegDecode, width, height): logger.debug('Reading frame') # Note: RGB24 == 3 bytes per pixel. frame_size = width * height * 3 in_bytes = ffmpegDecode.stdout.read(frame_size) if len(in_bytes) == 0: frame = None else: assert len(in_bytes) == frame_size frame = ( np .frombuffer(in_bytes, np.uint8) .reshape([height, width, 3]) ) return frame def writeFrameAsByte(ffmpegEncode, frame): logger.debug('Writing frame') ffmpegEncode.stdin.write( frame .astype(np.uint8) .tobytes() ) def vid2np(in_filename): logger.info('vid2np() -- Decoding to pipe') codec = 'h264' args = ( ffmpeg .input(in_filename, **{'c:v': codec}) .output('pipe:', format='rawvideo', pix_fmt='rgb24') .global_args("-hide_banner") .compile() ) return subprocess.Popen(args, stdout=subprocess.PIPE) def np2vid(out_filename, fps_out, in_file, widthOut, heightOut): logger.info('np2vid() encoding from pipe') global AUDIO codec = 'h264' if AUDIO == True : pipeline2 = ffmpeg.input(in_file) audio = pipeline2.audio args = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(widthOut, heightOut), framerate=fps_out ) .output(audio, out_filename , pix_fmt='yuv420p', **{'c:v': codec}, shortest=None, acodec='copy') .global_args("-hide_banner") .overwrite_output() .compile() ) else: args = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(widthOut, heightOut), framerate=fps_out ) .output(out_filename , pix_fmt='yuv420p', **{'c:v': codec}) .global_args("-hide_banner") .overwrite_output() .compile() ) return subprocess.Popen(args, stdin=subprocess.PIPE) ### The model changes the resolution, processes blank to find new resolution def getOutputResolution(): #process a blank frame and return dimesions blank = np.zeros([height,width,3],dtype=np.uint8) blank.fill(255) fastAI_image = Image(pil2tensor(blank, dtype=np.float32).div_(255)) p,img_hr,b = learn.predict(fastAI_image) im = image2np(img_hr) x = im.shape out_height = x[0] out_width = x[1] return int(out_width), int(out_height) ### This is where all the magic happens def processFrame(frame) : global INCR ### Frame comes in as np array #Load image in fastai's framework as an image fastAI_image = Image(pil2tensor(frame, dtype=np.float32).div_(255)) # Inference p,img_hr,b = learn.predict(fastAI_image) # Convert output tensor into np array im = image2np(img_hr) # alpha and beta control line output darkness / warmness norm_image = cv2.normalize(im, None, alpha=-60, beta=260, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) INCR += 1 # enabling the next 2 lines will also output images when processing videos #outCV2 = cv2.cvtColor(norm_image, cv2.COLOR_RGB2BGR ) #cv2.imwrite(output_name+ str(INCR) + ".png", outCV2) # INCR is just a frame counter return norm_image if __name__ == '__main__': INCR = 0 learn = modelDeviceLoadSelect() outWidth, outHeight = getOutputResolution() estimatedFrames = fps * seconds print('Model = ', pathToModel) print('*** Video In***') print('fps = ', str(fps)) print('width = ', str(width)) print('height = ', str(height)) print('seconds = ', str(seconds)) print('AUDIO = ', AUDIO) print() print('*** Video Out***') print('outWidth = ', str(outWidth)) print('outHeight = ', str(outHeight)) print('output_name = ', output_name) print() #progress bar print('estimatedFrames = ', estimatedFrames) out = display(progress(0, 100), display_id=True) inputVid = 'input.mp4' ffmpegDecode = vid2np(inputVid) ffmpegEncode = np2vid(output_name, fps, inputVid, outWidth, outHeight) while True: timeMark = time.process_time() in_frame = readFrameAsNp(ffmpegDecode, width, height) if in_frame is None: logger.info('End of input stream') break logger.debug('Processing frame') out_frame = processFrame(in_frame) writeFrameAsByte(ffmpegEncode, out_frame) #progress bar out.update(progress(INCR, estimatedFrames)) minutesRemaining = str(round((estimatedFrames-INCR)*(time.process_time()-timeMark)/60)) print("\rEstimated Minutes Remaining = ", minutesRemaining, end="") logger.info('Waiting for ffmpegDecode') ffmpegDecode.wait() logger.info('Waiting for ffmpegEncode') ffmpegEncode.stdin.close() ffmpegEncode.wait() logger.info('Done') ``` # Download result ``` from google.colab import files files.download(output_name) ```
github_jupyter
!pip install youtube-dl fastai==1.0.61 ffmpeg-python import os modelToRun = "SkinDeep_1280.pkl" #@param ["ArtLine_500.pkl", "ArtLine_650.pkl", "ArtLine_1024.pkl", "SkinDeep.pkl", "SkinDeep_1280.pkl"] pathToModel = os.path.join("/content/drive/",modelToRun) downloadModel = { "ArtLine_500.pkl": "https://www.dropbox.com/s/p9lynpwygjmeed2/ArtLine_500.pkl", "ArtLine_650.pkl": "https://www.dropbox.com/s/starqc9qd2e1lg1/ArtLine_650.pkl", "ArtLine_1024.pkl": "https://www.dropbox.com/s/rq90q9lr9arwdp8/ArtLine_1024%20%281%29.pkl", "SkinDeep.pkl": "https://www.dropbox.com/s/5mmcqao4mozpube/SkinDeep.pkl?dl=1", "SkinDeep_1280.pkl": "https://www.dropbox.com/s/wxty56nhidusojr/SkinDeep_1280.pkl" } if os.path.isfile(pathToModel) == False : if os.path.isfile(modelToRun) == False : print("Downloading Model") download = downloadModel[modelToRun] !wget -O $modelToRun $download pathToModel = modelToRun else : print("Found Local Version") pathToModel = modelToRun videoURL = "https://www.youtube.com/watch?v=olnqoL-yLZE" #@param {type:"string"} !rm input.mp4 #required !time(youtube-dl -f 'bestvideo[ext=mp4]+bestaudio[ext=acc]/mp4' --output "input.%(ext)s" $videoURL) output_name = "postMalone.sd1280.mp4" #@param {type:"string"} import subprocess AUDIO = False process = subprocess.Popen(['ffmpeg', '-hide_banner', '-i', 'input.mp4', '-y' ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT,universal_newlines=True) for line in process.stdout: print(line) if ' Video:' in line: l_split = line.split(',') #print('---------printing line ", line) for segment in l_split[1:]: if 'fps' in segment: s = segment.strip().split(' ') fps = float(s[0]) if 'x' in segment: s = segment.strip().split('x') width = int(s[0]) s2 = s[1].split(' ') height = int(s2[0]) if 'Duration:' in line: s = line.split(',') ss = s[0].split(' ') sss = ss[3].strip().split(':') seconds = float(sss[0])*60*60 + float(sss[1])*60 + float(sss[2]) if 'Audio:' in line: AUDIO = True print('fps = ', str(fps)) print('width = ', str(width)) print('height = ', str(height)) print('seconds = ', str(seconds)) print('AUDIO = ', AUDIO) import os import logging as logger from torchvision import transforms as T from fastai.utils.mem import * from fastai.vision import open_image, load_learner, Image, torch, pil2tensor, image2np import ffmpeg, cv2 import numpy as np #progress bar from IPython.display import HTML, display from tqdm import * #There is scaling warning that might come up, and this block supresses user warnings #Comment out this block if your don't mind seeing the warnings import warnings warnings.filterwarnings("ignore", category=UserWarning) ### Progress bar def progress(value, max=100): return HTML(""" <progress value='{value}' max='{max}', style='width: 100%' > {value} </progress> """.format(value=value, max=max)) ### Class required for model class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() ### DETERMINE IF CUDA AVAILABLE and LOAD MODEL def modelDeviceLoadSelect(): if torch.cuda.is_available(): def load_model(): global USEgPU learn = load_learner('.', pathToModel, device=0 ) USEgPU = True print("INFERENCE DEVICE : cuda") return learn else: def load_model(): learn = load_learner('.', pathToModel, device='cpu') print("INFERENCE DEVICE : cpu") return learn learn=load_model() return learn ### Functions based on ffmpeg-python video tensorflow example def readFrameAsNp(ffmpegDecode, width, height): logger.debug('Reading frame') # Note: RGB24 == 3 bytes per pixel. frame_size = width * height * 3 in_bytes = ffmpegDecode.stdout.read(frame_size) if len(in_bytes) == 0: frame = None else: assert len(in_bytes) == frame_size frame = ( np .frombuffer(in_bytes, np.uint8) .reshape([height, width, 3]) ) return frame def writeFrameAsByte(ffmpegEncode, frame): logger.debug('Writing frame') ffmpegEncode.stdin.write( frame .astype(np.uint8) .tobytes() ) def vid2np(in_filename): logger.info('vid2np() -- Decoding to pipe') codec = 'h264' args = ( ffmpeg .input(in_filename, **{'c:v': codec}) .output('pipe:', format='rawvideo', pix_fmt='rgb24') .global_args("-hide_banner") .compile() ) return subprocess.Popen(args, stdout=subprocess.PIPE) def np2vid(out_filename, fps_out, in_file, widthOut, heightOut): logger.info('np2vid() encoding from pipe') global AUDIO codec = 'h264' if AUDIO == True : pipeline2 = ffmpeg.input(in_file) audio = pipeline2.audio args = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(widthOut, heightOut), framerate=fps_out ) .output(audio, out_filename , pix_fmt='yuv420p', **{'c:v': codec}, shortest=None, acodec='copy') .global_args("-hide_banner") .overwrite_output() .compile() ) else: args = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(widthOut, heightOut), framerate=fps_out ) .output(out_filename , pix_fmt='yuv420p', **{'c:v': codec}) .global_args("-hide_banner") .overwrite_output() .compile() ) return subprocess.Popen(args, stdin=subprocess.PIPE) ### The model changes the resolution, processes blank to find new resolution def getOutputResolution(): #process a blank frame and return dimesions blank = np.zeros([height,width,3],dtype=np.uint8) blank.fill(255) fastAI_image = Image(pil2tensor(blank, dtype=np.float32).div_(255)) p,img_hr,b = learn.predict(fastAI_image) im = image2np(img_hr) x = im.shape out_height = x[0] out_width = x[1] return int(out_width), int(out_height) ### This is where all the magic happens def processFrame(frame) : global INCR ### Frame comes in as np array #Load image in fastai's framework as an image fastAI_image = Image(pil2tensor(frame, dtype=np.float32).div_(255)) # Inference p,img_hr,b = learn.predict(fastAI_image) # Convert output tensor into np array im = image2np(img_hr) # alpha and beta control line output darkness / warmness norm_image = cv2.normalize(im, None, alpha=-60, beta=260, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) INCR += 1 # enabling the next 2 lines will also output images when processing videos #outCV2 = cv2.cvtColor(norm_image, cv2.COLOR_RGB2BGR ) #cv2.imwrite(output_name+ str(INCR) + ".png", outCV2) # INCR is just a frame counter return norm_image if __name__ == '__main__': INCR = 0 learn = modelDeviceLoadSelect() outWidth, outHeight = getOutputResolution() estimatedFrames = fps * seconds print('Model = ', pathToModel) print('*** Video In***') print('fps = ', str(fps)) print('width = ', str(width)) print('height = ', str(height)) print('seconds = ', str(seconds)) print('AUDIO = ', AUDIO) print() print('*** Video Out***') print('outWidth = ', str(outWidth)) print('outHeight = ', str(outHeight)) print('output_name = ', output_name) print() #progress bar print('estimatedFrames = ', estimatedFrames) out = display(progress(0, 100), display_id=True) inputVid = 'input.mp4' ffmpegDecode = vid2np(inputVid) ffmpegEncode = np2vid(output_name, fps, inputVid, outWidth, outHeight) while True: timeMark = time.process_time() in_frame = readFrameAsNp(ffmpegDecode, width, height) if in_frame is None: logger.info('End of input stream') break logger.debug('Processing frame') out_frame = processFrame(in_frame) writeFrameAsByte(ffmpegEncode, out_frame) #progress bar out.update(progress(INCR, estimatedFrames)) minutesRemaining = str(round((estimatedFrames-INCR)*(time.process_time()-timeMark)/60)) print("\rEstimated Minutes Remaining = ", minutesRemaining, end="") logger.info('Waiting for ffmpegDecode') ffmpegDecode.wait() logger.info('Waiting for ffmpegEncode') ffmpegEncode.stdin.close() ffmpegEncode.wait() logger.info('Done') from google.colab import files files.download(output_name)
0.539226
0.796213
# MapNode If you want to iterate over a list of inputs, but need to feed all iterated outputs afterward as one input (an array) to the next node, you need to use a **``MapNode``**. A ``MapNode`` is quite similar to a normal ``Node``, but it can take a list of inputs and operate over each input separately, ultimately returning a list of outputs. Imagine that you have a list of items (let's say files) and you want to execute the same node on them (for example some smoothing or masking). Some nodes accept multiple files and do exactly the same thing on them, but some don't (they expect only one file). `MapNode` can solve this problem. Imagine you have the following workflow: <img src="../static/images/mapnode.png" width="325"> Node `A` outputs a list of files, but node `B` accepts only one file. Additionally, `C` expects a list of files. What you would like is to run `B` for every file in the output of `A` and collect the results as a list and feed it to `C`. Something like this: ```python from nipype import Node, MapNode, Workflow a = Node(interface=A(), name="a") b = MapNode(interface=B(), name="b", iterfield=['in_file']) c = Node(interface=C(), name="c") my_workflow = Workflow(name="my_workflow") my_workflow.connect([(a,b,[('out_files','in_file')]), (b,c,[('out_file','in_files')]) ]) ``` Let's demonstrate this with a simple function interface: ``` import os.path as op from nipype import Function def square_func(x): return x ** 2 square = Function(["x"], ["f_x"], square_func) ``` We see that this function just takes a numeric input and returns its squared value. ``` square.run(x=2).outputs.f_x ``` What if we wanted to square a list of numbers? We could set an iterable and just split up the workflow in multiple sub-workflows. But say we were making a simple workflow that squared a list of numbers and then summed them. The sum node would expect a list, but using an iterable would make a bunch of sum nodes, and each would get one number from the list. The solution here is to use a `MapNode`. ## `iterfield` The `MapNode` constructor has a field called `iterfield`, which tells it what inputs should be expecting a list. ``` from nipype import MapNode square_node = MapNode(square, name="square", iterfield=["x"]) square_node.inputs.x = [0, 1, 2, 3] res = square_node.run() res.outputs.f_x ``` Because `iterfield` can take a list of names, you can operate over multiple sets of data, as long as they're the same length. The values in each list will be paired; it does not compute a combinatoric product of the lists. ``` def power_func(x, y): return x ** y power = Function(["x", "y"], ["f_xy"], power_func) power_node = MapNode(power, name="power", iterfield=["x", "y"]) power_node.inputs.x = [0, 1, 2, 3] power_node.inputs.y = [0, 1, 2, 3] res = power_node.run() print(res.outputs.f_xy) ``` But not every input needs to be an iterfield. ``` power_node = MapNode(power, name="power", iterfield=["x"]) power_node.inputs.x = [0, 1, 2, 3] power_node.inputs.y = 3 res = power_node.run() print(res.outputs.f_xy) ``` As in the case of `iterables`, each underlying `MapNode` execution can happen in **parallel**. Hopefully, you see how these tools allow you to write flexible, reusable workflows that will help you process large amounts of data efficiently and reproducibly. In more advanced applications it is useful to be able to iterate over items of nested lists (for example ``[[1,2],[3,4]]``). MapNode allows you to do this with the "nested=True" parameter. Outputs will preserve the same nested structure as the inputs. # Why is this important? Let's consider we have multiple functional images (A) and each of them should be motioned corrected (B1, B2, B3,..). But afterward, we want to put them all together into a GLM, i.e. the input for the GLM should be an array of [B1, B2, B3, ...]. [Iterables](basic_iteration.ipynb) can't do that. They would split up the pipeline. Therefore, we need **MapNodes**. <img src="../static/images/mapnode.png" width="300"> Let's look at a simple example, where we want to motion correct two functional images. For this we need two nodes: - Gunzip, to unzip the files (plural) - Realign, to do the motion correction ``` from nipype.algorithms.misc import Gunzip from nipype.interfaces.spm import Realign from nipype import Node, MapNode, Workflow # Here we specify a list of files (for this tutorial, we just add the same file twice) files = [op.abspath('data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'), op.abspath('data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz')] realign = Node(Realign(register_to_mean=True), name='motion_correction') ``` If we try to specify the input for the **Gunzip** node with a simple **Node**, we get the following error: ``` gunzip = Node(Gunzip(), name='gunzip',) try: gunzip.inputs.in_file = files except(Exception) as err: if "TraitError" in str(err.__class__): print("TraitError:", err) else: raise else: raise ``` ```bash TraitError: The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz', 'data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'] <class 'list'> was specified. ``` But if we do it with a **MapNode**, it works: ``` gunzip = MapNode(Gunzip(), name='gunzip', iterfield=['in_file']) gunzip.inputs.in_file = files ``` Now, we just have to create a workflow, connect the nodes and we can run it: ``` mcflow = Workflow(name='realign_with_spm') mcflow.connect(gunzip, 'out_file', realign, 'in_files') mcflow.base_dir = op.abspath('output/') mcflow.run('MultiProc', plugin_args={'n_procs': 4}) ``` ### Exercise 1 Create a workflow to calculate a sum of factorials of numbers from a range between $n_{min}$ and $n_{max}$, i.e.: $$\sum _{k=n_{min}}^{n_{max}} k! = 0! + 1! +2! + 3! + \cdots$$ if $n_{min}=0$ and $n_{max}=3$ $$\sum _{k=0}^{3} k! = 0! + 1! +2! + 3! = 1 + 1 + 2 + 6 = 10$$ Use ``Node`` for a function that creates a list of integers and a function that sums everything at the end. Use ``MapNode`` to calculate factorials. ``` #write your solution here from nipype import Workflow, Node, MapNode, Function import os def range_fun(n_min, n_max): return list(range(n_min, n_max+1)) def factorial(n): # print("FACTORIAL, {}".format(n)) import math return math.factorial(n) def summing(terms): return sum(terms) wf_ex1 = Workflow('ex1') wf_ex1.base_dir = os.getcwd() range_nd = Node(Function(input_names=['n_min', 'n_max'], output_names=['range_list'], function=range_fun), name='range_list') factorial_nd = MapNode(Function(input_names=['n'], output_names=['fact_out'], function=factorial), iterfield=['n'], name='factorial') summing_nd = Node(Function(input_names=['terms'], output_names=['sum_out'], function=summing), name='summing') range_nd.inputs.n_min = 0 range_nd.inputs.n_max = 3 wf_ex1.add_nodes([range_nd]) wf_ex1.connect(range_nd, 'range_list', factorial_nd, 'n') wf_ex1.connect(factorial_nd, 'fact_out', summing_nd, "terms") eg = wf_ex1.run() ``` let's print all nodes: ``` eg.nodes() ``` the final result should be 10: ``` list(eg.nodes())[2].result.outputs ``` we can also check the results of two other nodes: ``` print(list(eg.nodes())[0].result.outputs) print(list(eg.nodes())[1].result.outputs) ```
github_jupyter
from nipype import Node, MapNode, Workflow a = Node(interface=A(), name="a") b = MapNode(interface=B(), name="b", iterfield=['in_file']) c = Node(interface=C(), name="c") my_workflow = Workflow(name="my_workflow") my_workflow.connect([(a,b,[('out_files','in_file')]), (b,c,[('out_file','in_files')]) ]) import os.path as op from nipype import Function def square_func(x): return x ** 2 square = Function(["x"], ["f_x"], square_func) square.run(x=2).outputs.f_x from nipype import MapNode square_node = MapNode(square, name="square", iterfield=["x"]) square_node.inputs.x = [0, 1, 2, 3] res = square_node.run() res.outputs.f_x def power_func(x, y): return x ** y power = Function(["x", "y"], ["f_xy"], power_func) power_node = MapNode(power, name="power", iterfield=["x", "y"]) power_node.inputs.x = [0, 1, 2, 3] power_node.inputs.y = [0, 1, 2, 3] res = power_node.run() print(res.outputs.f_xy) power_node = MapNode(power, name="power", iterfield=["x"]) power_node.inputs.x = [0, 1, 2, 3] power_node.inputs.y = 3 res = power_node.run() print(res.outputs.f_xy) from nipype.algorithms.misc import Gunzip from nipype.interfaces.spm import Realign from nipype import Node, MapNode, Workflow # Here we specify a list of files (for this tutorial, we just add the same file twice) files = [op.abspath('data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'), op.abspath('data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz')] realign = Node(Realign(register_to_mean=True), name='motion_correction') gunzip = Node(Gunzip(), name='gunzip',) try: gunzip.inputs.in_file = files except(Exception) as err: if "TraitError" in str(err.__class__): print("TraitError:", err) else: raise else: raise TraitError: The 'in_file' trait of a GunzipInputSpec instance must be an existing file name, but a value of ['data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz', 'data/ds000114/sub-01/ses-test/func/sub-01_ses-test_task-fingerfootlips_bold.nii.gz'] <class 'list'> was specified. gunzip = MapNode(Gunzip(), name='gunzip', iterfield=['in_file']) gunzip.inputs.in_file = files mcflow = Workflow(name='realign_with_spm') mcflow.connect(gunzip, 'out_file', realign, 'in_files') mcflow.base_dir = op.abspath('output/') mcflow.run('MultiProc', plugin_args={'n_procs': 4}) #write your solution here from nipype import Workflow, Node, MapNode, Function import os def range_fun(n_min, n_max): return list(range(n_min, n_max+1)) def factorial(n): # print("FACTORIAL, {}".format(n)) import math return math.factorial(n) def summing(terms): return sum(terms) wf_ex1 = Workflow('ex1') wf_ex1.base_dir = os.getcwd() range_nd = Node(Function(input_names=['n_min', 'n_max'], output_names=['range_list'], function=range_fun), name='range_list') factorial_nd = MapNode(Function(input_names=['n'], output_names=['fact_out'], function=factorial), iterfield=['n'], name='factorial') summing_nd = Node(Function(input_names=['terms'], output_names=['sum_out'], function=summing), name='summing') range_nd.inputs.n_min = 0 range_nd.inputs.n_max = 3 wf_ex1.add_nodes([range_nd]) wf_ex1.connect(range_nd, 'range_list', factorial_nd, 'n') wf_ex1.connect(factorial_nd, 'fact_out', summing_nd, "terms") eg = wf_ex1.run() eg.nodes() list(eg.nodes())[2].result.outputs print(list(eg.nodes())[0].result.outputs) print(list(eg.nodes())[1].result.outputs)
0.416797
0.961786
# CurvLearn Tutorial In this tutorial, you will learn how to build a non-Euclidean binary classification model, including - define manifold and riemannian tensors. - build non-Euclidean models from manifold operations. - define loss function and apply riemannian optimization. Let's start! ``` pip install curvlearn from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf ``` Define hyperparameters. ``` epochs = 500 batch_size = 1024 log_steps = 100 learning_rate = 1e-3 ``` CurvLearn now supports the following manifolds - Constant curvature manifolds - ```curvlearn.manifolds.Euclidean``` - Euclidean space with zero curvature. - ```curvlearn.manifolds.Stereographic``` - Constant curvature stereographic projection model. The curvature can be positive, negative or zero. - ```curvlearn.manifolds.PoincareBall``` - The stereographic projection of the Lorentz model with negative curvature. - ```curvlearn.manifolds.ProjectedSphere``` - The stereographic projection of the sphere model with positive curvature. - Mixed curvature manifolds - ```curvlearn.manifolds.Product``` - Mixed-curvature space consists of multiple manifolds with different curvatures. In this tutorial, we use the stereographic model with trainable curvature. ``` from curvlearn.manifolds import Stereographic manifold = Stereographic() curvature = tf.get_variable(name="curvature", initializer=tf.constant(0.0, dtype=manifold.dtype), trainable=True) print(manifold.name) ``` Generate random binary classification dataset. 1 sprase feature and 8 dense features are used to predict the 0/1 label. ``` global_step = tf.get_variable(name='global_step',initializer=tf.constant(0), trainable=False) dense = np.random.rand(10000, 8) sparse = np.random.randint(0, 1000, [10000, 1]) labels = np.random.choice([0, 1], size=10000, replace=True) dataset = tf.data.Dataset.from_tensor_slices( { 'dense': tf.cast(dense, tf.float32), 'sparse': tf.cast(sparse, tf.int32), 'labels': tf.cast(labels, tf.float32) } ) dataset = dataset.shuffle(batch_size * 10).batch(batch_size, drop_remainder=False).repeat(epochs) iterator = tf.data.make_one_shot_iterator(dataset) batch = iterator.get_next() dense, sparse, labels = batch['dense'], batch['sparse'], batch['labels'] ``` Define tensors in the specific manifold can be simply realized through the wrapper function `manifold.variable`. According to the variable name, tensors are optimized in different ways. - "*RiemannianParameter*" is contained in the variable name: the variable is a riemannian tensor, and should be optimized by riemannian optimizers. - Otherwise: the variable is an euclidean(tangent) tensor and is projected into the manifold. In this case, riemannian optimizers behave equivalently to vanilla euclidean optimizers. Here we optimize dense embedding in euclidean space and sparse embedding in curved space. ``` embedding_table = tf.get_variable( name='RiemannianParameter/embedding', shape=(1000, 8), dtype=manifold.dtype, initializer=tf.truncated_normal_initializer(0.001) ) embedding_table = manifold.variable(embedding_table, c=curvature) sparse_embedding = tf.squeeze(tf.nn.embedding_lookup(embedding_table, sparse), axis=1) dense_embedding = manifold.variable(dense, c=curvature) ``` Building riemannian neural networks requires replacing euclidean tensor operations with manifold operations. CurvLearn now supports the following basic operations. - ```variable(t, c)``` - Defines a riemannian variable from manifold or tangent space at origin according to its name. - ```to_manifold(t, c, base)``` - Converts a tensor ```t``` in the tangent space of ```base``` point to the manifold. - ```to_tangent(t, c, base)``` - Converts a tensor ```t``` in the manifold to the tangent space of ```base``` point. - ```weight_sum(tensor_list, a, c)``` - Computes the sum of tensor list ```tensor_list``` with weight list ```a```. - ```mean(t, c, axis)``` - Computes the average of elements along ```axis``` dimension of a tensor ```t```. - ```sum(t, c, axis)``` - Computes the sum of elements along ```axis``` dimension of a tensor ```t```. - ```concat(tensor_list, c, axis)``` - Concatenates tensor list ```tensor_list``` along ```axis``` dimension. - ```matmul(t, m, c)``` - Multiplies tensor ```t``` by euclidean matrix ```m```. - ```add(x, y, c)``` - Adds tensor ```x``` and tensor ```y```. - ```add_bias(t, b, c)``` - Adds a euclidean bias vector ```b``` to tensor ```t```. - ```activation(t, c_in, c_out, act)``` - Computes the value of activation function ```act``` for the input tensor ```t```. - ```linear(t, in_dim, out_dim, c_in, c_out, act, scope)``` - Computes the linear transformation for the input tensor ```t```. - ```distance(src, tar, c)``` - Computes the squared geodesic/distance between ```src``` and ```tar```. Complex operations can be decomposed into basic operations explicitly or realized in tangent space implicitly. Here we use two fully-connected layers as our model backbone. ``` x = manifold.concat([sparse_embedding, dense_embedding], axis=1, c=curvature) x = manifold.linear(x, 16, 256, curvature, curvature, tf.nn.elu, 'hidden_layer_1') x = manifold.linear(x, 256, 32, curvature, curvature, tf.nn.elu, 'hidden_layer_2') ``` Notice non-euclidean geometry can only be expressed by geodesics, we use the fermi-dirac decoder to decode the distance and generate the probabilities. Cross entropy is used as the loss function. ``` origin = manifold.proj(tf.zeros([32], dtype=manifold.dtype), c=curvature) distance = tf.squeeze(manifold.distance(x, origin, c=curvature)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=1.0 - 1.0*distance)) ``` CurvLearn now supports the following optimizers. - ```curvlearn.optimizers.rsgd``` - Riemannian stochastic gradient optimizer. - ```curvlearn.optimizers.radagrad``` - Riemannian Adagrad optimizer. - ```curvlearn.optimizers.radam``` - Riemannian Adam optimizer. Here we apply riemannian adam optimizer to minimize the loss. ``` from curvlearn.optimizers import RAdam optimizer = RAdam(learning_rate=learning_rate, manifold=manifold, c=curvature) train_op = optimizer.minimize(loss) ``` Now a non-Euclidean binary classification model is built successfully. Let's check the performance! ``` ops = [train_op, curvature, loss] + tf.get_collection(tf.GraphKeys.UPDATE_OPS) batch_idx = 0 global_init = tf.global_variables_initializer() local_init = tf.local_variables_initializer() cp = tf.ConfigProto() cp.gpu_options.allow_growth = True with tf.Session(config=cp) as sess: sess.run([global_init, local_init]) while True: try: batch_idx += 1 _, c, loss = sess.run(ops) if batch_idx % log_steps == 1: print('No.{} batches, curvature {}, loss {}'.format(batch_idx, c, loss)) except tf.errors.OutOfRangeError: print('Finish train') break ``` Since our dataset is generated without any geometry prior, the curvature is trained to be near zero and the space is almost euclidean. Check performance on real dataset([recommendation](hyperml/README.md), [link prediction](hgcn/README.md), [tree pretrain](tree_pretrain/README.md)) and see the advantages of non-euclidean geometry.
github_jupyter
pip install curvlearn from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf epochs = 500 batch_size = 1024 log_steps = 100 learning_rate = 1e-3 from curvlearn.manifolds import Stereographic manifold = Stereographic() curvature = tf.get_variable(name="curvature", initializer=tf.constant(0.0, dtype=manifold.dtype), trainable=True) print(manifold.name) global_step = tf.get_variable(name='global_step',initializer=tf.constant(0), trainable=False) dense = np.random.rand(10000, 8) sparse = np.random.randint(0, 1000, [10000, 1]) labels = np.random.choice([0, 1], size=10000, replace=True) dataset = tf.data.Dataset.from_tensor_slices( { 'dense': tf.cast(dense, tf.float32), 'sparse': tf.cast(sparse, tf.int32), 'labels': tf.cast(labels, tf.float32) } ) dataset = dataset.shuffle(batch_size * 10).batch(batch_size, drop_remainder=False).repeat(epochs) iterator = tf.data.make_one_shot_iterator(dataset) batch = iterator.get_next() dense, sparse, labels = batch['dense'], batch['sparse'], batch['labels'] embedding_table = tf.get_variable( name='RiemannianParameter/embedding', shape=(1000, 8), dtype=manifold.dtype, initializer=tf.truncated_normal_initializer(0.001) ) embedding_table = manifold.variable(embedding_table, c=curvature) sparse_embedding = tf.squeeze(tf.nn.embedding_lookup(embedding_table, sparse), axis=1) dense_embedding = manifold.variable(dense, c=curvature) x = manifold.concat([sparse_embedding, dense_embedding], axis=1, c=curvature) x = manifold.linear(x, 16, 256, curvature, curvature, tf.nn.elu, 'hidden_layer_1') x = manifold.linear(x, 256, 32, curvature, curvature, tf.nn.elu, 'hidden_layer_2') origin = manifold.proj(tf.zeros([32], dtype=manifold.dtype), c=curvature) distance = tf.squeeze(manifold.distance(x, origin, c=curvature)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=1.0 - 1.0*distance)) from curvlearn.optimizers import RAdam optimizer = RAdam(learning_rate=learning_rate, manifold=manifold, c=curvature) train_op = optimizer.minimize(loss) ops = [train_op, curvature, loss] + tf.get_collection(tf.GraphKeys.UPDATE_OPS) batch_idx = 0 global_init = tf.global_variables_initializer() local_init = tf.local_variables_initializer() cp = tf.ConfigProto() cp.gpu_options.allow_growth = True with tf.Session(config=cp) as sess: sess.run([global_init, local_init]) while True: try: batch_idx += 1 _, c, loss = sess.run(ops) if batch_idx % log_steps == 1: print('No.{} batches, curvature {}, loss {}'.format(batch_idx, c, loss)) except tf.errors.OutOfRangeError: print('Finish train') break
0.824956
0.987092
# Hello nbconvert Hello World. Changes are saved in the markdown file as well. Images are fine, too. ![](logo.jpg) Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Dignissim sodales ut eu sem integer vitae justo eget. Non quam lacus suspendisse faucibus. Integer quis auctor elit sed vulputate mi. Diam volutpat commodo sed egestas egestas fringilla phasellus faucibus scelerisque. Aliquet bibendum enim facilisis gravida neque. Ultrices eros in cursus turpis massa. Velit euismod in pellentesque massa. Duis tristique sollicitudin nibh sit amet commodo. Sagittis vitae et leo duis ut diam quam nulla. Nulla pellentesque dignissim enim sit amet venenatis urna. Vulputate enim nulla aliquet porttitor lacus luctus accumsan tortor posuere. Eu facilisis sed odio morbi quis commodo odio. Posuere morbi leo urna molestie. Facilisi nullam vehicula ipsum a arcu. Enim ut sem viverra aliquet eget. Massa massa ultricies mi quis. Interdum posuere lorem ipsum dolor sit amet consectetur. Sit amet risus nullam eget. Eget lorem dolor sed viverra ipsum. Leo vel fringilla est ullamcorper eget nulla facilisi etiam. Faucibus nisl tincidunt eget nullam non nisi. Sem et tortor consequat id. Nascetur ridiculus mus mauris vitae ultricies. Sem et tortor consequat id. Tincidunt tortor aliquam nulla facilisi cras fermentum. Id consectetur purus ut faucibus. Magna ac placerat vestibulum lectus mauris ultrices eros in. Pharetra diam sit amet nisl suscipit. Scelerisque fermentum dui faucibus in ornare quam. Facilisis magna etiam tempor orci eu. Mauris nunc congue nisi vitae suscipit tellus mauris a diam. Sit amet volutpat consequat mauris nunc congue nisi vitae suscipit. Risus sed vulputate odio ut enim blandit volutpat. Tristique nulla aliquet enim tortor at auctor urna nunc. Porta non pulvinar neque laoreet suspendisse interdum consectetur libero id. Ipsum a arcu cursus vitae congue. Arcu bibendum at varius vel pharetra vel turpis nunc. Felis eget velit aliquet sagittis id. Non tellus orci ac auctor augue. Blandit cursus risus at ultrices mi tempus imperdiet nulla. Vitae elementum curabitur vitae nunc sed velit. Scelerisque felis imperdiet proin fermentum leo vel orci porta non. Faucibus a pellentesque sit amet porttitor. Auctor augue mauris augue neque gravida in fermentum et sollicitudin. Nullam vehicula ipsum a arcu cursus vitae congue mauris. Id diam vel quam elementum pulvinar. Ut lectus arcu bibendum at varius vel pharetra. Sed euismod nisi porta lorem mollis aliquam ut. Sed velit dignissim sodales ut. Porta nibh venenatis cras sed. Euismod nisi porta lorem mollis aliquam. Enim lobortis scelerisque fermentum dui faucibus in ornare quam viverra. Non nisi est sit amet facilisis magna etiam. Nulla aliquet enim tortor at auctor urna nunc id. At auctor urna nunc id cursus metus aliquam eleifend mi. Vestibulum lectus mauris ultrices eros in. Eu feugiat pretium nibh ipsum consequat nisl vel. Etiam non quam lacus suspendisse. Commodo elit at imperdiet dui accumsan sit amet nulla. Odio euismod lacinia at quis risus sed vulputate. Amet nulla facilisi morbi tempus. Sit amet nisl suscipit adipiscing. Dictum varius duis at consectetur. Urna cursus eget nunc scelerisque viverra mauris in aliquam. ``` import pandas as pd import matplotlib.pyplot as plt link = "https://en.wikipedia.org/wiki/Belgrade" tables = pd.read_html(link) data = tables[2] data = data.set_index('Municipality', drop=True) data["Barajevo":"Zvezdara"].plot(kind='pie', y='Population (2011)', figsize=(14, 10)); plt.grid(zorder=0) plt.legend(loc='center left', bbox_to_anchor=(1.2, 0.5)); data["Barajevo":"Zvezdara"].sort_values(by='Population density (per km2)').plot( kind='barh', y='Population density (per km2)', figsize=(12, 8), grid=True); ```
github_jupyter
import pandas as pd import matplotlib.pyplot as plt link = "https://en.wikipedia.org/wiki/Belgrade" tables = pd.read_html(link) data = tables[2] data = data.set_index('Municipality', drop=True) data["Barajevo":"Zvezdara"].plot(kind='pie', y='Population (2011)', figsize=(14, 10)); plt.grid(zorder=0) plt.legend(loc='center left', bbox_to_anchor=(1.2, 0.5)); data["Barajevo":"Zvezdara"].sort_values(by='Population density (per km2)').plot( kind='barh', y='Population density (per km2)', figsize=(12, 8), grid=True);
0.567457
0.406744
# Voyages API Use Cases ## Run this example in [Colab](https://colab.research.google.com/github/SignalOceanSdk/SignalSDK/blob/master/docs/examples/jupyter/VoyagesAPI/VoyagesAPI-UseCases.ipynb). ## Setup Install the Signal Ocean SDK: ``` pip install signal-ocean ``` Set your subscription key acquired here: https://apis.signalocean.com/profile ``` !pip install signal-ocean signal_ocean_api_key = '' #replace with your subscription key ``` ## Voyages API Use Cases ``` from signal_ocean import Connection from signal_ocean.voyages import VoyagesAPI from signal_ocean.voyages import Vessel, VesselFilter from signal_ocean.voyages import VesselType, VesselTypeFilter from signal_ocean.voyages import VesselClass, VesselClassFilter import pandas as pd import numpy as np from datetime import date, timedelta import seaborn as sns import matplotlib.pyplot as plt sns.set_theme() connection = Connection(signal_ocean_api_key) api = VoyagesAPI(connection) ``` Declare helper functions ``` def get_voyage_load_area(voyage_events): return next((e.area_name_level0 for e in voyage_events or [] if e.purpose=='Load'), None) def get_voyage_discharge_country(voyage_events): return next((e.country for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None) def get_voyage_load_country(voyage_events): return next((e.country for e in voyage_events or [] if e.purpose=='Load'), None) ``` ### Get voyages ``` # get vessel class id for vlcc vessel_class = api.get_vessel_classes(VesselClassFilter('vlcc')) vlcc_id = vessel_class[0].vessel_class_id vlcc_id date_from = date.today() - timedelta(days=180) voyages = api.get_voyages(vessel_class_id=vlcc_id, date_from=date_from) voyages = pd.DataFrame(v.__dict__ for v in voyages) events = pd.DataFrame(e.__dict__ for voyage_events in voyages['events'].dropna() for e in voyage_events) historical_events = events[events['event_horizon']=='Historical'] voyages['load_area'] = voyages['events'].apply(get_voyage_load_area) voyages['discharge_country'] = voyages['events'].apply(get_voyage_discharge_country) voyages['load_country'] = voyages['events'].apply(get_voyage_load_country) ``` ### Number of exporting voyages ``` voyages_exports_usg = voyages[(voyages['load_area']=='US Gulf')&(voyages['discharge_country']!='United States')] voyages_exports_usg.shape[0] voyages_exports_usg['discharge_country'].value_counts() ``` ### Port Delays ``` discharges_china = historical_events[(historical_events['country']=='China')&(historical_events['purpose']=='Discharge')].copy() discharges_china['duration'] = discharges_china['sailing_date'] - discharges_china['arrival_date'] discharges_china['duration'].describe() discharges_china['duration_in_hours'] = discharges_china['duration'] / np.timedelta64(1, 'h') common_discharge_ports_china = discharges_china['port_name'].value_counts().head(8) common_port_discharges_china = discharges_china[discharges_china['port_name'].isin(common_discharge_ports_china.index)] sns.catplot(x="port_name", y="duration_in_hours", kind="box", data=common_port_discharges_china, aspect=2); discharges_china['arrival_month'] = discharges_china['arrival_date'].dt.tz_localize(None).dt.to_period('M').dt.to_timestamp() sns.lineplot(data=discharges_china, x='arrival_month', y='duration_in_hours') plt.xticks(rotation=90); ``` ### Discharge destinations ``` discharge_destinations_brazil = voyages[voyages['load_country']=='Brazil'].dropna(subset=['discharge_country']) discharge_destinations_brazil['discharge_country'].value_counts() sns.displot(discharge_destinations_brazil, x="start_date", hue="discharge_country", aspect=2); ``` ### Advanced Voyage Search: Discharge origins This use-case demonstrates how to utilise the advanced search endpoint to extract historical voyages by `vessel_class_id`, `first_load_arrival_date` and a specific `event_purpose`. The voyages with the provided purpose can then be merged and filtered with a specific `load_area` and `discharge_country` in order to visualize the vessel flows into the specified country. ``` # get vessel class id for vlcc vessel_class = api.get_vessel_classes(VesselClassFilter('vlcc')) vlcc_id = vessel_class[0].vessel_class_id vlcc_id date_from = date.today() - timedelta(days=60) load_area = 'Arabian Gulf' discharge_country = 'Japan' ``` In the following cell we extract the voyages with an `event_purpose="Discharge"`, which essentially looks up for all the voyages with *at least one discharge event*. This implies, due to the nature of the shipping pipeline, that load events are also included in the discharge call and can therefore be omitted. ``` voyages = api.get_voyages_by_advanced_search(vessel_class_id=vlcc_id, first_load_arrival_date_from=date_from, event_horizon='Historical', event_purpose='Discharge') voyages = pd.DataFrame(v.__dict__ for v in voyages) voyages['load_area'] = voyages['events'].apply(get_voyage_load_area) voyages['load_country'] = voyages['events'].apply(get_voyage_load_country) voyages['discharge_country'] = voyages['events'].apply(get_voyage_discharge_country) voyages_filtered = voyages.loc[(voyages['load_area'] == load_area) & (voyages['discharge_country'] == discharge_country)].reset_index(drop=True) fig, _ = plt.subplots(figsize=(12, 5)) ax = sns.countplot(x='load_country', data=voyages_filtered) ax.set_title(f'Vessel Flows ({discharge_country})', fontsize=14) ax.set_xlabel('Load Countries', fontsize=12) ax.set_ylabel('Vessel Counts', fontsize=12); ```
github_jupyter
pip install signal-ocean !pip install signal-ocean signal_ocean_api_key = '' #replace with your subscription key from signal_ocean import Connection from signal_ocean.voyages import VoyagesAPI from signal_ocean.voyages import Vessel, VesselFilter from signal_ocean.voyages import VesselType, VesselTypeFilter from signal_ocean.voyages import VesselClass, VesselClassFilter import pandas as pd import numpy as np from datetime import date, timedelta import seaborn as sns import matplotlib.pyplot as plt sns.set_theme() connection = Connection(signal_ocean_api_key) api = VoyagesAPI(connection) def get_voyage_load_area(voyage_events): return next((e.area_name_level0 for e in voyage_events or [] if e.purpose=='Load'), None) def get_voyage_discharge_country(voyage_events): return next((e.country for e in reversed(voyage_events or []) if e.purpose=='Discharge'), None) def get_voyage_load_country(voyage_events): return next((e.country for e in voyage_events or [] if e.purpose=='Load'), None) # get vessel class id for vlcc vessel_class = api.get_vessel_classes(VesselClassFilter('vlcc')) vlcc_id = vessel_class[0].vessel_class_id vlcc_id date_from = date.today() - timedelta(days=180) voyages = api.get_voyages(vessel_class_id=vlcc_id, date_from=date_from) voyages = pd.DataFrame(v.__dict__ for v in voyages) events = pd.DataFrame(e.__dict__ for voyage_events in voyages['events'].dropna() for e in voyage_events) historical_events = events[events['event_horizon']=='Historical'] voyages['load_area'] = voyages['events'].apply(get_voyage_load_area) voyages['discharge_country'] = voyages['events'].apply(get_voyage_discharge_country) voyages['load_country'] = voyages['events'].apply(get_voyage_load_country) voyages_exports_usg = voyages[(voyages['load_area']=='US Gulf')&(voyages['discharge_country']!='United States')] voyages_exports_usg.shape[0] voyages_exports_usg['discharge_country'].value_counts() discharges_china = historical_events[(historical_events['country']=='China')&(historical_events['purpose']=='Discharge')].copy() discharges_china['duration'] = discharges_china['sailing_date'] - discharges_china['arrival_date'] discharges_china['duration'].describe() discharges_china['duration_in_hours'] = discharges_china['duration'] / np.timedelta64(1, 'h') common_discharge_ports_china = discharges_china['port_name'].value_counts().head(8) common_port_discharges_china = discharges_china[discharges_china['port_name'].isin(common_discharge_ports_china.index)] sns.catplot(x="port_name", y="duration_in_hours", kind="box", data=common_port_discharges_china, aspect=2); discharges_china['arrival_month'] = discharges_china['arrival_date'].dt.tz_localize(None).dt.to_period('M').dt.to_timestamp() sns.lineplot(data=discharges_china, x='arrival_month', y='duration_in_hours') plt.xticks(rotation=90); discharge_destinations_brazil = voyages[voyages['load_country']=='Brazil'].dropna(subset=['discharge_country']) discharge_destinations_brazil['discharge_country'].value_counts() sns.displot(discharge_destinations_brazil, x="start_date", hue="discharge_country", aspect=2); # get vessel class id for vlcc vessel_class = api.get_vessel_classes(VesselClassFilter('vlcc')) vlcc_id = vessel_class[0].vessel_class_id vlcc_id date_from = date.today() - timedelta(days=60) load_area = 'Arabian Gulf' discharge_country = 'Japan' voyages = api.get_voyages_by_advanced_search(vessel_class_id=vlcc_id, first_load_arrival_date_from=date_from, event_horizon='Historical', event_purpose='Discharge') voyages = pd.DataFrame(v.__dict__ for v in voyages) voyages['load_area'] = voyages['events'].apply(get_voyage_load_area) voyages['load_country'] = voyages['events'].apply(get_voyage_load_country) voyages['discharge_country'] = voyages['events'].apply(get_voyage_discharge_country) voyages_filtered = voyages.loc[(voyages['load_area'] == load_area) & (voyages['discharge_country'] == discharge_country)].reset_index(drop=True) fig, _ = plt.subplots(figsize=(12, 5)) ax = sns.countplot(x='load_country', data=voyages_filtered) ax.set_title(f'Vessel Flows ({discharge_country})', fontsize=14) ax.set_xlabel('Load Countries', fontsize=12) ax.set_ylabel('Vessel Counts', fontsize=12);
0.429669
0.796332
# Google Play Store Can we predict an application's success? How is the number of installations connected with other characteristics of the app? Let's make a few plots to see how a certain feature affects the installations. Data comes from [Kaggle](https://www.kaggle.com/lava18/google-play-store-apps). ``` import pandas as pd from lets_plot import * LetsPlot.setup_html() df = pd.read_csv("https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/googleplaystore.csv") print(df.shape) df.head(3) def size_to_bytes(size): size = size.lower() if size == 'varies with device' or size == '': return -1 if 'k' in size: return int(float(size.split('k')[0]) * 1024) if 'm' in size: return int(float(size.split('m')[0]) * 1024 * 1024) return int(size) df = df[~df.Type.isna()] df = df[~df.Reviews.astype(str).str.contains('M')] df.Reviews = df.Reviews.astype(int) df.Size = df.Size.astype(str).apply(size_to_bytes).astype(int) df.Installs = df.Installs.astype(str).str.replace(',', '', regex=False)\ .str.replace('+', '', regex=False).astype(int) df.Price = df.Price.astype(str).str.replace('$', '', regex=False).astype(float) print(df.shape) df.head(3) cat_df = df.groupby('Category').Installs.mean().to_frame().sort_values(by='Installs', ascending=False).reset_index() ggplot() + \ geom_bar(aes(x='Category', y='Installs', fill='Category'), \ data=cat_df, stat='identity', sampling=sampling_pick(cat_df.shape[0])) + \ scale_fill_brewer(type='qual', palette='Dark2') + \ xlab('category') + ylab('mean installations') + \ ggsize(600, 450) + \ ggtitle('Installations by Category') + \ theme(panel_grid_major_x='blank', legend_position='none') ``` Here we can see that some categories are much more popular than others. ``` gen_df = df.groupby('Genres').Installs.mean().to_frame()\ .sort_values(by='Installs', ascending=False).reset_index() ggplot() + \ geom_bar(aes(x='Genres', y='Installs', fill='Genres'), \ data=gen_df, stat='identity', sampling=sampling_pick(gen_df.shape[0]), \ tooltips=layer_tooltips().line('genre|@Genres')\ .format('@Installs', '.0f')\ .line('mean installations|@Installs')) + \ scale_fill_brewer(type='qual', palette='Dark2') + \ ylab('mean installations') + \ ggsize(600, 300) + \ ggtitle('Installations by Genre') + \ theme(panel_grid_major_x='blank', legend_position='none', \ axis_title_x='blank', axis_text_x='blank', axis_ticks_x='blank') ``` We see a big gap in popularity between different genres. ``` ggplot() + \ geom_bin2d(aes(x='Installs', y='Rating', fill='..count..'), \ data=df, color='white', size=1) + \ scale_fill_gradient(low='#e0ecf4', high='#8856a7') + \ scale_x_log10(name='installations') + \ ylim(1, 5) + ylab('rating') + \ ggsize(600, 300) + \ ggtitle('Connection Between Installations and Rating') ``` The rating and number of installations are more or less positively correlated. At least an app rated below 3 will not be popular. ``` ggplot() + \ geom_jitter(aes(x='Reviews', y='Installs', fill='Type'), \ data=df, shape=21, color='black', alpha=.1) + \ geom_smooth(aes(x='Reviews', y='Installs', group='Type', color='Type'), \ data=df, method='loess', deg=2) + \ scale_x_log10(name='reviews') + scale_y_log10(name='installations') + \ ggsize(600, 450) + \ ggtitle('Connection Between Installations and Reviews') ``` The plot shows that the number of installations and the number of reviews are practically the same thing. The smoothing curves are far enough from each other, so it's better to separate free applications from the paid ones. ``` ggplot() + \ geom_bin2d(aes(x='Reviews', y='Size', fill='..count..'), \ data=df, color='white', size=1) + \ scale_fill_gradient(low='#e5f5f9', high='#2ca25f') + \ scale_x_log10(name='reviews') + scale_y_log10(name='size') + \ ggsize(600, 300) + \ ggtitle('Connection Between Reviews and Size') ``` It looks like we might not be interested in apps that are lighter than 1 Mb. For the others there is but minor correlation. ``` ggplot() + \ geom_bin2d(aes(x='Reviews', y='Price', fill='..count..'), \ data=df[df.Type == 'Paid'], color='white', size=1) + \ scale_fill_gradient(low='#ffeda0', high='#f03b20') + \ scale_x_log10(name='reviews') + scale_y_log10(name='price') + \ ggsize(600, 300) + \ ggtitle('Connection Between Price and Reviews') ``` I see nothing but chaos here. Anyway, paid apps are not very common, and others are either free of charge or use different sources of monetization.
github_jupyter
import pandas as pd from lets_plot import * LetsPlot.setup_html() df = pd.read_csv("https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/googleplaystore.csv") print(df.shape) df.head(3) def size_to_bytes(size): size = size.lower() if size == 'varies with device' or size == '': return -1 if 'k' in size: return int(float(size.split('k')[0]) * 1024) if 'm' in size: return int(float(size.split('m')[0]) * 1024 * 1024) return int(size) df = df[~df.Type.isna()] df = df[~df.Reviews.astype(str).str.contains('M')] df.Reviews = df.Reviews.astype(int) df.Size = df.Size.astype(str).apply(size_to_bytes).astype(int) df.Installs = df.Installs.astype(str).str.replace(',', '', regex=False)\ .str.replace('+', '', regex=False).astype(int) df.Price = df.Price.astype(str).str.replace('$', '', regex=False).astype(float) print(df.shape) df.head(3) cat_df = df.groupby('Category').Installs.mean().to_frame().sort_values(by='Installs', ascending=False).reset_index() ggplot() + \ geom_bar(aes(x='Category', y='Installs', fill='Category'), \ data=cat_df, stat='identity', sampling=sampling_pick(cat_df.shape[0])) + \ scale_fill_brewer(type='qual', palette='Dark2') + \ xlab('category') + ylab('mean installations') + \ ggsize(600, 450) + \ ggtitle('Installations by Category') + \ theme(panel_grid_major_x='blank', legend_position='none') gen_df = df.groupby('Genres').Installs.mean().to_frame()\ .sort_values(by='Installs', ascending=False).reset_index() ggplot() + \ geom_bar(aes(x='Genres', y='Installs', fill='Genres'), \ data=gen_df, stat='identity', sampling=sampling_pick(gen_df.shape[0]), \ tooltips=layer_tooltips().line('genre|@Genres')\ .format('@Installs', '.0f')\ .line('mean installations|@Installs')) + \ scale_fill_brewer(type='qual', palette='Dark2') + \ ylab('mean installations') + \ ggsize(600, 300) + \ ggtitle('Installations by Genre') + \ theme(panel_grid_major_x='blank', legend_position='none', \ axis_title_x='blank', axis_text_x='blank', axis_ticks_x='blank') ggplot() + \ geom_bin2d(aes(x='Installs', y='Rating', fill='..count..'), \ data=df, color='white', size=1) + \ scale_fill_gradient(low='#e0ecf4', high='#8856a7') + \ scale_x_log10(name='installations') + \ ylim(1, 5) + ylab('rating') + \ ggsize(600, 300) + \ ggtitle('Connection Between Installations and Rating') ggplot() + \ geom_jitter(aes(x='Reviews', y='Installs', fill='Type'), \ data=df, shape=21, color='black', alpha=.1) + \ geom_smooth(aes(x='Reviews', y='Installs', group='Type', color='Type'), \ data=df, method='loess', deg=2) + \ scale_x_log10(name='reviews') + scale_y_log10(name='installations') + \ ggsize(600, 450) + \ ggtitle('Connection Between Installations and Reviews') ggplot() + \ geom_bin2d(aes(x='Reviews', y='Size', fill='..count..'), \ data=df, color='white', size=1) + \ scale_fill_gradient(low='#e5f5f9', high='#2ca25f') + \ scale_x_log10(name='reviews') + scale_y_log10(name='size') + \ ggsize(600, 300) + \ ggtitle('Connection Between Reviews and Size') ggplot() + \ geom_bin2d(aes(x='Reviews', y='Price', fill='..count..'), \ data=df[df.Type == 'Paid'], color='white', size=1) + \ scale_fill_gradient(low='#ffeda0', high='#f03b20') + \ scale_x_log10(name='reviews') + scale_y_log10(name='price') + \ ggsize(600, 300) + \ ggtitle('Connection Between Price and Reviews')
0.464416
0.92657
# Plot histograms ``` import os import math import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import stats from IPython.display import display, HTML %matplotlib inline def parse_if_number(s): try: return float(s) except: return True if s=="true" else False if s=="false" else s if s else None def parse_ndarray(s): return np.fromstring(s, sep=' ') if s else None def get_file_name(name): return name.replace(':', '-') ``` ## Config ``` inputFile = 'data.csv' repetitionsCount = -1 # -1 = auto-detect factors = ['R', 'T', 'm', 'D'] # Plots histBinNum = 30 # Histograms histCenter = True # Center distribution plotSize = (10, 10) plotStyle = 'seaborn-whitegrid' # Save saveFigures = False # Filter scalars scalarsFilter = ['Floorplan.userCount'] # Filter histograms histFilter = ['Floorplan.copies:histogram', 'Floorplan.collisions:histogram', 'Floorplan.totalCollisions:histogram', 'Floorplan.msgsPerSlot:histogram'] histNames = [ ('Floorplan.copies:histogram', 'Number of copies received by each user in an hear window', 1), ('Floorplan.collisions:histogram', 'Number of collisions received by the users', 1), ('Floorplan.totalCollisions:histogram', 'Number of colliding messages received by the users in each slot', 1), ('Floorplan.msgsPerSlot:histogram', 'Number of messages sent in each slot', 1), ] ``` ## Load scalars ``` df = pd.read_csv('exported_data/' + inputFile, converters = { 'attrvalue': parse_if_number, 'binedges': parse_ndarray, 'binvalues': parse_ndarray, 'vectime': parse_ndarray, 'vecvalue': parse_ndarray, }) if repetitionsCount <= 0: # auto-detect repetitionsCount = int(df[df.attrname == 'repetition']['attrvalue'].max()) + 1 print('Repetitions:', repetitionsCount) scalars = df[(df.type == 'scalar') | ((df.type == 'itervar') & (df.attrname != 'TO')) | ((df.type == 'param') & (df.attrname == 'Floorplan.userCount')) | ((df.type == 'runattr') & (df.attrname == 'repetition'))] scalars = scalars.assign(qname = scalars.attrname.combine_first(scalars.module + '.' + scalars.name)) for index, row in scalars[scalars.type == 'itervar'].iterrows(): val = scalars.loc[index, 'attrvalue'] if isinstance(val, str) and not all(c.isdigit() for c in val): scalars.loc[index, 'attrvalue'] = eval(val) scalars.value = scalars.value.combine_first(scalars.attrvalue.astype('float64')) scalars_wide = scalars.pivot_table(index=['run'], columns='qname', values='value') scalars_wide.sort_values([*factors, 'repetition'], inplace=True) count = 0 for index in scalars_wide.index: config = count // repetitionsCount scalars_wide.loc[index, 'config'] = config count += 1 scalars_wide = scalars_wide[['config', 'repetition', *factors, *scalarsFilter]] # Computed factorsCount = len(factors) configsCount = len(scalars_wide)//repetitionsCount print('Configs:', configsCount) totalSims = configsCount*repetitionsCount display(HTML("<style>div.output_scroll { height: auto; max-height: 48em; }</style>")) pd.set_option('display.max_rows', totalSims) pd.set_option('display.max_columns', 100) if saveFigures: os.makedirs('figures', exist_ok=True) ``` ## Load histograms ``` histograms = df[df.type == 'histogram'] histograms = histograms.assign(qname = histograms.module + '.' + histograms.name) histograms = histograms[histograms.qname.isin(histFilter)] for index in scalars_wide.index: r = index cfg = scalars_wide.loc[index, 'config'] rep = scalars_wide.loc[index, 'repetition'] histograms.loc[histograms.run == r, 'config'] = cfg histograms.loc[histograms.run == r, 'repetition'] = rep for histname, _, _ in histNames: histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binsize'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0][1] - histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0][0] histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binmin'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0].min() histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binmax'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0].max() histograms.sort_values(['config', 'repetition', 'qname'], inplace=True) for cfg in range(0, configsCount): for histname, _, _ in histNames: histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsizelcm'] = np.lcm.reduce(list(map(int, histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsize'].values.tolist()))) histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binminall'] = histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmin'].min() histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmaxall'] = histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmax'].max() histograms = histograms[['config', 'repetition', 'qname', 'binmin', 'binmax', 'binsize', 'binedges', 'binvalues', 'binminall', 'binmaxall', 'binsizelcm']] ``` ## Compute means and ranges ``` def get_values_for_bin(hist, low, high): edges = hist['binedges'].values[0] values = hist['binvalues'].values[0] inbin = [] lowidx = 0 highidx = 0 for edge in edges: if edge < low: lowidx += 1 if edge < high: highidx += 1 continue break minval = math.inf maxval = -math.inf for i in range(lowidx, highidx): if i > len(values) - 1: break inbin.append(values[i]) if values[i] < minval: minval = values[i] if values[i] > maxval: maxval = values[i] if len(inbin) == 0: return (minval, 0, maxval) return (minval, sum(inbin) / len(inbin), maxval) cols = ['config'] for histname, _, _ in histNames: name = histname[histname.index('.')+1:histname.index(':')] cols.append(name + 'Bins') cols.append(name + 'MeanValues') cols.append(name + 'LowValues') cols.append(name + 'HighValues') data = [] for cfg in range(0, configsCount): curdata = [cfg] for histname, _, stepMultiplier in histNames: binmin = int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binminall'].values[0]) binstep = int(stepMultiplier) * int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsizelcm'].values[0]) binmax = 1 + int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmaxall'].values[0]) bins = np.arange(binmin, binmax, binstep) totalSize = (binmax - binmin - 1)//binstep meanValues = np.zeros(totalSize) lowValues = np.full(totalSize, math.inf) highValues = np.full(totalSize, -math.inf) for rep in range(0, repetitionsCount): curHist = histograms[(histograms.config == cfg) & (histograms.qname == histname) & (histograms.repetition == rep)] num = 0 for binlow, binhigh in zip(range(binmin, binmax - 1, binstep), range(binmin + binstep, binmax + binstep, binstep)): values = get_values_for_bin(curHist, binlow, binhigh) if lowValues[num] > values[0]: lowValues[num] = values[0] meanValues[num] += values[1] if highValues[num] < values[2]: highValues[num] = values[2] num += 1 for i in range(0, len(meanValues)): meanValues[i] = meanValues[i] / repetitionsCount curdata.append(bins) curdata.append(meanValues) curdata.append(lowValues) curdata.append(highValues) data.append(curdata) plotdf = pd.DataFrame.from_records(data, columns=cols, index='config') ``` ## Plots ``` for cfg, hist in plotdf.iterrows(): print('Config ' + str(cfg)) display(scalars_wide.loc[(scalars_wide.repetition == 0) & (scalars_wide.config == cfg)][['config', *factors]]) for histName, histDesc, _ in histNames: name = histName[histName.index('.')+1:histName.index(':')] bins = hist[name + 'Bins'] means = hist[name + 'MeanValues'] lows = hist[name + 'LowValues'] highs = hist[name + 'HighValues'] bincenters = 0.5*(bins[1:]+bins[:-1]) ranges = [x for x in zip(lows, highs)] ranges = np.array(ranges).T plt.bar(bincenters, means, width=1, yerr=ranges, error_kw={'capsize': 3}) plt.title('Histogram for the ' + histDesc) plt.xlabel(name) if saveFigures: fig = plt.gcf() fig.savefig('figures/' + get_file_name(histName) + '-' + str(cfg) + '-perfplot.png') plt.show() print('#######################') print() ``` ### Rerun this notebook To rerun this notebook, you can: - just rerun the simulations with the corresponding configuration: `./simulate.sh -s LowDensity -c LowDensity2kr` (you will get slighly different results) - download our datasets from `https://drive.google.com/file/d/1ZFRV2DecoTvax9lngEsuPPw8Cz1DXvLc/view?usp=sharing` (login with UNIPI institutional account) - use our seed to rerun the simulations. Add `seed-set = ${runnumber}6965` to the configuration
github_jupyter
import os import math import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import stats from IPython.display import display, HTML %matplotlib inline def parse_if_number(s): try: return float(s) except: return True if s=="true" else False if s=="false" else s if s else None def parse_ndarray(s): return np.fromstring(s, sep=' ') if s else None def get_file_name(name): return name.replace(':', '-') inputFile = 'data.csv' repetitionsCount = -1 # -1 = auto-detect factors = ['R', 'T', 'm', 'D'] # Plots histBinNum = 30 # Histograms histCenter = True # Center distribution plotSize = (10, 10) plotStyle = 'seaborn-whitegrid' # Save saveFigures = False # Filter scalars scalarsFilter = ['Floorplan.userCount'] # Filter histograms histFilter = ['Floorplan.copies:histogram', 'Floorplan.collisions:histogram', 'Floorplan.totalCollisions:histogram', 'Floorplan.msgsPerSlot:histogram'] histNames = [ ('Floorplan.copies:histogram', 'Number of copies received by each user in an hear window', 1), ('Floorplan.collisions:histogram', 'Number of collisions received by the users', 1), ('Floorplan.totalCollisions:histogram', 'Number of colliding messages received by the users in each slot', 1), ('Floorplan.msgsPerSlot:histogram', 'Number of messages sent in each slot', 1), ] df = pd.read_csv('exported_data/' + inputFile, converters = { 'attrvalue': parse_if_number, 'binedges': parse_ndarray, 'binvalues': parse_ndarray, 'vectime': parse_ndarray, 'vecvalue': parse_ndarray, }) if repetitionsCount <= 0: # auto-detect repetitionsCount = int(df[df.attrname == 'repetition']['attrvalue'].max()) + 1 print('Repetitions:', repetitionsCount) scalars = df[(df.type == 'scalar') | ((df.type == 'itervar') & (df.attrname != 'TO')) | ((df.type == 'param') & (df.attrname == 'Floorplan.userCount')) | ((df.type == 'runattr') & (df.attrname == 'repetition'))] scalars = scalars.assign(qname = scalars.attrname.combine_first(scalars.module + '.' + scalars.name)) for index, row in scalars[scalars.type == 'itervar'].iterrows(): val = scalars.loc[index, 'attrvalue'] if isinstance(val, str) and not all(c.isdigit() for c in val): scalars.loc[index, 'attrvalue'] = eval(val) scalars.value = scalars.value.combine_first(scalars.attrvalue.astype('float64')) scalars_wide = scalars.pivot_table(index=['run'], columns='qname', values='value') scalars_wide.sort_values([*factors, 'repetition'], inplace=True) count = 0 for index in scalars_wide.index: config = count // repetitionsCount scalars_wide.loc[index, 'config'] = config count += 1 scalars_wide = scalars_wide[['config', 'repetition', *factors, *scalarsFilter]] # Computed factorsCount = len(factors) configsCount = len(scalars_wide)//repetitionsCount print('Configs:', configsCount) totalSims = configsCount*repetitionsCount display(HTML("<style>div.output_scroll { height: auto; max-height: 48em; }</style>")) pd.set_option('display.max_rows', totalSims) pd.set_option('display.max_columns', 100) if saveFigures: os.makedirs('figures', exist_ok=True) histograms = df[df.type == 'histogram'] histograms = histograms.assign(qname = histograms.module + '.' + histograms.name) histograms = histograms[histograms.qname.isin(histFilter)] for index in scalars_wide.index: r = index cfg = scalars_wide.loc[index, 'config'] rep = scalars_wide.loc[index, 'repetition'] histograms.loc[histograms.run == r, 'config'] = cfg histograms.loc[histograms.run == r, 'repetition'] = rep for histname, _, _ in histNames: histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binsize'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0][1] - histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0][0] histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binmin'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0].min() histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binmax'] = histograms.loc[(histograms.run == r) & (histograms.qname == histname), 'binedges'].values[0].max() histograms.sort_values(['config', 'repetition', 'qname'], inplace=True) for cfg in range(0, configsCount): for histname, _, _ in histNames: histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsizelcm'] = np.lcm.reduce(list(map(int, histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsize'].values.tolist()))) histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binminall'] = histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmin'].min() histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmaxall'] = histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmax'].max() histograms = histograms[['config', 'repetition', 'qname', 'binmin', 'binmax', 'binsize', 'binedges', 'binvalues', 'binminall', 'binmaxall', 'binsizelcm']] def get_values_for_bin(hist, low, high): edges = hist['binedges'].values[0] values = hist['binvalues'].values[0] inbin = [] lowidx = 0 highidx = 0 for edge in edges: if edge < low: lowidx += 1 if edge < high: highidx += 1 continue break minval = math.inf maxval = -math.inf for i in range(lowidx, highidx): if i > len(values) - 1: break inbin.append(values[i]) if values[i] < minval: minval = values[i] if values[i] > maxval: maxval = values[i] if len(inbin) == 0: return (minval, 0, maxval) return (minval, sum(inbin) / len(inbin), maxval) cols = ['config'] for histname, _, _ in histNames: name = histname[histname.index('.')+1:histname.index(':')] cols.append(name + 'Bins') cols.append(name + 'MeanValues') cols.append(name + 'LowValues') cols.append(name + 'HighValues') data = [] for cfg in range(0, configsCount): curdata = [cfg] for histname, _, stepMultiplier in histNames: binmin = int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binminall'].values[0]) binstep = int(stepMultiplier) * int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binsizelcm'].values[0]) binmax = 1 + int(histograms.loc[(histograms.config == cfg) & (histograms.qname == histname), 'binmaxall'].values[0]) bins = np.arange(binmin, binmax, binstep) totalSize = (binmax - binmin - 1)//binstep meanValues = np.zeros(totalSize) lowValues = np.full(totalSize, math.inf) highValues = np.full(totalSize, -math.inf) for rep in range(0, repetitionsCount): curHist = histograms[(histograms.config == cfg) & (histograms.qname == histname) & (histograms.repetition == rep)] num = 0 for binlow, binhigh in zip(range(binmin, binmax - 1, binstep), range(binmin + binstep, binmax + binstep, binstep)): values = get_values_for_bin(curHist, binlow, binhigh) if lowValues[num] > values[0]: lowValues[num] = values[0] meanValues[num] += values[1] if highValues[num] < values[2]: highValues[num] = values[2] num += 1 for i in range(0, len(meanValues)): meanValues[i] = meanValues[i] / repetitionsCount curdata.append(bins) curdata.append(meanValues) curdata.append(lowValues) curdata.append(highValues) data.append(curdata) plotdf = pd.DataFrame.from_records(data, columns=cols, index='config') for cfg, hist in plotdf.iterrows(): print('Config ' + str(cfg)) display(scalars_wide.loc[(scalars_wide.repetition == 0) & (scalars_wide.config == cfg)][['config', *factors]]) for histName, histDesc, _ in histNames: name = histName[histName.index('.')+1:histName.index(':')] bins = hist[name + 'Bins'] means = hist[name + 'MeanValues'] lows = hist[name + 'LowValues'] highs = hist[name + 'HighValues'] bincenters = 0.5*(bins[1:]+bins[:-1]) ranges = [x for x in zip(lows, highs)] ranges = np.array(ranges).T plt.bar(bincenters, means, width=1, yerr=ranges, error_kw={'capsize': 3}) plt.title('Histogram for the ' + histDesc) plt.xlabel(name) if saveFigures: fig = plt.gcf() fig.savefig('figures/' + get_file_name(histName) + '-' + str(cfg) + '-perfplot.png') plt.show() print('#######################') print()
0.412294
0.71815
# Filtro de tweets * ~~De la BD que contiene los tweets de septiembre 2017, se buscan sólo los que se encuentran entre las fechas del 19 al 26, de los tweets obtenidos se filtran por palabras clave para crear una nueva BD con tweets relevantes ocurridos dentro del periodo de interés y se guardan en un archivo los IDs de los tweets obtenidos. (INCOMPLETO)~~ * El fitro para obtener tweets del 19 al 26 se hace con un script que se ejecuta en el servidor de MongoDB (`mongo.js`) y guarda el resultado en una nueva BD. (COMPLETO) * Se filtran los tweets de la nueva BD usando palabras clave y se meten a otra BD. (COMPLETO) * La nueva BD sirve para obtener las relaciones paradigmáticas de las palabras clave para hacer más completa la lista y poder extraer más resultados que pudieron haber sido omitidos una primera pasada del filtro. (FALTA) # Dependencies ``` #!/usr/bin/env python # -*- coding: utf-8 -*- from pymongo import MongoClient from nltk.tokenize import TweetTokenizer ``` # Conexión a MongoDB ``` try: client = MongoClient() print("Connected to MongoDB\n") except pymongo.errors.ConnectionFailure as e: print("Could not connect to MongoDB",e) ``` # Seleccionar BD y colección BD de todo septiembre. ``` db = client.sept19_26_db tweets = db.sept19_26_collection ``` # Número de Tweets Una vez filtrados los tweets de septiembre entre las fechas 19 y 26, se tienen: ``` print("Tweets entre el 19 y 26 septiembre: ",tweets.find().count()) ``` # Nueva BD Se crea una nueva BD de tweets con palabras clave dentro del periodo del 19 al 26 de septiembre. ``` db_new = client.sept19_26_keywords_db tweets_new = db_new.sept19_26_keywords_collection ``` # Consultar BD Buscar tweets dentro de un rango de fechas en BD. fecha = ["Tue Sep 19 00:00:00 +0000 2017","Wed Sep 20 14:59:58 +0000 2017"] query = { 'created_at' : { "$gte":"Wed Sep 20 14:59:58 +0000 2017" } } # Lista para filtro de palabras clave y tokenización de tweets * `filtro`: Lista para buscar palabras clave dentro del tweet * `ids`: set para guardar los tweets por id que contengan palabras clave para después hacer consulta a la BD por medio de su ID * `tknzr`: Tokenizador de tweets ``` filtro = ["sismo","#sismo","#alertasísmica","#alertasismica", "albergue", "acopio", "víveres", "viveres", "alerta", "sísmica","sismica", "ayuda", "#verificado19S","19s","derrumbe","colecta","#fuerzamexico", "#fuerzaméxico","#acopio"] IDs = set() tknzr = TweetTokenizer(preserve_case=False, # Convertir a minúsculas reduce_len=True, # Reducir caracteres repetidos strip_handles=False) # Mostrar @usuarios ``` # Se obtienen tweets relevantes ``` for i in tweets.find(): if "retweeted_status" in i: # Si es retweet... tmp = tknzr.tokenize(i["retweeted_status"]['text']) for key in filtro: # Para buscar palabras clave dentro del tweet if key in tmp: #print(i["created_at"]) #IDs.add(i["_id"]) try: # Insertar tweet con palabras clave en nueva BD insertar = tweets_new.insert_one(i) except Exception as e: #print("Error:",e) pass else: # Si no es retweet... tmp = tknzr.tokenize(i['text']) for key in filtro: if key in tmp: #print(i["created_at"]) #IDs.add(i["_id"]) try: insertar = tweets_new.insert_one(i) except Exception as e: #print("Error:",e) pass ``` # Filtro por keywords ``` print("Tweets con palabras clave del 19 al 26 septiembre: ",tweets_new.find().count()) ``` # Escribir IDs en archivo if True: IDs_file = open('IDs.dat', 'w') for item in IDs: IDs_file.write(str(item)+"\n") IDs_file.close()
github_jupyter
#!/usr/bin/env python # -*- coding: utf-8 -*- from pymongo import MongoClient from nltk.tokenize import TweetTokenizer try: client = MongoClient() print("Connected to MongoDB\n") except pymongo.errors.ConnectionFailure as e: print("Could not connect to MongoDB",e) db = client.sept19_26_db tweets = db.sept19_26_collection print("Tweets entre el 19 y 26 septiembre: ",tweets.find().count()) db_new = client.sept19_26_keywords_db tweets_new = db_new.sept19_26_keywords_collection filtro = ["sismo","#sismo","#alertasísmica","#alertasismica", "albergue", "acopio", "víveres", "viveres", "alerta", "sísmica","sismica", "ayuda", "#verificado19S","19s","derrumbe","colecta","#fuerzamexico", "#fuerzaméxico","#acopio"] IDs = set() tknzr = TweetTokenizer(preserve_case=False, # Convertir a minúsculas reduce_len=True, # Reducir caracteres repetidos strip_handles=False) # Mostrar @usuarios for i in tweets.find(): if "retweeted_status" in i: # Si es retweet... tmp = tknzr.tokenize(i["retweeted_status"]['text']) for key in filtro: # Para buscar palabras clave dentro del tweet if key in tmp: #print(i["created_at"]) #IDs.add(i["_id"]) try: # Insertar tweet con palabras clave en nueva BD insertar = tweets_new.insert_one(i) except Exception as e: #print("Error:",e) pass else: # Si no es retweet... tmp = tknzr.tokenize(i['text']) for key in filtro: if key in tmp: #print(i["created_at"]) #IDs.add(i["_id"]) try: insertar = tweets_new.insert_one(i) except Exception as e: #print("Error:",e) pass print("Tweets con palabras clave del 19 al 26 septiembre: ",tweets_new.find().count())
0.054324
0.5
# VacationPy ---- #### Note * Keep an eye on your API usage. Use https://developers.google.com/maps/reporting/gmp-reporting as reference for how to monitor your usage and billing. * Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ``` # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key gmaps.configure(api_key=g_key) ``` ### Store Part I results into DataFrame * Load the csv exported in Part I to a DataFrame ``` weather_one = "../output_data/weather.csv" weather_one_df = pd.read_csv(weather_one) weather_one_df.head() ``` ### Humidity Heatmap * Configure gmaps. * Use the Lat and Lng as locations and Humidity as the weight. * Add Heatmap layer to map. ``` # Store latitude and longitude in locations lat_lon = weather_one_df[['Lat', 'Lng']] # Fill NaN values and convert to float humid = weather_one_df["Humidity"] lat_lon.head() # Plot Heatmap figure_layout = { 'width': '900px', 'height': '600px', 'border': '1px solid black', 'padding': '1px', 'margin': '0 auto 0 auto' } # Use the gmaps.figure passing a zoom_level of 2 and a center point so the map displays properly at # a readable size fig = gmaps.figure(layout=figure_layout,zoom_level=2,center=(15,25)) # Create heat layer heat_layer = gmaps.heatmap_layer(lat_lon, weights=humid, dissipating=False, max_intensity=100, point_radius=1.5) # Add heat layer fig.add_layer(heat_layer) # Display figure fig ``` ### Create new DataFrame fitting weather criteria * Narrow down the cities to fit weather conditions. * Drop any rows will null values. ``` # Create criteria for the perfect vacation climate # A max temperature lower than 80 degrees but higher than 70. crit_temperature = (weather_one_df.Temperature < 80) & (weather_one_df.Temperature > 70) crit_Clouds = weather_one_df.Clouds == 0 final_criteria = crit_temperature & crit_Clouds # Use boolean indexing to filter the weather_df dataframe ideal_weather_df = weather_one_df[final_criteria] ideal_weather_df = ideal_weather_df.dropna() ideal_weather_df = ideal_weather_df.reset_index() ideal_weather_df.head(10) ``` ### Hotel Map * Store into variable named `hotel_df`. * Add a "Hotel Name" column to the DataFrame. * Set parameters to search for hotels with 5000 meters. * Hit the Google Places API for each city's coordinates. * Store the first Hotel result into the DataFrame. * Plot markers on top of the heatmap. ``` hotel_df = ideal_weather_df hotel_df['Hotel Name'] = "" hotel_df.head() # params dictionary to update each iteration params = { "radius": 5000, "types": "lodging", "keyword": "Hotel", "key": g_key } # Use the lat/lng we recovered to identify airports for index, row in hotel_df.iterrows(): # get lat, lng from hotel_df lat = row["Lat"] lng = row["Lng"] # change location each iteration while leaving original params in place params["location"] = f"{lat},{lng}" # Use the search term: "Hotel" and our lat/lng base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # make request and print url name_address = requests.get(base_url, params=params) # print the name_address url, avoid doing for public github repos in order to avoid exposing key #print(name_address.url) # convert to json name_address = name_address.json() #print(json.dumps(name_address, indent=4, sort_keys=True)) # Since some data may be missing we incorporate a try-except to skip any that are missing a data point. try: hotel_df.loc[index, "Hotel Name"] = name_address["results"][0]["name"] #hotel_df.loc[index, "Airport Address"] = name_address["results"][0]["vicinity"] #hotel_df.loc[index, "Airport Rating"] = name_address["results"][0]["rating"] except (KeyError, IndexError): print("Missing field/result... skipping.") hotel_df.info() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map figure_layout = { 'width': '900px', 'height': '600px', 'border': '1px solid black', 'padding': '1px', 'margin': '0 auto 0 auto' } fig = gmaps.figure(layout=figure_layout,zoom_level=2,center=(15,25)) # Create hotel symbol layer hotel_layer = gmaps.marker_layer( locations,info_box_content=[info_box_template.format(**row) for index, row in hotel_df.iterrows()] ) # Add layer fig.add_layer(heat_layer) fig.add_layer(hotel_layer) # Display figure fig ```
github_jupyter
# Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import gmaps import os # Import API key from api_keys import g_key gmaps.configure(api_key=g_key) weather_one = "../output_data/weather.csv" weather_one_df = pd.read_csv(weather_one) weather_one_df.head() # Store latitude and longitude in locations lat_lon = weather_one_df[['Lat', 'Lng']] # Fill NaN values and convert to float humid = weather_one_df["Humidity"] lat_lon.head() # Plot Heatmap figure_layout = { 'width': '900px', 'height': '600px', 'border': '1px solid black', 'padding': '1px', 'margin': '0 auto 0 auto' } # Use the gmaps.figure passing a zoom_level of 2 and a center point so the map displays properly at # a readable size fig = gmaps.figure(layout=figure_layout,zoom_level=2,center=(15,25)) # Create heat layer heat_layer = gmaps.heatmap_layer(lat_lon, weights=humid, dissipating=False, max_intensity=100, point_radius=1.5) # Add heat layer fig.add_layer(heat_layer) # Display figure fig # Create criteria for the perfect vacation climate # A max temperature lower than 80 degrees but higher than 70. crit_temperature = (weather_one_df.Temperature < 80) & (weather_one_df.Temperature > 70) crit_Clouds = weather_one_df.Clouds == 0 final_criteria = crit_temperature & crit_Clouds # Use boolean indexing to filter the weather_df dataframe ideal_weather_df = weather_one_df[final_criteria] ideal_weather_df = ideal_weather_df.dropna() ideal_weather_df = ideal_weather_df.reset_index() ideal_weather_df.head(10) hotel_df = ideal_weather_df hotel_df['Hotel Name'] = "" hotel_df.head() # params dictionary to update each iteration params = { "radius": 5000, "types": "lodging", "keyword": "Hotel", "key": g_key } # Use the lat/lng we recovered to identify airports for index, row in hotel_df.iterrows(): # get lat, lng from hotel_df lat = row["Lat"] lng = row["Lng"] # change location each iteration while leaving original params in place params["location"] = f"{lat},{lng}" # Use the search term: "Hotel" and our lat/lng base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json" # make request and print url name_address = requests.get(base_url, params=params) # print the name_address url, avoid doing for public github repos in order to avoid exposing key #print(name_address.url) # convert to json name_address = name_address.json() #print(json.dumps(name_address, indent=4, sort_keys=True)) # Since some data may be missing we incorporate a try-except to skip any that are missing a data point. try: hotel_df.loc[index, "Hotel Name"] = name_address["results"][0]["name"] #hotel_df.loc[index, "Airport Address"] = name_address["results"][0]["vicinity"] #hotel_df.loc[index, "Airport Rating"] = name_address["results"][0]["rating"] except (KeyError, IndexError): print("Missing field/result... skipping.") hotel_df.info() # NOTE: Do not change any of the code in this cell # Using the template add the hotel marks to the heatmap info_box_template = """ <dl> <dt>Name</dt><dd>{Hotel Name}</dd> <dt>City</dt><dd>{City}</dd> <dt>Country</dt><dd>{Country}</dd> </dl> """ # Store the DataFrame Row # NOTE: be sure to update with your DataFrame name hotel_info = [info_box_template.format(**row) for index, row in hotel_df.iterrows()] locations = hotel_df[["Lat", "Lng"]] # Add marker layer ontop of heat map figure_layout = { 'width': '900px', 'height': '600px', 'border': '1px solid black', 'padding': '1px', 'margin': '0 auto 0 auto' } fig = gmaps.figure(layout=figure_layout,zoom_level=2,center=(15,25)) # Create hotel symbol layer hotel_layer = gmaps.marker_layer( locations,info_box_content=[info_box_template.format(**row) for index, row in hotel_df.iterrows()] ) # Add layer fig.add_layer(heat_layer) fig.add_layer(hotel_layer) # Display figure fig
0.58166
0.852014
``` import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.preprocessing import MinMaxScaler import model from datetime import datetime from datetime import timedelta sns.set() df = pd.read_csv('/home/husein/space/Stock-Prediction-Comparison/dataset/GOOG-year.csv') date_ori = pd.to_datetime(df.iloc[:, 0]).tolist() df.head() minmax = MinMaxScaler().fit(df.iloc[:, 1:].astype('float32')) df_log = minmax.transform(df.iloc[:, 1:].astype('float32')) df_log = pd.DataFrame(df_log) df_log.head() timestamp = 5 epoch = 500 future_day = 50 def embed_seq(inputs, vocab_size=None, embed_dim=None, zero_pad=False, scale=False): lookup_table = tf.get_variable('lookup_table', dtype=tf.float32, shape=[vocab_size, embed_dim]) if zero_pad: lookup_table = tf.concat((tf.zeros([1, embed_dim]), lookup_table[1:, :]), axis=0) outputs = tf.nn.embedding_lookup(lookup_table, inputs) if scale: outputs = outputs * (embed_dim ** 0.5) return outputs def learned_positional_encoding(inputs, embed_dim, zero_pad=False, scale=False): T = inputs.get_shape().as_list()[1] outputs = tf.range(T) outputs = tf.expand_dims(outputs, 0) outputs = tf.tile(outputs, [tf.shape(inputs)[0], 1]) return embed_seq(outputs, T, embed_dim, zero_pad=zero_pad, scale=scale) def layer_norm(inputs, epsilon=1e-8): mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True) normalized = (inputs - mean) / (tf.sqrt(variance + epsilon)) params_shape = inputs.get_shape()[-1:] gamma = tf.get_variable('gamma', params_shape, tf.float32, tf.ones_initializer()) beta = tf.get_variable('beta', params_shape, tf.float32, tf.zeros_initializer()) return gamma * normalized + beta def pointwise_feedforward(inputs, num_units=[None, None], activation=None): outputs = tf.layers.conv1d(inputs, num_units[0], kernel_size=1, activation=activation) outputs = tf.layers.conv1d(outputs, num_units[1], kernel_size=1, activation=None) outputs += inputs outputs = layer_norm(outputs) return outputs class Model: def __init__(self, dimension_input, dimension_output, seq_len, learning_rate, num_heads=8, attn_windows=range(1, 6)): self.size_layer = dimension_input self.num_heads = num_heads self.seq_len = seq_len self.X = tf.placeholder(tf.float32, [None, seq_len, dimension_input]) self.Y = tf.placeholder(tf.float32, [None, dimension_output]) feed = self.X for i, win_size in enumerate(attn_windows): with tf.variable_scope('attn_masked_window_%d' % win_size): feed = self.multihead_attn(feed, self.window_mask(win_size)) feed += learned_positional_encoding(feed, dimension_input) with tf.variable_scope('multihead'): feed = self.multihead_attn(feed, None) with tf.variable_scope('pointwise'): feed = pointwise_feedforward(feed, num_units=[4*dimension_input, dimension_input], activation=tf.nn.relu) self.logits = tf.layers.dense(feed, dimension_output)[:,-1] self.cost = tf.reduce_mean(tf.square(self.Y - self.logits)) self.optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(self.cost) self.correct_pred = tf.equal(tf.argmax(self.logits, 1), tf.argmax(self.Y, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32)) def multihead_attn(self, inputs, masks): T_q = T_k = inputs.get_shape().as_list()[1] Q_K_V = tf.layers.dense(inputs, 3*self.size_layer, tf.nn.relu) Q, K, V = tf.split(Q_K_V, 3, -1) Q_ = tf.concat(tf.split(Q, self.num_heads, axis=2), axis=0) K_ = tf.concat(tf.split(K, self.num_heads, axis=2), axis=0) V_ = tf.concat(tf.split(V, self.num_heads, axis=2), axis=0) align = tf.matmul(Q_, tf.transpose(K_, [0,2,1])) align = align / np.sqrt(K_.get_shape().as_list()[-1]) if masks is not None: paddings = tf.fill(tf.shape(align), float('-inf')) align = tf.where(tf.equal(masks, 0), paddings, align) align = tf.nn.softmax(align) outputs = tf.matmul(align, V_) outputs = tf.concat(tf.split(outputs, self.num_heads, axis=0), axis=2) outputs += inputs return layer_norm(outputs) def window_mask(self, h_w): masks = np.zeros([self.seq_len, self.seq_len]) for i in range(self.seq_len): if i < h_w: masks[i, :i+h_w+1] = 1. elif i > self.seq_len - h_w - 1: masks[i, i-h_w:] = 1. else: masks[i, i-h_w:i+h_w+1] = 1. masks = tf.convert_to_tensor(masks) return tf.tile(tf.expand_dims(masks,0), [tf.shape(self.X)[0]*self.num_heads, 1, 1]) tf.reset_default_graph() modelnn = Model(df_log.shape[1], df_log.shape[1], timestamp, 0.01,num_heads=df_log.shape[1]) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) for i in range(epoch): total_loss = 0 for k in range(0, (df_log.shape[0] // timestamp) * timestamp, timestamp): batch_x = np.expand_dims(df_log.iloc[k: k + timestamp, :].values, axis = 0) batch_y = df_log.iloc[k + 1: k + timestamp + 1, :].values _, loss = sess.run([modelnn.optimizer, modelnn.cost], feed_dict={modelnn.X: batch_x, modelnn.Y: batch_y}) total_loss += loss total_loss /= (df_log.shape[0] // timestamp) if (i + 1) % 100 == 0: print('epoch:', i + 1, 'avg loss:', total_loss) output_predict = np.zeros((df_log.shape[0] + future_day, df_log.shape[1])) output_predict[0, :] = df_log.iloc[0, :] upper_b = (df_log.shape[0] // timestamp) * timestamp for k in range(0, (df_log.shape[0] // timestamp) * timestamp, timestamp): try: out_logits = sess.run(modelnn.logits, feed_dict = {modelnn.X:np.expand_dims(df_log.iloc[k: k + timestamp, :], axis = 0)}) output_predict[k + 1: k + timestamp + 1, :] = out_logits except: out_logits = sess.run(modelnn.logits, feed_dict = {modelnn.X:np.expand_dims(df_log.iloc[-timestamp:, :], axis = 0)}) output_predict[df_log.shape[0]-timestamp:df_log.shape[0],:] = out_logits df_log.loc[df_log.shape[0]] = out_logits[-1, :] date_ori.append(date_ori[-1]+timedelta(days=1)) for i in range(future_day - 1): out_logits = sess.run(modelnn.logits, feed_dict = {modelnn.X:np.expand_dims(df_log.iloc[-timestamp:, :], axis = 0)}) output_predict[df_log.shape[0], :] = out_logits[-1, :] df_log.loc[df_log.shape[0]] = out_logits[-1, :] date_ori.append(date_ori[-1]+timedelta(days=1)) df_log = minmax.inverse_transform(output_predict) date_ori=pd.Series(date_ori).dt.strftime(date_format='%Y-%m-%d').tolist() current_palette = sns.color_palette("Paired", 12) fig = plt.figure(figsize = (15,10)) ax = plt.subplot(111) x_range_original = np.arange(df.shape[0]) x_range_future = np.arange(df_log.shape[0]) ax.plot(x_range_original, df.iloc[:, 1], label = 'true Open', color = current_palette[0]) ax.plot(x_range_future, df_log[:, 0], label = 'predict Open', color = current_palette[1]) ax.plot(x_range_original, df.iloc[:, 2], label = 'true High', color = current_palette[2]) ax.plot(x_range_future, df_log[:, 1], label = 'predict High', color = current_palette[3]) ax.plot(x_range_original, df.iloc[:, 3], label = 'true Low', color = current_palette[4]) ax.plot(x_range_future, df_log[:, 2], label = 'predict Low', color = current_palette[5]) ax.plot(x_range_original, df.iloc[:, 4], label = 'true Close', color = current_palette[6]) ax.plot(x_range_future, df_log[:, 3], label = 'predict Close', color = current_palette[7]) ax.plot(x_range_original, df.iloc[:, 5], label = 'true Adj Close', color = current_palette[8]) ax.plot(x_range_future, df_log[:, 4], label = 'predict Adj Close', color = current_palette[9]) box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) ax.legend(loc = 'upper center', bbox_to_anchor= (0.5, -0.05), fancybox = True, shadow = True, ncol = 5) plt.title('overlap stock market') plt.xticks(x_range_future[::30], date_ori[::30]) plt.show() fig = plt.figure(figsize = (20,8)) plt.subplot(1, 2, 1) plt.plot(x_range_original, df.iloc[:, 1], label = 'true Open', color = current_palette[0]) plt.plot(x_range_original, df.iloc[:, 2], label = 'true High', color = current_palette[2]) plt.plot(x_range_original, df.iloc[:, 3], label = 'true Low', color = current_palette[4]) plt.plot(x_range_original, df.iloc[:, 4], label = 'true Close', color = current_palette[6]) plt.plot(x_range_original, df.iloc[:, 5], label = 'true Adj Close', color = current_palette[8]) plt.xticks(x_range_original[::60], df.iloc[:, 0].tolist()[::60]) plt.legend() plt.title('true market') plt.subplot(1, 2, 2) plt.plot(x_range_future, df_log[:, 0], label = 'predict Open', color = current_palette[1]) plt.plot(x_range_future, df_log[:, 1], label = 'predict High', color = current_palette[3]) plt.plot(x_range_future, df_log[:, 2], label = 'predict Low', color = current_palette[5]) plt.plot(x_range_future, df_log[:, 3], label = 'predict Close', color = current_palette[7]) plt.plot(x_range_future, df_log[:, 4], label = 'predict Adj Close', color = current_palette[9]) plt.xticks(x_range_future[::60], date_ori[::60]) plt.legend() plt.title('predict market') plt.show() fig = plt.figure(figsize = (15,10)) ax = plt.subplot(111) ax.plot(x_range_original, df.iloc[:, -1], label = 'true Volume') ax.plot(x_range_future, df_log[:, -1], label = 'predict Volume') box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) ax.legend(loc = 'upper center', bbox_to_anchor= (0.5, -0.05), fancybox = True, shadow = True, ncol = 5) plt.xticks(x_range_future[::30], date_ori[::30]) plt.title('overlap market volume') plt.show() fig = plt.figure(figsize = (20,8)) plt.subplot(1, 2, 1) plt.plot(x_range_original, df.iloc[:, -1], label = 'true Volume') plt.xticks(x_range_original[::60], df.iloc[:, 0].tolist()[::60]) plt.legend() plt.title('true market volume') plt.subplot(1, 2, 2) plt.plot(x_range_future, df_log[:, -1], label = 'predict Volume') plt.xticks(x_range_future[::60], date_ori[::60]) plt.legend() plt.title('predict market volume') plt.show() ```
github_jupyter
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.preprocessing import MinMaxScaler import model from datetime import datetime from datetime import timedelta sns.set() df = pd.read_csv('/home/husein/space/Stock-Prediction-Comparison/dataset/GOOG-year.csv') date_ori = pd.to_datetime(df.iloc[:, 0]).tolist() df.head() minmax = MinMaxScaler().fit(df.iloc[:, 1:].astype('float32')) df_log = minmax.transform(df.iloc[:, 1:].astype('float32')) df_log = pd.DataFrame(df_log) df_log.head() timestamp = 5 epoch = 500 future_day = 50 def embed_seq(inputs, vocab_size=None, embed_dim=None, zero_pad=False, scale=False): lookup_table = tf.get_variable('lookup_table', dtype=tf.float32, shape=[vocab_size, embed_dim]) if zero_pad: lookup_table = tf.concat((tf.zeros([1, embed_dim]), lookup_table[1:, :]), axis=0) outputs = tf.nn.embedding_lookup(lookup_table, inputs) if scale: outputs = outputs * (embed_dim ** 0.5) return outputs def learned_positional_encoding(inputs, embed_dim, zero_pad=False, scale=False): T = inputs.get_shape().as_list()[1] outputs = tf.range(T) outputs = tf.expand_dims(outputs, 0) outputs = tf.tile(outputs, [tf.shape(inputs)[0], 1]) return embed_seq(outputs, T, embed_dim, zero_pad=zero_pad, scale=scale) def layer_norm(inputs, epsilon=1e-8): mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True) normalized = (inputs - mean) / (tf.sqrt(variance + epsilon)) params_shape = inputs.get_shape()[-1:] gamma = tf.get_variable('gamma', params_shape, tf.float32, tf.ones_initializer()) beta = tf.get_variable('beta', params_shape, tf.float32, tf.zeros_initializer()) return gamma * normalized + beta def pointwise_feedforward(inputs, num_units=[None, None], activation=None): outputs = tf.layers.conv1d(inputs, num_units[0], kernel_size=1, activation=activation) outputs = tf.layers.conv1d(outputs, num_units[1], kernel_size=1, activation=None) outputs += inputs outputs = layer_norm(outputs) return outputs class Model: def __init__(self, dimension_input, dimension_output, seq_len, learning_rate, num_heads=8, attn_windows=range(1, 6)): self.size_layer = dimension_input self.num_heads = num_heads self.seq_len = seq_len self.X = tf.placeholder(tf.float32, [None, seq_len, dimension_input]) self.Y = tf.placeholder(tf.float32, [None, dimension_output]) feed = self.X for i, win_size in enumerate(attn_windows): with tf.variable_scope('attn_masked_window_%d' % win_size): feed = self.multihead_attn(feed, self.window_mask(win_size)) feed += learned_positional_encoding(feed, dimension_input) with tf.variable_scope('multihead'): feed = self.multihead_attn(feed, None) with tf.variable_scope('pointwise'): feed = pointwise_feedforward(feed, num_units=[4*dimension_input, dimension_input], activation=tf.nn.relu) self.logits = tf.layers.dense(feed, dimension_output)[:,-1] self.cost = tf.reduce_mean(tf.square(self.Y - self.logits)) self.optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(self.cost) self.correct_pred = tf.equal(tf.argmax(self.logits, 1), tf.argmax(self.Y, 1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32)) def multihead_attn(self, inputs, masks): T_q = T_k = inputs.get_shape().as_list()[1] Q_K_V = tf.layers.dense(inputs, 3*self.size_layer, tf.nn.relu) Q, K, V = tf.split(Q_K_V, 3, -1) Q_ = tf.concat(tf.split(Q, self.num_heads, axis=2), axis=0) K_ = tf.concat(tf.split(K, self.num_heads, axis=2), axis=0) V_ = tf.concat(tf.split(V, self.num_heads, axis=2), axis=0) align = tf.matmul(Q_, tf.transpose(K_, [0,2,1])) align = align / np.sqrt(K_.get_shape().as_list()[-1]) if masks is not None: paddings = tf.fill(tf.shape(align), float('-inf')) align = tf.where(tf.equal(masks, 0), paddings, align) align = tf.nn.softmax(align) outputs = tf.matmul(align, V_) outputs = tf.concat(tf.split(outputs, self.num_heads, axis=0), axis=2) outputs += inputs return layer_norm(outputs) def window_mask(self, h_w): masks = np.zeros([self.seq_len, self.seq_len]) for i in range(self.seq_len): if i < h_w: masks[i, :i+h_w+1] = 1. elif i > self.seq_len - h_w - 1: masks[i, i-h_w:] = 1. else: masks[i, i-h_w:i+h_w+1] = 1. masks = tf.convert_to_tensor(masks) return tf.tile(tf.expand_dims(masks,0), [tf.shape(self.X)[0]*self.num_heads, 1, 1]) tf.reset_default_graph() modelnn = Model(df_log.shape[1], df_log.shape[1], timestamp, 0.01,num_heads=df_log.shape[1]) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) for i in range(epoch): total_loss = 0 for k in range(0, (df_log.shape[0] // timestamp) * timestamp, timestamp): batch_x = np.expand_dims(df_log.iloc[k: k + timestamp, :].values, axis = 0) batch_y = df_log.iloc[k + 1: k + timestamp + 1, :].values _, loss = sess.run([modelnn.optimizer, modelnn.cost], feed_dict={modelnn.X: batch_x, modelnn.Y: batch_y}) total_loss += loss total_loss /= (df_log.shape[0] // timestamp) if (i + 1) % 100 == 0: print('epoch:', i + 1, 'avg loss:', total_loss) output_predict = np.zeros((df_log.shape[0] + future_day, df_log.shape[1])) output_predict[0, :] = df_log.iloc[0, :] upper_b = (df_log.shape[0] // timestamp) * timestamp for k in range(0, (df_log.shape[0] // timestamp) * timestamp, timestamp): try: out_logits = sess.run(modelnn.logits, feed_dict = {modelnn.X:np.expand_dims(df_log.iloc[k: k + timestamp, :], axis = 0)}) output_predict[k + 1: k + timestamp + 1, :] = out_logits except: out_logits = sess.run(modelnn.logits, feed_dict = {modelnn.X:np.expand_dims(df_log.iloc[-timestamp:, :], axis = 0)}) output_predict[df_log.shape[0]-timestamp:df_log.shape[0],:] = out_logits df_log.loc[df_log.shape[0]] = out_logits[-1, :] date_ori.append(date_ori[-1]+timedelta(days=1)) for i in range(future_day - 1): out_logits = sess.run(modelnn.logits, feed_dict = {modelnn.X:np.expand_dims(df_log.iloc[-timestamp:, :], axis = 0)}) output_predict[df_log.shape[0], :] = out_logits[-1, :] df_log.loc[df_log.shape[0]] = out_logits[-1, :] date_ori.append(date_ori[-1]+timedelta(days=1)) df_log = minmax.inverse_transform(output_predict) date_ori=pd.Series(date_ori).dt.strftime(date_format='%Y-%m-%d').tolist() current_palette = sns.color_palette("Paired", 12) fig = plt.figure(figsize = (15,10)) ax = plt.subplot(111) x_range_original = np.arange(df.shape[0]) x_range_future = np.arange(df_log.shape[0]) ax.plot(x_range_original, df.iloc[:, 1], label = 'true Open', color = current_palette[0]) ax.plot(x_range_future, df_log[:, 0], label = 'predict Open', color = current_palette[1]) ax.plot(x_range_original, df.iloc[:, 2], label = 'true High', color = current_palette[2]) ax.plot(x_range_future, df_log[:, 1], label = 'predict High', color = current_palette[3]) ax.plot(x_range_original, df.iloc[:, 3], label = 'true Low', color = current_palette[4]) ax.plot(x_range_future, df_log[:, 2], label = 'predict Low', color = current_palette[5]) ax.plot(x_range_original, df.iloc[:, 4], label = 'true Close', color = current_palette[6]) ax.plot(x_range_future, df_log[:, 3], label = 'predict Close', color = current_palette[7]) ax.plot(x_range_original, df.iloc[:, 5], label = 'true Adj Close', color = current_palette[8]) ax.plot(x_range_future, df_log[:, 4], label = 'predict Adj Close', color = current_palette[9]) box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) ax.legend(loc = 'upper center', bbox_to_anchor= (0.5, -0.05), fancybox = True, shadow = True, ncol = 5) plt.title('overlap stock market') plt.xticks(x_range_future[::30], date_ori[::30]) plt.show() fig = plt.figure(figsize = (20,8)) plt.subplot(1, 2, 1) plt.plot(x_range_original, df.iloc[:, 1], label = 'true Open', color = current_palette[0]) plt.plot(x_range_original, df.iloc[:, 2], label = 'true High', color = current_palette[2]) plt.plot(x_range_original, df.iloc[:, 3], label = 'true Low', color = current_palette[4]) plt.plot(x_range_original, df.iloc[:, 4], label = 'true Close', color = current_palette[6]) plt.plot(x_range_original, df.iloc[:, 5], label = 'true Adj Close', color = current_palette[8]) plt.xticks(x_range_original[::60], df.iloc[:, 0].tolist()[::60]) plt.legend() plt.title('true market') plt.subplot(1, 2, 2) plt.plot(x_range_future, df_log[:, 0], label = 'predict Open', color = current_palette[1]) plt.plot(x_range_future, df_log[:, 1], label = 'predict High', color = current_palette[3]) plt.plot(x_range_future, df_log[:, 2], label = 'predict Low', color = current_palette[5]) plt.plot(x_range_future, df_log[:, 3], label = 'predict Close', color = current_palette[7]) plt.plot(x_range_future, df_log[:, 4], label = 'predict Adj Close', color = current_palette[9]) plt.xticks(x_range_future[::60], date_ori[::60]) plt.legend() plt.title('predict market') plt.show() fig = plt.figure(figsize = (15,10)) ax = plt.subplot(111) ax.plot(x_range_original, df.iloc[:, -1], label = 'true Volume') ax.plot(x_range_future, df_log[:, -1], label = 'predict Volume') box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) ax.legend(loc = 'upper center', bbox_to_anchor= (0.5, -0.05), fancybox = True, shadow = True, ncol = 5) plt.xticks(x_range_future[::30], date_ori[::30]) plt.title('overlap market volume') plt.show() fig = plt.figure(figsize = (20,8)) plt.subplot(1, 2, 1) plt.plot(x_range_original, df.iloc[:, -1], label = 'true Volume') plt.xticks(x_range_original[::60], df.iloc[:, 0].tolist()[::60]) plt.legend() plt.title('true market volume') plt.subplot(1, 2, 2) plt.plot(x_range_future, df_log[:, -1], label = 'predict Volume') plt.xticks(x_range_future[::60], date_ori[::60]) plt.legend() plt.title('predict market volume') plt.show()
0.712132
0.338487
``` import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline from subprocess import check_output #print(check_output(["ls", "../input"]).decode("utf8")) import sklearn from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split,StratifiedKFold, ShuffleSplit, cross_val_score, train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor loc0 = (r'UntitledspreadsheetSheet1.csv') #loc1 = (r'housing_test.csv') train = pd.read_csv(loc0, error_bad_lines=False) #test = pd.read_csv(loc1, error_bad_lines=False) print(train.shape) train.head(10) train.drop('GSTIN', axis = 1, inplace = True) correlation = train.corr() plt.figure(figsize=(10,10)) sns.heatmap(correlation, vmax=1, square=True,annot=True,cmap='viridis') plt.title('Correlation between different fearures') # Preparing data to be fed to a predictive model train_Y = train['GST_Fraud'] train = train.drop('GST_Fraud', axis = 1) train_X.head() from sklearn.preprocessing import LabelEncoder le=LabelEncoder() encoded = le.fit_transform(train['Firm']) #le.inverse_transform(test_Y) train['Firm'] = encoded le=LabelEncoder() encoded = le.fit_transform(train['Field']) train['Field'] = encoded le=LabelEncoder() encoded = le.fit_transform(train['DD/MM/YY']) train['DD/MM/YY'] = encoded train X_train, X_test, y_train, y_test = train_test_split(train, train_Y, test_size = 0.2, random_state = 42) #CVtrain_X, CVtest_X = pd.get_dummies(CVtrain_X), pd.get_dummies(CVtest_X) from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report, confusion_matrix from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import f1_score def evaluate_models(number_of_est, maximum_depth, models, X_train, X_test): '''Function to evaluate the performance of a tree based model (based on R2 score), over a grid of number of estimators and maximum depth. Function takes in choice of model, array of n_estimators, array of max_depth and training and testing sets''' for model_choice in models: for n_est in number_of_est: for max_d in maximum_depth: model = model_choice(n_estimators=n_est, max_depth=max_d, random_state = 42) model.fit(X_train, y_train) CVpred = model.predict(X_test) print(CVpred) r2 = r2_score(y_test, CVpred) f1 = f1_score(y_test, CVpred, average='weighted') print(model_choice,',Estimators:',n_est,',Max_Depth:',max_d,',R2:', r2,',f1:', f1) models = [ GradientBoostingClassifier ] number_of_est = [3,4,5,20, 30, 40, 50, 60] #number_of_est = [450,400,300,200, 130, 80, 50, 60] maximum_depth = [2,3,4,5,8,10] #maximum_depth = [2,5, 10, 15, 20, 25,30,40,70,100,150] evaluate_models(number_of_est, maximum_depth, models, X_train, X_test) train_X = train train_X.drop('GST_Fraud_amount(%)', axis = 1, inplace = True) train_X.drop('fake invoice', axis = 1, inplace = True) train from sklearn.linear_model import LogisticRegression models = [ GradientBoostingClassifier , LogisticRegression] clf = LogisticRegression(random_state=0).fit(X_train, y_train) h=clf.predict(X_test) clf.score(X_test, y_test) clf h y_test X_test ```
github_jupyter
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline from subprocess import check_output #print(check_output(["ls", "../input"]).decode("utf8")) import sklearn from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split,StratifiedKFold, ShuffleSplit, cross_val_score, train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor loc0 = (r'UntitledspreadsheetSheet1.csv') #loc1 = (r'housing_test.csv') train = pd.read_csv(loc0, error_bad_lines=False) #test = pd.read_csv(loc1, error_bad_lines=False) print(train.shape) train.head(10) train.drop('GSTIN', axis = 1, inplace = True) correlation = train.corr() plt.figure(figsize=(10,10)) sns.heatmap(correlation, vmax=1, square=True,annot=True,cmap='viridis') plt.title('Correlation between different fearures') # Preparing data to be fed to a predictive model train_Y = train['GST_Fraud'] train = train.drop('GST_Fraud', axis = 1) train_X.head() from sklearn.preprocessing import LabelEncoder le=LabelEncoder() encoded = le.fit_transform(train['Firm']) #le.inverse_transform(test_Y) train['Firm'] = encoded le=LabelEncoder() encoded = le.fit_transform(train['Field']) train['Field'] = encoded le=LabelEncoder() encoded = le.fit_transform(train['DD/MM/YY']) train['DD/MM/YY'] = encoded train X_train, X_test, y_train, y_test = train_test_split(train, train_Y, test_size = 0.2, random_state = 42) #CVtrain_X, CVtest_X = pd.get_dummies(CVtrain_X), pd.get_dummies(CVtest_X) from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report, confusion_matrix from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import f1_score def evaluate_models(number_of_est, maximum_depth, models, X_train, X_test): '''Function to evaluate the performance of a tree based model (based on R2 score), over a grid of number of estimators and maximum depth. Function takes in choice of model, array of n_estimators, array of max_depth and training and testing sets''' for model_choice in models: for n_est in number_of_est: for max_d in maximum_depth: model = model_choice(n_estimators=n_est, max_depth=max_d, random_state = 42) model.fit(X_train, y_train) CVpred = model.predict(X_test) print(CVpred) r2 = r2_score(y_test, CVpred) f1 = f1_score(y_test, CVpred, average='weighted') print(model_choice,',Estimators:',n_est,',Max_Depth:',max_d,',R2:', r2,',f1:', f1) models = [ GradientBoostingClassifier ] number_of_est = [3,4,5,20, 30, 40, 50, 60] #number_of_est = [450,400,300,200, 130, 80, 50, 60] maximum_depth = [2,3,4,5,8,10] #maximum_depth = [2,5, 10, 15, 20, 25,30,40,70,100,150] evaluate_models(number_of_est, maximum_depth, models, X_train, X_test) train_X = train train_X.drop('GST_Fraud_amount(%)', axis = 1, inplace = True) train_X.drop('fake invoice', axis = 1, inplace = True) train from sklearn.linear_model import LogisticRegression models = [ GradientBoostingClassifier , LogisticRegression] clf = LogisticRegression(random_state=0).fit(X_train, y_train) h=clf.predict(X_test) clf.score(X_test, y_test) clf h y_test X_test
0.419053
0.482368
# Data analysis project Lets have a look at the level of tourism in Denmark. Statistics Denmark have records of the number of visiting tourists from 2014:1 - 2019:1, so we can see how the tourism in Denmark has evovled over the years. # Preparing the data ## Import packages and load the data We start by importing the relevant packages for our analysis ``` # Imporing packages import wbdata import pandas import pandas_datareader import datetime import matplotlib.pyplot as plt import pydst import calendar from statsmodels.tsa.seasonal import seasonal_decompose ``` We then use the API for data extractions from Statistics Denmark. The data will be imported in English from the table called 'TURIST'. ``` Dst = pydst.Dst(lang='en') Dst.get_data(table_id = 'TURIST'); ``` For the preparation of the data extraction, the following code provides an overlook of the variables to choose from. The relevant categories within each variable is then chosen for the final list of variables "var_list" to be included in the analysis. The final data extract will be stored in a data frame called "df". ``` # Display the different categories for each variable in the dataset indk_vars = Dst.get_variables(table_id='TURIST') indk_vars['values'][2][:50]; # Specific categories for each variable is chosen as a dictionary var_list = {'OVERNATF':['100'],\ 'OMRÅDE':['000','084','085','083','082','081'],\ 'NATION1':['*'],\ 'PERIODE':['01','02','03','04','05','06','07','08','09','10','11','12'],\ 'TID':['*']} # The raw data frame is imported and a sample is given below df = Dst.get_data(table_id = 'TURIST', variables=var_list); df.sample(3) ``` ## Setup the final data frame The extracted data frame 'df' now contains the basic data, but some corrections have to be made. The variables in the data frame can be described as below: - **OVERNATF:** The types of ways to live in Denmark as a tourist. Since we do not care how they stay in the country, we only use the 'All types' category. - **OMRÅDE:** The different administrative areas, where the tourists are staying throughout their visit. - **NATION1:** The nationality of the tourists. - **PERIODE:** The period where the observations has be recorded. We only care about the months, so the rest of the categories has been dropped. - **TID:** The time of the observations. This means, which year the observations were recorded. Statistic Denmark only have observations for the time 2014-2019. - **INDHOLD:** The total number of observed tourists from a specific nation, at a given area, at a specific year and month. Some observations are empty, so the number of tourists is given as '..'. This is a problem when we have to do some calculations. The empty observations are then replaced with zero and the variable is formatted into a number (integer). A timeseries would also be nice to have for a visual look at the evolution in the number of tourists. For this we have to make a date variable. The datetime function is useful here, but we have to translate the name of each month into a number to use the function. ``` # Replace empty observations and format the variable df['INDHOLD'] = df['INDHOLD'].replace('..', '0').astype(str).astype(int) # Dictionary for the number of the month dic = {'January':'01', 'February':'02', 'March':'03', 'April':'04', 'May':'05', 'June':'06',\ 'July':'07', 'August':'08', 'September':'09', 'October':'10', 'November':'11', 'December':'12'} # Making a variable for the date, using datetime df['Month'] = df['PERIODE'].replace(dic) df['Month'] = df['Month'].astype(str).astype(int) df['day'] = 1 df['year'] = df['TID'] df['Date'] = pd.to_datetime(df[['year', 'Month', 'day']]) df = df[(df['Date'].dt.year > 2013)] df = df[(df['Date'].dt.year < 2019)] # Restructuring the data frame df = df.set_index('Date') df = df[['OMRÅDE','NATION1','year','Month','PERIODE','day','INDHOLD']] df.sample(3) ``` ## Splitting the data frame The restructured data frame contains both observations for 'All Denmark' and for each of the 5 regions. For the timeseries we only want the observations for 'All Denmark' and only for tourist, which means we have to remove the observations for Danish tourists. An easy way to do this is by only including the value 'World outside Denmark' for nationality. The following code creates the data frame with total number of tourists for each month and year based grouped by their nationality. ``` # Total number of observations each month of the year AD = df[df['OMRÅDE'] == 'All Denmark'] AD = AD[AD.NATION1.isin(['World outside Denmark'])] ``` # Overview of the level of tourism in Denmark ## Total number of tourists from 2014-2018 Just to get a quick overlook of the number of tourist in Denmark over the years, a timeseries is drawn. This is done from the calculated data frame AD, which sums the number of tourists grouped by each date. ``` # Sum number of tourists for each date AD_sum = AD.groupby(['Date'])['INDHOLD'].sum() # Setup the timeseries ax = AD_sum.plot() ax.set_ylabel('Number of visiting tourists'); ``` It is clear and also expected, that the number of tourists is extremely seasonal. In the low seasons around the end and the beginning of each year (winter), the number of tourists is under 1 mio., while being around 5,5 mio. in the high seasons (summer). Over the five years, the overall level also seems to have increased. It is possible to see by comparing the low/high peaks over the years. To ease the task of analysis the overall level, it would be easier to decompose the seasonal effect in the timeseries. The imposed model is multiplicative, so we get the seasonal effect and the residual in percentage. ``` # The decomposition of the time series result = seasonal_decompose(AD_sum, model='multiplicativ') result.plot() plt.show() ``` The results tell that a clear linear trend is present in the timeseries. Denmark has either become a more popular travel destination or people are traveling more in general. The seasonal effect is clear in the decomposition and from the residual, it appears that most deviations from the expected happens in the first months of the year. In order to get a better feel of the seasonal effects, the aggregated mean level of each month over the five-year period is calculated below. This gives a nice view of how popular each month is to visit Denmark in. The code below groups the data frame by each month and takes a mean over the five years. ``` # Aggregated mean level of each month of the five-year period ax = AD.groupby('Month')['INDHOLD'].mean().plot.bar() # Labels and title of the bar chart is constructed ax.set_ylabel('Number of visiting turists'); ax.set_xlabel(''); ax.set_xticklabels(calendar.month_name[1:13]) ax.set_title('Agg. mean level of tourists each month'); ``` July and August are the clear winners as the months with the highest number of tourists. It is due to people visiting Denmark during their summer holidays. The number of tourists visiting Denmark each of the months is almost the same amount as the total population in Denmark. The number of foreign tourists each month is almost never under 1 mio., which is quiet high for a small country as Denmark. This means Denmark is a well visited country, relative to its size. # Characteristics for the tourists Now that we know Denmark is well visited, it could be interesting to see which types of nationalities is visiting Denmark most frequently. By calculating an average number of tourists each year, based on nationality, it is possible to make a top 10 of most visiting nationality over the last five years in average. ``` # Only choose obs for all of Denmark reg = df[df['OMRÅDE'] == 'All Denmark'] # Only choose obs based on a nationality reg = reg[~reg.NATION1.isin(['Total','Denmark','World outside Denmark'])] # The sum of each year for each nationality used for the avg. over years reg2 = reg.groupby(['NATION1','year'])['INDHOLD'].sum().to_frame() reg3 = reg2.groupby(['NATION1'])['INDHOLD'].mean().to_frame() reg3.sort_values(by = ['INDHOLD'], ascending=[False]).head(10) ``` This top 10 clearly shows how dominant the German tourists are in Denmark, but since we only have a table with the numbers above, it can be difficult to compare the level of tourists across the nationalities. Lets try and make a nice looking bar chart, to ease the comparison. ``` # List and new dataframe of our top 10 lande = ['Germany','Norway','Sweden','Netherlands','United Kingdom','USA','Italy','France','Switzerland','Spain'] reg_top = reg[reg.NATION1.isin(lande)] # The new dataframe is used to calculated the mean of tourists over the five years ax = reg_top.sort_values(by = ['INDHOLD'], ascending=[False]).groupby(['NATION1','year'])['INDHOLD'].sum().to_frame() axm = ax.groupby(['NATION1'])['INDHOLD'].mean().to_frame() # A bar chart of the top 10 most visiting nationalities for better comparison axm['INDHOLD'].sort_values(ascending=[True]).plot.barh(); plt.gca().set_ylabel('') plt.gca().set_xlabel('Avg. visiting tourists each year') plt.show() ``` The average level of visiting Germans each year is 14,5 mio. compared to Norway on second place with only 2,5 mio. This tells us that most of the visiting tourists are from Germany. The second and third place is Norway and Sweden, so Denmark is most visited by its neighbors. The number of tourists from Germany is so high, that it can be hard to compare the other nations. To solve this problem, Germany is removed below to ease the comparison of the other nations. The conslusion is that the countries closest to Denmark are the most frequent visiting nations. USA is more present in the tourism compared to nationas from Southern Europe, but it is also a relative more populated nation. Italy, France Switzerland and Spain are all on the same level of tourism in Denmark. ``` # Drop observation from Germany axm2 = axm.drop(axm.index[1]) # Sort again and plot the bar chart axm2['INDHOLD'].sort_values(ascending=[True]).plot.barh(); plt.gca().set_ylabel('') plt.gca().set_xlabel('Avg. visiting tourists each year') plt.show() ``` Statistics Denmark has also provided data for how many of the tourists are staying in each of the five regions in Denmark. Since the data is available, let’s have a look at where the tourists are staying while visiting Denmark. # Where the tourists live It is possible to draw a map of Denmark from a shapefile (.shp). By providing the observations with the relevant geometric values, geopandas can draw a map showing with color, which of the five regions is most popular in Denmark to visit by tourists. ``` # Importing packages and shapefile import geopandas as gpd fp = "C:/Users/bt_27/Google Drev/Skole/10. Semester/Introduction to Python/4. Projekter/Projekt 1/Geo/DNK_adm1.shp" map_df = gpd.read_file(fp) # Dictionary is constructed in order to rename the regions for the merge regs = {'Hovedstaden':'Region Hovedstaden','Midtjylland':'Region Midtjylland','Nordjylland':'Region Nordjylland',\ 'Sjælland':'Region Sjælland','Syddanmark':'Region Syddanmark'} # In order to merge, the variables has to be named the same map_df['OMRÅDE'] = map_df['NAME_1'].replace(regs) map_df1 = map_df[['OMRÅDE','geometry']] # This is the dataframe, ready to be merged on the observations map_df1 ``` Now that the coordinates for regions on the map is ready, it can be merged on the original dataframe ``` # The original dataframe with obs for the regions lo = df[df['OMRÅDE'] != 'All Denmark'] lo = lo[~lo.NATION1.isin(['Total','Denmark','World outside Denmark'])] # The observations are aggregated by each region in Denmark tmp = lo.groupby(['OMRÅDE'])['INDHOLD'].sum().to_frame() # The observations are merge with the shapefile data on the regions maps = pd.merge(map_df1, tmp, on='OMRÅDE') # create the figure and the axes for the plot fig, ax = plt.subplots(1, figsize=(10, 6)) maps.plot(column='INDHOLD', cmap='Reds', linewidth=0.8, ax=ax, edgecolor='0.8'); ``` The map above shows the total amount of tourists for each region over the five-year period. The conclusion is that most tourists visit 'Region Hovedstaden', where Copenhagen must be the reason. Bornholm is also an attractive holiday location in the summer, which is also a part of 'Region Hovedstaden'. The second most visited region is 'Region Syddanmark'. This is probably tourists just crossing the border between Germany and Denmark. Maybe they only has a short visit or they might be resting after a long trip, before traveling further up in Denmark. A closer look at the distribution of nationalities in each region could explain some of these results. The following pie chart is an interactive way of examine where the tourists of each nationality is staying while in Denmark. ``` # We start with a function genrating the pie chart. def interactive_figure(fokus): # Choose nationality for the pie chart lo1 = lo[lo.NATION1.isin([fokus])] # Sum the observations grouped by the regions and plot the chart pie_sources = lo1.groupby(['OMRÅDE'])['INDHOLD'].sum().plot(kind='pie',autopct='%1.1f%%') plt.gca().set_ylabel('') plt.title('Share of tourists from the chosen country by region in Denmark') plt.show() import ipywidgets as widgets # The implimentation of a widget makes it possible to change which country we want to investigate widgets.interact(interactive_figure, fokus=widgets.Dropdown(description="$Land$", options=lande, value='Germany'),); ``` The results show that tourists from Southern Europe (France, Spain, Italy) and countries where people have to fly to Denmark (USA, United Kingdom) has the highest percentages in Region Hovedstaden. It might be that most tourists come to Denmark in order to visit Copenhagen and if you fly to Kastrup, you do not have to stay overnight at some other place in Denmark than Region Hovedstaden. The European countries more to the north like Netherlands and Switzerland are more likely to visit Region Syddanmark. There might be some interesting things to see in Region Syddanmark, but since most of the tourists are traveling to Copenhagen, it could be that tourists from countries closer to Denmark are traveling by car. If you then have to stop and rest on your journey, it might be in Region Syddanmark on the way to Copenhagen. A relatively large percentage of tourists from Sweden and Norway also stay in Region Syddanmark. This might be a reversed situation as for the people traveling to Copenhagen by car. If Swedish or Norwegian tourists are traveling down south into Europe, then they might have to rest in Region Syddanmark on their way. Region Syddanmark do not have to be a resting place for people traveling across Denmark. Odense is a major city in Denmark, with attractions like H.C. Andersen, which could be a magnet for tourists. The final **conclusion** is that Denmark is a well visited country, mostly by its neighbors and during the summer, the number of people living in Denmark almost double in size.
github_jupyter
# Imporing packages import wbdata import pandas import pandas_datareader import datetime import matplotlib.pyplot as plt import pydst import calendar from statsmodels.tsa.seasonal import seasonal_decompose Dst = pydst.Dst(lang='en') Dst.get_data(table_id = 'TURIST'); # Display the different categories for each variable in the dataset indk_vars = Dst.get_variables(table_id='TURIST') indk_vars['values'][2][:50]; # Specific categories for each variable is chosen as a dictionary var_list = {'OVERNATF':['100'],\ 'OMRÅDE':['000','084','085','083','082','081'],\ 'NATION1':['*'],\ 'PERIODE':['01','02','03','04','05','06','07','08','09','10','11','12'],\ 'TID':['*']} # The raw data frame is imported and a sample is given below df = Dst.get_data(table_id = 'TURIST', variables=var_list); df.sample(3) # Replace empty observations and format the variable df['INDHOLD'] = df['INDHOLD'].replace('..', '0').astype(str).astype(int) # Dictionary for the number of the month dic = {'January':'01', 'February':'02', 'March':'03', 'April':'04', 'May':'05', 'June':'06',\ 'July':'07', 'August':'08', 'September':'09', 'October':'10', 'November':'11', 'December':'12'} # Making a variable for the date, using datetime df['Month'] = df['PERIODE'].replace(dic) df['Month'] = df['Month'].astype(str).astype(int) df['day'] = 1 df['year'] = df['TID'] df['Date'] = pd.to_datetime(df[['year', 'Month', 'day']]) df = df[(df['Date'].dt.year > 2013)] df = df[(df['Date'].dt.year < 2019)] # Restructuring the data frame df = df.set_index('Date') df = df[['OMRÅDE','NATION1','year','Month','PERIODE','day','INDHOLD']] df.sample(3) # Total number of observations each month of the year AD = df[df['OMRÅDE'] == 'All Denmark'] AD = AD[AD.NATION1.isin(['World outside Denmark'])] # Sum number of tourists for each date AD_sum = AD.groupby(['Date'])['INDHOLD'].sum() # Setup the timeseries ax = AD_sum.plot() ax.set_ylabel('Number of visiting tourists'); # The decomposition of the time series result = seasonal_decompose(AD_sum, model='multiplicativ') result.plot() plt.show() # Aggregated mean level of each month of the five-year period ax = AD.groupby('Month')['INDHOLD'].mean().plot.bar() # Labels and title of the bar chart is constructed ax.set_ylabel('Number of visiting turists'); ax.set_xlabel(''); ax.set_xticklabels(calendar.month_name[1:13]) ax.set_title('Agg. mean level of tourists each month'); # Only choose obs for all of Denmark reg = df[df['OMRÅDE'] == 'All Denmark'] # Only choose obs based on a nationality reg = reg[~reg.NATION1.isin(['Total','Denmark','World outside Denmark'])] # The sum of each year for each nationality used for the avg. over years reg2 = reg.groupby(['NATION1','year'])['INDHOLD'].sum().to_frame() reg3 = reg2.groupby(['NATION1'])['INDHOLD'].mean().to_frame() reg3.sort_values(by = ['INDHOLD'], ascending=[False]).head(10) # List and new dataframe of our top 10 lande = ['Germany','Norway','Sweden','Netherlands','United Kingdom','USA','Italy','France','Switzerland','Spain'] reg_top = reg[reg.NATION1.isin(lande)] # The new dataframe is used to calculated the mean of tourists over the five years ax = reg_top.sort_values(by = ['INDHOLD'], ascending=[False]).groupby(['NATION1','year'])['INDHOLD'].sum().to_frame() axm = ax.groupby(['NATION1'])['INDHOLD'].mean().to_frame() # A bar chart of the top 10 most visiting nationalities for better comparison axm['INDHOLD'].sort_values(ascending=[True]).plot.barh(); plt.gca().set_ylabel('') plt.gca().set_xlabel('Avg. visiting tourists each year') plt.show() # Drop observation from Germany axm2 = axm.drop(axm.index[1]) # Sort again and plot the bar chart axm2['INDHOLD'].sort_values(ascending=[True]).plot.barh(); plt.gca().set_ylabel('') plt.gca().set_xlabel('Avg. visiting tourists each year') plt.show() # Importing packages and shapefile import geopandas as gpd fp = "C:/Users/bt_27/Google Drev/Skole/10. Semester/Introduction to Python/4. Projekter/Projekt 1/Geo/DNK_adm1.shp" map_df = gpd.read_file(fp) # Dictionary is constructed in order to rename the regions for the merge regs = {'Hovedstaden':'Region Hovedstaden','Midtjylland':'Region Midtjylland','Nordjylland':'Region Nordjylland',\ 'Sjælland':'Region Sjælland','Syddanmark':'Region Syddanmark'} # In order to merge, the variables has to be named the same map_df['OMRÅDE'] = map_df['NAME_1'].replace(regs) map_df1 = map_df[['OMRÅDE','geometry']] # This is the dataframe, ready to be merged on the observations map_df1 # The original dataframe with obs for the regions lo = df[df['OMRÅDE'] != 'All Denmark'] lo = lo[~lo.NATION1.isin(['Total','Denmark','World outside Denmark'])] # The observations are aggregated by each region in Denmark tmp = lo.groupby(['OMRÅDE'])['INDHOLD'].sum().to_frame() # The observations are merge with the shapefile data on the regions maps = pd.merge(map_df1, tmp, on='OMRÅDE') # create the figure and the axes for the plot fig, ax = plt.subplots(1, figsize=(10, 6)) maps.plot(column='INDHOLD', cmap='Reds', linewidth=0.8, ax=ax, edgecolor='0.8'); # We start with a function genrating the pie chart. def interactive_figure(fokus): # Choose nationality for the pie chart lo1 = lo[lo.NATION1.isin([fokus])] # Sum the observations grouped by the regions and plot the chart pie_sources = lo1.groupby(['OMRÅDE'])['INDHOLD'].sum().plot(kind='pie',autopct='%1.1f%%') plt.gca().set_ylabel('') plt.title('Share of tourists from the chosen country by region in Denmark') plt.show() import ipywidgets as widgets # The implimentation of a widget makes it possible to change which country we want to investigate widgets.interact(interactive_figure, fokus=widgets.Dropdown(description="$Land$", options=lande, value='Germany'),);
0.557845
0.988154
# Node classification with Relational Graph Convolutional Network (RGCN) <table><tr><td>Run the latest release of this notebook:</td><td><a href="https://mybinder.org/v2/gh/stellargraph/stellargraph/master?urlpath=lab/tree/demos/node-classification/rgcn-node-classification.ipynb" alt="Open In Binder" target="_parent"><img src="https://mybinder.org/badge_logo.svg"/></a></td><td><a href="https://colab.research.google.com/github/stellargraph/stellargraph/blob/master/demos/node-classification/rgcn-node-classification.ipynb" alt="Open In Colab" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg"/></a></td></tr></table> This example demonstrates how use an RGCN [1] on the AIFB dataset with stellargraph. [1] Modeling Relational Data with Graph Convolutional Networks. Thomas N. Kipf, Michael Schlichtkrull (2017). https://arxiv.org/pdf/1703.06103.pdf First we load the required libraries. ``` # install StellarGraph if running on Google Colab import sys if 'google.colab' in sys.modules: %pip install -q stellargraph[demos]==1.3.0b # verify that we're using the correct version of StellarGraph for this notebook import stellargraph as sg try: sg.utils.validate_notebook_version("1.3.0b") except AttributeError: raise ValueError( f"This notebook requires StellarGraph version 1.3.0b, but a different version {sg.__version__} is installed. Please see <https://github.com/stellargraph/stellargraph/issues/1172>." ) from None from rdflib.extras.external_graph_libs import * from rdflib import Graph, URIRef, Literal import networkx as nx from networkx.classes.function import info import stellargraph as sg from stellargraph.mapper import RelationalFullBatchNodeGenerator from stellargraph.layer import RGCN import numpy as np import matplotlib.pyplot as plt import os import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Dense from tensorflow.keras.models import Model import sklearn from sklearn import model_selection from collections import Counter from stellargraph import datasets from IPython.display import display, HTML import matplotlib.pyplot as plt %matplotlib inline ``` ## Loading the data (See [the "Loading from Pandas" demo](../basics/loading-pandas.ipynb) for details on how data can be loaded.) ``` dataset = datasets.AIFB() display(HTML(dataset.description)) G, affiliation = dataset.load() print(G.info()) ``` The relationship 'affiliation' indicates whether a researcher is affiliated with a research group e.g. (researcher, research group, affiliation). This is used to create the one-hot labels in the `affiliation` DataFrame. These relationships are not included in `G` (nor is its inverse relationship 'employs'). The idea here is to test whether we can recover a 'missing' relationship. ## Input preparation The nodes don't natively have features, so they've been replaced with one-hot indicators to allow the model to learn from the graph structure. We're only training on the people with affiliations, so we split that into train and test splits. ``` train_targets, test_targets = model_selection.train_test_split( affiliation, train_size=0.8, test_size=None ) generator = RelationalFullBatchNodeGenerator(G, sparse=True) train_gen = generator.flow(train_targets.index, targets=train_targets) test_gen = generator.flow(test_targets.index, targets=test_targets) ``` ## RGCN model creation and training We use stellargraph to create an RGCN object. This creates a stack of relational graph convolutional layers. We add a softmax layer to transform the features created by RGCN into class predictions and create a Keras model. Then we train the model on the stellargraph generators. Each RGCN layer creates a weight matrix for each relationship in the graph. If `num_bases==0` these weight matrices are completely independent. If `num_bases!=0` each weight matrix is a different linear combination of the same basis matrices. This introduces parameter sharing and reduces the number of the parameters in the model. See the paper for more details. ``` rgcn = RGCN( layer_sizes=[32, 32], activations=["relu", "relu"], generator=generator, bias=True, num_bases=20, dropout=0.5, ) x_in, x_out = rgcn.in_out_tensors() predictions = Dense(train_targets.shape[-1], activation="softmax")(x_out) model = Model(inputs=x_in, outputs=predictions) model.compile( loss="categorical_crossentropy", optimizer=keras.optimizers.Adam(0.01), metrics=["acc"], ) history = model.fit(train_gen, validation_data=test_gen, epochs=20) sg.utils.plot_history(history) ``` Now we assess the accuracy of our trained model on the test set - it does pretty well on this example dataset! ``` test_metrics = model.evaluate(test_gen) print("\nTest Set Metrics:") for name, val in zip(model.metrics_names, test_metrics): print("\t{}: {:0.4f}".format(name, val)) ``` ## Node embeddings We evaluate node embeddings as the activations of the output of the last graph convolution layer in the GCN layer stack and visualise them, coloring nodes by their true subject label. We expect to see nice clusters of researchers in the node embedding space, with researchers from the same group belonging to the same cluster. To calculate the node embeddings rather than the class predictions, we create a new model with the same inputs as we used previously `x_inp` but now the output is the embeddings `x_out` rather than the predicted class. Additionally note that the weights trained previously are kept in the new model. ``` from sklearn.decomposition import PCA from sklearn.manifold import TSNE # get embeddings for all people nodes all_gen = generator.flow(affiliation.index, targets=affiliation) embedding_model = Model(inputs=x_in, outputs=x_out) emb = embedding_model.predict(all_gen) X = emb.squeeze(0) y = affiliation.idxmax(axis="columns").astype("category") if X.shape[1] > 2: transform = TSNE trans = transform(n_components=2) emb_transformed = pd.DataFrame(trans.fit_transform(X), index=affiliation.index) emb_transformed["label"] = y else: emb_transformed = pd.DataFrame(X, index=affiliation.index) emb_transformed = emb_transformed.rename(columns={"0": 0, "1": 1}) emb_transformed["label"] = y alpha = 0.7 fig, ax = plt.subplots(figsize=(7, 7)) ax.scatter( emb_transformed[0], emb_transformed[1], c=emb_transformed["label"].cat.codes, cmap="jet", alpha=alpha, ) ax.set(aspect="equal", xlabel="$X_1$", ylabel="$X_2$") plt.title( "{} visualization of RGCN embeddings for AIFB dataset".format(transform.__name__) ) plt.show() ``` Aside from a slight overlap the classes are well separated despite only using 2-dimensions. This indicates that our model is performing well at clustering the researchers into the right groups. <table><tr><td>Run the latest release of this notebook:</td><td><a href="https://mybinder.org/v2/gh/stellargraph/stellargraph/master?urlpath=lab/tree/demos/node-classification/rgcn-node-classification.ipynb" alt="Open In Binder" target="_parent"><img src="https://mybinder.org/badge_logo.svg"/></a></td><td><a href="https://colab.research.google.com/github/stellargraph/stellargraph/blob/master/demos/node-classification/rgcn-node-classification.ipynb" alt="Open In Colab" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg"/></a></td></tr></table>
github_jupyter
# install StellarGraph if running on Google Colab import sys if 'google.colab' in sys.modules: %pip install -q stellargraph[demos]==1.3.0b # verify that we're using the correct version of StellarGraph for this notebook import stellargraph as sg try: sg.utils.validate_notebook_version("1.3.0b") except AttributeError: raise ValueError( f"This notebook requires StellarGraph version 1.3.0b, but a different version {sg.__version__} is installed. Please see <https://github.com/stellargraph/stellargraph/issues/1172>." ) from None from rdflib.extras.external_graph_libs import * from rdflib import Graph, URIRef, Literal import networkx as nx from networkx.classes.function import info import stellargraph as sg from stellargraph.mapper import RelationalFullBatchNodeGenerator from stellargraph.layer import RGCN import numpy as np import matplotlib.pyplot as plt import os import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Dense from tensorflow.keras.models import Model import sklearn from sklearn import model_selection from collections import Counter from stellargraph import datasets from IPython.display import display, HTML import matplotlib.pyplot as plt %matplotlib inline dataset = datasets.AIFB() display(HTML(dataset.description)) G, affiliation = dataset.load() print(G.info()) train_targets, test_targets = model_selection.train_test_split( affiliation, train_size=0.8, test_size=None ) generator = RelationalFullBatchNodeGenerator(G, sparse=True) train_gen = generator.flow(train_targets.index, targets=train_targets) test_gen = generator.flow(test_targets.index, targets=test_targets) rgcn = RGCN( layer_sizes=[32, 32], activations=["relu", "relu"], generator=generator, bias=True, num_bases=20, dropout=0.5, ) x_in, x_out = rgcn.in_out_tensors() predictions = Dense(train_targets.shape[-1], activation="softmax")(x_out) model = Model(inputs=x_in, outputs=predictions) model.compile( loss="categorical_crossentropy", optimizer=keras.optimizers.Adam(0.01), metrics=["acc"], ) history = model.fit(train_gen, validation_data=test_gen, epochs=20) sg.utils.plot_history(history) test_metrics = model.evaluate(test_gen) print("\nTest Set Metrics:") for name, val in zip(model.metrics_names, test_metrics): print("\t{}: {:0.4f}".format(name, val)) from sklearn.decomposition import PCA from sklearn.manifold import TSNE # get embeddings for all people nodes all_gen = generator.flow(affiliation.index, targets=affiliation) embedding_model = Model(inputs=x_in, outputs=x_out) emb = embedding_model.predict(all_gen) X = emb.squeeze(0) y = affiliation.idxmax(axis="columns").astype("category") if X.shape[1] > 2: transform = TSNE trans = transform(n_components=2) emb_transformed = pd.DataFrame(trans.fit_transform(X), index=affiliation.index) emb_transformed["label"] = y else: emb_transformed = pd.DataFrame(X, index=affiliation.index) emb_transformed = emb_transformed.rename(columns={"0": 0, "1": 1}) emb_transformed["label"] = y alpha = 0.7 fig, ax = plt.subplots(figsize=(7, 7)) ax.scatter( emb_transformed[0], emb_transformed[1], c=emb_transformed["label"].cat.codes, cmap="jet", alpha=alpha, ) ax.set(aspect="equal", xlabel="$X_1$", ylabel="$X_2$") plt.title( "{} visualization of RGCN embeddings for AIFB dataset".format(transform.__name__) ) plt.show()
0.581303
0.98249
# WeatherPy ---- #### Note * Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ``` # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import time from scipy.stats import linregress from pprint import pprint # Import API key from api_keys import weather_api_key # Incorporated citipy to determine city based on latitude and longitude from citipy import citipy # Output File (CSV) output_data_file = "output_data/cities.csv" url = "http://api.openweathermap.org/data/2.5/weather?" # Range of latitudes and longitudes lat_range = (-90, 90) lng_range = (-180, 180) ``` ## Generate Cities List ``` # List for holding lat_lngs and cities lat_lngs = [] cities = [] # Create a set of random lat and lng combinations lats = np.random.uniform(lat_range[0], lat_range[1], size=1500) lngs = np.random.uniform(lng_range[0], lng_range[1], size=1500) lat_lngs = zip(lats, lngs) # Identify nearest city for each lat, lng combination for lat_lng in lat_lngs: city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name # If the city is unique, then add it to a our cities list if city not in cities: cities.append(city) # Print the city count to confirm sufficient count len(cities) ``` ### Perform API Calls * Perform a weather check on each city using a series of successive API calls. * Include a print log of each city as it'sbeing processed (with the city number and city name). ``` cityname=[] lat=[] lng=[] max_temp=[] humidity=[] cloudiness=[] wind_speed=[] country=[] date=[] units = "imperial" set_count = 1 record_count = 0 for i, city in enumerate(cities): if i % 50 == 0 and i >= 50: set_count = set_count +1 record_count = 1 print(f"Processing Record {record_count} of Set {set_count} | {city}") record_count = record_count +1 query_url = f"{url}appid={weather_api_key}&units{units}&q={city}" post_response = requests.get(query_url).json() try: cityname.append(post_response['name']) lat.append(post_response['coord']['lat']) lng.append(post_response['coord']['lon']) max_temp.append(post_response['main']['temp_max']) humidity.append(post_response['main']['humidity']) cloudiness.append(post_response['clouds']['all']) wind_speed.append(post_response['wind']['speed']) country.append(post_response['sys']['country']) date.append(time.ctime(post_response['dt'])) except KeyError: print("City not found...Skipping...") ``` ### Convert Raw Data to DataFrame * Export the city data into a .csv. * Display the DataFrame ``` weather_dt ={"City":cityname,"Lat":lat,"Lng":lng,"Max Temp":max_temp,"Humidity":humidity,"Cloudiness":cloudiness, "Wind Speed":wind_speed,"Country":country,"Date":date} weather_df =pd.DataFrame(weather_dt) weather_df.to_csv('output_data/cities.csv') weather_df.head() weather_df.describe() ``` ## Inspect the data and remove the cities where the humidity > 100%. ---- Skip this step if there are no cities that have humidity > 100%. ``` # Get the indices of cities that have humidity over 100%. # Make a new DataFrame equal to the city data to drop all humidity outliers by index. # Passing "inplace=False" will make a copy of the city_data DataFrame, which we call "clean_city_data". ``` ## Plotting the Data * Use proper labeling of the plots using plot titles (including date of analysis) and axes labels. * Save the plotted figures as .pngs. ## Latitude vs. Temperature Plot ``` plt.scatter(weather_df["Lat"], weather_df["Max Temp"], marker="o") plt.title("Max Temperature vs City Latitude") plt.ylabel("Temperature (F)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/MaxTemperaturevsCityLatitude.png") plt.show() ``` The above graph is showing the cities maxium temperature in relation to the cities latitude. ## Latitude vs. Humidity Plot ``` plt.scatter(weather_df["Lat"], weather_df["Humidity"], marker="o") plt.title("Humidity vs City Latitude") plt.ylabel("Humidity (%)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/HumidityvsCityLatitude.png") plt.show() ``` The above graph is showing the cities humidity in relation to the cities latitude. ## Latitude vs. Cloudiness Plot ``` plt.scatter(weather_df["Lat"], weather_df["Cloudiness"], marker="o") plt.title("Cloudiness vs City Latitude") plt.ylabel("Cloudiness (%)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/CloudinessvsCityLatitude.png") plt.show() ``` The above graph is showing the cities cloudiness in relation to the cities latitude. ## Latitude vs. Wind Speed Plot ``` plt.scatter(weather_df["Lat"], weather_df["Wind Speed"], marker="o") plt.title("Wind Speed vs City Latitude") plt.ylabel("Wind Speed (mph)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/WindSpeedvsCityLatitude.png") plt.show() ``` The above graph is showing the cities wind speed in relation to the cities latitude. ## Linear Regression ``` north_weather =weather_df.loc[weather_df["Lat"] >= 0] south_weather =weather_df.loc[weather_df["Lat"] < 0] ``` #### Northern Hemisphere - Max Temp vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Max Temp"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Max Temp"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Temperature (F)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NMaxTempvsLatitude.png") plt.show() ``` #### Southern Hemisphere - Max Temp vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Max Temp"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Max Temp"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Temperature (F)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SMaxTempvsLatitude.png") plt.show() ``` #### Northern Hemisphere - Humidity (%) vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Humidity"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Humidity"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Humidity (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NHumidityvsLatitude.png") plt.show() ``` #### Southern Hemisphere - Humidity (%) vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Humidity"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Humidity"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Humidity (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SHumidityvsLatitude.png") plt.show() ``` #### Northern Hemisphere - Cloudiness (%) vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Cloudiness"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Cloudiness"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Cloudiness (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NCloudinessvsLatitude.png") plt.show() ``` #### Southern Hemisphere - Cloudiness (%) vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Cloudiness"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Cloudiness"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Cloudiness (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SCloudinessvsLatitude.png") plt.show() ``` #### Northern Hemisphere - Wind Speed (mph) vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Wind Speed"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Wind Speed"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Wind Speed (mph)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NWindSpeedvsLatitude.png") plt.show() ``` #### Southern Hemisphere - Wind Speed (mph) vs. Latitude Linear Regression ``` (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Wind Speed"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Wind Speed"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Wind Speed (mph)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SWindSpeedvsLatitude.png") plt.show() ```
github_jupyter
# Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import time from scipy.stats import linregress from pprint import pprint # Import API key from api_keys import weather_api_key # Incorporated citipy to determine city based on latitude and longitude from citipy import citipy # Output File (CSV) output_data_file = "output_data/cities.csv" url = "http://api.openweathermap.org/data/2.5/weather?" # Range of latitudes and longitudes lat_range = (-90, 90) lng_range = (-180, 180) # List for holding lat_lngs and cities lat_lngs = [] cities = [] # Create a set of random lat and lng combinations lats = np.random.uniform(lat_range[0], lat_range[1], size=1500) lngs = np.random.uniform(lng_range[0], lng_range[1], size=1500) lat_lngs = zip(lats, lngs) # Identify nearest city for each lat, lng combination for lat_lng in lat_lngs: city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name # If the city is unique, then add it to a our cities list if city not in cities: cities.append(city) # Print the city count to confirm sufficient count len(cities) cityname=[] lat=[] lng=[] max_temp=[] humidity=[] cloudiness=[] wind_speed=[] country=[] date=[] units = "imperial" set_count = 1 record_count = 0 for i, city in enumerate(cities): if i % 50 == 0 and i >= 50: set_count = set_count +1 record_count = 1 print(f"Processing Record {record_count} of Set {set_count} | {city}") record_count = record_count +1 query_url = f"{url}appid={weather_api_key}&units{units}&q={city}" post_response = requests.get(query_url).json() try: cityname.append(post_response['name']) lat.append(post_response['coord']['lat']) lng.append(post_response['coord']['lon']) max_temp.append(post_response['main']['temp_max']) humidity.append(post_response['main']['humidity']) cloudiness.append(post_response['clouds']['all']) wind_speed.append(post_response['wind']['speed']) country.append(post_response['sys']['country']) date.append(time.ctime(post_response['dt'])) except KeyError: print("City not found...Skipping...") weather_dt ={"City":cityname,"Lat":lat,"Lng":lng,"Max Temp":max_temp,"Humidity":humidity,"Cloudiness":cloudiness, "Wind Speed":wind_speed,"Country":country,"Date":date} weather_df =pd.DataFrame(weather_dt) weather_df.to_csv('output_data/cities.csv') weather_df.head() weather_df.describe() # Get the indices of cities that have humidity over 100%. # Make a new DataFrame equal to the city data to drop all humidity outliers by index. # Passing "inplace=False" will make a copy of the city_data DataFrame, which we call "clean_city_data". plt.scatter(weather_df["Lat"], weather_df["Max Temp"], marker="o") plt.title("Max Temperature vs City Latitude") plt.ylabel("Temperature (F)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/MaxTemperaturevsCityLatitude.png") plt.show() plt.scatter(weather_df["Lat"], weather_df["Humidity"], marker="o") plt.title("Humidity vs City Latitude") plt.ylabel("Humidity (%)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/HumidityvsCityLatitude.png") plt.show() plt.scatter(weather_df["Lat"], weather_df["Cloudiness"], marker="o") plt.title("Cloudiness vs City Latitude") plt.ylabel("Cloudiness (%)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/CloudinessvsCityLatitude.png") plt.show() plt.scatter(weather_df["Lat"], weather_df["Wind Speed"], marker="o") plt.title("Wind Speed vs City Latitude") plt.ylabel("Wind Speed (mph)") plt.xlabel("Latitude") plt.grid(True) plt.savefig("output_data/WindSpeedvsCityLatitude.png") plt.show() north_weather =weather_df.loc[weather_df["Lat"] >= 0] south_weather =weather_df.loc[weather_df["Lat"] < 0] (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Max Temp"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Max Temp"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Temperature (F)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NMaxTempvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Max Temp"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Max Temp"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Temperature (F)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SMaxTempvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Humidity"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Humidity"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Humidity (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NHumidityvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Humidity"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Humidity"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Humidity (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SHumidityvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Cloudiness"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Cloudiness"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Cloudiness (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NCloudinessvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Cloudiness"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Cloudiness"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Cloudiness (%)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SCloudinessvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(north_weather["Lat"], north_weather["Wind Speed"]) regress_values = north_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(north_weather["Lat"],north_weather["Wind Speed"]) plt.plot(north_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Wind Speed (mph)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/NWindSpeedvsLatitude.png") plt.show() (slope, intercept, rvalue, pvalue, stderr) = linregress(south_weather["Lat"], south_weather["Wind Speed"]) regress_values = south_weather["Lat"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x +" + str(round(intercept,2)) line_eq plt.scatter(south_weather["Lat"],south_weather["Wind Speed"]) plt.plot(south_weather["Lat"],regress_values,"r-") plt.xlabel('Latitude') plt.ylabel('Wind Speed (mph)') plt.annotate(line_eq, (5,5), fontsize=15,color="red") print(f"The r-value is: {rvalue**2}") plt.savefig("output_data/SWindSpeedvsLatitude.png") plt.show()
0.357007
0.800029
# Gaussian Processes A demonstration of how to sample from, and fit to, a Gaussian Process. If a function $f(x)$ is drawn from a Gaussian process $$f(x) \sim \mathcal{GP}(m(x)=0,k(x,x'))$$ then a finite subset of function values $\mathbf{f}=(f(x_1),f(x_1),\dots,f(x_n))^T$ are distributed such that $$\mathbf{f}\sim \mathcal{N}(0,\Sigma)$$ where $\Sigma_{ij}=k(x_i,x_j)$ Based on lectures from Machine Learning Summer School, Cambridge 2009, see http://videolectures.net/mlss09uk_rasmussen_gp/ Author: Juvid Aryaman ``` import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as mlines import utls utls.reset_plots() %matplotlib inline ``` ## Sample from a Gaussian Process ``` def cov_matrix_function(x1,x2,l): """Use a squared exponential covariance with a fixed length scale :param x1: A double, parameter of the covariance function :param x2: A double, parameter of the covariance function :param l: A double, hyperparameter of the GP determining the length scale over which the correlation between neighbouring points decays Returns: Squared exponential covariance function """ return np.exp(-(x1-x2)*(x1-x2)/l) D = 90 # number of points along x where we will evaluate the GP. D = dimension of the cov matrix x = np.linspace(-5,5,D) ndraws = 5 # number of functions to draw from GP cmap = plt.cm.jet def sample_from_gp(l): """ Sample from a Gaussian Process :param l: The length scale of the squared exponential GP Returns: A numpy array of length (D) as a draw from the GP """ sigma = np.zeros((D,D)) for i in range(D): for j in range(D): sigma[i,j] = cov_matrix_function(x[i],x[j],l) return sigma, np.random.multivariate_normal(np.zeros(D),sigma) # sample from the GP def add_GP_draws_to_plot(ax, l): """Add a number of samples from a Gaussian process to a plot :param ax: A AxesSubplot object, the axes to plot on :param l: The length scale of the squared exponential GP """ for k in range(ndraws): sigma, y = sample_from_gp(l) col = cmap(int(round((k+1)/float(ndraws)*(cmap.N)))) ax.plot(x,y,'-',alpha=0.5,color=col, linewidth = 2) ax.set_xlabel('Input, $x$') ax.set_ylabel('Output, $f(x)$') ax.set_title('$l={}$'.format(l),fontsize=20) fig, axs = plt.subplots(1,3,figsize=(3*5,5)) axs = axs.ravel() add_GP_draws_to_plot(axs[0],0.1) add_GP_draws_to_plot(axs[1],1) add_GP_draws_to_plot(axs[2],10) plt.tight_layout() ``` Each panel shows 5 draws from a different Gaussian process. All of the panels use a covariance function of the same form, namely a squared exponential covariance function: $$k(x,x')=\exp\left(-\frac{1}{l}(x-x')^2\right)$$ The function has a *hyperparameter* $l$ which determines the length scale over which the correlation between neighbouring points decays. Here we show what happens as $l$ is increased: the curvature of each function reduces. A large $l$ means that $k(x,x')$ reduces slowly with $x$ for some fixed $x'$, so neighbouring points have a high correlation, and therefore the sampled function $f(x)$ changes slowly with $x$. Each colored line is a single sample from a Gaussian process. Each panel has a fixed $\Sigma_{i,j}$. However, every time we draw from the multivariate Gaussian $\mathcal{N}(0,\Sigma)$, we get a different vector $\mathbf{f}$, and therefore a different shaped curve. Notice that we only evaluate the Gaussian process at `D` different points. If we wanted to evaluate the Gaussian process everywhere in $x$, we would need `D` to become infinity (which is impossible!). It is in this sense that we can consider a Gaussian process as a generalisation of a multivariate Gaussian distribution to infinitely many variables, because $\Sigma$ would need to be an $(\infty,\infty)$ matrix for us to evaluate $f(x)$ everywhere. ## Bayesian Inference with Gaussian Processes One of the great things about Gaussian processes is that we can do Bayesian inference with them analytically (i.e. we can write down the posterior distribution, and the posterior predictive distribution, in terms of the data mathematically without needing to resort to expensive Monte Carlo algorithms) The problem setting is that we have some data $\mathcal{D}=(\mathbf{x},\mathbf{y})$ and we want to make a prediction of the value of $y^*$ at some value of $x^*$ where we have no data. We do not know the functional form of $\mathbf{y}$, so we will use a Gaussian process. We model the data as having a Gaussian likelihood $$\mathbf{y}|\mathbf{x},f(x),M \sim \mathcal{N}(\mathbf{f},\sigma_{\text{noise}}^2)$$ where $M$ is our choice of model (namely a Gaussian process, with its associated hyperparameters) and $\sigma_{\text{noise}}$ is the noise in our data. We then use a Gaussian process prior $$f(x)|M\sim \mathcal{GP}(m(x)\equiv0,k(x,x'))$$ It turns out that this is a conjugate prior, where the posterior is also a Gaussian process. Note that, in this language, $f(x)$ takes the position of the parameters ($\theta$) in Bayes rule $$p(\theta|\mathcal{D},M)=\frac{p(\mathcal{D}|\theta,M) p(\theta|M)}{p(\mathcal{D}|M)}$$ where $p(\theta|\mathcal{D},M)$ is the posterior, $p(\mathcal{D}|\theta,M)$ is the likelihood, $p(\theta|M)$ is the prior and $p(\mathcal{D}|M)$ is the marginal likelihood. So, in this sense, a Gaussian process is a parametric model with an infinite number of parameters (since a function has an infinite number of values in any given range of $x$). ### Make some pseudo-data We will generate some data as a draw from a GP. For this demo, we will assume that 1. The data really were generated from a Gaussian process, and we know what the appropriate covariance function $k(x,x')$ is to use. In practice, this is unavoidable and is a modelling choice. 2. We know the values of the hyperparameters of the Gaussian process which generated our data. This is somewhat contrived for the sake of demonstration. Whilst we may sometimes know parameters like the noise in our data (`sigma_noise` below), we will probably not know parameters such as $l$ in the above example. In practice, we can maximize the marginal likelihood to learn 'best fit' values of the hyperparameters of our Gaussian process. ``` l = 1 var_noise = 0.01 sigma_true, y_true = sample_from_gp(l) # The true function, a sample from a GP data_n = 10 data_indicies = np.random.choice(np.arange(int(round(0.1*D)),int(round(0.9*D))),data_n,replace=False) data_y = y_true[data_indicies] + np.random.normal(loc=0.0,scale=np.sqrt(var_noise),size=data_n) data_x = x[data_indicies] ``` So we have our data, `data_y` and `data_x`. We now want to make predictions about there values over all values in the variable `x`. ### Compute the posterior predictive distribution of the Gaussian process ``` K = np.zeros((data_n,data_n)) # make a covariance matrix for i in range(data_n): for j in range(data_n): K[i,j] = cov_matrix_function(data_x[i],data_x[j],l) # squared exponential GP means = np.zeros(D) variances = np.zeros(D) for i, xs in enumerate(x): k = cov_matrix_function(xs, data_x, l) K_inv_n = np.linalg.inv( K + var_noise*np.identity(data_n) ) v = np.dot(K_inv_n, data_y) mean = np.dot(k, v) v2 = np.dot(K_inv_n, k) var = cov_matrix_function(xs, xs, l) + var_noise - np.dot(k, v2) means[i] = mean variances[i] = var p2 = plt.Rectangle((0, 0), 0.1, 0.1, fc="red", alpha = 0.3, ec = 'red') p3 = mlines.Line2D([], [], color='red') # Plot a 95% BCI using the 2 sigma rule for Normal distributions fig, ax = plt.subplots() ax.fill_between(x, means+2*np.sqrt(variances), means-2*np.sqrt(variances), color='red', alpha=0.3) p1=ax.plot(data_x, data_y, 'kx') ax.plot(x, y_true,'-r') ax.set_xlabel('input, x') ax.set_ylabel('output, y') ax.legend([p1[0],p2, p3], ['Data', 'Posterior predictive distribution', 'True function'], prop={'size':8}); ``` We have plotted the true function the data came from. The shaded region is a 95% Bayesian confidence interval of the value of $y$ at any particular $x$. That means we have used all of the data we have to constrain the possible values of $x$ where we do not already have data. Even where we have data, the uncertainty is non-zero due to the existence of measurement error (i.e. $\sigma_{\text{noise}}>0$).
github_jupyter
import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as mlines import utls utls.reset_plots() %matplotlib inline def cov_matrix_function(x1,x2,l): """Use a squared exponential covariance with a fixed length scale :param x1: A double, parameter of the covariance function :param x2: A double, parameter of the covariance function :param l: A double, hyperparameter of the GP determining the length scale over which the correlation between neighbouring points decays Returns: Squared exponential covariance function """ return np.exp(-(x1-x2)*(x1-x2)/l) D = 90 # number of points along x where we will evaluate the GP. D = dimension of the cov matrix x = np.linspace(-5,5,D) ndraws = 5 # number of functions to draw from GP cmap = plt.cm.jet def sample_from_gp(l): """ Sample from a Gaussian Process :param l: The length scale of the squared exponential GP Returns: A numpy array of length (D) as a draw from the GP """ sigma = np.zeros((D,D)) for i in range(D): for j in range(D): sigma[i,j] = cov_matrix_function(x[i],x[j],l) return sigma, np.random.multivariate_normal(np.zeros(D),sigma) # sample from the GP def add_GP_draws_to_plot(ax, l): """Add a number of samples from a Gaussian process to a plot :param ax: A AxesSubplot object, the axes to plot on :param l: The length scale of the squared exponential GP """ for k in range(ndraws): sigma, y = sample_from_gp(l) col = cmap(int(round((k+1)/float(ndraws)*(cmap.N)))) ax.plot(x,y,'-',alpha=0.5,color=col, linewidth = 2) ax.set_xlabel('Input, $x$') ax.set_ylabel('Output, $f(x)$') ax.set_title('$l={}$'.format(l),fontsize=20) fig, axs = plt.subplots(1,3,figsize=(3*5,5)) axs = axs.ravel() add_GP_draws_to_plot(axs[0],0.1) add_GP_draws_to_plot(axs[1],1) add_GP_draws_to_plot(axs[2],10) plt.tight_layout() l = 1 var_noise = 0.01 sigma_true, y_true = sample_from_gp(l) # The true function, a sample from a GP data_n = 10 data_indicies = np.random.choice(np.arange(int(round(0.1*D)),int(round(0.9*D))),data_n,replace=False) data_y = y_true[data_indicies] + np.random.normal(loc=0.0,scale=np.sqrt(var_noise),size=data_n) data_x = x[data_indicies] K = np.zeros((data_n,data_n)) # make a covariance matrix for i in range(data_n): for j in range(data_n): K[i,j] = cov_matrix_function(data_x[i],data_x[j],l) # squared exponential GP means = np.zeros(D) variances = np.zeros(D) for i, xs in enumerate(x): k = cov_matrix_function(xs, data_x, l) K_inv_n = np.linalg.inv( K + var_noise*np.identity(data_n) ) v = np.dot(K_inv_n, data_y) mean = np.dot(k, v) v2 = np.dot(K_inv_n, k) var = cov_matrix_function(xs, xs, l) + var_noise - np.dot(k, v2) means[i] = mean variances[i] = var p2 = plt.Rectangle((0, 0), 0.1, 0.1, fc="red", alpha = 0.3, ec = 'red') p3 = mlines.Line2D([], [], color='red') # Plot a 95% BCI using the 2 sigma rule for Normal distributions fig, ax = plt.subplots() ax.fill_between(x, means+2*np.sqrt(variances), means-2*np.sqrt(variances), color='red', alpha=0.3) p1=ax.plot(data_x, data_y, 'kx') ax.plot(x, y_true,'-r') ax.set_xlabel('input, x') ax.set_ylabel('output, y') ax.legend([p1[0],p2, p3], ['Data', 'Posterior predictive distribution', 'True function'], prop={'size':8});
0.855021
0.993203
``` import pandas as pd import os import re import matplotlib as mpl import matplotlib.patches as patches import matplotlib.pyplot as plt def rgb_rel(rgb): return tuple([round(x/255, 3) for x in rgb]) def rel_rgb(rgb): return rgb_rel(rgb) # color definitions white = (1, 1, 1) light_blue = rel_rgb([50, 150, 255]) dark_blue = rel_rgb([50, 50, 255]) mustard = rgb_rel([220, 200, 0]) medium_grey = rgb_rel([160, 160, 160]) purple = rgb_rel([150, 0, 150]) red = rgb_rel([255, 0, 0]) light_yellow = rgb_rel([255, 255, 150]) light_orange = rgb_rel([255, 180, 100]) all60 = rel_rgb([0,109,44]) # darkest shade any60 = rel_rgb([49,163,84]) any50 = rel_rgb([116,196,118]) any40 = rel_rgb([186,228,179]) any20 = rel_rgb([237,248,233]) # lightest shade region_colors = { 'Gap': medium_grey, 'Variation': mustard, 'Unknown': purple, 'SD_98': light_blue, 'SD_99': dark_blue, 'UAB': red, 'LCaln': light_orange } def color_segdups(region_score): if region_score < 980: return white elif 980 <= region_score < 990: return light_blue elif 990 <= region_score < 1001: return dark_blue else: raise ValueError(region) def load_annotation(file_path, color=None): df = pd.read_csv(file_path, sep='\t') if 'Issue_Type' in df: df['color'] = df['Issue_Type'].apply(lambda x: region_colors[x]) elif 'chromStart' in df: df['color'] = df['score'].apply(color_segdups) else: assert color is not None, 'no color: {}'.format(file_path) df['color'] = df['start'].apply(lambda x: color) if 'end' in df: df['length'] = df['end'] - df['start'] if 'chromEnd' in df: df['length'] = df['chromEnd'] - df['chromStart'] df['start'] = df['chromStart'] df['end'] = df['chromEnd'] df = df.loc[(df['score'] >= 980), :].copy() if '#chrom' in df: df['chrom'] = df['#chrom'] return df def load_cytogenetic_bands(): # http://circos.ca/tutorials/lessons/2d_tracks/connectors/configuration gie_stain_rgb = { 'gpos100': (0,0,0), 'gpos': (0,0,0), 'gpos75': (130,130,130), 'gpos66': (160,160,160), 'gpos50': (200,200,200), 'gpos33': (210,210,210), 'gpos25': (200,200,200), 'gvar': (220,220,220), 'gneg': (255,255,255), 'acen': (217,47,39), 'stalk': (100,127,164) } gie_stain_frac_rgb = {} for k, v in gie_stain_rgb.items(): gie_stain_frac_rgb[k] = rgb_rel(v) path = '/home/local/work/code/github/project-diploid-assembly/annotation/grch38/known_regions' cytobands = 'ucsc_cytoband.bed' df = pd.read_csv( os.path.join(path, cytobands), header=0, names=['chrom', 'start', 'end', 'name', 'gieStain'], sep='\t' ) df['length'] = df['end'] - df['start'] df['color'] = df['gieStain'].apply(lambda x: rel_rgb(gie_stain_rgb[x])) return df grch38_path = '/home/local/work/code/github/project-diploid-assembly/annotation/grch38' issues = os.path.join(grch38_path, '20200723_GRCh38_p13_unresolved-issues.bed') segdups = os.path.join(grch38_path, 'GRCh38_segdups.bed') ctg_aln_path = '/home/local/work/data/hgsvc/aln_summary' annotations = [ (load_annotation(segdups), 'SD >98% id.'), (load_annotation(issues), 'Issues'), ( load_annotation( os.path.join(ctg_aln_path, 'lowQAln_0-20_any_all.bed'), region_colors['LCaln'] ), 'Any MQ<20' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq20_all.bed'), any20 ), '>20% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq40_all.bed'), any40 ), '>40% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq60_all.bed'), any50 ), '>60% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq80_all.bed'), any60 ), '>80% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_all_all.bed'), all60 ), '100% MQ:60' ) ] # Figure stuff width = 10 height = 4 fig, ax = plt.subplots(figsize=(width, height)) y_start = 0 #primary_chroms = ['chr' + str(i) for i in range(1, 23)] + ['chrX'] primary_chroms = ['chr16'] y_labels = [] y_label_pos = [] legend_patches = [] max_plot = 0 cyto_bands = load_cytogenetic_bands() for c in reversed(primary_chroms): y_labels.append(c.strip('chr') + 'p') y_label_pos.append(y_start + 0.5) barh_xranges = [] barh_colors = [] for idx, band in cyto_bands.loc[cyto_bands['chrom'] == c, :].iterrows(): x_min = band['start'] x_width = band['length'] x_max = x_min + x_width max_plot = max(max_plot, x_max) barh_xranges.append((x_min, x_width)) barh_colors.append(band['color']) ax.broken_barh( barh_xranges, (y_start, 1), edgecolor='black', facecolors=barh_colors, zorder=10 ) y_start += 1 # add annotations bottom to top for ann_table, ann_label in annotations: barh_xranges = [] barh_colors = [] y_labels.append(ann_label) y_label_pos.append(y_start + 0.5) for idx, region in ann_table.loc[ann_table['chrom'] == c, :].iterrows(): x_min = region['start'] x_width = region['length'] barh_xranges.append((x_min, x_width)) if region['color'] is None: raise ValueError(ann_label) barh_colors.append(region['color']) # if c == primary_chroms[0]: # if ann_label == 'Issues': # for issue_type in ['Gap', 'Variation', 'Unknown']: # p = patches.Patch( # facecolor=region_colors[issue_type], # edgecolor='black', # label='{}: Issue / {}'.format(literal, issue_type) # ) # legend_patches.append(p) # else: # p = patches.Patch( # facecolor=region_colors[ann_label], # edgecolor='black', # label='{}: {}'.format(literal, ann_label) # ) # legend_patches.append(p) ax.broken_barh( barh_xranges, (y_start, 1), edgecolor=None, facecolors=barh_colors ) y_start += 1 y_start += 2 # build custom legend # ax.legend( # handles=list(reversed(legend_patches)), # loc='best', # handlelength=3, # handleheight=1, # prop={'size': 16} # ) # annotate variation in region ax.annotate( 'HG-2425', (22760989 + 20001, 2.5), # point (25e6, 2.25), # text arrowprops=dict( facecolor='black', width=2, headwidth=8, headlength=4 ), fontsize=14 ) _ = ax.set_yticks(y_label_pos) _ = ax.set_yticklabels(y_labels, fontsize=14) #_ = ax.set_xticklabels([]) #_ = ax.set_xticks([]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.tick_params(axis='y', which='major', length=10) ax.tick_params(axis='x', which='major', length=10, size=14) ax.vlines([195.55e6, 196.1e6], -0.75, y_start - 1.75, colors='black', linestyles='dotted', zorder=15) #_ = ax.set_xlim(-500000, max_plot // 1e6 * 1e6 + 1e6) _ = ax.set_xlim(10e6, 40e6) out_path = '/home/local/work/data/hgsvc/figSX_panels/ideograms' fig.savefig( os.path.join(out_path, 'chr16p_lowres.png'), dpi=150, bbox_inches='tight' ) fig.savefig( os.path.join(out_path, 'chr16p.svg'), bbox_inches='tight' ) ```
github_jupyter
import pandas as pd import os import re import matplotlib as mpl import matplotlib.patches as patches import matplotlib.pyplot as plt def rgb_rel(rgb): return tuple([round(x/255, 3) for x in rgb]) def rel_rgb(rgb): return rgb_rel(rgb) # color definitions white = (1, 1, 1) light_blue = rel_rgb([50, 150, 255]) dark_blue = rel_rgb([50, 50, 255]) mustard = rgb_rel([220, 200, 0]) medium_grey = rgb_rel([160, 160, 160]) purple = rgb_rel([150, 0, 150]) red = rgb_rel([255, 0, 0]) light_yellow = rgb_rel([255, 255, 150]) light_orange = rgb_rel([255, 180, 100]) all60 = rel_rgb([0,109,44]) # darkest shade any60 = rel_rgb([49,163,84]) any50 = rel_rgb([116,196,118]) any40 = rel_rgb([186,228,179]) any20 = rel_rgb([237,248,233]) # lightest shade region_colors = { 'Gap': medium_grey, 'Variation': mustard, 'Unknown': purple, 'SD_98': light_blue, 'SD_99': dark_blue, 'UAB': red, 'LCaln': light_orange } def color_segdups(region_score): if region_score < 980: return white elif 980 <= region_score < 990: return light_blue elif 990 <= region_score < 1001: return dark_blue else: raise ValueError(region) def load_annotation(file_path, color=None): df = pd.read_csv(file_path, sep='\t') if 'Issue_Type' in df: df['color'] = df['Issue_Type'].apply(lambda x: region_colors[x]) elif 'chromStart' in df: df['color'] = df['score'].apply(color_segdups) else: assert color is not None, 'no color: {}'.format(file_path) df['color'] = df['start'].apply(lambda x: color) if 'end' in df: df['length'] = df['end'] - df['start'] if 'chromEnd' in df: df['length'] = df['chromEnd'] - df['chromStart'] df['start'] = df['chromStart'] df['end'] = df['chromEnd'] df = df.loc[(df['score'] >= 980), :].copy() if '#chrom' in df: df['chrom'] = df['#chrom'] return df def load_cytogenetic_bands(): # http://circos.ca/tutorials/lessons/2d_tracks/connectors/configuration gie_stain_rgb = { 'gpos100': (0,0,0), 'gpos': (0,0,0), 'gpos75': (130,130,130), 'gpos66': (160,160,160), 'gpos50': (200,200,200), 'gpos33': (210,210,210), 'gpos25': (200,200,200), 'gvar': (220,220,220), 'gneg': (255,255,255), 'acen': (217,47,39), 'stalk': (100,127,164) } gie_stain_frac_rgb = {} for k, v in gie_stain_rgb.items(): gie_stain_frac_rgb[k] = rgb_rel(v) path = '/home/local/work/code/github/project-diploid-assembly/annotation/grch38/known_regions' cytobands = 'ucsc_cytoband.bed' df = pd.read_csv( os.path.join(path, cytobands), header=0, names=['chrom', 'start', 'end', 'name', 'gieStain'], sep='\t' ) df['length'] = df['end'] - df['start'] df['color'] = df['gieStain'].apply(lambda x: rel_rgb(gie_stain_rgb[x])) return df grch38_path = '/home/local/work/code/github/project-diploid-assembly/annotation/grch38' issues = os.path.join(grch38_path, '20200723_GRCh38_p13_unresolved-issues.bed') segdups = os.path.join(grch38_path, 'GRCh38_segdups.bed') ctg_aln_path = '/home/local/work/data/hgsvc/aln_summary' annotations = [ (load_annotation(segdups), 'SD >98% id.'), (load_annotation(issues), 'Issues'), ( load_annotation( os.path.join(ctg_aln_path, 'lowQAln_0-20_any_all.bed'), region_colors['LCaln'] ), 'Any MQ<20' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq20_all.bed'), any20 ), '>20% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq40_all.bed'), any40 ), '>40% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq60_all.bed'), any50 ), '>60% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_geq80_all.bed'), any60 ), '>80% MQ:60' ), ( load_annotation( os.path.join(ctg_aln_path, 'highQ_60_all_all.bed'), all60 ), '100% MQ:60' ) ] # Figure stuff width = 10 height = 4 fig, ax = plt.subplots(figsize=(width, height)) y_start = 0 #primary_chroms = ['chr' + str(i) for i in range(1, 23)] + ['chrX'] primary_chroms = ['chr16'] y_labels = [] y_label_pos = [] legend_patches = [] max_plot = 0 cyto_bands = load_cytogenetic_bands() for c in reversed(primary_chroms): y_labels.append(c.strip('chr') + 'p') y_label_pos.append(y_start + 0.5) barh_xranges = [] barh_colors = [] for idx, band in cyto_bands.loc[cyto_bands['chrom'] == c, :].iterrows(): x_min = band['start'] x_width = band['length'] x_max = x_min + x_width max_plot = max(max_plot, x_max) barh_xranges.append((x_min, x_width)) barh_colors.append(band['color']) ax.broken_barh( barh_xranges, (y_start, 1), edgecolor='black', facecolors=barh_colors, zorder=10 ) y_start += 1 # add annotations bottom to top for ann_table, ann_label in annotations: barh_xranges = [] barh_colors = [] y_labels.append(ann_label) y_label_pos.append(y_start + 0.5) for idx, region in ann_table.loc[ann_table['chrom'] == c, :].iterrows(): x_min = region['start'] x_width = region['length'] barh_xranges.append((x_min, x_width)) if region['color'] is None: raise ValueError(ann_label) barh_colors.append(region['color']) # if c == primary_chroms[0]: # if ann_label == 'Issues': # for issue_type in ['Gap', 'Variation', 'Unknown']: # p = patches.Patch( # facecolor=region_colors[issue_type], # edgecolor='black', # label='{}: Issue / {}'.format(literal, issue_type) # ) # legend_patches.append(p) # else: # p = patches.Patch( # facecolor=region_colors[ann_label], # edgecolor='black', # label='{}: {}'.format(literal, ann_label) # ) # legend_patches.append(p) ax.broken_barh( barh_xranges, (y_start, 1), edgecolor=None, facecolors=barh_colors ) y_start += 1 y_start += 2 # build custom legend # ax.legend( # handles=list(reversed(legend_patches)), # loc='best', # handlelength=3, # handleheight=1, # prop={'size': 16} # ) # annotate variation in region ax.annotate( 'HG-2425', (22760989 + 20001, 2.5), # point (25e6, 2.25), # text arrowprops=dict( facecolor='black', width=2, headwidth=8, headlength=4 ), fontsize=14 ) _ = ax.set_yticks(y_label_pos) _ = ax.set_yticklabels(y_labels, fontsize=14) #_ = ax.set_xticklabels([]) #_ = ax.set_xticks([]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) #ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.tick_params(axis='y', which='major', length=10) ax.tick_params(axis='x', which='major', length=10, size=14) ax.vlines([195.55e6, 196.1e6], -0.75, y_start - 1.75, colors='black', linestyles='dotted', zorder=15) #_ = ax.set_xlim(-500000, max_plot // 1e6 * 1e6 + 1e6) _ = ax.set_xlim(10e6, 40e6) out_path = '/home/local/work/data/hgsvc/figSX_panels/ideograms' fig.savefig( os.path.join(out_path, 'chr16p_lowres.png'), dpi=150, bbox_inches='tight' ) fig.savefig( os.path.join(out_path, 'chr16p.svg'), bbox_inches='tight' )
0.332527
0.248181
``` import pysam import pandas as pd from tqdm.auto import tqdm import numpy as np import itertools bam_file = "/home/dbeb/btech/bb1160039/scratch/project/heart_10k_v3_possorted_genome_bam.bam" bai_file = "/home/dbeb/btech/bb1160039/scratch/project/heart_10k_v3_possorted_genome_bam.bam.bai" samf = pysam.Samfile(bam_file, "rb") replicon_dict = dict([[replicon, {'seq_start_pos': 0,'seq_end_pos': length}] for replicon, length in zip(samf.references, samf.lengths)]) print(replicon_dict['1']['seq_start_pos']) print(replicon_dict['1']['seq_end_pos']) samfile = pysam.AlignmentFile(bam_file, "rb", index_filename = bai_file) x=['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','X','Y'] # x=['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','X','Y'] list_tags = [] for i in tqdm(range(0,len(x))): for read in samfile.fetch(x[i], replicon_dict[x[i]]['seq_start_pos'],replicon_dict[x[i]]['seq_end_pos']): try: if read.has_tag("GX") and read.get_tag("NH")==1: list_tags.append([read.get_tag("CB"),read.get_tag("UB"),str(read.get_tag("GX")+"-"+read.get_tag("GN")+"-"+read.reference_name+"-"+str(read.get_reference_positions()[0])+"-"+str(len(read.get_reference_positions())))]) except KeyError: continue %%time list_tags_rm_dup = list(list_tags for list_tags,_ in itertools.groupby(list_tags)) print(len(list_tags)) print(len(list_tags_rm_dup)) start=0 val=int(list_tags_rm_dup[start][2].split("-")[3]) for i in tqdm(range(1,len(list_tags_rm_dup))): if (int(list_tags_rm_dup[i][2].split("-")[3]) - val>50 and i-start>1): if (i-start>1): #update the inner elements for inner in list_tags_rm_dup[start:i]: inner[2] = list_tags_rm_dup[start][2] #update start to point to this pos start = i #update val to the val at this pos val = int(list_tags_rm_dup[i][2].split("-")[3]) %%time list_tags_rm_dup_final = list(list_tags_rm_dup for list_tags_rm_dup,_ in itertools.groupby(list_tags_rm_dup)) n=len(list_tags_rm_dup_final) n %%time df_all_p1 = pd.DataFrame(list_tags_rm_dup_final[:int(n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p2 = pd.DataFrame(list_tags_rm_dup_final[int(n/10):int(2*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p3 = pd.DataFrame(list_tags_rm_dup_final[int(2*n/10):int(3*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p4 = pd.DataFrame(list_tags_rm_dup_final[int(3*n/10):int(4*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p5 = pd.DataFrame(list_tags_rm_dup_final[int(4*n/10):int(5*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p6 = pd.DataFrame(list_tags_rm_dup_final[int(5*n/10):int(6*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p7 = pd.DataFrame(list_tags_rm_dup_final[int(6*n/10):int(7*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p8 = pd.DataFrame(list_tags_rm_dup_final[int(7*n/10):int(8*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p9 = pd.DataFrame(list_tags_rm_dup_final[int(8*n/10):int(9*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p10 = pd.DataFrame(list_tags_rm_dup_final[int(9*n/10):], columns=["celltag","moltag","pseudoname"]) %%time c1 = df_all_p1['celltag'].value_counts() c2 = df_all_p2['celltag'].value_counts() c3 = df_all_p3['celltag'].value_counts() c4 = df_all_p4['celltag'].value_counts() c5 = df_all_p5['celltag'].value_counts() c6 = df_all_p6['celltag'].value_counts() c7 = df_all_p7['celltag'].value_counts() c8 = df_all_p8['celltag'].value_counts() c9 = df_all_p9['celltag'].value_counts() c10 = df_all_p10['celltag'].value_counts() c11 = df_all_p1['pseudoname'].value_counts() c22 = df_all_p2['pseudoname'].value_counts() c33 = df_all_p3['pseudoname'].value_counts() c44 = df_all_p4['pseudoname'].value_counts() c55 = df_all_p5['pseudoname'].value_counts() c66 = df_all_p6['pseudoname'].value_counts() c77 = df_all_p7['pseudoname'].value_counts() c88 = df_all_p8['pseudoname'].value_counts() c99 = df_all_p9['pseudoname'].value_counts() c1010 = df_all_p10['pseudoname'].value_counts() %time df_all_p1_subset = df_all_p1[df_all_p1["celltag"].isin(c1[c1>10].index)] df_all_p1_subset = df_all_p1_subset[df_all_p1_subset["pseudoname"].isin(c11[c11>10].index)] df_all_p2_subset = df_all_p2[df_all_p2["celltag"].isin(c2[c2>10].index)] df_all_p2_subset = df_all_p2_subset[df_all_p2_subset["pseudoname"].isin(c22[c22>10].index)] df_all_p3_subset = df_all_p3[df_all_p3["celltag"].isin(c3[c3>10].index)] df_all_p3_subset = df_all_p3_subset[df_all_p3_subset["pseudoname"].isin(c33[c33>10].index)] df_all_p4_subset = df_all_p4[df_all_p4["celltag"].isin(c4[c4>10].index)] df_all_p4_subset = df_all_p4_subset[df_all_p4_subset["pseudoname"].isin(c44[c44>10].index)] df_all_p5_subset = df_all_p5[df_all_p5["celltag"].isin(c5[c5>10].index)] df_all_p5_subset = df_all_p5_subset[df_all_p5_subset["pseudoname"].isin(c55[c55>10].index)] df_all_p6_subset = df_all_p6[df_all_p6["celltag"].isin(c6[c6>10].index)] df_all_p6_subset = df_all_p6_subset[df_all_p6_subset["pseudoname"].isin(c66[c66>10].index)] df_all_p7_subset = df_all_p7[df_all_p7["celltag"].isin(c7[c7>10].index)] df_all_p7_subset = df_all_p7_subset[df_all_p7_subset["pseudoname"].isin(c77[c77>10].index)] df_all_p8_subset = df_all_p8[df_all_p8["celltag"].isin(c8[c8>10].index)] df_all_p8_subset = df_all_p8_subset[df_all_p8_subset["pseudoname"].isin(c88[c88>10].index)] df_all_p9_subset = df_all_p9[df_all_p9["celltag"].isin(c9[c9>10].index)] df_all_p9_subset = df_all_p9_subset[df_all_p9_subset["pseudoname"].isin(c99[c99>10].index)] df_all_p10_subset = df_all_p10[df_all_p10["celltag"].isin(c10[c10>10].index)] df_all_p10_subset = df_all_p10_subset[df_all_p10_subset["pseudoname"].isin(c1010[c1010>10].index)] %%time counts_p1=df_all_p1_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p2=df_all_p2_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p3=df_all_p3_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p4=df_all_p4_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p5=df_all_p5_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p6=df_all_p6_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p7=df_all_p7_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p8=df_all_p8_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p9=df_all_p9_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p10=df_all_p10_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) cell_bcode=set(counts_p1.columns).intersection(set(counts_p2.columns)).intersection(set(counts_p3.columns)).intersection(set(counts_p4.columns)).intersection(set(counts_p5.columns)).intersection(set(counts_p6.columns)).intersection(set(counts_p7.columns)).intersection(set(counts_p8.columns)).intersection(set(counts_p9.columns)).intersection(set(counts_p10.columns)) len(cell_bcode) %%time counts_p1 = counts_p1[cell_bcode] counts_p2 = counts_p2[cell_bcode] counts_p3 = counts_p3[cell_bcode] counts_p4 = counts_p4[cell_bcode] counts_p5 = counts_p5[cell_bcode] counts_p6 = counts_p6[cell_bcode] counts_p7 = counts_p7[cell_bcode] counts_p8 = counts_p8[cell_bcode] counts_p9 = counts_p9[cell_bcode] counts_p10 = counts_p10[cell_bcode] %%time counts_full = pd.concat([counts_p1,counts_p2, counts_p3, counts_p4, counts_p5, counts_p6, counts_p7, counts_p8, counts_p9, counts_p10]) # counts_full.to_csv("/home/dbeb/btech/bb1160039/scratch/project/counts_genes_plant.csv") ```
github_jupyter
import pysam import pandas as pd from tqdm.auto import tqdm import numpy as np import itertools bam_file = "/home/dbeb/btech/bb1160039/scratch/project/heart_10k_v3_possorted_genome_bam.bam" bai_file = "/home/dbeb/btech/bb1160039/scratch/project/heart_10k_v3_possorted_genome_bam.bam.bai" samf = pysam.Samfile(bam_file, "rb") replicon_dict = dict([[replicon, {'seq_start_pos': 0,'seq_end_pos': length}] for replicon, length in zip(samf.references, samf.lengths)]) print(replicon_dict['1']['seq_start_pos']) print(replicon_dict['1']['seq_end_pos']) samfile = pysam.AlignmentFile(bam_file, "rb", index_filename = bai_file) x=['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','X','Y'] # x=['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','X','Y'] list_tags = [] for i in tqdm(range(0,len(x))): for read in samfile.fetch(x[i], replicon_dict[x[i]]['seq_start_pos'],replicon_dict[x[i]]['seq_end_pos']): try: if read.has_tag("GX") and read.get_tag("NH")==1: list_tags.append([read.get_tag("CB"),read.get_tag("UB"),str(read.get_tag("GX")+"-"+read.get_tag("GN")+"-"+read.reference_name+"-"+str(read.get_reference_positions()[0])+"-"+str(len(read.get_reference_positions())))]) except KeyError: continue %%time list_tags_rm_dup = list(list_tags for list_tags,_ in itertools.groupby(list_tags)) print(len(list_tags)) print(len(list_tags_rm_dup)) start=0 val=int(list_tags_rm_dup[start][2].split("-")[3]) for i in tqdm(range(1,len(list_tags_rm_dup))): if (int(list_tags_rm_dup[i][2].split("-")[3]) - val>50 and i-start>1): if (i-start>1): #update the inner elements for inner in list_tags_rm_dup[start:i]: inner[2] = list_tags_rm_dup[start][2] #update start to point to this pos start = i #update val to the val at this pos val = int(list_tags_rm_dup[i][2].split("-")[3]) %%time list_tags_rm_dup_final = list(list_tags_rm_dup for list_tags_rm_dup,_ in itertools.groupby(list_tags_rm_dup)) n=len(list_tags_rm_dup_final) n %%time df_all_p1 = pd.DataFrame(list_tags_rm_dup_final[:int(n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p2 = pd.DataFrame(list_tags_rm_dup_final[int(n/10):int(2*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p3 = pd.DataFrame(list_tags_rm_dup_final[int(2*n/10):int(3*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p4 = pd.DataFrame(list_tags_rm_dup_final[int(3*n/10):int(4*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p5 = pd.DataFrame(list_tags_rm_dup_final[int(4*n/10):int(5*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p6 = pd.DataFrame(list_tags_rm_dup_final[int(5*n/10):int(6*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p7 = pd.DataFrame(list_tags_rm_dup_final[int(6*n/10):int(7*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p8 = pd.DataFrame(list_tags_rm_dup_final[int(7*n/10):int(8*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p9 = pd.DataFrame(list_tags_rm_dup_final[int(8*n/10):int(9*n/10)], columns=["celltag","moltag","pseudoname"]) df_all_p10 = pd.DataFrame(list_tags_rm_dup_final[int(9*n/10):], columns=["celltag","moltag","pseudoname"]) %%time c1 = df_all_p1['celltag'].value_counts() c2 = df_all_p2['celltag'].value_counts() c3 = df_all_p3['celltag'].value_counts() c4 = df_all_p4['celltag'].value_counts() c5 = df_all_p5['celltag'].value_counts() c6 = df_all_p6['celltag'].value_counts() c7 = df_all_p7['celltag'].value_counts() c8 = df_all_p8['celltag'].value_counts() c9 = df_all_p9['celltag'].value_counts() c10 = df_all_p10['celltag'].value_counts() c11 = df_all_p1['pseudoname'].value_counts() c22 = df_all_p2['pseudoname'].value_counts() c33 = df_all_p3['pseudoname'].value_counts() c44 = df_all_p4['pseudoname'].value_counts() c55 = df_all_p5['pseudoname'].value_counts() c66 = df_all_p6['pseudoname'].value_counts() c77 = df_all_p7['pseudoname'].value_counts() c88 = df_all_p8['pseudoname'].value_counts() c99 = df_all_p9['pseudoname'].value_counts() c1010 = df_all_p10['pseudoname'].value_counts() %time df_all_p1_subset = df_all_p1[df_all_p1["celltag"].isin(c1[c1>10].index)] df_all_p1_subset = df_all_p1_subset[df_all_p1_subset["pseudoname"].isin(c11[c11>10].index)] df_all_p2_subset = df_all_p2[df_all_p2["celltag"].isin(c2[c2>10].index)] df_all_p2_subset = df_all_p2_subset[df_all_p2_subset["pseudoname"].isin(c22[c22>10].index)] df_all_p3_subset = df_all_p3[df_all_p3["celltag"].isin(c3[c3>10].index)] df_all_p3_subset = df_all_p3_subset[df_all_p3_subset["pseudoname"].isin(c33[c33>10].index)] df_all_p4_subset = df_all_p4[df_all_p4["celltag"].isin(c4[c4>10].index)] df_all_p4_subset = df_all_p4_subset[df_all_p4_subset["pseudoname"].isin(c44[c44>10].index)] df_all_p5_subset = df_all_p5[df_all_p5["celltag"].isin(c5[c5>10].index)] df_all_p5_subset = df_all_p5_subset[df_all_p5_subset["pseudoname"].isin(c55[c55>10].index)] df_all_p6_subset = df_all_p6[df_all_p6["celltag"].isin(c6[c6>10].index)] df_all_p6_subset = df_all_p6_subset[df_all_p6_subset["pseudoname"].isin(c66[c66>10].index)] df_all_p7_subset = df_all_p7[df_all_p7["celltag"].isin(c7[c7>10].index)] df_all_p7_subset = df_all_p7_subset[df_all_p7_subset["pseudoname"].isin(c77[c77>10].index)] df_all_p8_subset = df_all_p8[df_all_p8["celltag"].isin(c8[c8>10].index)] df_all_p8_subset = df_all_p8_subset[df_all_p8_subset["pseudoname"].isin(c88[c88>10].index)] df_all_p9_subset = df_all_p9[df_all_p9["celltag"].isin(c9[c9>10].index)] df_all_p9_subset = df_all_p9_subset[df_all_p9_subset["pseudoname"].isin(c99[c99>10].index)] df_all_p10_subset = df_all_p10[df_all_p10["celltag"].isin(c10[c10>10].index)] df_all_p10_subset = df_all_p10_subset[df_all_p10_subset["pseudoname"].isin(c1010[c1010>10].index)] %%time counts_p1=df_all_p1_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p2=df_all_p2_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p3=df_all_p3_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p4=df_all_p4_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p5=df_all_p5_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p6=df_all_p6_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p7=df_all_p7_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p8=df_all_p8_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p9=df_all_p9_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) counts_p10=df_all_p10_subset.groupby(['pseudoname','celltag']).size().unstack('celltag', fill_value=0) cell_bcode=set(counts_p1.columns).intersection(set(counts_p2.columns)).intersection(set(counts_p3.columns)).intersection(set(counts_p4.columns)).intersection(set(counts_p5.columns)).intersection(set(counts_p6.columns)).intersection(set(counts_p7.columns)).intersection(set(counts_p8.columns)).intersection(set(counts_p9.columns)).intersection(set(counts_p10.columns)) len(cell_bcode) %%time counts_p1 = counts_p1[cell_bcode] counts_p2 = counts_p2[cell_bcode] counts_p3 = counts_p3[cell_bcode] counts_p4 = counts_p4[cell_bcode] counts_p5 = counts_p5[cell_bcode] counts_p6 = counts_p6[cell_bcode] counts_p7 = counts_p7[cell_bcode] counts_p8 = counts_p8[cell_bcode] counts_p9 = counts_p9[cell_bcode] counts_p10 = counts_p10[cell_bcode] %%time counts_full = pd.concat([counts_p1,counts_p2, counts_p3, counts_p4, counts_p5, counts_p6, counts_p7, counts_p8, counts_p9, counts_p10]) # counts_full.to_csv("/home/dbeb/btech/bb1160039/scratch/project/counts_genes_plant.csv")
0.042295
0.142769
<a href="https://colab.research.google.com/github/vdnew/Loan-Prediction/blob/main/Logistic_Regression.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set(style="white", color_codes=True) path = '/content/train_loanprediction1.csv' train = pd.read_csv(path) train.head() train.describe() train.info() train.shape train.isnull().any() train.isnull().sum() train[['Gender']].info() train.head(10) train['Property_Area'].unique() train['Property_Area'].value_counts() train_loan = train.dropna() train_loan.info() train.info() ``` <h1> Data Preprocessing </h1> ``` train['Dependents'].fillna(1,inplace=True) train.info() train['LoanAmount'].fillna(train.LoanAmount.mean(),inplace=True) train.info() train.head(10) ValueMapping = {'Yes': 1, 'No': 0} train['Married_Section'] = train['Married'].map(ValueMapping) train.head() ValueMapping1 = {'Male': 1, 'Female': 0} train['Gender_Section'] = train['Gender'].map(ValueMapping1) train.head() train['Education'].unique() ValueMapping2 = {'Graduate': 1, 'Not Graduate': 0} train['Edu_Section'] = train['Education'].map(ValueMapping2) train.head() train.info() train['Married_Section'].fillna(train.Married_Section.mean(), inplace=True) train['Gender_Section'].fillna(train.Gender_Section.mean(), inplace=True) train['Loan_Amount_Term'].fillna(train.Loan_Amount_Term.mean(), inplace=True) train['Credit_History'].fillna(train.Credit_History.mean(), inplace=True) train.info() ValueMapping3 = {'Yes': 1, 'No': 0} train['Employed_Section'] = train['Self_Employed'].map(ValueMapping3) train.head() train.info() from sklearn.preprocessing import LabelEncoder lb = LabelEncoder() train['Property_Section'] = lb.fit_transform(train['Property_Area']) train.head() ValueMapping4 = {'Y':1, 'N':0} train['Loan_Section'] = train['Loan_Status'].map(ValueMapping4) train.head() sns.FacetGrid(train,hue="Gender_Section",size=4) \ .map(plt.scatter,"Loan_Status","LoanAmount") \ .add_legend() plt.show() sns.FacetGrid(train,hue="Property_Section",size=4) \ .map(plt.scatter,"ApplicantIncome","CoapplicantIncome") \ .add_legend() plt.show() plt.figure(figsize = (10,7)) x = train["LoanAmount"] plt.hist(x, bins = 30, color = "pink") plt.title("Loan taken by Customers") plt.xlabel("Loan Figures") plt.ylabel("Count") sns.boxplot(x="Property_Area", y="Gender_Section", data=train) sns.boxplot(x="Married_Section", y="ApplicantIncome", data=train) train_temp=train[train["Education"]== "Graduate"] train_temp["Self_Employed"].hist() sns.FacetGrid(train, hue="Credit_History", size=6).map(sns.kdeplot, "CoapplicantIncome").add_legend() cols = ['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term','Credit_History','Married_Section', 'Gender_Section','Edu_Section','Employed_Section','Property_Section'] f, ax = plt.subplots(figsize=(10, 7)) cm = np.corrcoef(train[cols].values.T) sns.set(font_scale=1.5) hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols, xticklabels=cols) plt.show() train['Employed_Section'].unique() train['Employed_Section'].fillna(1,inplace=True) train.head() train['Employed_Section'].unique() train['Gender_Section'].unique() train['Gender_Section'].fillna(1,inplace=True) train.head() train['Gender_Section'].unique() from sklearn.linear_model import LogisticRegression model = LogisticRegression() X=train[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term','Credit_History','Married_Section', 'Gender_Section','Edu_Section','Employed_Section','Property_Section']].values y=train[["Loan_Section"]].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) train.isna().any() model.fit(X_train, y_train) model.score(X_train,y_train) model.score(X_test,y_test) expected = y_test predicted = model.predict(X_test) from sklearn import metrics print(metrics.classification_report(expected, predicted)) metrics.confusion_matrix(expected, predicted) ```
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns sns.set(style="white", color_codes=True) path = '/content/train_loanprediction1.csv' train = pd.read_csv(path) train.head() train.describe() train.info() train.shape train.isnull().any() train.isnull().sum() train[['Gender']].info() train.head(10) train['Property_Area'].unique() train['Property_Area'].value_counts() train_loan = train.dropna() train_loan.info() train.info() train['Dependents'].fillna(1,inplace=True) train.info() train['LoanAmount'].fillna(train.LoanAmount.mean(),inplace=True) train.info() train.head(10) ValueMapping = {'Yes': 1, 'No': 0} train['Married_Section'] = train['Married'].map(ValueMapping) train.head() ValueMapping1 = {'Male': 1, 'Female': 0} train['Gender_Section'] = train['Gender'].map(ValueMapping1) train.head() train['Education'].unique() ValueMapping2 = {'Graduate': 1, 'Not Graduate': 0} train['Edu_Section'] = train['Education'].map(ValueMapping2) train.head() train.info() train['Married_Section'].fillna(train.Married_Section.mean(), inplace=True) train['Gender_Section'].fillna(train.Gender_Section.mean(), inplace=True) train['Loan_Amount_Term'].fillna(train.Loan_Amount_Term.mean(), inplace=True) train['Credit_History'].fillna(train.Credit_History.mean(), inplace=True) train.info() ValueMapping3 = {'Yes': 1, 'No': 0} train['Employed_Section'] = train['Self_Employed'].map(ValueMapping3) train.head() train.info() from sklearn.preprocessing import LabelEncoder lb = LabelEncoder() train['Property_Section'] = lb.fit_transform(train['Property_Area']) train.head() ValueMapping4 = {'Y':1, 'N':0} train['Loan_Section'] = train['Loan_Status'].map(ValueMapping4) train.head() sns.FacetGrid(train,hue="Gender_Section",size=4) \ .map(plt.scatter,"Loan_Status","LoanAmount") \ .add_legend() plt.show() sns.FacetGrid(train,hue="Property_Section",size=4) \ .map(plt.scatter,"ApplicantIncome","CoapplicantIncome") \ .add_legend() plt.show() plt.figure(figsize = (10,7)) x = train["LoanAmount"] plt.hist(x, bins = 30, color = "pink") plt.title("Loan taken by Customers") plt.xlabel("Loan Figures") plt.ylabel("Count") sns.boxplot(x="Property_Area", y="Gender_Section", data=train) sns.boxplot(x="Married_Section", y="ApplicantIncome", data=train) train_temp=train[train["Education"]== "Graduate"] train_temp["Self_Employed"].hist() sns.FacetGrid(train, hue="Credit_History", size=6).map(sns.kdeplot, "CoapplicantIncome").add_legend() cols = ['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term','Credit_History','Married_Section', 'Gender_Section','Edu_Section','Employed_Section','Property_Section'] f, ax = plt.subplots(figsize=(10, 7)) cm = np.corrcoef(train[cols].values.T) sns.set(font_scale=1.5) hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols, xticklabels=cols) plt.show() train['Employed_Section'].unique() train['Employed_Section'].fillna(1,inplace=True) train.head() train['Employed_Section'].unique() train['Gender_Section'].unique() train['Gender_Section'].fillna(1,inplace=True) train.head() train['Gender_Section'].unique() from sklearn.linear_model import LogisticRegression model = LogisticRegression() X=train[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term','Credit_History','Married_Section', 'Gender_Section','Edu_Section','Employed_Section','Property_Section']].values y=train[["Loan_Section"]].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) train.isna().any() model.fit(X_train, y_train) model.score(X_train,y_train) model.score(X_test,y_test) expected = y_test predicted = model.predict(X_test) from sklearn import metrics print(metrics.classification_report(expected, predicted)) metrics.confusion_matrix(expected, predicted)
0.328637
0.771155
``` import pandas as pd import numpy as np import ipyvolume as ipv import pyuff import os ``` # Importing geometry data ``` df = pd.read_excel('points.xlsx')#file with geometry data and local CS cx = np.array([1,0,0])*10 cy = np.array([0,1,0])*10 cz = np.array([0,0,1])*10 x = df['X'] y = df['Y'] z = df['Z'] tm_i = df.keys()[4:-3] ``` # Matrices for tranformation from global to local CS ``` trans_matrices = [] j = 0 t = [] for i in tm_i: t.append(np.asarray(df[i][:3])) j+=1 if j==3: j=0 t=np.cos(np.transpose(np.asarray(t))*np.pi/180) trans_matrices.append(t) t=[] uffwrite = pyuff.UFF('./tree_structure_mini.uff') ``` # Writing model info ``` data={'type':151, 'model_name':'3D tree structure', 'description':'Dimention: 379x179x474 - CAD model: tree.step', 'db_app':'0', 'program':'0'} uffwrite._write_set(data,'overwrite') ``` # Writing geometry ``` data={'type':15, 'node_nums':np.array(range(len(x))), 'def_cs':np.zeros_like(x), 'disp_cs':list(df['cs']), 'color':np.ones_like(x), 'x':x, 'y':y, 'z':z} uffwrite._write_set(data,'add') ``` # Data for trace lines ``` traces = [] for i in range(1,len(df['cs'])): if len(traces)<df['cs'][i]: traces.append([]) traces[df['cs'][i]-1].append(i) ``` # Writing datasets for each trace line ``` for i in range(len(traces)): data={'type': 82, 'trace_num': i+1, 'n_nodes': len(traces[i]), 'color': 0, 'id': 'line %i'%(i+1), 'nodes': np.asarray(traces[i])} uffwrite._write_set(data,'add') ``` # CS matrices to UFF compatible structure ``` n = len(trans_matrices) tm = np.zeros([4*n,3]) for i in range(n): tm[4*i:4*i+3,:]=trans_matrices[i] tm[4*i+3,:]=[0,0,0] ``` # Writing CS matrices ``` data={'type':2420, 'nodes':np.array(range(n)), 'local_cs':tm} uffwrite._write_set(data,'add') n = len(uffwrite.get_set_types())#checking numer of writen datasets frfs = np.load('FRFs_mini.npy')#importing FRFs data freq = np.load('Freq_mini.npy')#importing Freq list ``` # Writing each FRF into own dataset 58 ``` for o in range(3): for v in range(3): for t in range(43): resp_node = 0 resp_direc = o+1 ref_node = t+1 ref_direc = v+1 frf = frfs[o,v,t,:2000] datai={'type':58, 'binary':1, 'func_type':4, 'rsp_node': resp_node, 'rsp_dir': resp_direc, 'ref_dir': ref_direc, 'ref_node': ref_node, 'data': frf, 'x': freq, 'id1': 'id1', 'rsp_ent_name': 'name', 'ref_ent_name': 'name', 'abscissa_spacing':1, 'abscissa_spec_data_type':18, 'ordinate_spec_data_type':12, 'orddenom_spec_data_type':13} uffwrite._write_set(datai,'add') v_x,v_y,v_z = np.load('shapes.npy')#importing modal shapes freq = np.load('nat-freq.npy')#importing modal frequences ``` # Writing each mode into own dataset 55 ``` n=10 if v_x.shape[1]<10: n=v_x.shape[1] for i in range(n): vektor_x = v_x[:,i] vektor_y = v_y[:,i] vektor_z = v_z[:,i] data={'type':55, 'analysis_type':2, 'data_ch':3, 'spec_data_type':8, 'load_case':0, 'mode_n':i, 'freq':freq[i], 'node_nums':np.array(range(1,44)), 'r1':vektor_x, 'r2':vektor_y, 'r3':vektor_z, 'r4':np.zeros_like(vektor_x), 'r5':np.zeros_like(vektor_x), 'r6':np.zeros_like(vektor_x), } uffwrite._write_set(data,'add') ``` # Checking number of datasets 55 and 58 ``` j=0 for s in pyuff.UFF('./tree_structure_mini.uff').get_set_types(): if s==55: j+=1 j=0 for s in pyuff.UFF('./tree_structure_mini.uff').get_set_types(): if s==58: j+=1 ```
github_jupyter
import pandas as pd import numpy as np import ipyvolume as ipv import pyuff import os df = pd.read_excel('points.xlsx')#file with geometry data and local CS cx = np.array([1,0,0])*10 cy = np.array([0,1,0])*10 cz = np.array([0,0,1])*10 x = df['X'] y = df['Y'] z = df['Z'] tm_i = df.keys()[4:-3] trans_matrices = [] j = 0 t = [] for i in tm_i: t.append(np.asarray(df[i][:3])) j+=1 if j==3: j=0 t=np.cos(np.transpose(np.asarray(t))*np.pi/180) trans_matrices.append(t) t=[] uffwrite = pyuff.UFF('./tree_structure_mini.uff') data={'type':151, 'model_name':'3D tree structure', 'description':'Dimention: 379x179x474 - CAD model: tree.step', 'db_app':'0', 'program':'0'} uffwrite._write_set(data,'overwrite') data={'type':15, 'node_nums':np.array(range(len(x))), 'def_cs':np.zeros_like(x), 'disp_cs':list(df['cs']), 'color':np.ones_like(x), 'x':x, 'y':y, 'z':z} uffwrite._write_set(data,'add') traces = [] for i in range(1,len(df['cs'])): if len(traces)<df['cs'][i]: traces.append([]) traces[df['cs'][i]-1].append(i) for i in range(len(traces)): data={'type': 82, 'trace_num': i+1, 'n_nodes': len(traces[i]), 'color': 0, 'id': 'line %i'%(i+1), 'nodes': np.asarray(traces[i])} uffwrite._write_set(data,'add') n = len(trans_matrices) tm = np.zeros([4*n,3]) for i in range(n): tm[4*i:4*i+3,:]=trans_matrices[i] tm[4*i+3,:]=[0,0,0] data={'type':2420, 'nodes':np.array(range(n)), 'local_cs':tm} uffwrite._write_set(data,'add') n = len(uffwrite.get_set_types())#checking numer of writen datasets frfs = np.load('FRFs_mini.npy')#importing FRFs data freq = np.load('Freq_mini.npy')#importing Freq list for o in range(3): for v in range(3): for t in range(43): resp_node = 0 resp_direc = o+1 ref_node = t+1 ref_direc = v+1 frf = frfs[o,v,t,:2000] datai={'type':58, 'binary':1, 'func_type':4, 'rsp_node': resp_node, 'rsp_dir': resp_direc, 'ref_dir': ref_direc, 'ref_node': ref_node, 'data': frf, 'x': freq, 'id1': 'id1', 'rsp_ent_name': 'name', 'ref_ent_name': 'name', 'abscissa_spacing':1, 'abscissa_spec_data_type':18, 'ordinate_spec_data_type':12, 'orddenom_spec_data_type':13} uffwrite._write_set(datai,'add') v_x,v_y,v_z = np.load('shapes.npy')#importing modal shapes freq = np.load('nat-freq.npy')#importing modal frequences n=10 if v_x.shape[1]<10: n=v_x.shape[1] for i in range(n): vektor_x = v_x[:,i] vektor_y = v_y[:,i] vektor_z = v_z[:,i] data={'type':55, 'analysis_type':2, 'data_ch':3, 'spec_data_type':8, 'load_case':0, 'mode_n':i, 'freq':freq[i], 'node_nums':np.array(range(1,44)), 'r1':vektor_x, 'r2':vektor_y, 'r3':vektor_z, 'r4':np.zeros_like(vektor_x), 'r5':np.zeros_like(vektor_x), 'r6':np.zeros_like(vektor_x), } uffwrite._write_set(data,'add') j=0 for s in pyuff.UFF('./tree_structure_mini.uff').get_set_types(): if s==55: j+=1 j=0 for s in pyuff.UFF('./tree_structure_mini.uff').get_set_types(): if s==58: j+=1
0.050694
0.713793
<a href="https://colab.research.google.com/github/cesarriat/mlir/blob/master/Copy_of_MiPrimeraApp.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` from __future__ import print_function import math from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format california_housing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",") california_housing_dataframe = california_housing_dataframe.reindex( np.random.permutation(california_housing_dataframe.index)) california_housing_dataframe["median_house_value"] /= 1000.0 california_housing_dataframe california_housing_dataframe.describe() # Primer Paso: Definir las características y configurar las denominadas columnas de características # Definir la característica de entrada: total_rooms. my_feature = california_housing_dataframe [["total_rooms"]] # Configurar una columna numérica de característica para total_rooms. feature_columns = [tf.feature_column.numeric_column("total_rooms")] # Segundo Paso : Definir el Objetivo (Target) # Definir la etiqueta. targets = california_housing_dataframe["median_house_value"] # Tercer Paso: Configurar el LinearRegressor # Usar descenso de gradiente como el optimizador para entrenar el modelo. # Configurar una tasa de aprendizaje de 0.0000001 para Descenso de Gradiente. my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) # Configurar el modelo de regresión lineal con nuestras columnas característica y optimizador. linear_regressor = tf.estimator.LinearRegressor( feature_columns=feature_columns, optimizer=my_optimizer ) ``` **Cuarto Paso: Definir la Función input** ``` def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None): """Entrena un modelo de regresión lineal de una característica. Argumentos: features:DataFrame pandas de característicass targets: DataFrame pandas de objetivos batch_size: Tamaño de lotes pasados al modelo shuffle: True or False. Si se deben mezclar los datos. num_epochs: Número de epochs por los que los datos se repetirán. None = repetir indefinidamente Devuelve: Tuple de (features, labels) para el siguiente lote de datos """ # Convertir datos pandas en un dict de arrays np. features = {key:np.array(value) for key,value in dict(features).items()} # Construir un dataset, y configure batching/repeating. ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) # Mezclar los datos, si se especifica. if shuffle: ds = ds.shuffle(buffer_size=10000) # Devolver el nuevo lote de datos. features, labels = ds.make_one_shot_iterator().get_next() return features, labels ``` **Paso cinco: Entrenar el Modelo** ``` _ = linear_regressor.train( input_fn = lambda:my_input_fn(my_feature, targets), steps=100 ) _ ``` **Paso seis: Evaluar el Modelo** ``` # Crear una función input para predicciones. # Nota: Como vamos a hacer sólo una predicción para cada ejemplo, no tenemos # que repetir o mezclar los datos aquí. prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False) # Llamar a predict() en el linear_regressor para hacer predicciones. predictions = linear_regressor.predict(input_fn=prediction_input_fn) # Formateamos las predicciones como un array NumPy, para que podamos calcular las métricas de error. predictions = np.array([item['predictions'][0] for item in predictions]) # Imprimimos Error Cuadrático Medio y Raíz Error Cuadrático Medio. mean_squared_error = metrics.mean_squared_error(predictions, targets) root_mean_squared_error = math.sqrt(mean_squared_error) print("Error Cuadrático Medio (en datos entrenamiento): %0.3f" % mean_squared_error) print("Raíz Error Cuadrático Medio (en datos entrenamiento): %0.3f" % root_mean_squared_error) min_house_value = california_housing_dataframe["median_house_value"].min() max_house_value = california_housing_dataframe["median_house_value"].max() min_max_difference = max_house_value - min_house_value print("Min. Median House Value: %0.3f" % min_house_value) print("Max. Median House Value: %0.3f" % max_house_value) print("Diferencia entre Min. y Max.: %0.3f" % min_max_difference) print("Raíz Error Cuadrático Medio: %0.3f" % root_mean_squared_error) calibration_data = pd.DataFrame() calibration_data["predicciones"] = pd.Series(predictions) calibration_data["objetivos"] = pd.Series(targets) calibration_data.describe() sample = california_housing_dataframe.sample(n=300) # Obtenemos los valores mínimo y máximo de total_rooms. x_0 = sample["total_rooms"].min() x_1 = sample["total_rooms"].max() # Recuperamos el peso y sesgo final generado durante el entrenamiento. weight = linear_regressor.get_variable_value('linear/linear_model/total_rooms/weights')[0] bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights') # Obtener los median_house_values predichos para los valores min and max total_rooms. y_0 = weight * x_0 + bias y_1 = weight * x_1 + bias # Trazamos nuestra línea de regresión desde (x_0, y_0) to (x_1, y_1). plt.plot([x_0, x_1], [y_0, y_1], c='r') # Trazamos nuestra línea de regresión desde (x_0, y_0) to (x_1, y_1). plt.plot([x_0, x_1], [y_0, y_1], c='r') # Damos nombre a los ejes del gráfico. plt.ylabel("median_house_value") plt.xlabel("total_rooms") # Trazamos una gráfica de dispersión de nuestros datos sample. plt.scatter(sample["total_rooms"], sample["median_house_value"]) # Mostrar gráfico. plt.show() def train_model(learning_rate, steps, batch_size, input_feature="total_rooms"): """Entrenar un modelo de regresión lineal de una característica. Args: learning_rate: Un `float`, la tasa de aprendizaje. steps: Un no-cero `int`, el número total de pasos de entrenamiento. Un paso de entrenamiento consiste en un paso adelante y atrás usando un único lote. batch_size: Un no-cero `int`, tamaño del lote. input_feature: un `string` especificando una columna de `california_housing_dataframe` para usar como característica de entrada. """ periods = 10 steps_per_period = steps / periods my_feature = input_feature my_feature_data = california_housing_dataframe[[my_feature]] my_label = "median_house_value" targets = california_housing_dataframe[my_label] # Crear columns característica. feature_columns = [tf.feature_column.numeric_column(my_feature)] # Crear funciones input. training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size) prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False) # Crear un objeto linear regressor. my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) linear_regressor = tf.estimator.LinearRegressor( feature_columns=feature_columns, optimizer=my_optimizer ) # Configuración para trazar el estado de la línea de nuestro modelo cada período. plt.figure(figsize=(15, 6)) plt.subplot(1, 2, 1) plt.title("Línea aprendida por Período") plt.ylabel(my_label) plt.xlabel(my_feature) sample = california_housing_dataframe.sample(n=300) plt.scatter(sample[my_feature], sample[my_label]) colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)] # Entrena el modelo, pero haciéndolo dentro de un loop de modo que podamos periódicamente # evaluar las métricas de pérdida. print("Entrenamiento del modelo...") print("RMSE (en datos de entrenamiento):") root_mean_squared_errors = [] for period in range (0, periods): # Entrenar el modelo, empezando desde el estado anterior. linear_regressor.train( input_fn=training_input_fn, steps=steps_per_period ) # Tómate un descanso y calcula las predicciones. predictions = linear_regressor.predict(input_fn=prediction_input_fn) predictions = np.array([item['predictions'][0] for item in predictions]) # Calcular pérdida. root_mean_squared_error = math.sqrt( metrics.mean_squared_error(predictions, targets)) # Ocasionalmente imprimir la pérdida actual. print(" período %02d : %0.2f" % (period, root_mean_squared_error)) # Agregar las métricas de pérdida de este período a nuestra lista. root_mean_squared_errors.append(root_mean_squared_error) # Por último, rastrea los pesos y los sesgos a lo largo del tiempo. # Aplica algo de math para asegurarte que los datos y la línea se representan claramente. y_extents = np.array([0, sample[my_label].max()]) weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0] bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights') x_extents = (y_extents - bias) / weight x_extents = np.maximum(np.minimum(x_extents, sample[my_feature].max()), sample[my_feature].min()) y_extents = weight * x_extents + bias plt.plot(x_extents, y_extents, color=colors[period]) print("Entrenamiento del Modelo finalizado.") # Muestra un gráfico de métricas de pérdida por períodos. plt.subplot(1, 2, 2) plt.ylabel('RMSE') plt.xlabel('Períodos') plt.title("Raíz Error Cuádratico Medio vs. Períodos") plt.tight_layout() plt.plot(root_mean_squared_errors) # Muestra una tabla con los datos de calibración. calibration_data = pd.DataFrame() calibration_data["predictions"] = pd.Series(predictions) calibration_data["targets"] = pd.Series(targets) display.display(calibration_data.describe()) print("RMSE final(en datos de entrenamiento): %0.2f" % root_mean_squared_error) train_model( learning_rate=0.00001, steps=100, batch_size=1 ) train_model( learning_rate=0.00002, steps=500, batch_size=5 ) train_model( learning_rate=0.00002, steps=1000, batch_size=5, input_feature="population" ) ```
github_jupyter
from __future__ import print_function import math from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format california_housing_dataframe = pd.read_csv("https://storage.googleapis.com/mledu-datasets/california_housing_train.csv", sep=",") california_housing_dataframe = california_housing_dataframe.reindex( np.random.permutation(california_housing_dataframe.index)) california_housing_dataframe["median_house_value"] /= 1000.0 california_housing_dataframe california_housing_dataframe.describe() # Primer Paso: Definir las características y configurar las denominadas columnas de características # Definir la característica de entrada: total_rooms. my_feature = california_housing_dataframe [["total_rooms"]] # Configurar una columna numérica de característica para total_rooms. feature_columns = [tf.feature_column.numeric_column("total_rooms")] # Segundo Paso : Definir el Objetivo (Target) # Definir la etiqueta. targets = california_housing_dataframe["median_house_value"] # Tercer Paso: Configurar el LinearRegressor # Usar descenso de gradiente como el optimizador para entrenar el modelo. # Configurar una tasa de aprendizaje de 0.0000001 para Descenso de Gradiente. my_optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) # Configurar el modelo de regresión lineal con nuestras columnas característica y optimizador. linear_regressor = tf.estimator.LinearRegressor( feature_columns=feature_columns, optimizer=my_optimizer ) def my_input_fn(features, targets, batch_size=1, shuffle=True, num_epochs=None): """Entrena un modelo de regresión lineal de una característica. Argumentos: features:DataFrame pandas de característicass targets: DataFrame pandas de objetivos batch_size: Tamaño de lotes pasados al modelo shuffle: True or False. Si se deben mezclar los datos. num_epochs: Número de epochs por los que los datos se repetirán. None = repetir indefinidamente Devuelve: Tuple de (features, labels) para el siguiente lote de datos """ # Convertir datos pandas en un dict de arrays np. features = {key:np.array(value) for key,value in dict(features).items()} # Construir un dataset, y configure batching/repeating. ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) # Mezclar los datos, si se especifica. if shuffle: ds = ds.shuffle(buffer_size=10000) # Devolver el nuevo lote de datos. features, labels = ds.make_one_shot_iterator().get_next() return features, labels _ = linear_regressor.train( input_fn = lambda:my_input_fn(my_feature, targets), steps=100 ) _ # Crear una función input para predicciones. # Nota: Como vamos a hacer sólo una predicción para cada ejemplo, no tenemos # que repetir o mezclar los datos aquí. prediction_input_fn =lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False) # Llamar a predict() en el linear_regressor para hacer predicciones. predictions = linear_regressor.predict(input_fn=prediction_input_fn) # Formateamos las predicciones como un array NumPy, para que podamos calcular las métricas de error. predictions = np.array([item['predictions'][0] for item in predictions]) # Imprimimos Error Cuadrático Medio y Raíz Error Cuadrático Medio. mean_squared_error = metrics.mean_squared_error(predictions, targets) root_mean_squared_error = math.sqrt(mean_squared_error) print("Error Cuadrático Medio (en datos entrenamiento): %0.3f" % mean_squared_error) print("Raíz Error Cuadrático Medio (en datos entrenamiento): %0.3f" % root_mean_squared_error) min_house_value = california_housing_dataframe["median_house_value"].min() max_house_value = california_housing_dataframe["median_house_value"].max() min_max_difference = max_house_value - min_house_value print("Min. Median House Value: %0.3f" % min_house_value) print("Max. Median House Value: %0.3f" % max_house_value) print("Diferencia entre Min. y Max.: %0.3f" % min_max_difference) print("Raíz Error Cuadrático Medio: %0.3f" % root_mean_squared_error) calibration_data = pd.DataFrame() calibration_data["predicciones"] = pd.Series(predictions) calibration_data["objetivos"] = pd.Series(targets) calibration_data.describe() sample = california_housing_dataframe.sample(n=300) # Obtenemos los valores mínimo y máximo de total_rooms. x_0 = sample["total_rooms"].min() x_1 = sample["total_rooms"].max() # Recuperamos el peso y sesgo final generado durante el entrenamiento. weight = linear_regressor.get_variable_value('linear/linear_model/total_rooms/weights')[0] bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights') # Obtener los median_house_values predichos para los valores min and max total_rooms. y_0 = weight * x_0 + bias y_1 = weight * x_1 + bias # Trazamos nuestra línea de regresión desde (x_0, y_0) to (x_1, y_1). plt.plot([x_0, x_1], [y_0, y_1], c='r') # Trazamos nuestra línea de regresión desde (x_0, y_0) to (x_1, y_1). plt.plot([x_0, x_1], [y_0, y_1], c='r') # Damos nombre a los ejes del gráfico. plt.ylabel("median_house_value") plt.xlabel("total_rooms") # Trazamos una gráfica de dispersión de nuestros datos sample. plt.scatter(sample["total_rooms"], sample["median_house_value"]) # Mostrar gráfico. plt.show() def train_model(learning_rate, steps, batch_size, input_feature="total_rooms"): """Entrenar un modelo de regresión lineal de una característica. Args: learning_rate: Un `float`, la tasa de aprendizaje. steps: Un no-cero `int`, el número total de pasos de entrenamiento. Un paso de entrenamiento consiste en un paso adelante y atrás usando un único lote. batch_size: Un no-cero `int`, tamaño del lote. input_feature: un `string` especificando una columna de `california_housing_dataframe` para usar como característica de entrada. """ periods = 10 steps_per_period = steps / periods my_feature = input_feature my_feature_data = california_housing_dataframe[[my_feature]] my_label = "median_house_value" targets = california_housing_dataframe[my_label] # Crear columns característica. feature_columns = [tf.feature_column.numeric_column(my_feature)] # Crear funciones input. training_input_fn = lambda:my_input_fn(my_feature_data, targets, batch_size=batch_size) prediction_input_fn = lambda: my_input_fn(my_feature_data, targets, num_epochs=1, shuffle=False) # Crear un objeto linear regressor. my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) linear_regressor = tf.estimator.LinearRegressor( feature_columns=feature_columns, optimizer=my_optimizer ) # Configuración para trazar el estado de la línea de nuestro modelo cada período. plt.figure(figsize=(15, 6)) plt.subplot(1, 2, 1) plt.title("Línea aprendida por Período") plt.ylabel(my_label) plt.xlabel(my_feature) sample = california_housing_dataframe.sample(n=300) plt.scatter(sample[my_feature], sample[my_label]) colors = [cm.coolwarm(x) for x in np.linspace(-1, 1, periods)] # Entrena el modelo, pero haciéndolo dentro de un loop de modo que podamos periódicamente # evaluar las métricas de pérdida. print("Entrenamiento del modelo...") print("RMSE (en datos de entrenamiento):") root_mean_squared_errors = [] for period in range (0, periods): # Entrenar el modelo, empezando desde el estado anterior. linear_regressor.train( input_fn=training_input_fn, steps=steps_per_period ) # Tómate un descanso y calcula las predicciones. predictions = linear_regressor.predict(input_fn=prediction_input_fn) predictions = np.array([item['predictions'][0] for item in predictions]) # Calcular pérdida. root_mean_squared_error = math.sqrt( metrics.mean_squared_error(predictions, targets)) # Ocasionalmente imprimir la pérdida actual. print(" período %02d : %0.2f" % (period, root_mean_squared_error)) # Agregar las métricas de pérdida de este período a nuestra lista. root_mean_squared_errors.append(root_mean_squared_error) # Por último, rastrea los pesos y los sesgos a lo largo del tiempo. # Aplica algo de math para asegurarte que los datos y la línea se representan claramente. y_extents = np.array([0, sample[my_label].max()]) weight = linear_regressor.get_variable_value('linear/linear_model/%s/weights' % input_feature)[0] bias = linear_regressor.get_variable_value('linear/linear_model/bias_weights') x_extents = (y_extents - bias) / weight x_extents = np.maximum(np.minimum(x_extents, sample[my_feature].max()), sample[my_feature].min()) y_extents = weight * x_extents + bias plt.plot(x_extents, y_extents, color=colors[period]) print("Entrenamiento del Modelo finalizado.") # Muestra un gráfico de métricas de pérdida por períodos. plt.subplot(1, 2, 2) plt.ylabel('RMSE') plt.xlabel('Períodos') plt.title("Raíz Error Cuádratico Medio vs. Períodos") plt.tight_layout() plt.plot(root_mean_squared_errors) # Muestra una tabla con los datos de calibración. calibration_data = pd.DataFrame() calibration_data["predictions"] = pd.Series(predictions) calibration_data["targets"] = pd.Series(targets) display.display(calibration_data.describe()) print("RMSE final(en datos de entrenamiento): %0.2f" % root_mean_squared_error) train_model( learning_rate=0.00001, steps=100, batch_size=1 ) train_model( learning_rate=0.00002, steps=500, batch_size=5 ) train_model( learning_rate=0.00002, steps=1000, batch_size=5, input_feature="population" )
0.732974
0.960878
<p style="border: 1px solid #e7692c; border-left: 15px solid #e7692c; padding: 10px; text-align:justify;"> <strong style="color: #e7692c">Tip.</strong> <a style="color: #000000;" href="https://nbviewer.jupyter.org/github/PacktPublishing/Hands-On-Computer-Vision-with-Tensorflow/blob/master/ch8/ch8_nb1_action_recognition.ipynb" title="View with Jupyter Online">Click here to view this notebook on <code>nbviewer.jupyter.org</code></a>. <br/>These notebooks are better read there, as Github default viewer ignores some of the formatting and interactive content. </p> <table style="font-size: 1em; padding: 0; margin: 0;"> <tr style="vertical-align: top; padding: 0; margin: 0;"> <td style="vertical-align: top; padding: 0; margin: 0; padding-right: 15px;"> <p style="background: #363636; color:#ffffff; text-align:justify; padding: 10px 25px;"> <strong style="font-size: 1.0em;"><span style="font-size: 1.2em;"><span style="color: #e7692c;">Hands-on</span> Computer Vision with TensorFlow 2</span><br/>by <em>Eliot Andres</em> & <em>Benjamin Planche</em> (Packt Pub.)</strong><br/><br/> <strong>> Chapter 8: Video and Recurrent Neural Networks</strong><br/> </p> <h1 style="width: 100%; text-align: left; padding: 0px 25px;"><small style="color: #e7692c;">Notebook 1:</small><br/>Action recognition in video using LSTMs <br/>from Scratch</h1> <br/> <p style="border-left: 15px solid #363636; text-align:justify; padding: 0 10px;"> In this chapter, we covered the inner workings of the basic RNN as well as LSTMs. <br/><br/> As a practical application for this new type of neural networks, we will build a model to recognize actions in videos. </p> <br/> <p style="border-left: 15px solid #363636; text-align:justify; padding: 0 10px;"> <strong> Requirements </strong> <br/><br/> To run this notebook, you need to download the <a href="https://www.crcv.ucf.edu/data/UCF101.php">UCF101 dataset</a> and extract it. When done, change the `BASE_PATH` variable to point to the dataset folder. </p> <br/> <p style="border-left: 15px solid #e7692c; padding: 0 10px; text-align:justify;"> <strong style="color: #e7692c;">Tip.</strong> The notebooks shared on this git repository illustrate some of notions from the book "<em><strong>Hands-on Computer Vision with TensorFlow 2</strong></em>" written by Eliot Andres and Benjamin Planche and published by Packt. If you enjoyed the insights shared here, <strong>please consider acquiring the book!</strong> <br/><br/> The book provides further guidance for those eager to learn about computer vision and to harness the power of TensorFlow 2 and Keras to build performant recognition systems for object detection, segmentation, video processing, smartphone applications, and more.</p> </td> <td style="vertical-align: top; padding: 0; margin: 0; width: 255px;"> <a href="https://www.packtpub.com" title="Buy on Packt!"> <img src="../banner_images/book_cover.png"> </a> <p style="background: #e7692c; color:#ffffff; padding: 10px; text-align:justify;"><strong>Leverage deep learning to create powerful image processing apps with TensorFlow 2 and Keras. <br/></strong>Get the book for more insights!</p> <ul style="height: 32px; white-space: nowrap; text-align: center; margin: 0px; padding: 0px; padding-top: 10px;"> <li style="display: inline-block; height: 100%; vertical-align: middle; float: left; margin: 5px; padding: 0px;"> <a href="https://www.packtpub.com" title="Get your Packt book!"> <img style="vertical-align: middle; max-width: 75px; max-height: 32px;" src="../banner_images/logo_packt.png" width="75px"> </a> </li> <li style="display: inline-block; height: 100%; vertical-align: middle; float: left; margin: 5px; padding: 0px;"> <a href="https://www.packtpub.com" title="Get the book on O'Reilly Safari!"> <img style="vertical-align: middle; max-width: 75px; max-height: 32px;" src="../banner_images/logo_oreilly.png" width="75px"> </a> </li> <li style="display: inline-block; height: 100%; vertical-align: middle; float: left; margin: 5px; padding: 0px;"> <a href="https://www.packtpub.com" title="Get the book on Amazon!"> <img style="vertical-align: middle; max-width: 75px; max-height: 32px;" src="../banner_images/logo_amazon.png" width="75px"> </a> </li> </ul> </td> </tr> </table> ``` # Install packages in the current environment import sys !{sys.executable} -m pip install opencv-python !{sys.executable} -m pip install matplotlib !{sys.executable} -m pip install tqdm !{sys.executable} -m pip install scikit-learn import tensorflow as tf import os import cv2 import numpy as np import matplotlib.pyplot as plt import tqdm from sklearn.preprocessing import LabelBinarizer BASE_PATH = '../data/UCF-101' VIDEOS_PATH = os.path.join(BASE_PATH, '**','*.avi') SEQUENCE_LENGTH = 40 ``` ## Step 1 - Extract features from videos and cache them in files ### Sample 'SEQUENCE_LENGTH' frames from each video ``` def frame_generator(): video_paths = tf.io.gfile.glob(VIDEOS_PATH) np.random.shuffle(video_paths) for video_path in video_paths: frames = [] cap = cv2.VideoCapture(video_path) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) sample_every_frame = max(1, num_frames // SEQUENCE_LENGTH) current_frame = 0 label = os.path.basename(os.path.dirname(video_path)) max_images = SEQUENCE_LENGTH while True: success, frame = cap.read() if not success: break if current_frame % sample_every_frame == 0: # OPENCV reads in BGR, tensorflow expects RGB so we invert the order frame = frame[:, :, ::-1] img = tf.image.resize(frame, (299, 299)) img = tf.keras.applications.inception_v3.preprocess_input( img) max_images -= 1 yield img, video_path if max_images == 0: break current_frame += 1 dataset = tf.data.Dataset.from_generator(frame_generator, output_types=(tf.float32, tf.string), output_shapes=((299, 299, 3), ())) dataset = dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE) ``` ### Feature extraction model ``` inception_v3 = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet') x = inception_v3.output # We add Average Pooling to transform the feature map from # 8 * 8 * 2048 to 1 x 2048, as we don't need spatial information pooling_output = tf.keras.layers.GlobalAveragePooling2D()(x) feature_extraction_model = tf.keras.Model(inception_v3.input, pooling_output) ``` ## Extract features and store them in .npy files Extraction takes about ~1h20 minutes on an NVIDIA 1080 GPU ``` current_path = None all_features = [] for img, batch_paths in tqdm.tqdm(dataset): batch_features = feature_extraction_model(img) batch_features = tf.reshape(batch_features, (batch_features.shape[0], -1)) for features, path in zip(batch_features.numpy(), batch_paths.numpy()): if path != current_path and current_path is not None: output_path = current_path.decode().replace('.avi', '.npy') np.save(output_path, all_features) all_features = [] current_path = path all_features.append(features) ``` ## Step 2: Train the LSTM on video features ### Labels preprocessing ``` LABELS = ['UnevenBars','ApplyLipstick','TableTennisShot','Fencing','Mixing','SumoWrestling','HulaHoop','PommelHorse','HorseRiding','SkyDiving','BenchPress','GolfSwing','HeadMassage','FrontCrawl','Haircut','HandstandWalking','Skiing','PlayingDaf','PlayingSitar','FrisbeeCatch','CliffDiving','BoxingSpeedBag','Kayaking','Rafting','WritingOnBoard','VolleyballSpiking','Archery','MoppingFloor','JumpRope','Lunges','BasketballDunk','Surfing','SkateBoarding','FloorGymnastics','Billiards','CuttingInKitchen','BlowingCandles','PlayingCello','JugglingBalls','Drumming','ThrowDiscus','BaseballPitch','SoccerPenalty','Hammering','BodyWeightSquats','SoccerJuggling','CricketShot','BandMarching','PlayingPiano','BreastStroke','ApplyEyeMakeup','HighJump','IceDancing','HandstandPushups','RockClimbingIndoor','HammerThrow','WallPushups','RopeClimbing','Basketball','Shotput','Nunchucks','WalkingWithDog','PlayingFlute','PlayingDhol','PullUps','CricketBowling','BabyCrawling','Diving','TaiChi','YoYo','BlowDryHair','PushUps','ShavingBeard','Knitting','HorseRace','TrampolineJumping','Typing','Bowling','CleanAndJerk','MilitaryParade','FieldHockeyPenalty','PlayingViolin','Skijet','PizzaTossing','LongJump','PlayingTabla','PlayingGuitar','BrushingTeeth','PoleVault','Punch','ParallelBars','Biking','BalanceBeam','Swing','JavelinThrow','Rowing','StillRings','SalsaSpin','TennisSwing','JumpingJack','BoxingPunchingBag'] encoder = LabelBinarizer() encoder.fit(LABELS) ``` ### Defining the model ``` model = tf.keras.Sequential([ tf.keras.layers.Masking(mask_value=0.), tf.keras.layers.LSTM(512, dropout=0.5, recurrent_dropout=0.5), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(len(LABELS), activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy', 'top_k_categorical_accuracy']) test_file = os.path.join('data', 'testlist01.txt') train_file = os.path.join('data', 'trainlist01.txt') with open('data/testlist01.txt') as f: test_list = [row.strip() for row in list(f)] with open('data/trainlist01.txt') as f: train_list = [row.strip() for row in list(f)] train_list = [row.split(' ')[0] for row in train_list] def make_generator(file_list): def generator(): np.random.shuffle(file_list) for path in file_list: full_path = os.path.join(BASE_PATH, path).replace('.avi', '.npy') label = os.path.basename(os.path.dirname(path)) features = np.load(full_path) padded_sequence = np.zeros((SEQUENCE_LENGTH, 2048)) padded_sequence[0:len(features)] = np.array(features) transformed_label = encoder.transform([label]) yield padded_sequence, transformed_label[0] return generator train_dataset = tf.data.Dataset.from_generator(make_generator(train_list), output_types=(tf.float32, tf.int16), output_shapes=((SEQUENCE_LENGTH, 2048), (len(LABELS)))) train_dataset = train_dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE) valid_dataset = tf.data.Dataset.from_generator(make_generator(test_list), output_types=(tf.float32, tf.int16), output_shapes=((SEQUENCE_LENGTH, 2048), (len(LABELS)))) valid_dataset = valid_dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE) tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='/tmp', update_freq=1000) model.fit(train_dataset, epochs=500, callbacks=[tensorboard_callback], validation_data=valid_dataset) ```
github_jupyter
# Install packages in the current environment import sys !{sys.executable} -m pip install opencv-python !{sys.executable} -m pip install matplotlib !{sys.executable} -m pip install tqdm !{sys.executable} -m pip install scikit-learn import tensorflow as tf import os import cv2 import numpy as np import matplotlib.pyplot as plt import tqdm from sklearn.preprocessing import LabelBinarizer BASE_PATH = '../data/UCF-101' VIDEOS_PATH = os.path.join(BASE_PATH, '**','*.avi') SEQUENCE_LENGTH = 40 def frame_generator(): video_paths = tf.io.gfile.glob(VIDEOS_PATH) np.random.shuffle(video_paths) for video_path in video_paths: frames = [] cap = cv2.VideoCapture(video_path) num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) sample_every_frame = max(1, num_frames // SEQUENCE_LENGTH) current_frame = 0 label = os.path.basename(os.path.dirname(video_path)) max_images = SEQUENCE_LENGTH while True: success, frame = cap.read() if not success: break if current_frame % sample_every_frame == 0: # OPENCV reads in BGR, tensorflow expects RGB so we invert the order frame = frame[:, :, ::-1] img = tf.image.resize(frame, (299, 299)) img = tf.keras.applications.inception_v3.preprocess_input( img) max_images -= 1 yield img, video_path if max_images == 0: break current_frame += 1 dataset = tf.data.Dataset.from_generator(frame_generator, output_types=(tf.float32, tf.string), output_shapes=((299, 299, 3), ())) dataset = dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE) inception_v3 = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet') x = inception_v3.output # We add Average Pooling to transform the feature map from # 8 * 8 * 2048 to 1 x 2048, as we don't need spatial information pooling_output = tf.keras.layers.GlobalAveragePooling2D()(x) feature_extraction_model = tf.keras.Model(inception_v3.input, pooling_output) current_path = None all_features = [] for img, batch_paths in tqdm.tqdm(dataset): batch_features = feature_extraction_model(img) batch_features = tf.reshape(batch_features, (batch_features.shape[0], -1)) for features, path in zip(batch_features.numpy(), batch_paths.numpy()): if path != current_path and current_path is not None: output_path = current_path.decode().replace('.avi', '.npy') np.save(output_path, all_features) all_features = [] current_path = path all_features.append(features) LABELS = ['UnevenBars','ApplyLipstick','TableTennisShot','Fencing','Mixing','SumoWrestling','HulaHoop','PommelHorse','HorseRiding','SkyDiving','BenchPress','GolfSwing','HeadMassage','FrontCrawl','Haircut','HandstandWalking','Skiing','PlayingDaf','PlayingSitar','FrisbeeCatch','CliffDiving','BoxingSpeedBag','Kayaking','Rafting','WritingOnBoard','VolleyballSpiking','Archery','MoppingFloor','JumpRope','Lunges','BasketballDunk','Surfing','SkateBoarding','FloorGymnastics','Billiards','CuttingInKitchen','BlowingCandles','PlayingCello','JugglingBalls','Drumming','ThrowDiscus','BaseballPitch','SoccerPenalty','Hammering','BodyWeightSquats','SoccerJuggling','CricketShot','BandMarching','PlayingPiano','BreastStroke','ApplyEyeMakeup','HighJump','IceDancing','HandstandPushups','RockClimbingIndoor','HammerThrow','WallPushups','RopeClimbing','Basketball','Shotput','Nunchucks','WalkingWithDog','PlayingFlute','PlayingDhol','PullUps','CricketBowling','BabyCrawling','Diving','TaiChi','YoYo','BlowDryHair','PushUps','ShavingBeard','Knitting','HorseRace','TrampolineJumping','Typing','Bowling','CleanAndJerk','MilitaryParade','FieldHockeyPenalty','PlayingViolin','Skijet','PizzaTossing','LongJump','PlayingTabla','PlayingGuitar','BrushingTeeth','PoleVault','Punch','ParallelBars','Biking','BalanceBeam','Swing','JavelinThrow','Rowing','StillRings','SalsaSpin','TennisSwing','JumpingJack','BoxingPunchingBag'] encoder = LabelBinarizer() encoder.fit(LABELS) model = tf.keras.Sequential([ tf.keras.layers.Masking(mask_value=0.), tf.keras.layers.LSTM(512, dropout=0.5, recurrent_dropout=0.5), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(len(LABELS), activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy', 'top_k_categorical_accuracy']) test_file = os.path.join('data', 'testlist01.txt') train_file = os.path.join('data', 'trainlist01.txt') with open('data/testlist01.txt') as f: test_list = [row.strip() for row in list(f)] with open('data/trainlist01.txt') as f: train_list = [row.strip() for row in list(f)] train_list = [row.split(' ')[0] for row in train_list] def make_generator(file_list): def generator(): np.random.shuffle(file_list) for path in file_list: full_path = os.path.join(BASE_PATH, path).replace('.avi', '.npy') label = os.path.basename(os.path.dirname(path)) features = np.load(full_path) padded_sequence = np.zeros((SEQUENCE_LENGTH, 2048)) padded_sequence[0:len(features)] = np.array(features) transformed_label = encoder.transform([label]) yield padded_sequence, transformed_label[0] return generator train_dataset = tf.data.Dataset.from_generator(make_generator(train_list), output_types=(tf.float32, tf.int16), output_shapes=((SEQUENCE_LENGTH, 2048), (len(LABELS)))) train_dataset = train_dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE) valid_dataset = tf.data.Dataset.from_generator(make_generator(test_list), output_types=(tf.float32, tf.int16), output_shapes=((SEQUENCE_LENGTH, 2048), (len(LABELS)))) valid_dataset = valid_dataset.batch(16).prefetch(tf.data.experimental.AUTOTUNE) tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='/tmp', update_freq=1000) model.fit(train_dataset, epochs=500, callbacks=[tensorboard_callback], validation_data=valid_dataset)
0.454714
0.96707
``` # default_exp data ``` # Data preparation > Downloading the data and developing the machinery for feeding it to our models The `fastai` library provides the very flexible mechanism of the DataBlock API. This should generally be our main goto tool when working with data in non-standard formats. As fastai v2 is a new version of the library and we have little experience with it, we decided to first drop down to using the mid-level API. This is to ensure we have full control over data processing and to learn how to write custom transforms (we will need this to run some of the experiments we have planned). Once we complete the deepdive into how data is handled by the `fastai` library, hopefully we will be able to utilize the lessons we learn and use the higher level DataBlock API. Let's download the data. ``` !wget https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-48909-4/MediaObjects/41598_2019_48909_MOESM2_ESM.xlsx -O data/Dominicana.xlsx !wget https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-48909-4/MediaObjects/41598_2019_48909_MOESM3_ESM.xlsx -O data/ETP.xlsx ``` ## First look at the data ``` #export from fastai2.data.all import * dominicana = pd.read_excel('data/Dominicana.xlsx') etp = pd.read_excel('data/ETP.xlsx') ``` And this is what the data looks like. It contains the ICI information (independent variables) as well as labels, such as Coda type or Clan membership. ``` dominicana.head() etp.head() ``` ## Data for pretraining Let's construct our dataset step by step. A `TfmdLists` object is able to read the rows of our DataFrame and treat them as items (`item` is the name for an example in the `fastai` parlance). ``` tfmd_lists = TfmdLists(dominicana, [noop]) tfmd_lists[0] len(tfmd_lists), dominicana.shape[0] ``` Looking good. Let's see if we can extract the ICI information from a single row and package it in a way that would be suitable for our model. ``` #export def get_independent_vars(row, start_col=4, n_vals=9): vals = [v for v in row[start_col:(start_col+n_vals)].values if v != 0] return np.pad(vals, (n_vals - len(vals), 0)) get_independent_vars(dominicana.iloc[0]) ``` This looks good. Can we use this in `TfmdLists`? ``` tfmd_lists = TfmdLists(dominicana, [get_independent_vars]) tfmd_lists[0] ``` For the pretraining, we can go directly from this representation to the targets (the target being the last ICI) ``` #export def independent_vars_to_targs(ary): return ary[-1] tfmd_lists = TfmdLists(dominicana, [get_independent_vars, independent_vars_to_targs]) tfmd_lists[0] ``` We now need to make sure that the independent variables, our train data, doesn't contain the targets. ``` #export def drop_last_value(ary): return ary[:-1] ``` We would like each example to be represented as a tuple of `(independent_variables, targets)`. In order to arrive at this representation, we can run two transformation pipelines in parallel. One transformation pipeline will give us the independent variables: ```TfmdLists(dominicana, [get_independent_vars, drop_last_value])``` and the other will give us the dependent variable, our target: ```TfmdLists(dominicana, [get_independent_vars, independent_vars_to_targs])``` The fastai class that can wrap multiple transformation pipelines is called `Datasets`. ``` datasets = Datasets(dominicana, [[get_independent_vars, drop_last_value], [get_independent_vars, independent_vars_to_targs]]); datasets datasets[0] ``` This is looking good. We have the data for pretraining ready. But what about actual training? Here we will need labels transformed in a way suitable for our model to learn from. ## Data for training We specify the first pipeline as follows: ```TfmdLists(dominicana, [get_independent_vars])``` For the second pipeline however, we will need new functionality we have not developed yet. We would like to be able to specify a set of labels as targets (this could be clan membership or coda type for instance). ``` #export def get_target(row, col_name): return row[col_name] get_clan_membership = partialler(get_target, col_name='Clan') tfmd_lists = TfmdLists(dominicana, [get_clan_membership]) tfmd_lists[0] dominicana.Clan.unique() ``` We can now extract the clan name as a string, but this is not a representation we can train our model on. We need to go from string labels to a set of indexes. ``` Categorize(vocab=['EC1', 'EC2'])('EC1') ``` This does the trick! Let's now pull all this into a `Datasets` object. ``` datasets = Datasets(dominicana, [[get_independent_vars], [get_clan_membership, Categorize]]); datasets ``` The `Datasets` class can work with the `Categorize` transform to initialize it without us having to explicitly pass the vocab (it creates the vocab from the data we provide it). ``` datasets.tfms[1][-1].vocab ``` We now have everything we need on the data side to reproduce the RNN experiments from the paper. Let us now see if we can use the DataBlock API to nicely package it all up. ## Using the DataBlock API For the pretraining, we can use all the data we have across the two datasets (the Dominica and Eastern Tropical Pacific (ETP) datasets). Let's concatenate them together. ``` # export pd.set_option('display.max_columns', None) merged_datasets = pd.concat((etp, dominicana)).fillna(0) merged_datasets.head() ``` Now let us craft a DataBlock that will read in the data ``` #export get_ETP_independent_vars = partial(get_independent_vars, start_col=5, n_vals=11) trainable_params #export dblock_pretrain = DataBlock( get_x = (get_ETP_independent_vars, drop_last_value), get_y = (get_ETP_independent_vars, independent_vars_to_targs), splitter=TrainTestSplitter(test_size=0.1, random_state=42) # having a validation set is crucial for any task, ) # including pretraining! datasets_pretrain = dblock_pretrain.datasets(merged_datasets) datasets_pretrain ``` This is looking good. As for the train data, situation is a bit more complex - we need to align how we create our datasets with the paper. It seems that due to lack of data whale identification was only evaluated on train set. Since this gives us little insights into how the model would generalize to unseen data, let us not include this in our analysis. With regards to the "coda type classification" task, the paper reports training on 23 coda types from the Dominicana dataset and 43 coda types from the ETP dataset. The authors were very kind to share their [code on github](https://github.com/dgruber212/Sperm_Whale_Machine_Learning/blob/master/RNNClassifier.py) and we can align how we create our datasets with them. ``` dominicana.head() #export mask = dominicana.CodaType.isin(['1-NOISE', '2-NOISE','3-NOISE','4-NOISE','5-NOISE','6-NOISE','7-NOISE','8-NOISE','9-NOISE','10-NOISE','10i','10R']) dominicana_clean = dominicana[~mask] dominicana_clean.shape dominicana_clean.CodaType.nunique() ``` For the ETP dataset, unfortunately the preprocessing code is not in the repository. Based on the information in the paper, we were unable to infer how exactly the data was processed. We will only use the Dominicana dataset for our experiments. This might actually be advantageous - the intent behind this repository is open the reaserch field to a broader audience and to evaluate the performance of Random Forests. As such, narrowing down the scope of our inquiry in terms of data we run our experiments on might be beneficial. We will therefore focus on two tasks - performing classification on the Dominicana dataset for the clan identification and coda identification task. For the clan identification task, the authors report balancing the classes to 949 per class. Let us carry out this procedure. ``` dominicana.Clan.value_counts() dominicana[dominicana.Clan == 'EC1'].sample(n=949).shape #export dominicana_clan = pd.concat( ( dominicana[dominicana.Clan == 'EC1'].sample(n=949, random_state=42), dominicana[dominicana.Clan == 'EC2'] ) ) dominicana_clan.shape ``` We can now construct our dataset. ``` #export dblock_train = DataBlock( get_x = get_independent_vars, get_y = (get_clan_membership, Categorize), splitter = TrainTestSplitter(test_size=0.1, random_state=42, stratify=dominicana_clan.Clan.factorize()[0]) ) datasets_clan = dblock_train.datasets(dominicana_clan) datasets_clan ``` Let's now construct a dataset for classifying coda types. ``` #export get_coda_type = partialler(get_target, col_name='CodaType') dblock_train = DataBlock( get_x = get_independent_vars, get_y = (get_coda_type, Categorize), splitter = TrainTestSplitter(test_size=0.1, random_state=42, stratify=dominicana_clean.CodaType.factorize()[0]) ) datasets_coda = dblock_train.datasets(dominicana_clean) datasets_coda.vocab ``` And now we are ready to start training!
github_jupyter
# default_exp data !wget https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-48909-4/MediaObjects/41598_2019_48909_MOESM2_ESM.xlsx -O data/Dominicana.xlsx !wget https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-019-48909-4/MediaObjects/41598_2019_48909_MOESM3_ESM.xlsx -O data/ETP.xlsx #export from fastai2.data.all import * dominicana = pd.read_excel('data/Dominicana.xlsx') etp = pd.read_excel('data/ETP.xlsx') dominicana.head() etp.head() tfmd_lists = TfmdLists(dominicana, [noop]) tfmd_lists[0] len(tfmd_lists), dominicana.shape[0] #export def get_independent_vars(row, start_col=4, n_vals=9): vals = [v for v in row[start_col:(start_col+n_vals)].values if v != 0] return np.pad(vals, (n_vals - len(vals), 0)) get_independent_vars(dominicana.iloc[0]) tfmd_lists = TfmdLists(dominicana, [get_independent_vars]) tfmd_lists[0] #export def independent_vars_to_targs(ary): return ary[-1] tfmd_lists = TfmdLists(dominicana, [get_independent_vars, independent_vars_to_targs]) tfmd_lists[0] #export def drop_last_value(ary): return ary[:-1] and the other will give us the dependent variable, our target: The fastai class that can wrap multiple transformation pipelines is called `Datasets`. This is looking good. We have the data for pretraining ready. But what about actual training? Here we will need labels transformed in a way suitable for our model to learn from. ## Data for training We specify the first pipeline as follows: For the second pipeline however, we will need new functionality we have not developed yet. We would like to be able to specify a set of labels as targets (this could be clan membership or coda type for instance). We can now extract the clan name as a string, but this is not a representation we can train our model on. We need to go from string labels to a set of indexes. This does the trick! Let's now pull all this into a `Datasets` object. The `Datasets` class can work with the `Categorize` transform to initialize it without us having to explicitly pass the vocab (it creates the vocab from the data we provide it). We now have everything we need on the data side to reproduce the RNN experiments from the paper. Let us now see if we can use the DataBlock API to nicely package it all up. ## Using the DataBlock API For the pretraining, we can use all the data we have across the two datasets (the Dominica and Eastern Tropical Pacific (ETP) datasets). Let's concatenate them together. Now let us craft a DataBlock that will read in the data This is looking good. As for the train data, situation is a bit more complex - we need to align how we create our datasets with the paper. It seems that due to lack of data whale identification was only evaluated on train set. Since this gives us little insights into how the model would generalize to unseen data, let us not include this in our analysis. With regards to the "coda type classification" task, the paper reports training on 23 coda types from the Dominicana dataset and 43 coda types from the ETP dataset. The authors were very kind to share their [code on github](https://github.com/dgruber212/Sperm_Whale_Machine_Learning/blob/master/RNNClassifier.py) and we can align how we create our datasets with them. For the ETP dataset, unfortunately the preprocessing code is not in the repository. Based on the information in the paper, we were unable to infer how exactly the data was processed. We will only use the Dominicana dataset for our experiments. This might actually be advantageous - the intent behind this repository is open the reaserch field to a broader audience and to evaluate the performance of Random Forests. As such, narrowing down the scope of our inquiry in terms of data we run our experiments on might be beneficial. We will therefore focus on two tasks - performing classification on the Dominicana dataset for the clan identification and coda identification task. For the clan identification task, the authors report balancing the classes to 949 per class. Let us carry out this procedure. We can now construct our dataset. Let's now construct a dataset for classifying coda types.
0.667906
0.969957
# SPD Replicate the design of [Smaldino et al. (2013)](https://www.journals.uchicago.edu/doi/10.1086/669615). Dummy agents - no interactions just movement. ## Imports & properties ``` # model from mesa import Model, Agent from mesa.time import RandomActivation from mesa.space import SingleGrid from mesa.datacollection import DataCollector # visualization import numpy as np import matplotlib.pyplot as plt %matplotlib inline import holoviews as hv %load_ext holoviews.ipython import seaborn as sns sns.set_theme(style="darkgrid") # parameter sweep from mesa.batchrunner import BatchRunner # environment properties grid_size = 10 N = 1 starting_energy = 10 living_cost = 1 max_steps = 10e6 ``` ## Setup model ``` # errors class ModelError(Exception): pass class UnidentifiedCellError(ModelError): pass class DummyAgent(Agent): """ Always Abstain strategy - never interacts with any other agents - moves around randomly - dies when energy depleted """ def __init__(self, model, energy=starting_energy): super().__init__(model.next_id(), model) self.energy = energy def step(self): # pay cost of living self.energy -= living_cost if self.energy <= 0: # agent died self.model.grid.remove_agent(self) self.model.schedule.remove(self) return # alive self.model.n_agents += 1 # move to a random adjacent unoccupied square if exists neighborhood = self.model.grid.get_neighborhood(self.pos, moore=True) neighborhood = filter(lambda c: self.model.grid.is_cell_empty(c), neighborhood) neighborhood = sorted(list(neighborhood)) if neighborhood: cell = self.random.choice(neighborhood) self.model.grid.move_agent(self, cell) class SPDModel(Model): def __init__(self, n0=N, grid_size=grid_size, wrap=True): """ Args: n0: starting number of agents grid_size: size length of square grid to use wrap: whether to wrap grid """ super().__init__() self.schedule = RandomActivation(self) self.grid = SingleGrid(grid_size, grid_size, torus=wrap) # Setup agents for i in range(n0): agent = DummyAgent(self) self.grid.position_agent(agent) self.schedule.add(agent) self.n_agents = n0 # Init model self.running = True self.datacollector = DataCollector( { "n_agents": "n_agents", }, { "x": lambda a: a.pos[0], "y": lambda a: a.pos[1], }, ) self.datacollector.collect(self) def step(self): # reset model counters self.n_agents = 0 self.schedule.step() self.datacollector.collect(self) # stop the model if no agents are alive if self.n_agents == 0: self.running = False ``` ## Run model ``` spd = SPDModel() def value(cell): if cell is None: return 0 elif isinstance(cell, Agent): return 1 else: raise UnidentifiedCellError() hmap = hv.HoloMap(kdims='step') i = 0 while spd.running: spd.step() data = np.array([[value(c) for c in row] for row in spd.grid.grid]) hmap[i] = hv.Image(data, vdims=[hv.Dimension('State', range=(0,3))]) i += 1 hmap results = spd.datacollector.get_model_vars_dataframe() sns.lineplot(data=results) ``` ## Paramater sweep ``` variable_params = { "n0": range(1,100,1), } fixed_params = { "grid_size": grid_size, "wrap": True, } param_run = BatchRunner(SPDModel, variable_params, fixed_params, max_steps=max_steps, model_reporters={ "n_agents": lambda m: m.n_agents, }) param_run.run_all() run_data = param_run.get_model_vars_dataframe() sns.scatterplot(x="n0", y="n_agents", data=run_data) ```
github_jupyter
# model from mesa import Model, Agent from mesa.time import RandomActivation from mesa.space import SingleGrid from mesa.datacollection import DataCollector # visualization import numpy as np import matplotlib.pyplot as plt %matplotlib inline import holoviews as hv %load_ext holoviews.ipython import seaborn as sns sns.set_theme(style="darkgrid") # parameter sweep from mesa.batchrunner import BatchRunner # environment properties grid_size = 10 N = 1 starting_energy = 10 living_cost = 1 max_steps = 10e6 # errors class ModelError(Exception): pass class UnidentifiedCellError(ModelError): pass class DummyAgent(Agent): """ Always Abstain strategy - never interacts with any other agents - moves around randomly - dies when energy depleted """ def __init__(self, model, energy=starting_energy): super().__init__(model.next_id(), model) self.energy = energy def step(self): # pay cost of living self.energy -= living_cost if self.energy <= 0: # agent died self.model.grid.remove_agent(self) self.model.schedule.remove(self) return # alive self.model.n_agents += 1 # move to a random adjacent unoccupied square if exists neighborhood = self.model.grid.get_neighborhood(self.pos, moore=True) neighborhood = filter(lambda c: self.model.grid.is_cell_empty(c), neighborhood) neighborhood = sorted(list(neighborhood)) if neighborhood: cell = self.random.choice(neighborhood) self.model.grid.move_agent(self, cell) class SPDModel(Model): def __init__(self, n0=N, grid_size=grid_size, wrap=True): """ Args: n0: starting number of agents grid_size: size length of square grid to use wrap: whether to wrap grid """ super().__init__() self.schedule = RandomActivation(self) self.grid = SingleGrid(grid_size, grid_size, torus=wrap) # Setup agents for i in range(n0): agent = DummyAgent(self) self.grid.position_agent(agent) self.schedule.add(agent) self.n_agents = n0 # Init model self.running = True self.datacollector = DataCollector( { "n_agents": "n_agents", }, { "x": lambda a: a.pos[0], "y": lambda a: a.pos[1], }, ) self.datacollector.collect(self) def step(self): # reset model counters self.n_agents = 0 self.schedule.step() self.datacollector.collect(self) # stop the model if no agents are alive if self.n_agents == 0: self.running = False spd = SPDModel() def value(cell): if cell is None: return 0 elif isinstance(cell, Agent): return 1 else: raise UnidentifiedCellError() hmap = hv.HoloMap(kdims='step') i = 0 while spd.running: spd.step() data = np.array([[value(c) for c in row] for row in spd.grid.grid]) hmap[i] = hv.Image(data, vdims=[hv.Dimension('State', range=(0,3))]) i += 1 hmap results = spd.datacollector.get_model_vars_dataframe() sns.lineplot(data=results) variable_params = { "n0": range(1,100,1), } fixed_params = { "grid_size": grid_size, "wrap": True, } param_run = BatchRunner(SPDModel, variable_params, fixed_params, max_steps=max_steps, model_reporters={ "n_agents": lambda m: m.n_agents, }) param_run.run_all() run_data = param_run.get_model_vars_dataframe() sns.scatterplot(x="n0", y="n_agents", data=run_data)
0.663887
0.904735
## Udacity P3: Behavior Cloning ``` from library import * os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' tf.python.control_flow_ops = tf dropout_rate = 0.25 learning_rate = 1e-03 # Number of neurons neuron_100 = 100 neuron_50 = 50 neuron_10 = 10 neuron_1 = 1 # Number of frames in each convolution layers conv_layer_1 = 24 conv_layer_2 = 36 conv_layer_3 = 48 conv_layer_4 = 64 # Number of epochs epoch_no = 5 pooling_size = (2,2) activation_func = 'relu' loss_type = 'mean_squared_error' batch_size = 32 # generator function to augment and tune train data from train_generator_lib import train_generator # generator function to tune validation data from valid_generator_lib import valid_generator from sklearn.utils import shuffle from keras.models import model_from_json # images of size are 320x160 local_data_path = "C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/data" os.chdir(r"C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/data") #os.chdir(r"C:\Users\NIKHIL XAVIER\git\Self-Driving-Car\P3\CarND-Behavioral-Cloning-P3-master\data") new_data_path = os.path.join(local_data_path, "IMG/", "*.jpg") final_list = [] turn_str =[] turn_lft = [] turn_rgt = [] df = pd.io.parsers.read_csv(os.path.join(local_data_path, 'driving_log.csv')) # Use as dataframe df = pd.read_csv('driving_log.csv', header=0) df.columns = ["center", "left","right", "steering", "throttle", "break", "speed"] df.drop(['throttle', 'break', 'speed'], axis = 1, inplace = True) for counter in range(len(df)): keep_prob = random.random() if (df["steering"][counter] >0.20 and df["steering"][counter] <=0.50): new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_rgt.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_rgt.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) elif (df["steering"][counter] >= -0.50 and df["steering"][counter] < -0.15): new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_lft.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_lft.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) elif (df["steering"][counter] > -0.02 and df["steering"][counter] < 0.02): if (keep_prob <=0.90): turn_str.append([df["center"][counter], df["left"][counter], df["right"][counter], df["steering"][counter]]) elif (keep_prob >0.90): turn_str.append([df["center"][counter], df["left"][counter], df["right"][counter], df["steering"][counter]]) final_list = turn_rgt + turn_lft + turn_str print(len(final_list), len(turn_str), len(turn_lft), len(turn_rgt)) random.shuffle(final_list) # create sets for validation data set and train data set df_train, df_valid = sklearn.model_selection.train_test_split(final_list, test_size=.20) # Model architecture model = models.Sequential() model.add(layers.core.Lambda(lambda x: (x / 127.5 - 1.), input_shape = (160,320,3))) model.add(layers.convolutional.Convolution2D(conv_layer_1, 5, 5, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.convolutional.Convolution2D(conv_layer_2, 5, 5, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.convolutional.Convolution2D(conv_layer_3, 5, 5, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.convolutional.Convolution2D(conv_layer_4, 3, 3, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.core.Flatten()) model.add(layers.core.Dense(neuron_100, activation=activation_func)) model.add(layers.core.Dropout(dropout_rate)) model.add(layers.core.Dense(neuron_50, activation=activation_func)) model.add(layers.core.Dropout(dropout_rate)) model.add(layers.core.Dense(neuron_10, activation=activation_func)) model.add(layers.core.Dense(neuron_1)) model.compile(optimizer=optimizers.Adam(lr=learning_rate), loss=loss_type) nb_epoch = 5 samples_per_epoch = 20000 nb_val_samples = 2000 from keras.callbacks import ModelCheckpoint path_link="C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/checkpoint2/check-{epoch:02d}-{val_loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath= path_link, verbose=1, save_best_only=False) callbacks_list = [checkpoint] train_generator = train_generator(df_train, batch_size=batch_size, key = 1) validation_generator = valid_generator(df_valid, batch_size=batch_size, key = 0) history_object = model.fit_generator(train_generator, samples_per_epoch= samples_per_epoch, validation_data=validation_generator, nb_val_samples=nb_val_samples, nb_epoch=nb_epoch, verbose=1, callbacks=callbacks_list) model_json = model.to_json() with open("C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/model_final.json", "w") as json_file: json_file.write(model_json) model.save("C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/model_final.h5") print("Saved model to disk") print(model.summary()) ```
github_jupyter
from library import * os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' tf.python.control_flow_ops = tf dropout_rate = 0.25 learning_rate = 1e-03 # Number of neurons neuron_100 = 100 neuron_50 = 50 neuron_10 = 10 neuron_1 = 1 # Number of frames in each convolution layers conv_layer_1 = 24 conv_layer_2 = 36 conv_layer_3 = 48 conv_layer_4 = 64 # Number of epochs epoch_no = 5 pooling_size = (2,2) activation_func = 'relu' loss_type = 'mean_squared_error' batch_size = 32 # generator function to augment and tune train data from train_generator_lib import train_generator # generator function to tune validation data from valid_generator_lib import valid_generator from sklearn.utils import shuffle from keras.models import model_from_json # images of size are 320x160 local_data_path = "C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/data" os.chdir(r"C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/data") #os.chdir(r"C:\Users\NIKHIL XAVIER\git\Self-Driving-Car\P3\CarND-Behavioral-Cloning-P3-master\data") new_data_path = os.path.join(local_data_path, "IMG/", "*.jpg") final_list = [] turn_str =[] turn_lft = [] turn_rgt = [] df = pd.io.parsers.read_csv(os.path.join(local_data_path, 'driving_log.csv')) # Use as dataframe df = pd.read_csv('driving_log.csv', header=0) df.columns = ["center", "left","right", "steering", "throttle", "break", "speed"] df.drop(['throttle', 'break', 'speed'], axis = 1, inplace = True) for counter in range(len(df)): keep_prob = random.random() if (df["steering"][counter] >0.20 and df["steering"][counter] <=0.50): new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_rgt.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_rgt.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) elif (df["steering"][counter] >= -0.50 and df["steering"][counter] < -0.15): new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_lft.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) new_steering = df["steering"][counter]*(1.0 + np.random.uniform(-1,1)/100.0) turn_lft.append([df["center"][counter], df["left"][counter], df["right"][counter], new_steering]) elif (df["steering"][counter] > -0.02 and df["steering"][counter] < 0.02): if (keep_prob <=0.90): turn_str.append([df["center"][counter], df["left"][counter], df["right"][counter], df["steering"][counter]]) elif (keep_prob >0.90): turn_str.append([df["center"][counter], df["left"][counter], df["right"][counter], df["steering"][counter]]) final_list = turn_rgt + turn_lft + turn_str print(len(final_list), len(turn_str), len(turn_lft), len(turn_rgt)) random.shuffle(final_list) # create sets for validation data set and train data set df_train, df_valid = sklearn.model_selection.train_test_split(final_list, test_size=.20) # Model architecture model = models.Sequential() model.add(layers.core.Lambda(lambda x: (x / 127.5 - 1.), input_shape = (160,320,3))) model.add(layers.convolutional.Convolution2D(conv_layer_1, 5, 5, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.convolutional.Convolution2D(conv_layer_2, 5, 5, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.convolutional.Convolution2D(conv_layer_3, 5, 5, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.convolutional.Convolution2D(conv_layer_4, 3, 3, activation=activation_func)) model.add(layers.pooling.MaxPooling2D(pool_size=pooling_size)) model.add(layers.core.Flatten()) model.add(layers.core.Dense(neuron_100, activation=activation_func)) model.add(layers.core.Dropout(dropout_rate)) model.add(layers.core.Dense(neuron_50, activation=activation_func)) model.add(layers.core.Dropout(dropout_rate)) model.add(layers.core.Dense(neuron_10, activation=activation_func)) model.add(layers.core.Dense(neuron_1)) model.compile(optimizer=optimizers.Adam(lr=learning_rate), loss=loss_type) nb_epoch = 5 samples_per_epoch = 20000 nb_val_samples = 2000 from keras.callbacks import ModelCheckpoint path_link="C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/checkpoint2/check-{epoch:02d}-{val_loss:.4f}.hdf5" checkpoint = ModelCheckpoint(filepath= path_link, verbose=1, save_best_only=False) callbacks_list = [checkpoint] train_generator = train_generator(df_train, batch_size=batch_size, key = 1) validation_generator = valid_generator(df_valid, batch_size=batch_size, key = 0) history_object = model.fit_generator(train_generator, samples_per_epoch= samples_per_epoch, validation_data=validation_generator, nb_val_samples=nb_val_samples, nb_epoch=nb_epoch, verbose=1, callbacks=callbacks_list) model_json = model.to_json() with open("C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/model_final.json", "w") as json_file: json_file.write(model_json) model.save("C:/Users/NIKHIL XAVIER/git/Self-Driving-Car/P3/CarND-Behavioral-Cloning-P3-master/model_final.h5") print("Saved model to disk") print(model.summary())
0.595022
0.70178
## 1 K-means Clustering 在这个练习中,您将实现K-means算法并将其用于图像压缩。通过减少图像中出现的颜色的数量,只剩下那些在图像中最常见的颜色。 ### 1.1 Implementing K-means #### 1.1.1 Finding closest centroids 在K-means算法的分配簇的阶段,算法将每一个训练样本 $x_i$ 分配给最接近的簇中心。 ![image.png](../img/7_1.png) $c^{(i)}$ 表示离样本$x_i$ 最近的簇中心点。$u_j$ 是第j 个簇中心点的位置(值), ``` %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.io import loadmat def findClosestCentroids(X, centroids): """ output a one-dimensional array idx that holds the index of the closest centroid to every training example. """ idx = [] max_dist = 1000000 # 限制一下最大距离 for i in range(len(X)): minus = X[i] - centroids # here use numpy's broadcasting dist = minus[:,0]**2 + minus[:,1]**2 if dist.min() < max_dist: ci = np.argmin(dist) idx.append(ci) return np.array(idx) ``` 接下来使用作业提供的例子,自定义一个centroids,[3, 3], [6, 2], [8, 5],算出结果idx[0:3]应该是 [0, 2, 1] ``` mat = loadmat('data/ex7data2.mat') # print(mat) X = mat['X'] init_centroids = np.array([[3, 3], [6, 2], [8, 5]]) idx = findClosestCentroids(X, init_centroids) print(idx[0:3]) ``` #### 1.1.2 Computing centroid means 分配好每个点对应的簇中心,接下来要做的是,重新计算每个簇中心,为这个簇里面所有点位置的平均值。 ![image.png](../img/7_2.png) $C_k$ 是我们分配好给簇中心点的样本集。 ``` def computeCentroids(X, idx): centroids = [] for i in range(len(np.unique(idx))): # Returns the sorted unique elements of an array. means K u_k = X[idx==i].mean(axis=0) # 求每列的平均值,idx==i选出中心对应的样本 centroids.append(u_k) return np.array(centroids) computeCentroids(X, idx) ``` ### 1.2 K-means on example dataset ``` def plotData(X, centroids, idx=None): """ 可视化数据,并自动分开着色。 idx: 最后一次迭代生成的idx向量,存储每个样本分配的簇中心点的值 centroids: 包含每次中心点历史记录 """ colors = ['b','g','gold','darkorange','salmon','olivedrab', 'maroon', 'navy', 'sienna', 'tomato', 'lightgray', 'gainsboro' 'coral', 'aliceblue', 'dimgray', 'mintcream', 'mintcream'] assert len(centroids[0]) <= len(colors), 'colors not enough ' subX = [] # 分好类的样本点 if idx is not None: for i in range(centroids[0].shape[0]): x_i = X[idx == i] subX.append(x_i) else: subX = [X] # 将X转化为一个元素的列表,每个元素为每个簇的样本集,方便下方绘图 # 分别画出每个簇的点,并着不同的颜色 plt.figure(figsize=(8,5)) for i in range(len(subX)): xx = subX[i] plt.scatter(xx[:,0], xx[:,1], c=colors[i], label='Cluster %d'%i) plt.legend() plt.grid(True) plt.xlabel('x1',fontsize=14) plt.ylabel('x2',fontsize=14) plt.title('Plot of X Points',fontsize=16) # 画出簇中心点的移动轨迹 xx, yy = [], [] for centroid in centroids: xx.append(centroid[:,0]) yy.append(centroid[:,1]) plt.plot(xx, yy, 'rx--', markersize=8) plotData(X, [init_centroids]) def runKmeans(X, centroids, max_iters): K = len(centroids) centroids_all = [] centroids_all.append(centroids) centroid_i = centroids for i in range(max_iters): idx = findClosestCentroids(X, centroid_i) centroid_i = computeCentroids(X, idx) centroids_all.append(centroid_i) return idx, centroids_all idx, centroids_all = runKmeans(X, init_centroids, 20) plotData(X, centroids_all, idx) ``` ### 1.3 Random initialization 在实践中,对簇中心点进行初始化的一个好的策略就是从训练集中选择随机的例子。 ``` def initCentroids(X, K): """随机初始化""" m, n = X.shape idx = np.random.choice(m, K) centroids = X[idx] return centroids ``` 进行三次随机初始化,看下各自的效果。会发现第三次的效果并不理想,这是正常的,落入了局部最优。 ``` for i in range(3): centroids = initCentroids(X, 3) idx, centroids_all = runKmeans(X, centroids, 10) plotData(X, centroids_all, idx) ``` 上面运行了三次随机初始化,可以看到不同的随机化,效果是不一样的。 ### 1.4 Image compression with K-means 这部分你将用Kmeans来进行图片压缩。在一个简单的24位颜色表示图像。每个像素被表示为三个8位无符号整数(从0到255),指定了红、绿和蓝色的强度值。这种编码通常被称为RGB编码。我们的图像包含数千种颜色,在这一部分的练习中,你将把颜色的数量减少到16种颜色。 这可以有效地压缩照片。具体地说,您只需要存储16个选中颜色的RGB值,而对于图中的每个像素,现在只需要将该颜色的索引存储在该位置(只需要4 bits就能表示16种可能性)。 接下来我们要用K-means算法选16种颜色,用于图片压缩。你将把原始图片的每个像素看作一个数据样本,然后利用K-means算法去找分组最好的16种颜色。 #### 1.4.1 K-means on pixels ``` from skimage import io A = io.imread('data/bird_small.png') print(A.shape) plt.imshow(A); A = A/255. # Divide by 255 so that all values are in the range 0 - 1 ``` https://stackoverflow.com/questions/18691084/what-does-1-mean-in-numpy-reshape ``` # Reshape the image into an (N,3) matrix where N = number of pixels. # Each row will contain the Red, Green and Blue pixel values # This gives us our dataset matrix X that we will use K-Means on. X = A.reshape(-1, 3) K = 16 centroids = initCentroids(X, K) idx, centroids_all = runKmeans(X, centroids, 10) img = np.zeros(X.shape) centroids = centroids_all[-1] for i in range(len(centroids)): img[idx == i] = centroids[i] img = img.reshape((128, 128, 3)) fig, axes = plt.subplots(1, 2, figsize=(12,6)) axes[0].imshow(A) axes[1].imshow(img) ``` ## 2 Principal Component Analysis 这部分,你将运用PCA来实现降维。您将首先通过一个2D数据集进行实验,以获得关于PCA如何工作的直观感受,然后在一个更大的图像数据集上使用它。 ### 2.1 Example Dataset 为了帮助您理解PCA是如何工作的,您将首先从一个二维数据集开始,该数据集有一个大的变化方向和一个较小的变化方向。 在这部分练习中,您将看到使用PCA将数据从2D减少到1D时会发生什么。 ``` mat = loadmat('data/ex7data1.mat') X = mat['X'] print(X.shape) plt.scatter(X[:,0], X[:,1], facecolors='none', edgecolors='b') ``` ### 2.2 Implementing PCA PCA由两部分组成: 1. 计算数据的方差矩阵 2. 用SVD计算特征向量$(U_1, U_2, ..., U_n)$ 在PCA之前,记得标准化数据。 然后计算方差矩阵,如果你的每条样本数据是以行的形式表示,那么计算公式如下: ![image.png](../img/7_3.png) 接着就可以用SVD计算主成分 ![image.png](../img/7_4.png) U包含了主成分,**每一列**就是我们数据要映射的向量,S为对角矩阵,为奇异值。 ``` def featureNormalize(X): means = X.mean(axis=0) stds = X.std(axis=0, ddof=1) X_norm = (X - means) / stds return X_norm, means, stds ``` 由于我们的协方差矩阵为X.T@X, X中每行为一条数据,我们是想要对列(特征)做压缩。 这里由于是对协方差矩阵做SVD(), 所以得到的入口基其实为 V‘,出口基为V,可以打印出各自的shape来判断。 故我们这里是对 数据集的列 做压缩。 ``` def pca(X): sigma = (X.T @ X) / len(X) U, S, V = np.linalg.svd(sigma) return U, S, V X_norm, means, stds = featureNormalize(X) U, S, V = pca(X_norm) print(U[:,0]) plt.figure(figsize=(7, 5)) plt.scatter(X[:,0], X[:,1], facecolors='none', edgecolors='b') # 没看懂 S*U=? plt.plot([means[0], means[0] + 1.5*S[0]*U[0,0]], [means[1], means[1] + 1.5*S[0]*U[0,1]], c='r', linewidth=3, label='First Principal Component') plt.plot([means[0], means[0] + 1.5*S[1]*U[1,0]], [means[1], means[1] + 1.5*S[1]*U[1,1]], c='g', linewidth=3, label='Second Principal Component') plt.grid() # changes limits of x or y axis so that equal increments of x and y have the same length plt.axis("equal") plt.legend() ``` ### 2.3 Dimensionality Reduction with PCA #### 2.3.1 Projecting the data onto the principal components ``` def projectData(X, U, K): Z = X @ U[:,:K] return Z # project the first example onto the first dimension # and you should see a value of about 1.481 Z = projectData(X_norm, U, 1) Z ``` #### 2.3.2 Reconstructing an approximation of the data 重建数据 ``` def recoverData(Z, U, K): X_rec = Z @ U[:,:K].T return X_rec # you will recover an approximation of the first example and you should see a value of # about [-1.047 -1.047]. X_rec = recoverData(Z, U, 1) X_rec[0] ``` #### 2.3.3 Visualizing the projections ``` plt.figure(figsize=(7,5)) plt.axis("equal") plot = plt.scatter(X_norm[:,0], X_norm[:,1], s=30, facecolors='none', edgecolors='b',label='Original Data Points') plot = plt.scatter(X_rec[:,0], X_rec[:,1], s=30, facecolors='none', edgecolors='r',label='PCA Reduced Data Points') plt.title("Example Dataset: Reduced Dimension Points Shown",fontsize=14) plt.xlabel('x1 [Feature Normalized]',fontsize=14) plt.ylabel('x2 [Feature Normalized]',fontsize=14) plt.grid(True) for x in range(X_norm.shape[0]): plt.plot([X_norm[x,0],X_rec[x,0]],[X_norm[x,1],X_rec[x,1]],'k--') # 输入第一项全是X坐标,第二项都是Y坐标 plt.legend() ``` ### 2.4 Face Image Dataset 在这部分练习中,您将人脸图像上运行PCA,看看如何在实践中使用它来减少维度。 ``` mat = loadmat('data/ex7faces.mat') X = mat['X'] print(X.shape) def displayData(X, row, col): fig, axs = plt.subplots(row, col, figsize=(8,8)) for r in range(row): for c in range(col): axs[r][c].imshow(X[r*col + c].reshape(32,32).T, cmap = 'Greys_r') axs[r][c].set_xticks([]) axs[r][c].set_yticks([]) displayData(X, 10, 10) ``` #### 2.4.1 PCA on Faces ``` X_norm, means, stds = featureNormalize(X) U, S, V = pca(X_norm) U.shape, S.shape displayData(U[:,:36].T, 6, 6) ``` #### 2.4.2 Dimensionality Reduction ``` z = projectData(X_norm, U, K=36) X_rec = recoverData(z, U, K=36) displayData(X_rec, 10, 10) ```
github_jupyter
%matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.io import loadmat def findClosestCentroids(X, centroids): """ output a one-dimensional array idx that holds the index of the closest centroid to every training example. """ idx = [] max_dist = 1000000 # 限制一下最大距离 for i in range(len(X)): minus = X[i] - centroids # here use numpy's broadcasting dist = minus[:,0]**2 + minus[:,1]**2 if dist.min() < max_dist: ci = np.argmin(dist) idx.append(ci) return np.array(idx) mat = loadmat('data/ex7data2.mat') # print(mat) X = mat['X'] init_centroids = np.array([[3, 3], [6, 2], [8, 5]]) idx = findClosestCentroids(X, init_centroids) print(idx[0:3]) def computeCentroids(X, idx): centroids = [] for i in range(len(np.unique(idx))): # Returns the sorted unique elements of an array. means K u_k = X[idx==i].mean(axis=0) # 求每列的平均值,idx==i选出中心对应的样本 centroids.append(u_k) return np.array(centroids) computeCentroids(X, idx) def plotData(X, centroids, idx=None): """ 可视化数据,并自动分开着色。 idx: 最后一次迭代生成的idx向量,存储每个样本分配的簇中心点的值 centroids: 包含每次中心点历史记录 """ colors = ['b','g','gold','darkorange','salmon','olivedrab', 'maroon', 'navy', 'sienna', 'tomato', 'lightgray', 'gainsboro' 'coral', 'aliceblue', 'dimgray', 'mintcream', 'mintcream'] assert len(centroids[0]) <= len(colors), 'colors not enough ' subX = [] # 分好类的样本点 if idx is not None: for i in range(centroids[0].shape[0]): x_i = X[idx == i] subX.append(x_i) else: subX = [X] # 将X转化为一个元素的列表,每个元素为每个簇的样本集,方便下方绘图 # 分别画出每个簇的点,并着不同的颜色 plt.figure(figsize=(8,5)) for i in range(len(subX)): xx = subX[i] plt.scatter(xx[:,0], xx[:,1], c=colors[i], label='Cluster %d'%i) plt.legend() plt.grid(True) plt.xlabel('x1',fontsize=14) plt.ylabel('x2',fontsize=14) plt.title('Plot of X Points',fontsize=16) # 画出簇中心点的移动轨迹 xx, yy = [], [] for centroid in centroids: xx.append(centroid[:,0]) yy.append(centroid[:,1]) plt.plot(xx, yy, 'rx--', markersize=8) plotData(X, [init_centroids]) def runKmeans(X, centroids, max_iters): K = len(centroids) centroids_all = [] centroids_all.append(centroids) centroid_i = centroids for i in range(max_iters): idx = findClosestCentroids(X, centroid_i) centroid_i = computeCentroids(X, idx) centroids_all.append(centroid_i) return idx, centroids_all idx, centroids_all = runKmeans(X, init_centroids, 20) plotData(X, centroids_all, idx) def initCentroids(X, K): """随机初始化""" m, n = X.shape idx = np.random.choice(m, K) centroids = X[idx] return centroids for i in range(3): centroids = initCentroids(X, 3) idx, centroids_all = runKmeans(X, centroids, 10) plotData(X, centroids_all, idx) from skimage import io A = io.imread('data/bird_small.png') print(A.shape) plt.imshow(A); A = A/255. # Divide by 255 so that all values are in the range 0 - 1 # Reshape the image into an (N,3) matrix where N = number of pixels. # Each row will contain the Red, Green and Blue pixel values # This gives us our dataset matrix X that we will use K-Means on. X = A.reshape(-1, 3) K = 16 centroids = initCentroids(X, K) idx, centroids_all = runKmeans(X, centroids, 10) img = np.zeros(X.shape) centroids = centroids_all[-1] for i in range(len(centroids)): img[idx == i] = centroids[i] img = img.reshape((128, 128, 3)) fig, axes = plt.subplots(1, 2, figsize=(12,6)) axes[0].imshow(A) axes[1].imshow(img) mat = loadmat('data/ex7data1.mat') X = mat['X'] print(X.shape) plt.scatter(X[:,0], X[:,1], facecolors='none', edgecolors='b') def featureNormalize(X): means = X.mean(axis=0) stds = X.std(axis=0, ddof=1) X_norm = (X - means) / stds return X_norm, means, stds def pca(X): sigma = (X.T @ X) / len(X) U, S, V = np.linalg.svd(sigma) return U, S, V X_norm, means, stds = featureNormalize(X) U, S, V = pca(X_norm) print(U[:,0]) plt.figure(figsize=(7, 5)) plt.scatter(X[:,0], X[:,1], facecolors='none', edgecolors='b') # 没看懂 S*U=? plt.plot([means[0], means[0] + 1.5*S[0]*U[0,0]], [means[1], means[1] + 1.5*S[0]*U[0,1]], c='r', linewidth=3, label='First Principal Component') plt.plot([means[0], means[0] + 1.5*S[1]*U[1,0]], [means[1], means[1] + 1.5*S[1]*U[1,1]], c='g', linewidth=3, label='Second Principal Component') plt.grid() # changes limits of x or y axis so that equal increments of x and y have the same length plt.axis("equal") plt.legend() def projectData(X, U, K): Z = X @ U[:,:K] return Z # project the first example onto the first dimension # and you should see a value of about 1.481 Z = projectData(X_norm, U, 1) Z def recoverData(Z, U, K): X_rec = Z @ U[:,:K].T return X_rec # you will recover an approximation of the first example and you should see a value of # about [-1.047 -1.047]. X_rec = recoverData(Z, U, 1) X_rec[0] plt.figure(figsize=(7,5)) plt.axis("equal") plot = plt.scatter(X_norm[:,0], X_norm[:,1], s=30, facecolors='none', edgecolors='b',label='Original Data Points') plot = plt.scatter(X_rec[:,0], X_rec[:,1], s=30, facecolors='none', edgecolors='r',label='PCA Reduced Data Points') plt.title("Example Dataset: Reduced Dimension Points Shown",fontsize=14) plt.xlabel('x1 [Feature Normalized]',fontsize=14) plt.ylabel('x2 [Feature Normalized]',fontsize=14) plt.grid(True) for x in range(X_norm.shape[0]): plt.plot([X_norm[x,0],X_rec[x,0]],[X_norm[x,1],X_rec[x,1]],'k--') # 输入第一项全是X坐标,第二项都是Y坐标 plt.legend() mat = loadmat('data/ex7faces.mat') X = mat['X'] print(X.shape) def displayData(X, row, col): fig, axs = plt.subplots(row, col, figsize=(8,8)) for r in range(row): for c in range(col): axs[r][c].imshow(X[r*col + c].reshape(32,32).T, cmap = 'Greys_r') axs[r][c].set_xticks([]) axs[r][c].set_yticks([]) displayData(X, 10, 10) X_norm, means, stds = featureNormalize(X) U, S, V = pca(X_norm) U.shape, S.shape displayData(U[:,:36].T, 6, 6) z = projectData(X_norm, U, K=36) X_rec = recoverData(z, U, K=36) displayData(X_rec, 10, 10)
0.331228
0.941761
``` import os import pandas as pd import numpy as np from IPython.display import Image from subprocess import call from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn.tree import export_graphviz from sklearn.ensemble import RandomForestClassifier from sklearn import preprocessing from sklearn import metrics import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline dataset = pd.read_csv('dataset_final_treat.csv') dataset.head() columns_drop = [] if len(columns_drop) > 0: dataset = dataset.drop(columns_drop, axis=1) if 'stimul' in dataset.columns: mask = dataset.stimul.duplicated() print(dataset.stimul[~mask]) new_stimuls = {'GREEN': 0, 'WHITE': 1, 'RED': 2, 'BLUE': 3} for index, item in dataset.iterrows(): dataset['stimul'][index] = new_stimuls[item.stimul] if 'classify' in dataset.columns: mask = dataset.classify.duplicated() print(dataset.classify[~mask]) new_classify = {'Alterado': 0, 'Atermo': 1} for index, item in dataset.iterrows(): dataset['classify'][index] = new_classify[item.classify] def normalize_column(column_name): columns = list(dataset.columns) x = dataset[[column_name]] min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) dataset_aux = pd.DataFrame({column_name: x_scaled[:, 0]}) dataset.pop(column_name) dataset.insert(columns.index(column_name), column_name, dataset_aux) # normalize_column('3_seconds_before') # normalize_column('size_instantly_before_stimul') # normalize_column('size_instantly_after_stimul') # normalize_column('3_seconds_after') # normalize_column('5_seconds_after') # normalize_column('6_seconds_after') # normalize_column('10_seconds_after') # normalize_column('min_value1') # normalize_column('min_value2') # normalize_column('min_value3') # normalize_column('max_value1') # normalize_column('max_value2') # normalize_column('max_value3') print(dataset.head()) X = dataset.copy() X.pop('classify') y = dataset['classify'] # X = X.fillna(X.mean()) # y = y.fillna(y.mean()) X = X.fillna(0) y = y.fillna(0) print(X, y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train,y_train) y_pred=clf.predict(X_test) print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) aux = dataset.copy() aux.pop('classify') feature_imp = pd.Series(clf.feature_importances_,index=list(aux.columns)).sort_values(ascending=False) feature_imp sns.barplot(x=feature_imp, y=feature_imp.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.legend() plt.show() scores = cross_val_score(clf, X, y, cv=5) print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) scores = cross_val_score(clf, X, y, cv=10, scoring='f1_macro') print("f1_macro: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) if False: estimator = clf.estimators_[0] aux = dataset.copy() aux.pop('classify') target = ['Altered', 'Aterm'] export_graphviz(estimator, out_file='tree.dot', feature_names=aux.columns, class_names=target, rounded=True, special_characters=True, proportion=False, precision=2, filled=True) # Convert to png using system command (requires Graphviz) call(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600']) # Display in jupyter notebook Image(filename = 'tree.png') ```
github_jupyter
import os import pandas as pd import numpy as np from IPython.display import Image from subprocess import call from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import ShuffleSplit from sklearn.tree import export_graphviz from sklearn.ensemble import RandomForestClassifier from sklearn import preprocessing from sklearn import metrics import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline dataset = pd.read_csv('dataset_final_treat.csv') dataset.head() columns_drop = [] if len(columns_drop) > 0: dataset = dataset.drop(columns_drop, axis=1) if 'stimul' in dataset.columns: mask = dataset.stimul.duplicated() print(dataset.stimul[~mask]) new_stimuls = {'GREEN': 0, 'WHITE': 1, 'RED': 2, 'BLUE': 3} for index, item in dataset.iterrows(): dataset['stimul'][index] = new_stimuls[item.stimul] if 'classify' in dataset.columns: mask = dataset.classify.duplicated() print(dataset.classify[~mask]) new_classify = {'Alterado': 0, 'Atermo': 1} for index, item in dataset.iterrows(): dataset['classify'][index] = new_classify[item.classify] def normalize_column(column_name): columns = list(dataset.columns) x = dataset[[column_name]] min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) dataset_aux = pd.DataFrame({column_name: x_scaled[:, 0]}) dataset.pop(column_name) dataset.insert(columns.index(column_name), column_name, dataset_aux) # normalize_column('3_seconds_before') # normalize_column('size_instantly_before_stimul') # normalize_column('size_instantly_after_stimul') # normalize_column('3_seconds_after') # normalize_column('5_seconds_after') # normalize_column('6_seconds_after') # normalize_column('10_seconds_after') # normalize_column('min_value1') # normalize_column('min_value2') # normalize_column('min_value3') # normalize_column('max_value1') # normalize_column('max_value2') # normalize_column('max_value3') print(dataset.head()) X = dataset.copy() X.pop('classify') y = dataset['classify'] # X = X.fillna(X.mean()) # y = y.fillna(y.mean()) X = X.fillna(0) y = y.fillna(0) print(X, y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train,y_train) y_pred=clf.predict(X_test) print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) aux = dataset.copy() aux.pop('classify') feature_imp = pd.Series(clf.feature_importances_,index=list(aux.columns)).sort_values(ascending=False) feature_imp sns.barplot(x=feature_imp, y=feature_imp.index) plt.xlabel('Feature Importance Score') plt.ylabel('Features') plt.title("Visualizing Important Features") plt.legend() plt.show() scores = cross_val_score(clf, X, y, cv=5) print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) scores = cross_val_score(clf, X, y, cv=10, scoring='f1_macro') print("f1_macro: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) if False: estimator = clf.estimators_[0] aux = dataset.copy() aux.pop('classify') target = ['Altered', 'Aterm'] export_graphviz(estimator, out_file='tree.dot', feature_names=aux.columns, class_names=target, rounded=True, special_characters=True, proportion=False, precision=2, filled=True) # Convert to png using system command (requires Graphviz) call(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600']) # Display in jupyter notebook Image(filename = 'tree.png')
0.587825
0.312377
``` # Dependencies import tweepy import json import numpy as np from datetime import datetime import pandas as pd from config2 import consumer_key, consumer_secret, access_token, access_token_secret # Twitter API Keys consumer_key = consumer_key consumer_secret = consumer_secret access_token = access_token access_token_secret = access_token_secret # Setup Tweepy API Authentication auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth, parser=tweepy.parsers.JSONParser()) target_term = '@NintendoAmerica' nin_tweets = [] date = [] tweet_ids = [] oldest_tweet = None for x in range(1,100): public_tweets = api.search(target_term, count=100, result_type="recent", max_id=oldest_tweet) for tweet in public_tweets['statuses']: tweet_id = tweet["id"] tweet_author = tweet["user"]["screen_name"] tweet_text = tweet["text"] nin_tweets.append(tweet['text']) date.append(tweet['created_at']) tweet_ids.append(tweet['id']) oldest_tweet = tweet_id - 1 print(len(nin_tweets)) nin_tweets2 = [] date2 = [] tweet_ids2 = [] oldest_tweet2 = tweet_ids[9885] for x in range(1,100): public_tweets = api.search(target_term, count=100, result_type="recent", max_id=oldest_tweet) for tweet in public_tweets['statuses']: tweet_id = tweet["id"] tweet_author = tweet["user"]["screen_name"] tweet_text = tweet["text"] nin_tweets2.append(tweet['text']) date2.append(tweet['created_at']) tweet_ids2.append(tweet['id']) oldest_tweet2 = tweet_id - 1 print(len(nin_tweets2)) # Import and Initialize Sentiment Analyzer from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer analyzer = SentimentIntensityAnalyzer() compound_list = [] positive_list = [] negative_list = [] neutral_list = [] for tweet in nin_tweets: # Run Vader Analysis on each tweet results = analyzer.polarity_scores(tweet) compound = results["compound"] pos = results["pos"] neu = results["neu"] neg = results["neg"] # Add each value to the appropriate list compound_list.append(compound) positive_list.append(pos) negative_list.append(neg) neutral_list.append(neu) compound_list2 = [] positive_list2 = [] negative_list2 = [] neutral_list2 = [] for tweet in nin_tweets2: # Run Vader Analysis on each tweet results = analyzer.polarity_scores(tweet) compound = results["compound"] pos = results["pos"] neu = results["neu"] neg = results["neg"] # Add each value to the appropriate list compound_list2.append(compound) positive_list2.append(pos) negative_list2.append(neg) neutral_list2.append(neu) june_18_N_1 = { 'Text': nin_tweets, 'Compounded': compound_list, 'Negative': negative_list, 'Positive': positive_list, 'Neutral': neutral_list, 'Date': date } june_18_N_2 = { 'Text': nin_tweets2, 'Compounded': compound_list2, 'Negative': negative_list2, 'Positive': positive_list2, 'Neutral': neutral_list2, 'Date': date2 } june_18_nin_df = pd.DataFrame(june_18_N_1) june_18_nin_2df = pd.DataFrame(june_18_N_2) # june_17_df.head() # date[9831] converted_timestamps = [] for raw in date: # https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior # http://strftime.org/ converted_time = datetime.strptime(raw, "%a %b %d %H:%M:%S %z %Y") converted_timestamps.append(converted_time) converted_timestamps2 = [] for raw in date2: # https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior # http://strftime.org/ converted_time = datetime.strptime(raw, "%a %b %d %H:%M:%S %z %Y") converted_timestamps2.append(converted_time) hour = [] for x in range(len(converted_timestamps)): hours = converted_timestamps[x].hour hour.append(hours) hour2 = [] for x in range(len(converted_timestamps2)): hours = converted_timestamps2[x].hour hour2.append(hours) june_18_nin_df['Hour'] = hour june_18_nin_2df['Hour'] = hour2 # june_17_df.head() june_18_nin_df.to_csv('june_18_N_1.csv') june_18_nin_2df.to_csv('june_18_N_2.csv') june_18_mean_nin_df = june_18_nin_df.groupby('Hour').mean() june_18_mean_nin_2df = june_18_nin_2df.groupby('Hour').mean() june_18_mean_nin_df.to_csv('june_18_mean_N_1.csv') june_18_mean_nin_2df.to_csv('june_18_mean_N_2.csv') len(june_18_nin_df['Date']) len(june_18_nin_2df['Date']) ```
github_jupyter
# Dependencies import tweepy import json import numpy as np from datetime import datetime import pandas as pd from config2 import consumer_key, consumer_secret, access_token, access_token_secret # Twitter API Keys consumer_key = consumer_key consumer_secret = consumer_secret access_token = access_token access_token_secret = access_token_secret # Setup Tweepy API Authentication auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth, parser=tweepy.parsers.JSONParser()) target_term = '@NintendoAmerica' nin_tweets = [] date = [] tweet_ids = [] oldest_tweet = None for x in range(1,100): public_tweets = api.search(target_term, count=100, result_type="recent", max_id=oldest_tweet) for tweet in public_tweets['statuses']: tweet_id = tweet["id"] tweet_author = tweet["user"]["screen_name"] tweet_text = tweet["text"] nin_tweets.append(tweet['text']) date.append(tweet['created_at']) tweet_ids.append(tweet['id']) oldest_tweet = tweet_id - 1 print(len(nin_tweets)) nin_tweets2 = [] date2 = [] tweet_ids2 = [] oldest_tweet2 = tweet_ids[9885] for x in range(1,100): public_tweets = api.search(target_term, count=100, result_type="recent", max_id=oldest_tweet) for tweet in public_tweets['statuses']: tweet_id = tweet["id"] tweet_author = tweet["user"]["screen_name"] tweet_text = tweet["text"] nin_tweets2.append(tweet['text']) date2.append(tweet['created_at']) tweet_ids2.append(tweet['id']) oldest_tweet2 = tweet_id - 1 print(len(nin_tweets2)) # Import and Initialize Sentiment Analyzer from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer analyzer = SentimentIntensityAnalyzer() compound_list = [] positive_list = [] negative_list = [] neutral_list = [] for tweet in nin_tweets: # Run Vader Analysis on each tweet results = analyzer.polarity_scores(tweet) compound = results["compound"] pos = results["pos"] neu = results["neu"] neg = results["neg"] # Add each value to the appropriate list compound_list.append(compound) positive_list.append(pos) negative_list.append(neg) neutral_list.append(neu) compound_list2 = [] positive_list2 = [] negative_list2 = [] neutral_list2 = [] for tweet in nin_tweets2: # Run Vader Analysis on each tweet results = analyzer.polarity_scores(tweet) compound = results["compound"] pos = results["pos"] neu = results["neu"] neg = results["neg"] # Add each value to the appropriate list compound_list2.append(compound) positive_list2.append(pos) negative_list2.append(neg) neutral_list2.append(neu) june_18_N_1 = { 'Text': nin_tweets, 'Compounded': compound_list, 'Negative': negative_list, 'Positive': positive_list, 'Neutral': neutral_list, 'Date': date } june_18_N_2 = { 'Text': nin_tweets2, 'Compounded': compound_list2, 'Negative': negative_list2, 'Positive': positive_list2, 'Neutral': neutral_list2, 'Date': date2 } june_18_nin_df = pd.DataFrame(june_18_N_1) june_18_nin_2df = pd.DataFrame(june_18_N_2) # june_17_df.head() # date[9831] converted_timestamps = [] for raw in date: # https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior # http://strftime.org/ converted_time = datetime.strptime(raw, "%a %b %d %H:%M:%S %z %Y") converted_timestamps.append(converted_time) converted_timestamps2 = [] for raw in date2: # https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior # http://strftime.org/ converted_time = datetime.strptime(raw, "%a %b %d %H:%M:%S %z %Y") converted_timestamps2.append(converted_time) hour = [] for x in range(len(converted_timestamps)): hours = converted_timestamps[x].hour hour.append(hours) hour2 = [] for x in range(len(converted_timestamps2)): hours = converted_timestamps2[x].hour hour2.append(hours) june_18_nin_df['Hour'] = hour june_18_nin_2df['Hour'] = hour2 # june_17_df.head() june_18_nin_df.to_csv('june_18_N_1.csv') june_18_nin_2df.to_csv('june_18_N_2.csv') june_18_mean_nin_df = june_18_nin_df.groupby('Hour').mean() june_18_mean_nin_2df = june_18_nin_2df.groupby('Hour').mean() june_18_mean_nin_df.to_csv('june_18_mean_N_1.csv') june_18_mean_nin_2df.to_csv('june_18_mean_N_2.csv') len(june_18_nin_df['Date']) len(june_18_nin_2df['Date'])
0.290981
0.096238
``` !pip install git+https://github.com/LIAAD/yake !pip install Rouge !python -m pip install --upgrade pip s = ''.join(list(str(np.random.randint(-1000,1000,100)))) s.replace('\n' ,"") import numpy as np import pandas as pd import pdb import string import os import re from nltk.tokenize import word_tokenize from nltk.stem.isri import ISRIStemmer dubai_dir = r'data\EASC-UTF-8\Articles\Topic147\tourisms (8).txt' dubai = open(dubai_dir, encoding="utf-8").read() import document import preprocess import evaluate pr = preprocess.Preprocess() original_text = dubai preprocessed_text = pr.get_clean_article(dubai) sentences = pr.get_article_sentences(preprocessed_text) original_sentences = pr.get_article_sentences(dubai) paragraphs = pr.get_cleaned_article_paragraphes(preprocessed_text) para_sent_list = pr.get_para_sentences(paragraphs) tokenized_word_sentences = pr.get_tokenized_word_sentences(sentences) print(original_text,"\n") print(preprocessed_text,"\n") print(sentences,"\n") print(paragraphs,"\n") print(para_sent_list,"\n") print(len(paragraphs),"\n") print(preprocessed_sentences,"\n") print(tokenized_word_sentences,"\n") doc = document.Doc( original_text = original_text , original_sentences = original_sentences , preprocessed_text = preprocessed_text.replace('ppp',""), sentences = sentences, paragraphs = paragraphs ,para_sent_list = para_sent_list ,tokenized_word_sentences = tokenized_word_sentences) doc.para_sent_list ``` ## Keyphrase Feaure ``` sent1 = preprocessed_sentences[0] sent1 sent4 = preprocessed_sentences[4] sent4 doc.key_phrases = doc.get_doc_key_phrase(preprocessed_text) doc.key_phrases doc.key_phrase_frequency = doc.get_key_phrase_frequency(sent1) doc.key_phrase_frequency doc.get_key_phrase_proper_name() doc.get_key_phrase_length() doc.get_topic_idf(sentences) doc.get_key_phrase_score(sent1) ``` ## Sentence Location Feature ``` len(para_sent_list) para_sent_list for paragrpah_index,list_para in enumerate(para_sent_list) : print (list_para) list_para[0] doc.sentence_location_score(sent1) doc.sentence_location_score(sent4) l = [[1,0,0], [0,4,0], [0,0,1], [3,0,0]] l = [[0 if x == 1 else x for x in sub_l] for sub_l in l] l doc.tf_idf,doc.centroid_vector = doc.get_tfidf_centroid_vector(sentences) tf.shape #17 sentence , 18 word vec.shape for i in range(len(doc.tf_idf)) : print(doc.cosine_similarity_V1(doc.tf_idf[i],doc.centroid_vector)) from scipy import spatial a = [3, 45, 7, 2] b = [2, 54, 13, 15] result = 1 - spatial.distance.cosine(a, b) result from numpy import dot from numpy.linalg import norm cos_sim = dot(a, b)/(norm(a)*norm(b)) cos_sim from sklearn.feature_extraction.text import TfidfVectorizer corpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?', ] vectorizer = TfidfVectorizer() X = vectorizer.fit(corpus) print(vectorizer.get_feature_names()) ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this'] #print(X.shape) X.transform(['This document is the second documen']).toarray() sentences (0.4 * 17)/100 vec_sentence = doc.tf_idf.transform([sent1.strip()]).toarray()[0] vec_sentence = np.squeeze(vec_sentence) vec_sentence.shape doc.cosine_similarity_V1(vec_sentence ,doc.centroid_vector) len(sentences) org_sentences = pr.get_article_sentences(dubai) len(org_sentences) ``` # Centrality Feature ``` from sklearn.metrics.pairwise import cosine_similarity vecs = doc.tf_idf.transform(sentences) vecs.shape cosine_similarity(vecs,vecs).shape cos = cosine_similarity(vecs,vecs) vec_sentence = doc.tf_idf.transform([sent1.strip()]).toarray()[0] vec_sentence.shape cosine_similarity(vec_sentence.reshape(1,-1),vecs).shape cos_1 = cosine_similarity(vec_sentence.reshape(1,-1),vecs) cos_1 cos[0] cos[1] np.where(cos[1] > 0.1) len(np.where(cos[1] > 0.1)[0]) np.equal(cos[0],cos_1[0]) features = [doc.get_key_phrase_score ,doc.sentence_location_score,doc.get_centroid_score, doc.get_centrality_score ,doc.sentence_length_score ,doc.cue_phrases_score , doc.strong_words_score] def score(sentences) : lst = [] ordered_list = [] max_legnth_summary = 5 summary = [] sentence_scores = [] for index,sentence in enumerate(sentences) : total_score = 0 for feature in features : score = feature(sentence) total_score += score sentence_scores.append((index,total_score)) ordered_list = sorted(sentence_scores,key = lambda x : x[1] ,reverse = True) summary = ordered_list[:max_legnth_summary] #pdb.set_trace() last_summary = sorted(summary,key = lambda x : x[0]) sum_list = [original_sentences[x] for (x,y) in last_summary] text_list = ".".join(sum_list) return text_list score(sentences) ```
github_jupyter
!pip install git+https://github.com/LIAAD/yake !pip install Rouge !python -m pip install --upgrade pip s = ''.join(list(str(np.random.randint(-1000,1000,100)))) s.replace('\n' ,"") import numpy as np import pandas as pd import pdb import string import os import re from nltk.tokenize import word_tokenize from nltk.stem.isri import ISRIStemmer dubai_dir = r'data\EASC-UTF-8\Articles\Topic147\tourisms (8).txt' dubai = open(dubai_dir, encoding="utf-8").read() import document import preprocess import evaluate pr = preprocess.Preprocess() original_text = dubai preprocessed_text = pr.get_clean_article(dubai) sentences = pr.get_article_sentences(preprocessed_text) original_sentences = pr.get_article_sentences(dubai) paragraphs = pr.get_cleaned_article_paragraphes(preprocessed_text) para_sent_list = pr.get_para_sentences(paragraphs) tokenized_word_sentences = pr.get_tokenized_word_sentences(sentences) print(original_text,"\n") print(preprocessed_text,"\n") print(sentences,"\n") print(paragraphs,"\n") print(para_sent_list,"\n") print(len(paragraphs),"\n") print(preprocessed_sentences,"\n") print(tokenized_word_sentences,"\n") doc = document.Doc( original_text = original_text , original_sentences = original_sentences , preprocessed_text = preprocessed_text.replace('ppp',""), sentences = sentences, paragraphs = paragraphs ,para_sent_list = para_sent_list ,tokenized_word_sentences = tokenized_word_sentences) doc.para_sent_list sent1 = preprocessed_sentences[0] sent1 sent4 = preprocessed_sentences[4] sent4 doc.key_phrases = doc.get_doc_key_phrase(preprocessed_text) doc.key_phrases doc.key_phrase_frequency = doc.get_key_phrase_frequency(sent1) doc.key_phrase_frequency doc.get_key_phrase_proper_name() doc.get_key_phrase_length() doc.get_topic_idf(sentences) doc.get_key_phrase_score(sent1) len(para_sent_list) para_sent_list for paragrpah_index,list_para in enumerate(para_sent_list) : print (list_para) list_para[0] doc.sentence_location_score(sent1) doc.sentence_location_score(sent4) l = [[1,0,0], [0,4,0], [0,0,1], [3,0,0]] l = [[0 if x == 1 else x for x in sub_l] for sub_l in l] l doc.tf_idf,doc.centroid_vector = doc.get_tfidf_centroid_vector(sentences) tf.shape #17 sentence , 18 word vec.shape for i in range(len(doc.tf_idf)) : print(doc.cosine_similarity_V1(doc.tf_idf[i],doc.centroid_vector)) from scipy import spatial a = [3, 45, 7, 2] b = [2, 54, 13, 15] result = 1 - spatial.distance.cosine(a, b) result from numpy import dot from numpy.linalg import norm cos_sim = dot(a, b)/(norm(a)*norm(b)) cos_sim from sklearn.feature_extraction.text import TfidfVectorizer corpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?', ] vectorizer = TfidfVectorizer() X = vectorizer.fit(corpus) print(vectorizer.get_feature_names()) ['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this'] #print(X.shape) X.transform(['This document is the second documen']).toarray() sentences (0.4 * 17)/100 vec_sentence = doc.tf_idf.transform([sent1.strip()]).toarray()[0] vec_sentence = np.squeeze(vec_sentence) vec_sentence.shape doc.cosine_similarity_V1(vec_sentence ,doc.centroid_vector) len(sentences) org_sentences = pr.get_article_sentences(dubai) len(org_sentences) from sklearn.metrics.pairwise import cosine_similarity vecs = doc.tf_idf.transform(sentences) vecs.shape cosine_similarity(vecs,vecs).shape cos = cosine_similarity(vecs,vecs) vec_sentence = doc.tf_idf.transform([sent1.strip()]).toarray()[0] vec_sentence.shape cosine_similarity(vec_sentence.reshape(1,-1),vecs).shape cos_1 = cosine_similarity(vec_sentence.reshape(1,-1),vecs) cos_1 cos[0] cos[1] np.where(cos[1] > 0.1) len(np.where(cos[1] > 0.1)[0]) np.equal(cos[0],cos_1[0]) features = [doc.get_key_phrase_score ,doc.sentence_location_score,doc.get_centroid_score, doc.get_centrality_score ,doc.sentence_length_score ,doc.cue_phrases_score , doc.strong_words_score] def score(sentences) : lst = [] ordered_list = [] max_legnth_summary = 5 summary = [] sentence_scores = [] for index,sentence in enumerate(sentences) : total_score = 0 for feature in features : score = feature(sentence) total_score += score sentence_scores.append((index,total_score)) ordered_list = sorted(sentence_scores,key = lambda x : x[1] ,reverse = True) summary = ordered_list[:max_legnth_summary] #pdb.set_trace() last_summary = sorted(summary,key = lambda x : x[0]) sum_list = [original_sentences[x] for (x,y) in last_summary] text_list = ".".join(sum_list) return text_list score(sentences)
0.237046
0.453625
# The Standard Library ## Data Structures We already saw that Python provides several standard data structures, such as **list**, **tuple**, **dict** and **set, as part of its built-in types. The standard library provides powerful and optimized versions of such data structures. ### collections : Container Data Types Importing the **collections** module can be done using: ```python import collections ``` #### Counter A **counter** is a collection that tracks how many times equivalent values were added. ```python >>> print(collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])) Counter({’b’: 3, ’a’: 2, ’c’: 1}) >>> print(collections.Counter({'a': 2, 'b': 3, 'c': 1})) Counter({’b’: 3, ’a’: 2, ’c’: 1}) >>> print(collections.Counter(a=2, b=3, c=1)) Counter({’b’: 3, ’a’: 2, ’c’: 1}) ``` > An empty **Counter** can be constructed using: ```python c = collections.counter() ``` A **Counter** can be updated using: ```python >>> print('Initial :', c) Initial : Counter() >>> c.update('abcdaab') >>> print('Sequence:', c) Sequence: Counter({’a’: 3, ’b’: 2, ’c’: 1, ’d’: 1}) >>> c.update({'a': 1, 'd': 5}) >>> print('Dict :', c) Dict: Counter({’d’: 6, ’a’: 4, ’b’: 2, ’c’: 1}) ``` You can access the counts, once a **Counter** is populated: ```python >>> c = collections.Counter('abcdaab') >>> for letter in 'abcde': >>> print('{} : {}'.format(letter, c[letter])) a : 3 b : 2 c : 1 d : 1 e : 0 ``` You can also get an iterator that produces all items known to the **Counter**, using the **elements()** method: ```python >>> c = collections.Counter('extremely') >>> c['z'] = 0 >>> print(c) Counter({’e’: 3, ’m’: 1, ’l’: 1, ’r’: 1, ’t’: 1, ’y’: 1, ’x’: 1, ’z’: 0}) >>> print(list(c.elements())) [’e’, ’e’, ’e’, ’m’, ’l’, ’r’, ’t’, ’y’, ’x’] ``` **Counter** instances support arithmetic and set operations for aggregating results. ```python >>> c1 = collections.Counter(['a', 'b', 'c', 'a', 'b', 'b']) >>> c2 = collections.Counter('alphabet') >>> print('C1:', c1) C1: Counter({’b’: 3, ’a’: 2, ’c’: 1}) >>> print('C2:', c2) C2: Counter({’a’: 2, ’b’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1}) >>> print('\nCombined counts:') >>> print(c1 + c2) Combined counts: Counter({’a’: 4, ’b’: 4, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1}) >>> print('\nSubtraction:') >>> print(c1 - c2) Subtraction: Counter({’b’: 2, ’c’: 1}) >>> print('\nIntersection (taking positive minimums):') >>> print(c1 & c2) Intersection (taking positive minimums): Counter({’a’: 2, ’b’: 1}) >>> print('\nUnion (taking maximums):') >>> print(c1 | c2) Union (taking maximums): Counter({’b’: 3, ’a’: 2, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1}) ``` #### defaultdict The **defaultdict** lets the user specify the default value when the container is initialized, as in the following example: ```python def default_factory(): return 'default value' d = collections.defaultdict(default_factory, foo='bar') print('d:', d) print('foo =>', d['foo']) print('bar =>', d['bar']) ``` which produces: ```shell d: defaultdict(<function default_factory at 0x100d9ba28>, {’foo’: ’bar’}) foo => bar bar => default value ``` #### deque This is a double-ended queue. It supports adding and removing elements from either end. ```python d = collections.deque('abcdefg') print('Deque:', d) print('Length:', len(d)) print('Left end:', d[0]) print('Right end:', d[-1]) d.remove('c') print('remove(c):', d) ``` The result is ```shell Deque: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’]) Length: 7 Left end: a Right end: g remove(c): deque([’a’, ’b’, ’d’, ’e’, ’f’, ’g’]) ``` Populating a **deque** can be done on the left or right: ```python # Add to the right d1 = collections.deque() d1.extend('abcdefg') print('extend :', d1) d1.append('h') print('append :', d1) # Add to the left d2 = collections.deque() d2.extendleft(range(6)) print('extendleft:', d2) d2.appendleft(6) print('appendleft:', d2) ``` ```shell extend: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’]) append: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’]) extendleft: deque([5, 4, 3, 2, 1, 0]) appendleft: deque([6, 5, 4, 3, 2, 1, 0]) ``` Similary, the elements can be consumed, as when using **pop** for **list**: ```python print('From the right:') d = collections.deque('abcdefg') while True: try: print(d.pop(), end='') except IndexError: break print() print('\nFrom the left:') d = collections.deque(range(6)) while True: try: print(d.popleft(), end='') except IndexError: break print() ``` which produces ```shell From the right: g f e d c b a From the left: 0 1 2 3 4 5 ``` Another interesting method is to rotate in either direction: ```python d = collections.deque(range(10)) print('Normal :', d) d = collections.deque(range(10)) d.rotate(2) print('Right rotation:', d) d = collections.deque(range(10)) d.rotate(-2) print('Left rotation :', d) ``` which produces ```shell Normal : deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Right rotation: deque([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) Left rotation : deque([2, 3, 4, 5, 6, 7, 8, 9, 0, 1]) ``` #### namedtuple In opposition to the built-in **tuple** type, **namedtuple** allows you to access its members using names: ```python Person = collections.namedtuple('Person', 'name age') bob = Person(name='Bob', age=30) print('\nRepresentation:', bob) jane = Person(name='Jane', age=29) print('\nField by name:', jane.name) print('\nFields by index:') for p in [bob, jane]: print('{} is {} years old'.format(*p)) ``` which produces ```shell Type of Person: <type ’type’> Representation: Person(name=’Bob’, age=30, gender=’male’) Field by name: Jane Fields by index: Bob is a 30 year old male Jane is a 29 year old female ``` > Field names are invalid if they are repeated or conflict with Python keywords. #### OrderedDict An **OrderedDict** is a dictionary subclass that remembers the order in which its contents were added. > The built-in **dict** does not track the insertion order. ```python print('Regular dictionary:') d = {} d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' for k, v in d.items(): print(k, v) print('\nOrderedDict:') d = collections.OrderedDict() d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' for k, v in d.items(): print(k, v) ``` > Notice that in order to iterate on the dictionary, we use the same syntaxt as for **dict** ```python for k, v in d.items(): ``` Because of keeping track of the insertion order, comparing two **OrderedDict** is little bit subtle: ```python print('dict :', end=' ') d1 = {} d1['a'] = 'A' d1['b'] = 'B' d1['c'] = 'C' d2 = {} d2['c'] = 'C' d2['b'] = 'B' d2['a'] = 'A' print(d1 == d2) print('OrderedDict:', end=' ') d1 = collections.OrderedDict() d1['a'] = 'A' d1['b'] = 'B' d1['c'] = 'C' d2 = collections.OrderedDict() d2['c'] = 'C' d2['b'] = 'B' d2['a'] = 'A' print(d1 == d2) ``` which produces: ```shell dict: True OrderedDict: False ``` ### array : Sequence of Fixed-Type Data ### heapq : Heap Sort Algorithm ### bisect : Maintaint Lists in Sorted Order ### queue : Thread-Safe FIFO Implementation ### struct : Binary Data Structures ### weakref : Impermanent References to Objects ### copy : Duplicate Objects ### pprint : Pretty-Print Data Structures ## Text ### string : Text Constants and Templates ### textwrap : Formatting Text Paragraphs ### re : Regular Expressions ### difflib : Compare Sequences ## Dates and Times ### time : Clock Time ### datetime : Date and Time Value Manipulation ### calendar : Work with Dates ## Mathematics ### decimal : Fixed and Floating-Point Math ### fractions : Rational Numbers ### random : Pseudorandom Number Generators ### math : Mathematical Functions ## Algorithms ### functools : Tools for Manipulating Functions ### itertools : Iterator Functions ### operator : Functional interface to Built-in Operators ### contextlib : Context manager Utilities ## The File System ### os.path : Platform-Independent manipulation of Filenames ### glob : Filename Pattern Matching ### linecache : Read Text Files Efficiently ### tempfile : Temporary File System Objects ### shutil : High-Level File Operations ### mmap : Memory-Map Files ### codecs : String Encoding and Decoding ### StringIO : Text Buffers with a File-like API ### fnmatch : UNIX-Style Directory Listings ### dircache : Cache Directory Listings ### filecmp : Compare Files ``` # css style from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling() ```
github_jupyter
import collections >>> print(collections.Counter(['a', 'b', 'c', 'a', 'b', 'b'])) Counter({’b’: 3, ’a’: 2, ’c’: 1}) >>> print(collections.Counter({'a': 2, 'b': 3, 'c': 1})) Counter({’b’: 3, ’a’: 2, ’c’: 1}) >>> print(collections.Counter(a=2, b=3, c=1)) Counter({’b’: 3, ’a’: 2, ’c’: 1}) c = collections.counter() >>> print('Initial :', c) Initial : Counter() >>> c.update('abcdaab') >>> print('Sequence:', c) Sequence: Counter({’a’: 3, ’b’: 2, ’c’: 1, ’d’: 1}) >>> c.update({'a': 1, 'd': 5}) >>> print('Dict :', c) Dict: Counter({’d’: 6, ’a’: 4, ’b’: 2, ’c’: 1}) >>> c = collections.Counter('abcdaab') >>> for letter in 'abcde': >>> print('{} : {}'.format(letter, c[letter])) a : 3 b : 2 c : 1 d : 1 e : 0 >>> c = collections.Counter('extremely') >>> c['z'] = 0 >>> print(c) Counter({’e’: 3, ’m’: 1, ’l’: 1, ’r’: 1, ’t’: 1, ’y’: 1, ’x’: 1, ’z’: 0}) >>> print(list(c.elements())) [’e’, ’e’, ’e’, ’m’, ’l’, ’r’, ’t’, ’y’, ’x’] >>> c1 = collections.Counter(['a', 'b', 'c', 'a', 'b', 'b']) >>> c2 = collections.Counter('alphabet') >>> print('C1:', c1) C1: Counter({’b’: 3, ’a’: 2, ’c’: 1}) >>> print('C2:', c2) C2: Counter({’a’: 2, ’b’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1}) >>> print('\nCombined counts:') >>> print(c1 + c2) Combined counts: Counter({’a’: 4, ’b’: 4, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1}) >>> print('\nSubtraction:') >>> print(c1 - c2) Subtraction: Counter({’b’: 2, ’c’: 1}) >>> print('\nIntersection (taking positive minimums):') >>> print(c1 & c2) Intersection (taking positive minimums): Counter({’a’: 2, ’b’: 1}) >>> print('\nUnion (taking maximums):') >>> print(c1 | c2) Union (taking maximums): Counter({’b’: 3, ’a’: 2, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1}) def default_factory(): return 'default value' d = collections.defaultdict(default_factory, foo='bar') print('d:', d) print('foo =>', d['foo']) print('bar =>', d['bar']) d: defaultdict(<function default_factory at 0x100d9ba28>, {’foo’: ’bar’}) foo => bar bar => default value d = collections.deque('abcdefg') print('Deque:', d) print('Length:', len(d)) print('Left end:', d[0]) print('Right end:', d[-1]) d.remove('c') print('remove(c):', d) Deque: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’]) Length: 7 Left end: a Right end: g remove(c): deque([’a’, ’b’, ’d’, ’e’, ’f’, ’g’]) # Add to the right d1 = collections.deque() d1.extend('abcdefg') print('extend :', d1) d1.append('h') print('append :', d1) # Add to the left d2 = collections.deque() d2.extendleft(range(6)) print('extendleft:', d2) d2.appendleft(6) print('appendleft:', d2) extend: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’]) append: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’]) extendleft: deque([5, 4, 3, 2, 1, 0]) appendleft: deque([6, 5, 4, 3, 2, 1, 0]) print('From the right:') d = collections.deque('abcdefg') while True: try: print(d.pop(), end='') except IndexError: break print() print('\nFrom the left:') d = collections.deque(range(6)) while True: try: print(d.popleft(), end='') except IndexError: break print() From the right: g f e d c b a From the left: 0 1 2 3 4 5 d = collections.deque(range(10)) print('Normal :', d) d = collections.deque(range(10)) d.rotate(2) print('Right rotation:', d) d = collections.deque(range(10)) d.rotate(-2) print('Left rotation :', d) Normal : deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Right rotation: deque([8, 9, 0, 1, 2, 3, 4, 5, 6, 7]) Left rotation : deque([2, 3, 4, 5, 6, 7, 8, 9, 0, 1]) Person = collections.namedtuple('Person', 'name age') bob = Person(name='Bob', age=30) print('\nRepresentation:', bob) jane = Person(name='Jane', age=29) print('\nField by name:', jane.name) print('\nFields by index:') for p in [bob, jane]: print('{} is {} years old'.format(*p)) Type of Person: <type ’type’> Representation: Person(name=’Bob’, age=30, gender=’male’) Field by name: Jane Fields by index: Bob is a 30 year old male Jane is a 29 year old female print('Regular dictionary:') d = {} d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' for k, v in d.items(): print(k, v) print('\nOrderedDict:') d = collections.OrderedDict() d['a'] = 'A' d['b'] = 'B' d['c'] = 'C' for k, v in d.items(): print(k, v) for k, v in d.items(): print('dict :', end=' ') d1 = {} d1['a'] = 'A' d1['b'] = 'B' d1['c'] = 'C' d2 = {} d2['c'] = 'C' d2['b'] = 'B' d2['a'] = 'A' print(d1 == d2) print('OrderedDict:', end=' ') d1 = collections.OrderedDict() d1['a'] = 'A' d1['b'] = 'B' d1['c'] = 'C' d2 = collections.OrderedDict() d2['c'] = 'C' d2['b'] = 'B' d2['a'] = 'A' print(d1 == d2) dict: True OrderedDict: False # css style from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling()
0.52342
0.984738
d-sandbox <div style="text-align: center; line-height: 0; padding-top: 9px;"> <img src="https://databricks.com/wp-content/uploads/2018/03/db-academy-rgb-1200px.png" alt="Databricks Learning" style="width: 600px"> </div> # Hands-on with Databricks **Objective**: *Familiarize yourself with the Databricks platform, the use of notebooks, and basic SQL operations in Databricks.* In this lab, you will complete a series of exercises to familiarize yourself with the content covered in Lesson 0.1. ## Exercise 1 In order to execute code with Databricks, you need to have your notebook attached to an active cluster. Ensure that: 1. You have created a cluster following the walkthrough of the video in this lesson. 2. Your cluster's Databricks Runtime Version is 7.2 ML. 3. Your cluster is active and running. 4. This notebook is attached to your cluster. ## Exercise 2 The fundamental piece of a Databricks notebook is the command cell. We use command cells to write and run our code. Complete the following: 1. Insert a command cell beneath this one. 2. Write `1 + 1` in the command cell. 3. Run the command cell. 4. Verify that the output of the executed code is `2`. ``` 1 + 1 ``` ## Exercise 3 Command cells can also be used to add comments using a lightweight markup language named *markdown*. (That's how these command cells are written). Complete the following: 1. Double-click on this command cell. 2. Notice the *magic command* at the top of the command cell that enables the use of markdown. 3. Insert a command cell beneath this one and add the magic command to the first line. 4. Write `THE MAGIC COMMAND FOR MARKDOWN IS _____` with the magic command filling the blank. `THE MAGIC COMMAND FOR MARKDOWN IS %md` ## Exercise 4 Throughout this course, we will be using a setup file in each of our notebooks that connects Databricks to our data. Complete the following: 1. Run the below command cell to execute the setup file. 2. Insert a SQL command cell beneath the command cell containg the setup file. 3. Query all of the data in the table **`dsfda.ht_daily_metrics`** using the query `SELECT * FROM dsfda.ht_daily_metrics`. 4. Examine the displayed table to learn about its columns and rows. ``` %run "../../Includes/Classroom-Setup" %sql SELECT * FROM dsfda.ht_daily_metrics ``` ## Exercise 5 Throughout this course, we will need to manipulate data and save it as new tables using Delta, just as we did in the video during the lesson. Complete the following: 1. Insert a new SQL command cell beneath this one. 2. Write a SQL query to return rows from the **dsfda.ht_users** table where the individual's lifestyle is `"Sedentary"`. 3. Use the SQL query to create a new Delta table named **dsfda.ht_users_sedentary** and store the data in the following location: `"/dsfda/ht-users-sedentary"`. ``` %sql CREATE OR REPLACE TABLE dsfda.ht_users_sedentary USING DELTA LOCATION "/dsfda/ht-users-sedentary" AS ( SELECT * FROM dsfda.ht_users WHERE lifestyle = 'Sedentary' ) %sql SELECT * FROM dsfda.ht_users_sedentary ``` Great job! You've completed the first lesson of the Data Science Fundamentals with Databricks course. Please proceed to the next lesson to begin Module 2: An Introduction to Data Science. -sandbox &copy; 2021 Databricks, Inc. All rights reserved.<br/> Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="http://www.apache.org/">Apache Software Foundation</a>.<br/> <br/> <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="http://help.databricks.com/">Support</a>
github_jupyter
1 + 1 %run "../../Includes/Classroom-Setup" %sql SELECT * FROM dsfda.ht_daily_metrics %sql CREATE OR REPLACE TABLE dsfda.ht_users_sedentary USING DELTA LOCATION "/dsfda/ht-users-sedentary" AS ( SELECT * FROM dsfda.ht_users WHERE lifestyle = 'Sedentary' ) %sql SELECT * FROM dsfda.ht_users_sedentary
0.193223
0.949342
``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler %matplotlib inline import warnings warnings.filterwarnings("ignore") from sklearn.mixture import GaussianMixture from sklearn.cluster import AgglomerativeClustering def loadData(data): df = pd.read_csv(data) # print(df.shape[1]) x = df.iloc[:,:-1] y = df.iloc[:,-1] return x,y def cat2num(y): for i in range(len(y)): if y[i] == 'dos': y[i] = 0 elif y[i] == 'normal': y[i] = 1 elif y[i] == 'probe': y[i] = 2 elif y[i] == 'r2l': y[i] = 3 else: y[i] = 4 return y def PCA(x): print('PCA Started !') print('') mu = np.mean(x, axis=0) cov = ( ((x - mu).T).dot(x - mu) ) / (x.shape[0]-1) # print('Covariance matrix \n%s' %cov) eigenVal, eigenVec = np.linalg.eig(cov) # print('Eigenvectors \n%s' %eigenVec) # print('\nEigenvalues \n%s' %eigenVal) eList = [] for i in range(len(eigenVal)): eList.append((np.abs(eigenVal[i]), eigenVec[:,i])) # print(eList) eList.sort(key=lambda x:x[0]) eList.reverse() # print('Eigenvalues in descending order:') # for i in eList: # print(i[0]) eSum = sum(eigenVal) eVar = [] for i in sorted(eigenVal, reverse=True): eVar.append((i / eSum)*100) eVar = np.abs(np.cumsum(eVar)) # print(eVar) # Calculating the index of first eigen value, upto which error is <10% index = next(x[0] for x in enumerate(eVar) if x[1] > 90) print('Number of eigen values selected to maintain threshold at 10% is:',index+1) print('') w = eList[0][1].reshape(len(eigenVec),1) for i in range(1,index+1): w = np.hstack((w, eList[i][1].reshape(len(eigenVec),1))) #Concatinating Eigen Vectors column wise to form W matrix # print('Matrix W:\n', w) # print(w.shape) x_reduced = x.dot(w) print('PCA Reduced Data') print('') print(x_reduced) print('') print('PCA Completed !') return x_reduced def cal_purity(labels,y): cnf_matrix = np.zeros((5,5)) for i in range(len(y)): cnf_matrix[int(labels[i]),y[i]] +=1 num = 0 for i in range(5): num += np.max(cnf_matrix[i]) return (num/len(y)) if __name__ == '__main__': data = '../Dataset/intrusion_detection/data.csv' x,y = loadData(data) y = cat2num(y) x = StandardScaler().fit_transform(x) x_reduced = PCA(x) #GMM print('GMM Started !!!') print('') gmm = GaussianMixture(n_components=5).fit(x_reduced) labels = gmm.predict(x_reduced) plt.scatter(x_reduced[:, 0], x_reduced[:, 1], c=labels, s=40, cmap='viridis'); print('GMM Completed !!!') print('') purity_gmm = cal_purity(labels,y) print('') print('Purity while reducing data as per threshold: ', purity_gmm) # Hierarchical clustering clustering = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='single') clustering.fit_predict(x_reduced) labels = clustering.labels_ plt.scatter(x_reduced[:, 0], x_reduced[:, 1], c=labels, s=40, cmap='viridis'); print('Hierarchical clustering Completed !!!') print('') ``` ![index.png](attachment:index.png)
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler %matplotlib inline import warnings warnings.filterwarnings("ignore") from sklearn.mixture import GaussianMixture from sklearn.cluster import AgglomerativeClustering def loadData(data): df = pd.read_csv(data) # print(df.shape[1]) x = df.iloc[:,:-1] y = df.iloc[:,-1] return x,y def cat2num(y): for i in range(len(y)): if y[i] == 'dos': y[i] = 0 elif y[i] == 'normal': y[i] = 1 elif y[i] == 'probe': y[i] = 2 elif y[i] == 'r2l': y[i] = 3 else: y[i] = 4 return y def PCA(x): print('PCA Started !') print('') mu = np.mean(x, axis=0) cov = ( ((x - mu).T).dot(x - mu) ) / (x.shape[0]-1) # print('Covariance matrix \n%s' %cov) eigenVal, eigenVec = np.linalg.eig(cov) # print('Eigenvectors \n%s' %eigenVec) # print('\nEigenvalues \n%s' %eigenVal) eList = [] for i in range(len(eigenVal)): eList.append((np.abs(eigenVal[i]), eigenVec[:,i])) # print(eList) eList.sort(key=lambda x:x[0]) eList.reverse() # print('Eigenvalues in descending order:') # for i in eList: # print(i[0]) eSum = sum(eigenVal) eVar = [] for i in sorted(eigenVal, reverse=True): eVar.append((i / eSum)*100) eVar = np.abs(np.cumsum(eVar)) # print(eVar) # Calculating the index of first eigen value, upto which error is <10% index = next(x[0] for x in enumerate(eVar) if x[1] > 90) print('Number of eigen values selected to maintain threshold at 10% is:',index+1) print('') w = eList[0][1].reshape(len(eigenVec),1) for i in range(1,index+1): w = np.hstack((w, eList[i][1].reshape(len(eigenVec),1))) #Concatinating Eigen Vectors column wise to form W matrix # print('Matrix W:\n', w) # print(w.shape) x_reduced = x.dot(w) print('PCA Reduced Data') print('') print(x_reduced) print('') print('PCA Completed !') return x_reduced def cal_purity(labels,y): cnf_matrix = np.zeros((5,5)) for i in range(len(y)): cnf_matrix[int(labels[i]),y[i]] +=1 num = 0 for i in range(5): num += np.max(cnf_matrix[i]) return (num/len(y)) if __name__ == '__main__': data = '../Dataset/intrusion_detection/data.csv' x,y = loadData(data) y = cat2num(y) x = StandardScaler().fit_transform(x) x_reduced = PCA(x) #GMM print('GMM Started !!!') print('') gmm = GaussianMixture(n_components=5).fit(x_reduced) labels = gmm.predict(x_reduced) plt.scatter(x_reduced[:, 0], x_reduced[:, 1], c=labels, s=40, cmap='viridis'); print('GMM Completed !!!') print('') purity_gmm = cal_purity(labels,y) print('') print('Purity while reducing data as per threshold: ', purity_gmm) # Hierarchical clustering clustering = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='single') clustering.fit_predict(x_reduced) labels = clustering.labels_ plt.scatter(x_reduced[:, 0], x_reduced[:, 1], c=labels, s=40, cmap='viridis'); print('Hierarchical clustering Completed !!!') print('')
0.211335
0.603815
In this notebook, we'll examine computing ciliary beat frequency (CBF) from a couple example videos using the core techniques from the [2015 Quinn *et al* paper in *Science Translational Medicine*](http://dx.doi.org/10.1126/scitranslmed.aaa1233). CBF is a quantity that clinicians and researchers have used for some time as an objective measure of ciliary motion. It is precisely what it sounds like: the frequency at which cilia beat. This can be easily done in a GUI-viewer like ImageJ (now Fiji) by clicking on a single pixel of the video and asking for the frequency, but in Python this requires some additional work. With any spectral analysis of a time series, we'll be presented with a range of frequencies present at any given location. In our paper, we limited the scope of these frequencies to only the *dominant* frequency that was present *at each pixel*. In essence, we compute the frequency spectra at each pixel of a video of cilia, then strip out all the frequencies at each pixel except for the one with the greatest power. There are three main ways in which we computed CBF. Each of these is implemented in `stm.py`. #### 0: Preliminaries Here are some basic imports we'll need for the rest of the notebook. ``` %matplotlib inline import numpy as np import matplotlib.pyplot as plt import scipy.signal as signal import stm # Our package. # Our two example videos. v_norm = np.load("../data/normal.npy") v_dysk = np.load("../data/dyskinetic.npy") # We'll plot the first frame of these two videos to give a sense of them. plt.figure() plt.subplot(1, 2, 1) plt.imshow(v_norm[0], cmap = "gray") plt.subplot(1, 2, 2) plt.imshow(v_dysk[0], cmap = "gray") ``` #### 1: "Raw" FFT-based CBF The title is something of a misnomer: the computed CBF is not "raw" in any sense, and all our CBF computations use the FFT in some regard. This technique, however, is the only that *explicitly* uses the FFT. It's also the most basic technique, as it doesn't involve any shifting or windowing of the original signal. As a result, it's very fast, but can produce a lot of noise. Here's what it looks like. ``` h1_norm = stm.cbf(v_norm, method = "fft") h1_dysk = stm.cbf(v_dysk, method = "fft") plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h1_norm, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h1_dysk, cmap = "Reds") plt.colorbar() ``` This is a pretty noisy estimation but still gives a good idea of where certain frequencies are present. Note that in some locations around the cilia in both cases, there is saturation of the signal: large pixel areas that are indicating maximal CBF. These are likely noise as well. A common post-processing step we would perform is a median filter to dampen spurious signals. The only drawback of this approach is that it assumes a very small amount of noise relative to signal; the reality is likely that there is more noise than this approach implicitly assumes. Nonetheless it is still worthwhile: ``` h1_norm_filt = signal.medfilt2d(h1_norm, 5) # Kernel size of 5x5. h1_dysk_filt = signal.medfilt2d(h1_dysk, 5) plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h1_norm_filt, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h1_dysk_filt, cmap = "Reds") plt.colorbar() ``` It was also useful to look at histograms of the frequencies that are present, discarding the spatial representation in favor of a distribution of frequencies. ``` plt.figure() plt.subplot(2, 2, 1) plt.title("Normal") _ = plt.hist(h1_norm.flatten(), bins = 20) plt.subplot(2, 2, 2) plt.title("Dyskinetic") _ = plt.hist(h1_dysk.flatten(), bins = 20) plt.subplot(2, 2, 3) plt.title("Normal (Median Filtered)") _ = plt.hist(h1_norm_filt.flatten(), bins = 20) plt.subplot(2, 2, 4) plt.title("Dyskinetic (Median Filtered)") _ = plt.hist(h1_dysk_filt.flatten(), bins = 20) ``` #### 2: Periodogram A periodogram is an estimate of the power spectral density (PSD, hence the name) of the signal, and is a step up from pixel-based FFT...but only 1 step. It performs a lot of the same steps as in the first method under-the-hood, and thus the code in the attached module is considerably shorter. In theory, this method is a bit more robust to noise. ``` h2_norm = stm.cbf(v_norm, method = "psd") h2_dysk = stm.cbf(v_dysk, method = "psd") plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h2_norm, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h2_dysk, cmap = "Reds") plt.colorbar() ``` There are some minute differences from the first method, but not much. ``` plt.figure() plt.subplot(2, 2, 1) plt.title("Normal (Method 1)") plt.imshow(h1_norm, cmap = "Blues") plt.colorbar() plt.subplot(2, 2, 2) plt.title("Dyskinetic (Method 1)") plt.imshow(h1_dysk, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 3) plt.title("Normal (Method 2)") plt.imshow(h2_norm, cmap = "Blues") plt.colorbar() plt.subplot(2, 2, 4) plt.title("Dyskinetic (Method 2)") plt.imshow(h2_dysk, cmap = "Reds") plt.colorbar() ``` We can do our post-processing. ``` h2_norm_filt = signal.medfilt2d(h2_norm, 5) # Kernel size of 5x5. h2_dysk_filt = signal.medfilt2d(h2_dysk, 5) plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h2_norm_filt, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h2_dysk_filt, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 1) plt.title("Normal") _ = plt.hist(h2_norm.flatten(), bins = 20) plt.subplot(2, 2, 2) plt.title("Dyskinetic") _ = plt.hist(h2_dysk.flatten(), bins = 20) plt.subplot(2, 2, 3) plt.title("Normal (Median Filtered)") _ = plt.hist(h2_norm_filt.flatten(), bins = 20) plt.subplot(2, 2, 4) plt.title("Dyskinetic (Median Filtered)") _ = plt.hist(h2_dysk_filt.flatten(), bins = 20) ``` #### 3: Welch Periodogram Think of Welch's algorithm as a post-processing of the periodogram: it performs window-based smoothing on the resulting frequency spectra, dampening noise at the expense of frequency resolution. Given the propensity of frequency-based noise to appear in the resulting spectra, this trade-off is often preferred. ``` h3_norm = stm.cbf(v_norm, method = "welch") h3_dysk = stm.cbf(v_dysk, method = "welch") plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h3_norm, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h3_dysk, cmap = "Reds") plt.colorbar() h3_norm_filt = signal.medfilt2d(h3_norm, 5) # Kernel size of 5x5. h3_dysk_filt = signal.medfilt2d(h3_dysk, 5) plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h3_norm_filt, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h3_dysk_filt, cmap = "Reds") plt.colorbar() ``` Strangely, the dyskinetic video seems to see a considerable increase in frequencies across the board once the median filter is applied. We'll look at the histogram for a better view. ``` plt.figure() plt.subplot(2, 2, 1) plt.title("Normal") _ = plt.hist(h3_norm.flatten(), bins = 20) plt.subplot(2, 2, 2) plt.title("Dyskinetic") _ = plt.hist(h3_dysk.flatten(), bins = 20) plt.subplot(2, 2, 3) plt.title("Normal (Median Filtered)") _ = plt.hist(h3_norm_filt.flatten(), bins = 20) plt.subplot(2, 2, 4) plt.title("Dyskinetic (Median Filtered)") _ = plt.hist(h3_dysk_filt.flatten(), bins = 20) ``` This is interesting--there must be something about the spatial arrangement of dominant frequencies in the dyskinetic video (from Welch's method only) that results in a huge shift in the frequencies that are present. Or it just might be a bug somewhere.
github_jupyter
%matplotlib inline import numpy as np import matplotlib.pyplot as plt import scipy.signal as signal import stm # Our package. # Our two example videos. v_norm = np.load("../data/normal.npy") v_dysk = np.load("../data/dyskinetic.npy") # We'll plot the first frame of these two videos to give a sense of them. plt.figure() plt.subplot(1, 2, 1) plt.imshow(v_norm[0], cmap = "gray") plt.subplot(1, 2, 2) plt.imshow(v_dysk[0], cmap = "gray") h1_norm = stm.cbf(v_norm, method = "fft") h1_dysk = stm.cbf(v_dysk, method = "fft") plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h1_norm, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h1_dysk, cmap = "Reds") plt.colorbar() h1_norm_filt = signal.medfilt2d(h1_norm, 5) # Kernel size of 5x5. h1_dysk_filt = signal.medfilt2d(h1_dysk, 5) plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h1_norm_filt, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h1_dysk_filt, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 1) plt.title("Normal") _ = plt.hist(h1_norm.flatten(), bins = 20) plt.subplot(2, 2, 2) plt.title("Dyskinetic") _ = plt.hist(h1_dysk.flatten(), bins = 20) plt.subplot(2, 2, 3) plt.title("Normal (Median Filtered)") _ = plt.hist(h1_norm_filt.flatten(), bins = 20) plt.subplot(2, 2, 4) plt.title("Dyskinetic (Median Filtered)") _ = plt.hist(h1_dysk_filt.flatten(), bins = 20) h2_norm = stm.cbf(v_norm, method = "psd") h2_dysk = stm.cbf(v_dysk, method = "psd") plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h2_norm, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h2_dysk, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 1) plt.title("Normal (Method 1)") plt.imshow(h1_norm, cmap = "Blues") plt.colorbar() plt.subplot(2, 2, 2) plt.title("Dyskinetic (Method 1)") plt.imshow(h1_dysk, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 3) plt.title("Normal (Method 2)") plt.imshow(h2_norm, cmap = "Blues") plt.colorbar() plt.subplot(2, 2, 4) plt.title("Dyskinetic (Method 2)") plt.imshow(h2_dysk, cmap = "Reds") plt.colorbar() h2_norm_filt = signal.medfilt2d(h2_norm, 5) # Kernel size of 5x5. h2_dysk_filt = signal.medfilt2d(h2_dysk, 5) plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h2_norm_filt, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h2_dysk_filt, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 1) plt.title("Normal") _ = plt.hist(h2_norm.flatten(), bins = 20) plt.subplot(2, 2, 2) plt.title("Dyskinetic") _ = plt.hist(h2_dysk.flatten(), bins = 20) plt.subplot(2, 2, 3) plt.title("Normal (Median Filtered)") _ = plt.hist(h2_norm_filt.flatten(), bins = 20) plt.subplot(2, 2, 4) plt.title("Dyskinetic (Median Filtered)") _ = plt.hist(h2_dysk_filt.flatten(), bins = 20) h3_norm = stm.cbf(v_norm, method = "welch") h3_dysk = stm.cbf(v_dysk, method = "welch") plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h3_norm, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h3_dysk, cmap = "Reds") plt.colorbar() h3_norm_filt = signal.medfilt2d(h3_norm, 5) # Kernel size of 5x5. h3_dysk_filt = signal.medfilt2d(h3_dysk, 5) plt.figure() plt.subplot(1, 2, 1) plt.title("Normal") plt.imshow(h3_norm_filt, cmap = "Blues") plt.colorbar() plt.subplot(1, 2, 2) plt.title("Dyskinetic") plt.imshow(h3_dysk_filt, cmap = "Reds") plt.colorbar() plt.figure() plt.subplot(2, 2, 1) plt.title("Normal") _ = plt.hist(h3_norm.flatten(), bins = 20) plt.subplot(2, 2, 2) plt.title("Dyskinetic") _ = plt.hist(h3_dysk.flatten(), bins = 20) plt.subplot(2, 2, 3) plt.title("Normal (Median Filtered)") _ = plt.hist(h3_norm_filt.flatten(), bins = 20) plt.subplot(2, 2, 4) plt.title("Dyskinetic (Median Filtered)") _ = plt.hist(h3_dysk_filt.flatten(), bins = 20)
0.616474
0.991489
# Proyecto usando datos de Kaggle * qué es kaggle y cómo descargar datos --> https://www.youtube.com/watch?v=NhHTWGIglRI * mirar notebooks --> https://www.kaggle.com/alexisbcook/titanic-tutorial * Repo en --> https://github.com/gonzalezgouveia/proyecto-titanic/ * Video explicativo de este código YouTube --> https://www.youtube.com/watch?v=VkU-9Us6Rpw ### Pasos de este estudio 1. Carga de datos 1. Exploración 1. Procesamiento 1. Modelos 1. Evaluación 1. Predicción 1. Conclusión y próximos pasos # Analisis de datos del titanic ## 1. Cargando datos ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt # lectura de datos en Python train = pd.read_csv('./../data/train.csv') test = pd.read_csv('./../data/test.csv') train.head() ``` ## 2. Explorando datos ``` # que columnas tienen los datos? train.columns # qué tamaño tienen los datos? train.shape # hay valores nulos en los datos? train.info() # como se distribuyen las variables numéricas train.describe() # como se comportan las variables categóricas train.describe(include=['O']) ``` ## 2.1 EDA: Estudio de variable target ``` train.groupby(['Survived']).count()['PassengerId'] # target vs sex train.groupby(['Survived','Sex']).count()['PassengerId'] grouped_sex = train.groupby(['Survived','Sex']).count()['PassengerId'] print(grouped_sex) (grouped_sex.unstack(level=0).plot.bar()) plt.show() # tarea hacer para otras variables # embarked vs pclass print(train.groupby(['Pclass', 'Embarked']) .count()['PassengerId'] .unstack(level=0) .plot.bar()) ``` ## 3.Procesamiento de datos Empezamos seleccionando las variables que queremos trabajar que serían: * Survived * Sex * Age * Pclass ``` train[['Survived', 'Sex', 'Age', 'Pclass']].head(3) ``` Estudiamos los datos nulos ``` train[['Survived', 'Sex', 'Age', 'Pclass']].info() ``` ----------------------- Tenemos que mejorar * Datos faltantes en Age `train['Age'].isna()` * La variable Sex aparece como object y queremos int o float para algoritmos ----------------------- ``` # mirar como se distribuyen los nulos en edad (train[train['Age'].isna()] .groupby(['Sex', 'Pclass']) .count()['PassengerId'] .unstack(level=0)) (train[train['Age'].isna()] .groupby(['SibSp', 'Parch']) .count()['PassengerId'] .unstack(level=0)) ``` De arriba se puede concluir que era gente que viajaba mayormente sola y la mayoría eran de 3era clase. Esto nos da la idea de que se puede crear una variable que indique si la persona viajaba sola o acompañada. La crearemos más adelante ``` # calcular mediana de Age para imputar train['Age'].median() # imputar valor para rellenar nulos train['Age'] = train['Age'].fillna(28.0) train[['Survived', 'Sex', 'Age', 'Pclass']].info() ``` Ya no tenemos nulos. Falta resolver lo de pasar Sex a int ``` # map para label encoding train['Sex'] = train['Sex'].map({'female': 1, 'male': 0}).astype(int) ``` Ahora tenemos la tabla preprocesada lista ``` train[['Survived', 'Sex', 'Age', 'Pclass']].head(3) ``` ## 3.1 Crear nuevas variables ``` # crear nueva variable tipo flag "solo" train['FlagSolo'] = np.where( (train['SibSp'] == 0) & (train['Parch'] == 0), 1, 0) grouped_flag = train.groupby(['Survived','FlagSolo']).count()['PassengerId'] print(grouped_flag) (grouped_flag.unstack(level=0).plot.bar()) plt.show() train[['Survived', 'Sex', 'Age', 'Pclass', 'FlagSolo']].head(3) ``` Estos ya serían los datos con los que vamos a hacer modelos ``` # variable dependiente Y_train = train['Survived'] # preprocesamiento de variables independientes features = ['Sex', 'Age', 'Pclass', 'FlagSolo'] X_train = train[features] print(Y_train.shape, X_train.shape) ``` ## 4. Modelos Sin entrar en mucho detalle. Vamos a escoger dos modelos de prueba. * regresión logistica * arboles de decisión ``` # entrenando modelo regresión logistica from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(X_train, Y_train) # entrenando modelo arboles de decisión from sklearn.tree import DecisionTreeClassifier decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, Y_train) ``` ## 5. Evaluación Aquí vamos a hacer una matriz de confusión y evaluar que tan bueno es cada modelo ``` from sklearn.metrics import plot_confusion_matrix def conf_mat_acc(modelo): disp = plot_confusion_matrix(modelo, X_train, Y_train, cmap=plt.cm.Blues, values_format="d") true_pred = disp.confusion_matrix[0,0]+disp.confusion_matrix[1,1] total_data = np.sum(disp.confusion_matrix) accuracy = true_pred/total_data print('accuracy: ', np.round(accuracy, 2)) plt.show() conf_mat_acc(logreg) conf_mat_acc(decision_tree) ``` ## 5.1 Evaluación sobre el test set Antes hicimos la matriz de confusión sobre el train set. Esto no es del todo correcto porque estamos utilizando como validación los datos que usamos de entrenamiento. Por lo tanto, la estimación del error sería sesgada y tendría poca capacidad de generalización a casos que no haya "visto" el modelo. Por eso necesitamos utilizar el test set. Sin embargo, Kaggle no nos regresa el valor real del test set, para verificarlo tenemos que enviar nuestros resultados y mirar el score que pone kaggle esto lo veremos más adelante ``` # ahora hay que preparar el test set para evaluación print(test.head(3)) test.info() # preprocesando test set # hacer map a Sex test['Sex'] = test['Sex'].map({'female': 1, 'male': 0}).astype(int) # rellenar Age test['Age'] = test['Age'].fillna(28.0) # Crear FlagSolo test['FlagSolo'] = np.where( (test['SibSp'] == 0) & (test['Parch'] == 0), 1, 0) print(test.info()) test[features].head(3) # crear test set X_test = test[features] print(X_test.shape) # prediccion de Survived en test set Y_pred_log = logreg.predict(X_test) Y_pred_tree = decision_tree.predict(X_test) print(Y_pred_log[0:10]) ``` Nota: Estas predicciones deberían ser ahora comparadas con el valor real para obtener una mejor estimación del error de predicción sobre el test set y poder escoger un modelo. Sin embargo, como es una competicion de Kaggle este valor solo lo conoce la plataforma. Vamos a exportar estos CSV y luego subirlos para ver cual tiene mejor rendimiento. ## 6. Predicción ``` # prediciendo sobre el test set print(Y_pred_log[0:20]) print(Y_pred_tree[0:20]) # para descargar en ordenador def download_output(y_pred, name): output = pd.DataFrame({'PassengerId': test.PassengerId, 'Survived': y_pred}) output.to_csv(name, index=False) download_output(Y_pred_log, 'rafa_pred_log.csv') download_output(Y_pred_tree, 'rafa_pred_tree.csv') ``` Luego de hacer el envio a kaggle: ![kaggle.png](attachment:38c9114f-a26b-45fc-ab03-178a85f9a35a.png) Con lo que muestra que en el test_set hay un mejor valor para accuracy que con train set. Por esta razón, nos quedaríamos con el modelo de regresión logística. Porque generaliza mejor las predicciones para datos con los que no se ha entrenado el modelo. # Conclusion * importante del análisis exploratorio * creación de variables * probar varios modelos * calculo del error con el test_set * vimos (casi) todo el proceso de ciencia de datos en un ejemplo ## próximos pasos Ahora, lo que vendría sería desplegar este modelo a producción, hacer predicciones según lo necesite el usuario, hacer seguimiento y realizar el mantenimiento del despliegue. Similar a como se describe superficialmente aquí https://cloud.google.com/ai-platform/docs/ml-solutions-overview Sin embargo, estás etapas corresponden abarcan pasos relacionados a la ingeniería de software o devops que no serán cubiertos en este notebook.
github_jupyter
import pandas as pd import numpy as np import matplotlib.pyplot as plt # lectura de datos en Python train = pd.read_csv('./../data/train.csv') test = pd.read_csv('./../data/test.csv') train.head() # que columnas tienen los datos? train.columns # qué tamaño tienen los datos? train.shape # hay valores nulos en los datos? train.info() # como se distribuyen las variables numéricas train.describe() # como se comportan las variables categóricas train.describe(include=['O']) train.groupby(['Survived']).count()['PassengerId'] # target vs sex train.groupby(['Survived','Sex']).count()['PassengerId'] grouped_sex = train.groupby(['Survived','Sex']).count()['PassengerId'] print(grouped_sex) (grouped_sex.unstack(level=0).plot.bar()) plt.show() # tarea hacer para otras variables # embarked vs pclass print(train.groupby(['Pclass', 'Embarked']) .count()['PassengerId'] .unstack(level=0) .plot.bar()) train[['Survived', 'Sex', 'Age', 'Pclass']].head(3) train[['Survived', 'Sex', 'Age', 'Pclass']].info() # mirar como se distribuyen los nulos en edad (train[train['Age'].isna()] .groupby(['Sex', 'Pclass']) .count()['PassengerId'] .unstack(level=0)) (train[train['Age'].isna()] .groupby(['SibSp', 'Parch']) .count()['PassengerId'] .unstack(level=0)) # calcular mediana de Age para imputar train['Age'].median() # imputar valor para rellenar nulos train['Age'] = train['Age'].fillna(28.0) train[['Survived', 'Sex', 'Age', 'Pclass']].info() # map para label encoding train['Sex'] = train['Sex'].map({'female': 1, 'male': 0}).astype(int) train[['Survived', 'Sex', 'Age', 'Pclass']].head(3) # crear nueva variable tipo flag "solo" train['FlagSolo'] = np.where( (train['SibSp'] == 0) & (train['Parch'] == 0), 1, 0) grouped_flag = train.groupby(['Survived','FlagSolo']).count()['PassengerId'] print(grouped_flag) (grouped_flag.unstack(level=0).plot.bar()) plt.show() train[['Survived', 'Sex', 'Age', 'Pclass', 'FlagSolo']].head(3) # variable dependiente Y_train = train['Survived'] # preprocesamiento de variables independientes features = ['Sex', 'Age', 'Pclass', 'FlagSolo'] X_train = train[features] print(Y_train.shape, X_train.shape) # entrenando modelo regresión logistica from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(X_train, Y_train) # entrenando modelo arboles de decisión from sklearn.tree import DecisionTreeClassifier decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, Y_train) from sklearn.metrics import plot_confusion_matrix def conf_mat_acc(modelo): disp = plot_confusion_matrix(modelo, X_train, Y_train, cmap=plt.cm.Blues, values_format="d") true_pred = disp.confusion_matrix[0,0]+disp.confusion_matrix[1,1] total_data = np.sum(disp.confusion_matrix) accuracy = true_pred/total_data print('accuracy: ', np.round(accuracy, 2)) plt.show() conf_mat_acc(logreg) conf_mat_acc(decision_tree) # ahora hay que preparar el test set para evaluación print(test.head(3)) test.info() # preprocesando test set # hacer map a Sex test['Sex'] = test['Sex'].map({'female': 1, 'male': 0}).astype(int) # rellenar Age test['Age'] = test['Age'].fillna(28.0) # Crear FlagSolo test['FlagSolo'] = np.where( (test['SibSp'] == 0) & (test['Parch'] == 0), 1, 0) print(test.info()) test[features].head(3) # crear test set X_test = test[features] print(X_test.shape) # prediccion de Survived en test set Y_pred_log = logreg.predict(X_test) Y_pred_tree = decision_tree.predict(X_test) print(Y_pred_log[0:10]) # prediciendo sobre el test set print(Y_pred_log[0:20]) print(Y_pred_tree[0:20]) # para descargar en ordenador def download_output(y_pred, name): output = pd.DataFrame({'PassengerId': test.PassengerId, 'Survived': y_pred}) output.to_csv(name, index=False) download_output(Y_pred_log, 'rafa_pred_log.csv') download_output(Y_pred_tree, 'rafa_pred_tree.csv')
0.247714
0.845496
``` import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import matplotlib.ticker as ticker import seaborn as sns from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import f1_score from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ParameterGrid from sklearn.inspection import permutation_importance import multiprocessing labels = pd.read_csv('../../csv/train_labels.csv') labels.head() values = pd.read_csv('../../csv/train_values.csv') values.T #Promedio de altura por piso values['height_percentage_per_floor_pre_eq'] = values['height_percentage']/values['count_floors_pre_eq'] values['volume_percentage'] = values['area_percentage'] * values['height_percentage'] #Algunos promedios por localizacion values['avg_age_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['age'].transform('mean') values['avg_area_percentage_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['area_percentage'].transform('mean') values['avg_height_percentage_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['height_percentage'].transform('mean') values['avg_count_floors_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['count_floors_pre_eq'].transform('mean') values['avg_age_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['age'].transform('mean') values['avg_area_percentage_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['area_percentage'].transform('mean') values['avg_height_percentage_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['height_percentage'].transform('mean') values['avg_count_floors_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['count_floors_pre_eq'].transform('mean') #Relacion material(los mas importantes segun el modelo 5)-antiguedad values['20_yr_age_range'] = values['age'] // 20 * 20 values['20_yr_age_range'] = values['20_yr_age_range'].astype('str') values['superstructure'] = '' values['superstructure'] = np.where(values['has_superstructure_mud_mortar_stone'], values['superstructure'] + 'b', values['superstructure']) values['superstructure'] = np.where(values['has_superstructure_cement_mortar_brick'], values['superstructure'] + 'e', values['superstructure']) values['superstructure'] = np.where(values['has_superstructure_timber'], values['superstructure'] + 'f', values['superstructure']) values['age_range_superstructure'] = values['20_yr_age_range'] + values['superstructure'] del values['20_yr_age_range'] del values['superstructure'] values values.isnull().values.any() labels.isnull().values.any() values.dtypes values["building_id"].count() == values["building_id"].drop_duplicates().count() values.info() to_be_categorized = ["land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status", "age_range_superstructure"] for row in to_be_categorized: values[row] = values[row].astype("category") values.info() datatypes = dict(values.dtypes) for row in values.columns: if datatypes[row] != "int64" and datatypes[row] != "int32" and \ datatypes[row] != "int16" and datatypes[row] != "int8": continue if values[row].nlargest(1).item() > 32767 and values[row].nlargest(1).item() < 2**31: values[row] = values[row].astype(np.int32) elif values[row].nlargest(1).item() > 127: values[row] = values[row].astype(np.int16) else: values[row] = values[row].astype(np.int8) values.info() labels.info() labels["building_id"] = labels["building_id"].astype(np.int32) labels["damage_grade"] = labels["damage_grade"].astype(np.int8) labels.info() ``` # Nuevo Modelo ``` important_values = values\ .merge(labels, on="building_id") important_values.drop(columns=["building_id"], inplace = True) important_values["geo_level_1_id"] = important_values["geo_level_1_id"].astype("category") important_values important_values.shape X_train, X_test, y_train, y_test = train_test_split(important_values.drop(columns = 'damage_grade'), important_values['damage_grade'], test_size = 0.2, random_state = 123) #OneHotEncoding def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status", "age_range_superstructure"] for feature in features_to_encode: X_train = encode_and_bind(X_train, feature) X_test = encode_and_bind(X_test, feature) X_train X_train.shape # # Busco los mejores tres parametros indicados abajo. # n_estimators = [65, 100, 135] # max_features = [0.2, 0.5, 0.8] # max_depth = [None, 2, 5] # min_samples_split = [5, 15, 25] # # min_impurity_decrease = [0.0, 0.01, 0.025, 0.05, 0.1] # # min_samples_leaf # hyperF = {'n_estimators': n_estimators, # 'max_features': max_features, # 'max_depth': max_depth, # 'min_samples_split': min_samples_split # } # gridF = GridSearchCV(estimator = RandomForestClassifier(random_state = 123), # scoring = 'f1_micro', # param_grid = hyperF, # cv = 3, # verbose = 1, # n_jobs = -1) # bestF = gridF.fit(X_train, y_train) # res = pd.DataFrame(bestF.cv_results_) # res.loc[res['rank_test_score'] <= 10] # Utilizo los mejores parametros segun el GridSearch rf_model = RandomForestClassifier(n_estimators = 150, max_depth = None, max_features = 50, min_samples_split = 15, min_samples_leaf = 1, criterion = "gini", verbose=True) rf_model.fit(X_train, y_train) rf_model.score(X_train, y_train) # Calculo el F1 score para mi training set. y_preds = rf_model.predict(X_test) f1_score(y_test, y_preds, average='micro') test_values = pd.read_csv('../../csv/test_values.csv', index_col = "building_id") test_values test_values_subset = test_values test_values_subset["geo_level_1_id"] = test_values_subset["geo_level_1_id"].astype("category") test_values_subset #Promedio de altura por piso test_values_subset['height_percentage_per_floor_pre_eq'] = test_values_subset['height_percentage']/test_values_subset['count_floors_pre_eq'] test_values_subset['volume_percentage'] = test_values_subset['area_percentage'] * test_values_subset['height_percentage'] #Algunos promedios por localizacion test_values_subset['avg_age_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['age'].transform('mean') test_values_subset['avg_area_percentage_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['area_percentage'].transform('mean') test_values_subset['avg_height_percentage_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['height_percentage'].transform('mean') test_values_subset['avg_count_floors_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['count_floors_pre_eq'].transform('mean') test_values_subset['avg_age_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['age'].transform('mean') test_values_subset['avg_area_percentage_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['area_percentage'].transform('mean') test_values_subset['avg_height_percentage_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['height_percentage'].transform('mean') test_values_subset['avg_count_floors_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['count_floors_pre_eq'].transform('mean') #Relacion material(los mas importantes segun el modelo 5)-antiguedad test_values_subset['20_yr_age_range'] = test_values_subset['age'] // 20 * 20 test_values_subset['20_yr_age_range'] = test_values_subset['20_yr_age_range'].astype('str') test_values_subset['superstructure'] = '' test_values_subset['superstructure'] = np.where(test_values_subset['has_superstructure_mud_mortar_stone'], test_values_subset['superstructure'] + 'b', test_values_subset['superstructure']) test_values_subset['superstructure'] = np.where(test_values_subset['has_superstructure_cement_mortar_brick'], test_values_subset['superstructure'] + 'e', test_values_subset['superstructure']) test_values_subset['superstructure'] = np.where(test_values_subset['has_superstructure_timber'], test_values_subset['superstructure'] + 'f', test_values_subset['superstructure']) test_values_subset['age_range_superstructure'] = test_values_subset['20_yr_age_range'] + test_values_subset['superstructure'] del test_values_subset['20_yr_age_range'] del test_values_subset['superstructure'] test_values_subset def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status", "age_range_superstructure"] for feature in features_to_encode: test_values_subset = encode_and_bind(test_values_subset, feature) test_values_subset features_in_model_not_in_tests =\ list(filter(lambda col: col not in test_values_subset.columns.to_list(), X_train.columns.to_list())) for f in features_in_model_not_in_tests: test_values_subset[f] = 0 test_values_subset.drop(columns = list(filter(lambda col: col not in X_train.columns.to_list() , test_values_subset.columns.to_list())), inplace = True) test_values_subset.shape # Genero las predicciones para los test. preds = rf_model.predict(test_values_subset) submission_format = pd.read_csv('../../csv/submission_format.csv', index_col = "building_id") my_submission = pd.DataFrame(data=preds, columns=submission_format.columns, index=submission_format.index) my_submission.head() my_submission.to_csv('../../csv/predictions/jf-model-7-3-submission.csv') !head ../../csv/predictions/jf-model-7-3-submission.csv ```
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import matplotlib.ticker as ticker import seaborn as sns from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import plot_confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import f1_score from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ParameterGrid from sklearn.inspection import permutation_importance import multiprocessing labels = pd.read_csv('../../csv/train_labels.csv') labels.head() values = pd.read_csv('../../csv/train_values.csv') values.T #Promedio de altura por piso values['height_percentage_per_floor_pre_eq'] = values['height_percentage']/values['count_floors_pre_eq'] values['volume_percentage'] = values['area_percentage'] * values['height_percentage'] #Algunos promedios por localizacion values['avg_age_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['age'].transform('mean') values['avg_area_percentage_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['area_percentage'].transform('mean') values['avg_height_percentage_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['height_percentage'].transform('mean') values['avg_count_floors_for_geo_level_2_id'] = values.groupby('geo_level_2_id')['count_floors_pre_eq'].transform('mean') values['avg_age_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['age'].transform('mean') values['avg_area_percentage_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['area_percentage'].transform('mean') values['avg_height_percentage_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['height_percentage'].transform('mean') values['avg_count_floors_for_geo_level_3_id'] = values.groupby('geo_level_3_id')['count_floors_pre_eq'].transform('mean') #Relacion material(los mas importantes segun el modelo 5)-antiguedad values['20_yr_age_range'] = values['age'] // 20 * 20 values['20_yr_age_range'] = values['20_yr_age_range'].astype('str') values['superstructure'] = '' values['superstructure'] = np.where(values['has_superstructure_mud_mortar_stone'], values['superstructure'] + 'b', values['superstructure']) values['superstructure'] = np.where(values['has_superstructure_cement_mortar_brick'], values['superstructure'] + 'e', values['superstructure']) values['superstructure'] = np.where(values['has_superstructure_timber'], values['superstructure'] + 'f', values['superstructure']) values['age_range_superstructure'] = values['20_yr_age_range'] + values['superstructure'] del values['20_yr_age_range'] del values['superstructure'] values values.isnull().values.any() labels.isnull().values.any() values.dtypes values["building_id"].count() == values["building_id"].drop_duplicates().count() values.info() to_be_categorized = ["land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status", "age_range_superstructure"] for row in to_be_categorized: values[row] = values[row].astype("category") values.info() datatypes = dict(values.dtypes) for row in values.columns: if datatypes[row] != "int64" and datatypes[row] != "int32" and \ datatypes[row] != "int16" and datatypes[row] != "int8": continue if values[row].nlargest(1).item() > 32767 and values[row].nlargest(1).item() < 2**31: values[row] = values[row].astype(np.int32) elif values[row].nlargest(1).item() > 127: values[row] = values[row].astype(np.int16) else: values[row] = values[row].astype(np.int8) values.info() labels.info() labels["building_id"] = labels["building_id"].astype(np.int32) labels["damage_grade"] = labels["damage_grade"].astype(np.int8) labels.info() important_values = values\ .merge(labels, on="building_id") important_values.drop(columns=["building_id"], inplace = True) important_values["geo_level_1_id"] = important_values["geo_level_1_id"].astype("category") important_values important_values.shape X_train, X_test, y_train, y_test = train_test_split(important_values.drop(columns = 'damage_grade'), important_values['damage_grade'], test_size = 0.2, random_state = 123) #OneHotEncoding def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status", "age_range_superstructure"] for feature in features_to_encode: X_train = encode_and_bind(X_train, feature) X_test = encode_and_bind(X_test, feature) X_train X_train.shape # # Busco los mejores tres parametros indicados abajo. # n_estimators = [65, 100, 135] # max_features = [0.2, 0.5, 0.8] # max_depth = [None, 2, 5] # min_samples_split = [5, 15, 25] # # min_impurity_decrease = [0.0, 0.01, 0.025, 0.05, 0.1] # # min_samples_leaf # hyperF = {'n_estimators': n_estimators, # 'max_features': max_features, # 'max_depth': max_depth, # 'min_samples_split': min_samples_split # } # gridF = GridSearchCV(estimator = RandomForestClassifier(random_state = 123), # scoring = 'f1_micro', # param_grid = hyperF, # cv = 3, # verbose = 1, # n_jobs = -1) # bestF = gridF.fit(X_train, y_train) # res = pd.DataFrame(bestF.cv_results_) # res.loc[res['rank_test_score'] <= 10] # Utilizo los mejores parametros segun el GridSearch rf_model = RandomForestClassifier(n_estimators = 150, max_depth = None, max_features = 50, min_samples_split = 15, min_samples_leaf = 1, criterion = "gini", verbose=True) rf_model.fit(X_train, y_train) rf_model.score(X_train, y_train) # Calculo el F1 score para mi training set. y_preds = rf_model.predict(X_test) f1_score(y_test, y_preds, average='micro') test_values = pd.read_csv('../../csv/test_values.csv', index_col = "building_id") test_values test_values_subset = test_values test_values_subset["geo_level_1_id"] = test_values_subset["geo_level_1_id"].astype("category") test_values_subset #Promedio de altura por piso test_values_subset['height_percentage_per_floor_pre_eq'] = test_values_subset['height_percentage']/test_values_subset['count_floors_pre_eq'] test_values_subset['volume_percentage'] = test_values_subset['area_percentage'] * test_values_subset['height_percentage'] #Algunos promedios por localizacion test_values_subset['avg_age_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['age'].transform('mean') test_values_subset['avg_area_percentage_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['area_percentage'].transform('mean') test_values_subset['avg_height_percentage_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['height_percentage'].transform('mean') test_values_subset['avg_count_floors_for_geo_level_2_id'] = test_values_subset.groupby('geo_level_2_id')['count_floors_pre_eq'].transform('mean') test_values_subset['avg_age_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['age'].transform('mean') test_values_subset['avg_area_percentage_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['area_percentage'].transform('mean') test_values_subset['avg_height_percentage_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['height_percentage'].transform('mean') test_values_subset['avg_count_floors_for_geo_level_3_id'] = test_values_subset.groupby('geo_level_3_id')['count_floors_pre_eq'].transform('mean') #Relacion material(los mas importantes segun el modelo 5)-antiguedad test_values_subset['20_yr_age_range'] = test_values_subset['age'] // 20 * 20 test_values_subset['20_yr_age_range'] = test_values_subset['20_yr_age_range'].astype('str') test_values_subset['superstructure'] = '' test_values_subset['superstructure'] = np.where(test_values_subset['has_superstructure_mud_mortar_stone'], test_values_subset['superstructure'] + 'b', test_values_subset['superstructure']) test_values_subset['superstructure'] = np.where(test_values_subset['has_superstructure_cement_mortar_brick'], test_values_subset['superstructure'] + 'e', test_values_subset['superstructure']) test_values_subset['superstructure'] = np.where(test_values_subset['has_superstructure_timber'], test_values_subset['superstructure'] + 'f', test_values_subset['superstructure']) test_values_subset['age_range_superstructure'] = test_values_subset['20_yr_age_range'] + test_values_subset['superstructure'] del test_values_subset['20_yr_age_range'] del test_values_subset['superstructure'] test_values_subset def encode_and_bind(original_dataframe, feature_to_encode): dummies = pd.get_dummies(original_dataframe[[feature_to_encode]]) res = pd.concat([original_dataframe, dummies], axis=1) res = res.drop([feature_to_encode], axis=1) return(res) features_to_encode = ["geo_level_1_id", "land_surface_condition", "foundation_type", "roof_type",\ "position", "ground_floor_type", "other_floor_type",\ "plan_configuration", "legal_ownership_status", "age_range_superstructure"] for feature in features_to_encode: test_values_subset = encode_and_bind(test_values_subset, feature) test_values_subset features_in_model_not_in_tests =\ list(filter(lambda col: col not in test_values_subset.columns.to_list(), X_train.columns.to_list())) for f in features_in_model_not_in_tests: test_values_subset[f] = 0 test_values_subset.drop(columns = list(filter(lambda col: col not in X_train.columns.to_list() , test_values_subset.columns.to_list())), inplace = True) test_values_subset.shape # Genero las predicciones para los test. preds = rf_model.predict(test_values_subset) submission_format = pd.read_csv('../../csv/submission_format.csv', index_col = "building_id") my_submission = pd.DataFrame(data=preds, columns=submission_format.columns, index=submission_format.index) my_submission.head() my_submission.to_csv('../../csv/predictions/jf-model-7-3-submission.csv') !head ../../csv/predictions/jf-model-7-3-submission.csv
0.381565
0.71044
# transforms The `transforms` module provides functions to easily manipulate data for `pytorch` networks. ## `cross_correlation` ``` from transforms import cross_correlation from pydub import AudioSegment from IPython.display import display from utils import play_audio, split_channels from visualization import wave import numpy as np sample_path = './data/sample_data/reflections/samples/mahler_2894305.wav' s = AudioSegment.from_wav(sample_path) play_audio(s) lag = 1 * int(s.frame_rate / 1000.) left, right = split_channels(s) xc = cross_correlation(left, right, lag) wave(xc, **dict(suptitle='cross_correlation', title=['Example output'])) ``` ## `normalized_cross_correlation` ``` from transforms import normalized_cross_correlation nxc = normalized_cross_correlation(left, right, lag) wave(nxc, **dict(suptitle='normalized_cross_correlation', title=['Example output'])) ``` ## `autocorrelation` ``` from transforms import autocorrelation from utils import audiosegment_to_array ac = autocorrelation(s).reshape((-1,)) wave(ac, **dict(suptitle='autocorrelation', title=['Example output'])) ``` ## `second_layer_autocorrelation` ``` from transforms import second_layer_autocorrelation ac2 = second_layer_autocorrelation(s).reshape((-1,)) wave(ac2, **dict(suptitle='second_layer_autocorrelation', title=['Example output'])) ``` ## `amplitude_spectrum` ``` from transforms import amplitude_spectrum from utils import split_channels from visualization import spectrum left, right = split_channels(s) spectrum(left, s.frame_rate, spectrum_type='amplitude', **dict(suptitle='amplitude_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='amplitude', **dict(suptitle='amplitude_spectrum', title='Example output')) ``` ## `power_spectrum` ``` spectrum(left, s.frame_rate, spectrum_type='power', **dict(suptitle='power_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='power', **dict(suptitle='power_spectrum', title='Example output')) ``` ## `phase_spectrum` ``` spectrum(left, s.frame_rate, spectrum_type='phase', **dict(suptitle='phase_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='phase', **dict(suptitle='phase_spectrum', title='Example output')) ``` ## `log_spectrum` ``` spectrum(left, s.frame_rate, spectrum_type='log', **dict(suptitle='log_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='log', **dict(suptitle='log_spectrum', title='Example output')) ``` ## `cepstrum` ``` from visualization import cepstrum offset = 1024 window_length = offset * 64 * 2 cepstrum(left, s.frame_rate, offset, window_length, **dict(suptitle='cepstrum', title='Example output')) ``` ## `cepstral_autocorrelation` ``` from transforms import cepstral_autocorrelation cac = cepstral_autocorrelation(s).reshape((-1,)) wave(cac) ``` ## `cepstral_second_layer_autocorrelation` ``` from transforms import cepstral_second_layer_autocorrelation csc = cepstral_second_layer_autocorrelation(s) ``` ## `mfcc` ``` from transforms import mfcc from utils import split_channels from visualization import spectrogram left, right = mfcc(s) spectrogram(left) ```
github_jupyter
from transforms import cross_correlation from pydub import AudioSegment from IPython.display import display from utils import play_audio, split_channels from visualization import wave import numpy as np sample_path = './data/sample_data/reflections/samples/mahler_2894305.wav' s = AudioSegment.from_wav(sample_path) play_audio(s) lag = 1 * int(s.frame_rate / 1000.) left, right = split_channels(s) xc = cross_correlation(left, right, lag) wave(xc, **dict(suptitle='cross_correlation', title=['Example output'])) from transforms import normalized_cross_correlation nxc = normalized_cross_correlation(left, right, lag) wave(nxc, **dict(suptitle='normalized_cross_correlation', title=['Example output'])) from transforms import autocorrelation from utils import audiosegment_to_array ac = autocorrelation(s).reshape((-1,)) wave(ac, **dict(suptitle='autocorrelation', title=['Example output'])) from transforms import second_layer_autocorrelation ac2 = second_layer_autocorrelation(s).reshape((-1,)) wave(ac2, **dict(suptitle='second_layer_autocorrelation', title=['Example output'])) from transforms import amplitude_spectrum from utils import split_channels from visualization import spectrum left, right = split_channels(s) spectrum(left, s.frame_rate, spectrum_type='amplitude', **dict(suptitle='amplitude_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='amplitude', **dict(suptitle='amplitude_spectrum', title='Example output')) spectrum(left, s.frame_rate, spectrum_type='power', **dict(suptitle='power_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='power', **dict(suptitle='power_spectrum', title='Example output')) spectrum(left, s.frame_rate, spectrum_type='phase', **dict(suptitle='phase_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='phase', **dict(suptitle='phase_spectrum', title='Example output')) spectrum(left, s.frame_rate, spectrum_type='log', **dict(suptitle='log_spectrum', title='Example output')) spectrum(right, s.frame_rate, spectrum_type='log', **dict(suptitle='log_spectrum', title='Example output')) from visualization import cepstrum offset = 1024 window_length = offset * 64 * 2 cepstrum(left, s.frame_rate, offset, window_length, **dict(suptitle='cepstrum', title='Example output')) from transforms import cepstral_autocorrelation cac = cepstral_autocorrelation(s).reshape((-1,)) wave(cac) from transforms import cepstral_second_layer_autocorrelation csc = cepstral_second_layer_autocorrelation(s) from transforms import mfcc from utils import split_channels from visualization import spectrogram left, right = mfcc(s) spectrogram(left)
0.894721
0.966914
## Suspots Dataset This notebook show a time series model ,built using DNN used for predicting future seasonality of the Susposts dataset depending on its past seasonality. Link for Dataset : https://www.kaggle.com/robervalt/sunspots ``` import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt import csv ``` Function for ploting the graphs. ``` def plot_series(time, series, format='-',start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(True) ``` Reading the CSV file, then tranforming the dataset to have 2 columns "series" and "time" which are numpy array and then finally plotting the dataset to analysis the data and look for trends and seasonalities ``` time_step = [] sunspots = [] with open('Sunspots.csv') as csvfile: reader = csv.reader(csvfile, delimiter=',') next(reader) for row in reader: sunspots.append(float(row[2])) time_step.append(int(row[0])) series = np.array(sunspots) time = np.array(time_step) plt.figure(figsize=(10,6)) plot_series(time, series) print("Head of the Data") print(pd.DataFrame(series,time).head()) print() print("Tail of the Data") print(pd.DataFrame(series,time).tail()) ``` Splitting the series and time columns, basically the whole dataset into train and validation sets. The splitting is at "time = 3000".In short the data before "time = 3000" is the training_set and the data after that is the validation_set. ``` split_time = 3000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] ``` The ***windowed_dataset*** is a function that coverts the series data in a data frame structure which be fed to the model for training. ``` def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset ``` Assigning the value to window_size, batch_size, and buffer_size. Lastly creating the DNN model. ``` window_size = 60 batch_size = 32 shuffle_buffer_size = 1000 dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(40, input_shape=[window_size], activation='relu'), tf.keras.layers.Dense(10, activation='relu'), tf.keras.layers.Dense(1) ]) model.compile(loss='mse',optimizer=tf.keras.optimizers.SGD(lr=1e-7,momentum=0.9)) model.summary() ``` Fitting the training set (***dataset***) to the model. ``` model.fit(dataset,epochs=20,verbose=1) ``` Forecasting values using the model.The predictions are based on the features and seasonality learned by the model from the training set and then predicting future values based on the past data. The predicted value is plotted along with the validation_set inorder to get an idea about the efficiency of the model. ``` forecast=[] for time in range(len(series) - window_size): forecast.append(model.predict(series[time:time + window_size][np.newaxis])) forecast = forecast[split_time-window_size:] results = np.array(forecast)[:, 0, 0] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, results) ``` Mean Absolute Error. ``` tf.keras.metrics.mean_absolute_error(x_valid, results).numpy() ```
github_jupyter
import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt import csv def plot_series(time, series, format='-',start=0, end=None): plt.plot(time[start:end], series[start:end], format) plt.xlabel("Time") plt.ylabel("Value") plt.grid(True) time_step = [] sunspots = [] with open('Sunspots.csv') as csvfile: reader = csv.reader(csvfile, delimiter=',') next(reader) for row in reader: sunspots.append(float(row[2])) time_step.append(int(row[0])) series = np.array(sunspots) time = np.array(time_step) plt.figure(figsize=(10,6)) plot_series(time, series) print("Head of the Data") print(pd.DataFrame(series,time).head()) print() print("Tail of the Data") print(pd.DataFrame(series,time).tail()) split_time = 3000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] def windowed_dataset(series, window_size, batch_size, shuffle_buffer): dataset = tf.data.Dataset.from_tensor_slices(series) dataset = dataset.window(window_size + 1, shift=1, drop_remainder=True) dataset = dataset.flat_map(lambda window: window.batch(window_size + 1)) dataset = dataset.shuffle(shuffle_buffer).map(lambda window: (window[:-1], window[-1])) dataset = dataset.batch(batch_size).prefetch(1) return dataset window_size = 60 batch_size = 32 shuffle_buffer_size = 1000 dataset = windowed_dataset(x_train, window_size, batch_size, shuffle_buffer_size) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(40, input_shape=[window_size], activation='relu'), tf.keras.layers.Dense(10, activation='relu'), tf.keras.layers.Dense(1) ]) model.compile(loss='mse',optimizer=tf.keras.optimizers.SGD(lr=1e-7,momentum=0.9)) model.summary() model.fit(dataset,epochs=20,verbose=1) forecast=[] for time in range(len(series) - window_size): forecast.append(model.predict(series[time:time + window_size][np.newaxis])) forecast = forecast[split_time-window_size:] results = np.array(forecast)[:, 0, 0] plt.figure(figsize=(10, 6)) plot_series(time_valid, x_valid) plot_series(time_valid, results) tf.keras.metrics.mean_absolute_error(x_valid, results).numpy()
0.743541
0.970771
# Step 5.1: Experiment 1: Machine Learning --- ## 1. Imports ``` import warnings warnings.filterwarnings('ignore') import math import numpy as np #operaciones matriciales y con vectores import pandas as pd #tratamiento de datos import random import matplotlib.pyplot as plt #gráficos import seaborn as sns import joblib from sklearn import naive_bayes from sklearn import tree from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn import tree from sklearn import linear_model from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split #metodo de particionamiento de datasets para evaluación from sklearn import preprocessing from sklearn import metrics from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_validate from sklearn.model_selection import GridSearchCV ``` --- ## 2. Load the Standardize B/M Only Stratosphere Dataset ``` BM_onlyStratosphere = pd.read_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\Standardized\SDTrainExp2.csv", delimiter = ",") BM_onlyStratosphere.head(2) BM_onlyStratosphere.shape ``` --- ## 3. Let's Create a copy of the original dataset... ``` BM_onlyStratosphere_copy = BM_onlyStratosphere.copy() BM_onlyStratosphere_copy.shape ``` --- ## 4. Let's create a Dataframe to save the Accuracies... ``` acc_Machine_Learning = pd.DataFrame(columns=['Name',"Accuracy_Value","CV"]) ``` --- --- ## 5. :::::::: MACHINE LEARNING :::::::: #### 5.1 Gaussian Naive Bayes ``` x = BM_onlyStratosphere_copy.iloc[:,:-1] y = BM_onlyStratosphere_copy['Type'] gnb = naive_bayes.GaussianNB() params = {} gscv_gnb = GridSearchCV(estimator=gnb, param_grid=params, cv=10, return_train_score=True) gscv_gnb.fit(x,y) gscv_gnb.cv_results_ ``` The **best_score (Mean cross-validated score of the best_estimator)** is : ``` gscv_gnb.best_score_ ``` The **best estimator (model)** is : ``` gnb = gscv_gnb.best_estimator_ gnb acc_Machine_Learning= acc_Machine_Learning.append({'Name' : 'GaussianNB ', 'Accuracy_Value' : gscv_gnb.best_score_, 'CV' : 10}, ignore_index=True) acc_Machine_Learning ``` --- #### 5.2 Decision Tree Classifier ``` dtc = tree.DecisionTreeClassifier() tree_params = {'criterion':['gini','entropy'], 'max_depth':[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 'random_state' : [1234] } gscv_dtc = GridSearchCV(dtc, tree_params, cv=10) gscv_dtc.fit(x,y) ``` The **best_score (Mean cross-validated score of the best_estimator)** is : ``` gscv_dtc.best_score_ ``` The **best estimator (model)** is : ``` dtc = gscv_dtc.best_estimator_ dtc acc_Machine_Learning= acc_Machine_Learning.append({'Name' : dtc, 'Accuracy_Value' : gscv_dtc.best_score_, 'CV' : 10}, ignore_index=True) acc_Machine_Learning ``` --- #### 5.3 KNN ``` knn = KNeighborsClassifier() knn_params = {'n_neighbors':[1,3,5], 'weights' : ['uniform','distance'], 'metric':['euclidean','manhattan']} # gscv_knn = GridSearchCV(knn, knn_params, cv=5, n_jobs=-1) # gscv_knn.fit(x,y) ``` The **best_score (Mean cross-validated score of the best_estimator)** is : ``` # gscv_knn.best_score_ ``` The **best estimator (model)** is : ``` # knn = gscv_knn.best_estimator_ # knn # acc_Machine_Learning= acc_Machine_Learning.append({'Name' : knn, 'Accuracy_Value' : gscv_knn.best_score_, 'CV' :5}, # ignore_index=True) # acc_Machine_Learning ``` --- #### 5.4 Logistic Regression ``` logreg = linear_model.LinearRegression() params = {} gscv_lg = GridSearchCV(logreg, params, cv=10) gscv_lg.fit(x,y) ``` The **best_score (Mean cross-validated score of the best_estimator)** is : ``` gscv_lg.best_score_ ``` The **best estimator (model)** is : ``` logreg = gscv_lg.best_estimator_ logreg acc_Machine_Learning= acc_Machine_Learning.append({'Name' : logreg, 'Accuracy_Value' : gscv_lg.best_score_, 'CV' :10}, ignore_index=True) acc_Machine_Learning ``` --- #### 5.5 Random Forest Classifier ``` clf = RandomForestClassifier() clf_param = { 'n_estimators': [64, 128], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth' : [4,5,6,7,8,9,10,11,12,13,14,15], 'criterion' :['gini', 'entropy'], 'random_state' : [1234] } gscv_rfc = GridSearchCV(clf, params, cv=10) gscv_rfc.fit(x,y) ``` The **best_score (Mean cross-validated score of the best_estimator)** is : ``` gscv_rfc.best_score_ ``` The **best estimator (model)** is : ``` clf = gscv_rfc.best_estimator_ clf acc_Machine_Learning= acc_Machine_Learning.append({'Name' : clf, 'Accuracy_Value' : gscv_rfc.best_score_, 'CV' :10}, ignore_index=True) acc_Machine_Learning ``` --- ## 6. Let's save the accuracies ``` acc_Machine_Learning = acc_Machine_Learning.sort_values(by=['Accuracy_Value'], ascending=False) acc_Machine_Learning acc_Machine_Learning.to_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\Accuracies\MLAccuraciesExp1.csv",sep=',',index=False) ``` --- ## 7. Let's choose the best ML Algorithm ``` acc_Machine_Learning.iloc[0,:] ``` --- --- ## 8. ::::::::::::::::: TEST WITH REAL DATA ::::::::::::::::::::: ``` b = pd.read_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\TEST\BTestExp2.csv", delimiter = ",") b.shape ``` -- ``` m = malign_dataset = pd.read_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\TEST\MTestExp2.csv", delimiter = ",") m.shape ``` --- ``` frames = [b, m] test_dataset = pd.concat(frames) ``` --- ``` le = joblib.load('./Tools/label_encoder_type_exp2.encoder') test_dataset.Type.unique() test_dataset.Type = le.transform(test_dataset.Type) test_dataset.Type.unique() types = test_dataset.Type test_dataset = test_dataset.drop(['Type'], axis=1) test_dataset.columns ``` --- ``` test_dataset = test_dataset[['Avg_bps','Avg_pps' ,'Bytes','p2_ib','duration','number_sp','number_dp','First_Protocol' ,'first_sp','p3_ib','first_dp','p1_ib','p3_d']] ``` -- ``` test_dataset.info() ``` --- First_Protocol ``` le = joblib.load('./Tools/label_encoder_first_protocol_exp2.encoder') test_dataset.First_Protocol.unique() test_dataset.First_Protocol = le.transform(test_dataset.First_Protocol) test_dataset.First_Protocol.unique() ``` --- ``` scaler = joblib.load("./Tools/scalerExp2.save") test_dataset[['Avg_bps','Avg_pps' ,'Bytes','p2_ib','duration','number_sp','number_dp' ,'p3_ib','p1_ib','p3_d']] = scaler.transform(test_dataset[['Avg_bps','Avg_pps' ,'Bytes','p2_ib','duration','number_sp','number_dp' ,'p3_ib','p1_ib','p3_d']]) test_dataset.head(2) clf y_pred= clf.predict(test_dataset) y_pred unique, counts = np.unique(y_pred, return_counts=True) dict(zip(unique, counts)) y_pred types = types.astype(np.int64) cm= metrics.confusion_matrix(types, y_pred) plt.imshow(cm, cmap=plt.cm.Blues) plt.title("Matriz de confusión") plt.colorbar() tick_marks = np.arange(3) plt.xticks(tick_marks, ['0','1']) plt.yticks(tick_marks, ['0','1']) target_names = ['1', '0'] print(classification_report(types, y_pred, target_names=target_names)) ``` --- ---- ## Let's save the 3 best models models... ``` joblib.dump(clf,"./Models/clf.save") joblib.dump(dtc,"./Models/dtc.save") joblib.dump(gnb,"./Models/gnb.save") ``` ## References ### Naive 1. https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html 2. https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn 3. https://stackoverflow.com/questions/58212613/naive-bayes-gaussian-throwing-valueerror-could-not-convert-string-to-float-m 4. https://scikit-learn.org/stable/modules/naive_bayes.html 5. https://scikit-learn.org/stable/modules/model_evaluation.html ### Decision Tree 1. https://stackoverflow.com/questions/35097003/cross-validation-decision-trees-in-sklearn 2. https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html ### Label Encoder 1. https://www.interactivechaos.com/python/function/labelencoder ### KNN 1. https://medium.com/@svanillasun/how-to-deal-with-cross-validation-based-on-knn-algorithm-compute-auc-based-on-naive-bayes-ff4b8284cff4
github_jupyter
import warnings warnings.filterwarnings('ignore') import math import numpy as np #operaciones matriciales y con vectores import pandas as pd #tratamiento de datos import random import matplotlib.pyplot as plt #gráficos import seaborn as sns import joblib from sklearn import naive_bayes from sklearn import tree from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn import tree from sklearn import linear_model from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split #metodo de particionamiento de datasets para evaluación from sklearn import preprocessing from sklearn import metrics from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_validate from sklearn.model_selection import GridSearchCV BM_onlyStratosphere = pd.read_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\Standardized\SDTrainExp2.csv", delimiter = ",") BM_onlyStratosphere.head(2) BM_onlyStratosphere.shape BM_onlyStratosphere_copy = BM_onlyStratosphere.copy() BM_onlyStratosphere_copy.shape acc_Machine_Learning = pd.DataFrame(columns=['Name',"Accuracy_Value","CV"]) x = BM_onlyStratosphere_copy.iloc[:,:-1] y = BM_onlyStratosphere_copy['Type'] gnb = naive_bayes.GaussianNB() params = {} gscv_gnb = GridSearchCV(estimator=gnb, param_grid=params, cv=10, return_train_score=True) gscv_gnb.fit(x,y) gscv_gnb.cv_results_ gscv_gnb.best_score_ gnb = gscv_gnb.best_estimator_ gnb acc_Machine_Learning= acc_Machine_Learning.append({'Name' : 'GaussianNB ', 'Accuracy_Value' : gscv_gnb.best_score_, 'CV' : 10}, ignore_index=True) acc_Machine_Learning dtc = tree.DecisionTreeClassifier() tree_params = {'criterion':['gini','entropy'], 'max_depth':[3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], 'random_state' : [1234] } gscv_dtc = GridSearchCV(dtc, tree_params, cv=10) gscv_dtc.fit(x,y) gscv_dtc.best_score_ dtc = gscv_dtc.best_estimator_ dtc acc_Machine_Learning= acc_Machine_Learning.append({'Name' : dtc, 'Accuracy_Value' : gscv_dtc.best_score_, 'CV' : 10}, ignore_index=True) acc_Machine_Learning knn = KNeighborsClassifier() knn_params = {'n_neighbors':[1,3,5], 'weights' : ['uniform','distance'], 'metric':['euclidean','manhattan']} # gscv_knn = GridSearchCV(knn, knn_params, cv=5, n_jobs=-1) # gscv_knn.fit(x,y) # gscv_knn.best_score_ # knn = gscv_knn.best_estimator_ # knn # acc_Machine_Learning= acc_Machine_Learning.append({'Name' : knn, 'Accuracy_Value' : gscv_knn.best_score_, 'CV' :5}, # ignore_index=True) # acc_Machine_Learning logreg = linear_model.LinearRegression() params = {} gscv_lg = GridSearchCV(logreg, params, cv=10) gscv_lg.fit(x,y) gscv_lg.best_score_ logreg = gscv_lg.best_estimator_ logreg acc_Machine_Learning= acc_Machine_Learning.append({'Name' : logreg, 'Accuracy_Value' : gscv_lg.best_score_, 'CV' :10}, ignore_index=True) acc_Machine_Learning clf = RandomForestClassifier() clf_param = { 'n_estimators': [64, 128], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth' : [4,5,6,7,8,9,10,11,12,13,14,15], 'criterion' :['gini', 'entropy'], 'random_state' : [1234] } gscv_rfc = GridSearchCV(clf, params, cv=10) gscv_rfc.fit(x,y) gscv_rfc.best_score_ clf = gscv_rfc.best_estimator_ clf acc_Machine_Learning= acc_Machine_Learning.append({'Name' : clf, 'Accuracy_Value' : gscv_rfc.best_score_, 'CV' :10}, ignore_index=True) acc_Machine_Learning acc_Machine_Learning = acc_Machine_Learning.sort_values(by=['Accuracy_Value'], ascending=False) acc_Machine_Learning acc_Machine_Learning.to_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\Accuracies\MLAccuraciesExp1.csv",sep=',',index=False) acc_Machine_Learning.iloc[0,:] b = pd.read_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\TEST\BTestExp2.csv", delimiter = ",") b.shape m = malign_dataset = pd.read_csv(r"C:\Users\Usuario\Documents\Github\PDG\PDG-2\Datasets\Time Window\TEST\MTestExp2.csv", delimiter = ",") m.shape frames = [b, m] test_dataset = pd.concat(frames) le = joblib.load('./Tools/label_encoder_type_exp2.encoder') test_dataset.Type.unique() test_dataset.Type = le.transform(test_dataset.Type) test_dataset.Type.unique() types = test_dataset.Type test_dataset = test_dataset.drop(['Type'], axis=1) test_dataset.columns test_dataset = test_dataset[['Avg_bps','Avg_pps' ,'Bytes','p2_ib','duration','number_sp','number_dp','First_Protocol' ,'first_sp','p3_ib','first_dp','p1_ib','p3_d']] test_dataset.info() le = joblib.load('./Tools/label_encoder_first_protocol_exp2.encoder') test_dataset.First_Protocol.unique() test_dataset.First_Protocol = le.transform(test_dataset.First_Protocol) test_dataset.First_Protocol.unique() scaler = joblib.load("./Tools/scalerExp2.save") test_dataset[['Avg_bps','Avg_pps' ,'Bytes','p2_ib','duration','number_sp','number_dp' ,'p3_ib','p1_ib','p3_d']] = scaler.transform(test_dataset[['Avg_bps','Avg_pps' ,'Bytes','p2_ib','duration','number_sp','number_dp' ,'p3_ib','p1_ib','p3_d']]) test_dataset.head(2) clf y_pred= clf.predict(test_dataset) y_pred unique, counts = np.unique(y_pred, return_counts=True) dict(zip(unique, counts)) y_pred types = types.astype(np.int64) cm= metrics.confusion_matrix(types, y_pred) plt.imshow(cm, cmap=plt.cm.Blues) plt.title("Matriz de confusión") plt.colorbar() tick_marks = np.arange(3) plt.xticks(tick_marks, ['0','1']) plt.yticks(tick_marks, ['0','1']) target_names = ['1', '0'] print(classification_report(types, y_pred, target_names=target_names)) joblib.dump(clf,"./Models/clf.save") joblib.dump(dtc,"./Models/dtc.save") joblib.dump(gnb,"./Models/gnb.save")
0.249905
0.869327
# How to generate the `genemap.txt` file Using UCSC refGene for gene definition, Rutgers Map for genetic distances, and linear interpolation for those that cannot be found in the database. ## Gene range file Downloaded [`refGene.txt.gz` from UCSC](http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz), currently version March 01, 2020. Gene range file generated using [this workflow](https://gaow.github.io/cnv-gene-mapping/dsc/20190627_Clean_RefGene.html) written by Min Qiao when she was at UChicago. Please refer to the link for trickiness converting `refGene.txt.gz` to gene ranges. The output is a 4-column file, ``` chr start end gene_name ``` ## Genetic distance map file Rutgers genetic maps downloaded from [here](http://compgen.rutgers.edu/downloads/rutgers_map_v3.zip). Preprocessing scripts below were mostly written by Hang Dai when he was at Baylor. I put some in a workflow script to better organize them. ``` # Copied from Hang Dai's preprocessing scripts in 2014 # to SoS workflow, with minor data formatting adjustments # add_chr_to_original_file [preprocess_1] depends: executable('bgzip') parameter: chrom = list() if len(chrom) == 0: chrom = list(range(1,23)) + ['X'] input: for_each = 'chrom' output: f'RUMap_chr{_chrom}.txt.gz' bash: expand = '${ }' awk -F'\t' -v chromosome="${_chrom}" 'BEGIN {OFS="\t"} {if (NR==1) {print "#chr",$1,$2,$3,$6,$7,$8,$9} else {if ($2=="SNP") {print chromosome,$1,$2,$3,$6,$7,$8,$9}}}' RUMapv3_B137_chr${_chrom if _chrom != 'X' else 23}.txt | sort -k5 -g | bgzip -c > ${_output} # make_tabix_index_file.sh [preprocess_2] output: f'{_input}.tbi' bash: expand = '${ }' tabix -s1 -b5 -e5 -c# ${_input} # chr_min_max_dict [preprocess_3] input: group_by='all' python: expand = '${ }' import subprocess chr_min_max_dict={} for item in [${_input:nr,}]: print(item) command='zcat {} | head -2 | tail -1'.format(item) p=subprocess.Popen(command, universal_newlines=True, shell=True, stdout=subprocess.PIPE) out=p.stdout.read().split('\t') #a list min_pos=out[4] command='zcat {} | tail -1'.format(item) p=subprocess.Popen(command, universal_newlines=True, shell=True, stdout=subprocess.PIPE) out=p.stdout.read().split('\t') #a list max_pos=out[4] chr_min_max_dict[item]=[min_pos, max_pos] print(chr_min_max_dict) print(len(chr_min_max_dict)) [liftover_download: provides = ['hg19ToHg38.over.chain.gz', 'liftOver']] download: https://hgdownload.soe.ucsc.edu/gbdb/hg19/liftOver/hg19ToHg38.over.chain.gz http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver bash: chmod +x liftOver [liftover_genemap] depends: 'hg19ToHg38.over.chain.gz', 'liftOver' parameter: genemap = 'genemap.hg19.txt' input: genemap output: f'{_input:nn}.hg38.txt' bash: expand = '${ }' awk '{print "chr"$1,$2,$3,$4}' ${_input} > ${_output:nn}.hg19.bed ./liftOver ${_output:nn}.hg19.bed hg19ToHg38.over.chain.gz ${_output:nn}.hg38.bed ${_output:nn}.unlifted.bed python: expand = '${ }' genemap = dict([(x.split()[3], x.strip().split()) for x in open(${_input:r}).readlines()]) new_coord = dict([(x.split()[3], x.strip().split()) for x in open('${_output:nn}.hg38.bed').readlines()]) total = len(genemap) unmapped = 0 for k in list(genemap.keys()): if k in new_coord: genemap[k][0] = new_coord[k][0][3:] genemap[k][1] = new_coord[k][1] genemap[k][2] = new_coord[k][2] else: del genemap[k] unmapped += 1 print(f'{unmapped} units failed to be mapped to hg38.') with open(${_output:r}, 'w') as f: f.write('\n'.join(['\t'.join(x) for x in genemap.values()])) ``` To use it, after downloading and decompressing Rutgers Map data, run: ``` sos run genemap.ipynb preprocess python genetic_pos_searcher.py genemap.txt mv CM_genemap.txt genemap.hg19.txt sos run genemap.ipynb liftover_genemap --genemap genemap.hg19.txt ```
github_jupyter
chr start end gene_name # Copied from Hang Dai's preprocessing scripts in 2014 # to SoS workflow, with minor data formatting adjustments # add_chr_to_original_file [preprocess_1] depends: executable('bgzip') parameter: chrom = list() if len(chrom) == 0: chrom = list(range(1,23)) + ['X'] input: for_each = 'chrom' output: f'RUMap_chr{_chrom}.txt.gz' bash: expand = '${ }' awk -F'\t' -v chromosome="${_chrom}" 'BEGIN {OFS="\t"} {if (NR==1) {print "#chr",$1,$2,$3,$6,$7,$8,$9} else {if ($2=="SNP") {print chromosome,$1,$2,$3,$6,$7,$8,$9}}}' RUMapv3_B137_chr${_chrom if _chrom != 'X' else 23}.txt | sort -k5 -g | bgzip -c > ${_output} # make_tabix_index_file.sh [preprocess_2] output: f'{_input}.tbi' bash: expand = '${ }' tabix -s1 -b5 -e5 -c# ${_input} # chr_min_max_dict [preprocess_3] input: group_by='all' python: expand = '${ }' import subprocess chr_min_max_dict={} for item in [${_input:nr,}]: print(item) command='zcat {} | head -2 | tail -1'.format(item) p=subprocess.Popen(command, universal_newlines=True, shell=True, stdout=subprocess.PIPE) out=p.stdout.read().split('\t') #a list min_pos=out[4] command='zcat {} | tail -1'.format(item) p=subprocess.Popen(command, universal_newlines=True, shell=True, stdout=subprocess.PIPE) out=p.stdout.read().split('\t') #a list max_pos=out[4] chr_min_max_dict[item]=[min_pos, max_pos] print(chr_min_max_dict) print(len(chr_min_max_dict)) [liftover_download: provides = ['hg19ToHg38.over.chain.gz', 'liftOver']] download: https://hgdownload.soe.ucsc.edu/gbdb/hg19/liftOver/hg19ToHg38.over.chain.gz http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/liftOver bash: chmod +x liftOver [liftover_genemap] depends: 'hg19ToHg38.over.chain.gz', 'liftOver' parameter: genemap = 'genemap.hg19.txt' input: genemap output: f'{_input:nn}.hg38.txt' bash: expand = '${ }' awk '{print "chr"$1,$2,$3,$4}' ${_input} > ${_output:nn}.hg19.bed ./liftOver ${_output:nn}.hg19.bed hg19ToHg38.over.chain.gz ${_output:nn}.hg38.bed ${_output:nn}.unlifted.bed python: expand = '${ }' genemap = dict([(x.split()[3], x.strip().split()) for x in open(${_input:r}).readlines()]) new_coord = dict([(x.split()[3], x.strip().split()) for x in open('${_output:nn}.hg38.bed').readlines()]) total = len(genemap) unmapped = 0 for k in list(genemap.keys()): if k in new_coord: genemap[k][0] = new_coord[k][0][3:] genemap[k][1] = new_coord[k][1] genemap[k][2] = new_coord[k][2] else: del genemap[k] unmapped += 1 print(f'{unmapped} units failed to be mapped to hg38.') with open(${_output:r}, 'w') as f: f.write('\n'.join(['\t'.join(x) for x in genemap.values()])) sos run genemap.ipynb preprocess python genetic_pos_searcher.py genemap.txt mv CM_genemap.txt genemap.hg19.txt sos run genemap.ipynb liftover_genemap --genemap genemap.hg19.txt
0.288168
0.774114
# GPyOpt: parallel Bayesian optimization ### Written by Javier Gonzalez, University of Sheffield. *Last updated Tuesday, 15 March 2016.* In this noteboook we are going to learn how to use GPyOpt to run parallel BO methods. The goal of these approaches is to make use of all the computational power or our machine to perform the optimization. For instance, if we hace a computer with 4 cores, we may want to make 4 evaluations of $f$ in parallel everytime we test the performance of the algorithm. In this notebook we will use the **Local Penalization** method describe in the paper *Batch Bayesian Optimization via Local Penalization*. ``` from IPython.display import HTML HTML('<iframe src=http://arxiv.org/pdf/1505.08052v4.pdf width=700 height=550></iframe>') %pylab inline import GPyOpt ``` As in previous examples we use a synthetic objective function but you can think about doing the same with any function you like. In this case, we use the Branin function. For the optimization we will perturb the evaluations with Gaussian noise with sd = 0.1. ``` # --- Objective function objective_true = GPyOpt.objective_examples.experiments2d.branin() # true function objective_noisy = GPyOpt.objective_examples.experiments2d.branin(sd = 0.1) # noisy version bounds = objective_noisy.bounds domain = [{'name': 'var_1', 'type': 'continuous', 'domain': bounds[0]}, ## use default bounds {'name': 'var_2', 'type': 'continuous', 'domain': bounds[1]}] objective_true.plot() ``` As in previous cases, we create a GPyOpt object with the desing space and fucntion to optimize. In this case we need to select the evaluator type, which in this case is the *local penalization method* the batch size and the number of cores that we want to use. The evaluation of the function will be splitted accross the available cores. ``` batch_size = 4 num_cores = 4 from numpy.random import seed seed(123) BO_demo_parallel = GPyOpt.methods.BayesianOptimization(f=objective_noisy.f, domain = domain, acquisition_type = 'EI', normalize_Y = True, initial_design_numdata = 10, evaluator_type = 'local_penalization', batch_size = batch_size, num_cores = num_cores, acquisition_jitter = 0) ``` We will optimize this function by running 10 parallel evaluations in 3 cores of our machine. ``` # --- Run the optimization for 10 iterations max_iter = 10 BO_demo_parallel.run_optimization(max_iter) ``` We plot the resutls. Observe that the final number of evaluations that we will make is $10*4=40$. ``` BO_demo_parallel.plot_acquisition() ``` See how the method explores the space using the four parallel evaluations of $f$ and it is able to identify the location of the three minima. ``` BO_demo_parallel.plot_convergence() ```
github_jupyter
from IPython.display import HTML HTML('<iframe src=http://arxiv.org/pdf/1505.08052v4.pdf width=700 height=550></iframe>') %pylab inline import GPyOpt # --- Objective function objective_true = GPyOpt.objective_examples.experiments2d.branin() # true function objective_noisy = GPyOpt.objective_examples.experiments2d.branin(sd = 0.1) # noisy version bounds = objective_noisy.bounds domain = [{'name': 'var_1', 'type': 'continuous', 'domain': bounds[0]}, ## use default bounds {'name': 'var_2', 'type': 'continuous', 'domain': bounds[1]}] objective_true.plot() batch_size = 4 num_cores = 4 from numpy.random import seed seed(123) BO_demo_parallel = GPyOpt.methods.BayesianOptimization(f=objective_noisy.f, domain = domain, acquisition_type = 'EI', normalize_Y = True, initial_design_numdata = 10, evaluator_type = 'local_penalization', batch_size = batch_size, num_cores = num_cores, acquisition_jitter = 0) # --- Run the optimization for 10 iterations max_iter = 10 BO_demo_parallel.run_optimization(max_iter) BO_demo_parallel.plot_acquisition() BO_demo_parallel.plot_convergence()
0.60964
0.964954
## Recommender System Algorithm ### Objective We want to help consumers find attorneys. To surface attorneys to consumers, sales consultants often have to help attorneys describe their areas of practice (areas like Criminal Defense, Business or Personal Injury). To expand their practices, attorneys can branch into related areas of practice. This can allow attorneys to help different customers while remaining within the bounds of their experience. Attached is an anonymized dataset of attorneys and their specialties. The columns are anonymized attorney IDs and specialty IDs. Please design a process that returns the top 5 recommended practice areas for a given attorney with a set of specialties. ## Data ``` import pandas as pd import numpy as np from sklearn.preprocessing import normalize # Import data data = pd.read_excel('data.xlsx', 'data') data.shape # View first few rows of the dataset data.head() ``` ## 3. Data Exploration ``` # Information of the dataset data.info() # Check missing values data.isnull().sum() # Check duplicates data.duplicated().sum() # Check unique value count for the two ID's data['attorney_id'].nunique(), data['specialty_id'].nunique() data['specialty_id'].value_counts() # Check number of specialties per attorney data.groupby('attorney_id')['specialty_id'].nunique().sort_values() ``` The number of specialties of an attorney ranges from 1 to 28. ``` # View a sample: an attorney with 28 specialties data[data['attorney_id']==157715] ``` ## Recommendation System ### Recommendation for Top K Practice Areas based on Similarity for Specialties #### Step 1: Build the specialty-attorney matrix ``` # Build the specialty-attorney matrix specialty_attorney = data.groupby(['specialty_id','attorney_id'])['attorney_id'].count().unstack(fill_value=0) specialty_attorney = (specialty_attorney > 0).astype(int) specialty_attorney ``` #### Step 2: Build specialty-specialty similarity matrix ``` # Build specialty-specialty similarity matrix specialty_attorney_norm = normalize(specialty_attorney, axis=1) similarity = np.dot(specialty_attorney_norm, specialty_attorney_norm.T) df_similarity = pd.DataFrame(similarity, index=specialty_attorney.index, columns=specialty_attorney.index) df_similarity ``` #### Step 3: Find the Top K most similar specialties ``` # Find the top k most similar specialties def topk_specialty(specialty, similarity, k): result = similarity.loc[specialty].sort_values(ascending=False)[1:k + 1].reset_index() result = result.rename(columns={'specialty_id': 'Specialty_Recommend', specialty: 'Similarity'}) return result ``` ### Testing Recommender System based on Similarity #### Process: 1. Ask user to input the ID of his/her obtained specialties 2. The system will recommend top 5 practice areas for the user's specialties based on similarity ``` # Test on a specialty sample 1 user_input1 = int(input('Please input your specialty ID: ')) recommend_user1 = topk_specialty(specialty=user_input1, similarity=df_similarity, k=5) print('Top 5 recommended practice areas for user 1:') print('--------------------------------------------') print(recommend_user1) # Test on a specialty sample 2 user_input2 = int(input('Please input your specialty ID: ')) recommend_user2 = topk_specialty(specialty=user_input2, similarity=df_similarity, k=5) print('Top 5 recommended practice areas for user 2:') print('--------------------------------------------') print(recommend_user2) ``` ### Popularity-based Recommendation - If user requests recommedation based on popularity ``` # Get ranked specialties based on popularity df_specialty_popular = data_recommend.groupby('specialty_id')['attorney_id'].nunique().sort_values(ascending=False) df_specialty_popular #Q: data_recommend not defined # Top 5 specialties based on popularity among attorneys df_specialty_popular.columns = ['specialty_id', 'count_popular'] print('The 5 most popular specialties:') print('--------------------------------') print(df_specialty_popular.nlargest(5, keep='all')) ```
github_jupyter
import pandas as pd import numpy as np from sklearn.preprocessing import normalize # Import data data = pd.read_excel('data.xlsx', 'data') data.shape # View first few rows of the dataset data.head() # Information of the dataset data.info() # Check missing values data.isnull().sum() # Check duplicates data.duplicated().sum() # Check unique value count for the two ID's data['attorney_id'].nunique(), data['specialty_id'].nunique() data['specialty_id'].value_counts() # Check number of specialties per attorney data.groupby('attorney_id')['specialty_id'].nunique().sort_values() # View a sample: an attorney with 28 specialties data[data['attorney_id']==157715] # Build the specialty-attorney matrix specialty_attorney = data.groupby(['specialty_id','attorney_id'])['attorney_id'].count().unstack(fill_value=0) specialty_attorney = (specialty_attorney > 0).astype(int) specialty_attorney # Build specialty-specialty similarity matrix specialty_attorney_norm = normalize(specialty_attorney, axis=1) similarity = np.dot(specialty_attorney_norm, specialty_attorney_norm.T) df_similarity = pd.DataFrame(similarity, index=specialty_attorney.index, columns=specialty_attorney.index) df_similarity # Find the top k most similar specialties def topk_specialty(specialty, similarity, k): result = similarity.loc[specialty].sort_values(ascending=False)[1:k + 1].reset_index() result = result.rename(columns={'specialty_id': 'Specialty_Recommend', specialty: 'Similarity'}) return result # Test on a specialty sample 1 user_input1 = int(input('Please input your specialty ID: ')) recommend_user1 = topk_specialty(specialty=user_input1, similarity=df_similarity, k=5) print('Top 5 recommended practice areas for user 1:') print('--------------------------------------------') print(recommend_user1) # Test on a specialty sample 2 user_input2 = int(input('Please input your specialty ID: ')) recommend_user2 = topk_specialty(specialty=user_input2, similarity=df_similarity, k=5) print('Top 5 recommended practice areas for user 2:') print('--------------------------------------------') print(recommend_user2) # Get ranked specialties based on popularity df_specialty_popular = data_recommend.groupby('specialty_id')['attorney_id'].nunique().sort_values(ascending=False) df_specialty_popular #Q: data_recommend not defined # Top 5 specialties based on popularity among attorneys df_specialty_popular.columns = ['specialty_id', 'count_popular'] print('The 5 most popular specialties:') print('--------------------------------') print(df_specialty_popular.nlargest(5, keep='all'))
0.44746
0.950778
## Tabular data handling This module defines the main class to handle tabular data in the fastai library: [`TabularDataBunch`](/tabular.data.html#TabularDataBunch). As always, there is also a helper function to quickly get your data. To allow you to easily create a [`Learner`](/basic_train.html#Learner) for your data, it provides [`tabular_learner`](/tabular.learner.html#tabular_learner). ``` from fastai.gen_doc.nbdoc import * from fastai.tabular import * show_doc(TabularDataBunch) ``` The best way to quickly get your data in a [`DataBunch`](/basic_data.html#DataBunch) suitable for tabular data is to organize it in two (or three) dataframes. One for training, one for validation, and if you have it, one for testing. Here we are interested in a subsample of the [adult dataset](https://archive.ics.uci.edu/ml/datasets/adult). ``` path = untar_data(URLs.ADULT_SAMPLE) df = pd.read_csv(path/'adult.csv') valid_idx = range(len(df)-2000, len(df)) df.head() cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country'] dep_var = 'salary' ``` The initialization of [`TabularDataBunch`](/tabular.data.html#TabularDataBunch) is the same as [`DataBunch`](/basic_data.html#DataBunch) so you really want to use the factory method instead. ``` show_doc(TabularDataBunch.from_df) ``` Optionally, use `test_df` for the test set. The dependent variable is `dep_var`, while the categorical and continuous variables are in the `cat_names` columns and `cont_names` columns respectively. If `cont_names` is None then we assume all variables that aren't dependent or categorical are continuous. The [`TabularProcessor`](/tabular.data.html#TabularProcessor) in `procs` are applied to the dataframes as preprocessing, then the categories are replaced by their codes+1 (leaving 0 for `nan`) and the continuous variables are normalized. Note that the [`TabularProcessor`](/tabular.data.html#TabularProcessor) should be passed as `Callable`: the actual initialization with `cat_names` and `cont_names` is done during the preprocessing. ``` procs = [FillMissing, Categorify, Normalize] data = TabularDataBunch.from_df(path, df, dep_var, valid_idx=valid_idx, procs=procs, cat_names=cat_names) ``` You can then easily create a [`Learner`](/basic_train.html#Learner) for this data with [`tabular_learner`](/tabular.learner.html#tabular_learner). ``` show_doc(tabular_learner) ``` `emb_szs` is a `dict` mapping categorical column names to embedding sizes; you only need to pass sizes for columns where you want to override the default behaviour of the model. ``` show_doc(TabularList) ``` Basic class to create a list of inputs in `items` for tabular data. `cat_names` and `cont_names` are the names of the categorical and the continuous variables respectively. `processor` will be applied to the inputs or one will be created from the transforms in `procs`. ``` show_doc(TabularList.from_df) show_doc(TabularList.get_emb_szs) show_doc(TabularList.show_xys) show_doc(TabularList.show_xyzs) show_doc(TabularLine, doc_string=False) ``` An object that will contain the encoded `cats`, the continuous variables `conts`, the `classes` and the `names` of the columns. This is the basic input for a dataset dealing with tabular data. ``` show_doc(TabularProcessor) ``` Create a [`PreProcessor`](/data_block.html#PreProcessor) from `procs`. ## Undocumented Methods - Methods moved below this line will intentionally be hidden ``` show_doc(TabularProcessor.process_one) show_doc(TabularList.new) show_doc(TabularList.get) show_doc(TabularProcessor.process) show_doc(TabularList.reconstruct) ``` ## New Methods - Please document or move to the undocumented section
github_jupyter
from fastai.gen_doc.nbdoc import * from fastai.tabular import * show_doc(TabularDataBunch) path = untar_data(URLs.ADULT_SAMPLE) df = pd.read_csv(path/'adult.csv') valid_idx = range(len(df)-2000, len(df)) df.head() cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country'] dep_var = 'salary' show_doc(TabularDataBunch.from_df) procs = [FillMissing, Categorify, Normalize] data = TabularDataBunch.from_df(path, df, dep_var, valid_idx=valid_idx, procs=procs, cat_names=cat_names) show_doc(tabular_learner) show_doc(TabularList) show_doc(TabularList.from_df) show_doc(TabularList.get_emb_szs) show_doc(TabularList.show_xys) show_doc(TabularList.show_xyzs) show_doc(TabularLine, doc_string=False) show_doc(TabularProcessor) show_doc(TabularProcessor.process_one) show_doc(TabularList.new) show_doc(TabularList.get) show_doc(TabularProcessor.process) show_doc(TabularList.reconstruct)
0.427994
0.99045
# The data block API ``` from fastai.gen_doc.nbdoc import * from fastai.vision import * from fastai import * ``` The data block API lets you customize how to create a [`DataBunch`](/basic_data.html#DataBunch) by isolating the underlying parts of that process in separate blocks, mainly: - where are the inputs - how to label them - how to split the data into a training and validation set - what type of [`Dataset`](https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset) to create - possible transforms to apply - how to warp in dataloaders and create the [`DataBunch`](/basic_data.html#DataBunch) This is a bit longer than using the factory methods but is way more flexible. As usual, we'll begin with end-to-end examples, then switch to the details of each of those parts. ## Examples of use In [`vision.data`](/vision.data.html#vision.data), we create an easy [`DataBunch`](/basic_data.html#DataBunch) suitable for classification by simply typing: ``` path = untar_data(URLs.MNIST_TINY) tfms = get_transforms(do_flip=False) data = ImageDataBunch.from_folder(path, ds_tfms=tfms, size=24) ``` This is aimed at data that is in fodlers following an ImageNet style, with a train and valid directory containing each one subdirectory per class, where all the pictures are. With the data block API, the same thing is achieved like this: ``` path = untar_data(URLs.MNIST_TINY) tfms = get_transforms(do_flip=False) path.ls() (path/'train').ls() data = (ImageFileList.from_folder(path) #Where to find the data? -> in path and its subfolders .label_from_folder() #How to label? -> depending on the folder of the filenames .split_by_folder() #How to split in train/valid? -> use the folders .add_test_folder() #Optionally add a test set .datasets() #How to convert to datasets? .transform(tfms, size=224) #Data augmentation? -> use tfms with a size of 224 .databunch()) #Finally? -> use the defaults for conversion to ImageDataBunch data.train_ds[0] data.show_batch(rows=3, figsize=(5,5)) data.valid_ds.classes ``` Let's look at another example from [`vision.data`](/vision.data.html#vision.data) with the planet dataset. This time, it's a multiclassification problem with the labels in a csv file and no given split between valid and train data, so we use a random split. The factory method is: ``` planet = untar_data(URLs.PLANET_TINY) planet_tfms = get_transforms(flip_vert=True, max_lighting=0.1, max_zoom=1.05, max_warp=0.) data = ImageDataBunch.from_csv(planet, folder='train', size=128, suffix='.jpg', sep = ' ', ds_tfms=planet_tfms) ``` With the data block API we can rewrite this like that: ``` data = (ImageFileList.from_folder(planet) #Where to find the data? -> in planet and its subfolders .label_from_csv('labels.csv', sep=' ', folder='train', suffix='.jpg') #How to label? -> use the csv file labels.csv in path, #add .jpg to the names and take them in the folder train .random_split_by_pct() #How to split in train/valid? -> randomly with the default 20% in valid .datasets() #How to convert to datasets? -> use ImageMultiDataset .transform(planet_tfms, size=128) #Data augmentation? -> use tfms with a size of 128 .databunch()) #Finally? -> use the defaults for conversion to databunch data.show_batch(rows=3, figsize=(10,8)) ``` The data block API also allows you to use dataset types for which there is no direct [`ImageDataBunch`](/vision.data.html#ImageDataBunch) factory method. For a segmentation task, for instance, we can use it to quickly get a [`DataBunch`](/basic_data.html#DataBunch). Let's take the example of the [camvid dataset](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/). The images are in an 'images' folder and their corresponding mask is in a 'labels' folder. ``` camvid = untar_data(URLs.CAMVID_TINY) path_lbl = camvid/'labels' path_img = camvid/'images' ``` We have a file that gives us the names of the classes (what each code inside the masks corresponds to: a pedestrian, a tree, a road...) ``` codes = np.loadtxt(camvid/'codes.txt', dtype=str); codes ``` And we define the following function that infers the mask filename from the image filename. ``` get_y_fn = lambda x: path_lbl/f'{x.stem}_P{x.suffix}' ``` Then we can easily define a [`DataBunch`](/basic_data.html#DataBunch) using the data block API. Here we need to use `tfm_y=True` in the transform call because we need the same transforms to be applied to the target mask as were applied to the image. ``` data = (ImageFileList.from_folder(path_img) #Where are the input files? -> in path_img .label_from_func(get_y_fn) #How to label? -> use get_y_fn .random_split_by_pct() #How to split between train and valid? -> randomly .datasets(SegmentationDataset, classes=codes) #How to create a dataset? -> use SegmentationDataset .transform(get_transforms(), size=96, tfm_y=True) #Data aug -> Use standard tfms with tfm_y=True .databunch(bs=64)) #Lastly convert in a databunch. data.show_batch(rows=2, figsize=(5,5)) ``` One last example for object detection. We use our tiny sample of the [COCO dataset](http://cocodataset.org/#home) here. There is a helper function in the library that reads the annotation file and returns the list of images names with the list of labelled bboxes associated to it. We convert it to a dictionary that maps image names with their bboxes and then write the function that will give us the target for each image filename. ``` coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') img2bbox = {img:bb for img, bb in zip(images, lbl_bbox)} get_y_func = lambda o:img2bbox[o.name] ``` The following code is very similar to what we saw before. The only new addition is the use of special function to collate the samples in batches. This comes from the fact that our images may have multiple bounding boxes, so we need to pad them to the largest number of bounding boxes. ``` data = (ImageFileList.from_folder(coco) #Where are the images? -> in coco .label_from_func(get_y_func) #How to find the labels? -> use get_y_func .random_split_by_pct() #How to split in train/valid? -> randomly with the default 20% in valid .datasets(ObjectDetectDataset) #How to create datasets? -> with ObjectDetectDataset #Data augmentation? -> Standard transforms with tfm_y=True .databunch(bs=16, collate_fn=bb_pad_collate)) #Finally we convert to a DataBunch and we use bb_pad_collate data.show_batch(rows=3, ds_type=DatasetType.Valid, figsize=(8,7)) ``` ## Provide inputs The inputs we want to feed our model are regrouped in the following class. The class contains methods to get the corresponding labels. ``` show_doc(InputList, title_level=3, doc_string=False) ``` This class regroups the inputs for our model in `items` and saves a `path` attribute which is where it will look for any files (image files, csv file with labels...) ``` show_doc(InputList.from_folder) ``` Note that [`InputList`](/data_block.html#InputList) is subclassed in vision by [`ImageFileList`](/vision.data.html#ImageFileList) that changes the default of `extensions` to image file extensions (which is why we used [`ImageFileList`](/vision.data.html#ImageFileList) in our previous examples). ## Labelling the inputs All the followings are methods of [`InputList`](/data_block.html#InputList). Note that some of them are primarly intended for inputs that are filenames and might not work in general situations. ``` show_doc(InputList.label_from_csv) ``` If a `folder` is specified, filenames are taken in `self.path/folder`. `suffix` is added. If `sep` is specified, splits the values in `label_col` accordingly. This method is intended for inputs that are filenames. ``` jekyll_note("This method will only keep the filenames that are both present in the csv file and in `self.items`.") show_doc(InputList.label_from_df) jekyll_note("This method will only keep the filenames that are both present in the dataframe and in `self.items`.") show_doc(InputList.label_from_folder) jekyll_note("This method looks at the last subfolder in the path to determine the classes.") show_doc(InputList.label_from_func) ``` This method is primarly intended for inputs that are filenames, but could work in other settings. ``` show_doc(InputList.label_from_re) show_doc(LabelList, title_level=3, doc_string=False) ``` A list of labelled inputs in `items` (expected to be tuples of input, label) with a `path` attribute. This class contains methods to create `SplitDataset`. ## Split the data between train and validation. The following functions are methods of [`LabelList`](/data_block.html#LabelList), to create a [`SplitData`](/data_block.html#SplitData) in different ways. ``` show_doc(LabelList.random_split_by_pct) show_doc(LabelList.split_by_files) show_doc(LabelList.split_by_fname_file) show_doc(LabelList.split_by_folder) jekyll_note("This method looks at the folder immediately after `self.path` for `valid` and `train`.") show_doc(LabelList.split_by_idx) show_doc(SplitData, title_level=3) ``` You won't normally construct a [`SplitData`](/data_block.html#SplitData) yourself, but instead will use one of the `split*` methods in [`LabelList`](/data_block.html#LabelList). ``` show_doc(SplitData.datasets) show_doc(SplitData.add_test) ``` ## Create datasets To create the datasets from [`SplitData`](/data_block.html#SplitData) we have the following class method. ``` show_doc(SplitData.datasets) show_doc(SplitDatasets, title_level=3) ``` This class can be constructed directly from one of the following factory methods. ``` show_doc(SplitDatasets.from_single) show_doc(SplitDatasets.single_from_c) show_doc(SplitDatasets.single_from_classes) ``` Then we can build the [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader) around our [`Dataset`](https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset) like this. ``` show_doc(SplitDatasets.dataloaders) ``` The methods `img_transform` and `img_databunch` used earlier are documented in [`vision.data`](/vision.data.html#vision.data). ## Utility classes ``` show_doc(ItemList, title_level=3) show_doc(PathItemList, title_level=3) ```
github_jupyter
from fastai.gen_doc.nbdoc import * from fastai.vision import * from fastai import * path = untar_data(URLs.MNIST_TINY) tfms = get_transforms(do_flip=False) data = ImageDataBunch.from_folder(path, ds_tfms=tfms, size=24) path = untar_data(URLs.MNIST_TINY) tfms = get_transforms(do_flip=False) path.ls() (path/'train').ls() data = (ImageFileList.from_folder(path) #Where to find the data? -> in path and its subfolders .label_from_folder() #How to label? -> depending on the folder of the filenames .split_by_folder() #How to split in train/valid? -> use the folders .add_test_folder() #Optionally add a test set .datasets() #How to convert to datasets? .transform(tfms, size=224) #Data augmentation? -> use tfms with a size of 224 .databunch()) #Finally? -> use the defaults for conversion to ImageDataBunch data.train_ds[0] data.show_batch(rows=3, figsize=(5,5)) data.valid_ds.classes planet = untar_data(URLs.PLANET_TINY) planet_tfms = get_transforms(flip_vert=True, max_lighting=0.1, max_zoom=1.05, max_warp=0.) data = ImageDataBunch.from_csv(planet, folder='train', size=128, suffix='.jpg', sep = ' ', ds_tfms=planet_tfms) data = (ImageFileList.from_folder(planet) #Where to find the data? -> in planet and its subfolders .label_from_csv('labels.csv', sep=' ', folder='train', suffix='.jpg') #How to label? -> use the csv file labels.csv in path, #add .jpg to the names and take them in the folder train .random_split_by_pct() #How to split in train/valid? -> randomly with the default 20% in valid .datasets() #How to convert to datasets? -> use ImageMultiDataset .transform(planet_tfms, size=128) #Data augmentation? -> use tfms with a size of 128 .databunch()) #Finally? -> use the defaults for conversion to databunch data.show_batch(rows=3, figsize=(10,8)) camvid = untar_data(URLs.CAMVID_TINY) path_lbl = camvid/'labels' path_img = camvid/'images' codes = np.loadtxt(camvid/'codes.txt', dtype=str); codes get_y_fn = lambda x: path_lbl/f'{x.stem}_P{x.suffix}' data = (ImageFileList.from_folder(path_img) #Where are the input files? -> in path_img .label_from_func(get_y_fn) #How to label? -> use get_y_fn .random_split_by_pct() #How to split between train and valid? -> randomly .datasets(SegmentationDataset, classes=codes) #How to create a dataset? -> use SegmentationDataset .transform(get_transforms(), size=96, tfm_y=True) #Data aug -> Use standard tfms with tfm_y=True .databunch(bs=64)) #Lastly convert in a databunch. data.show_batch(rows=2, figsize=(5,5)) coco = untar_data(URLs.COCO_TINY) images, lbl_bbox = get_annotations(coco/'train.json') img2bbox = {img:bb for img, bb in zip(images, lbl_bbox)} get_y_func = lambda o:img2bbox[o.name] data = (ImageFileList.from_folder(coco) #Where are the images? -> in coco .label_from_func(get_y_func) #How to find the labels? -> use get_y_func .random_split_by_pct() #How to split in train/valid? -> randomly with the default 20% in valid .datasets(ObjectDetectDataset) #How to create datasets? -> with ObjectDetectDataset #Data augmentation? -> Standard transforms with tfm_y=True .databunch(bs=16, collate_fn=bb_pad_collate)) #Finally we convert to a DataBunch and we use bb_pad_collate data.show_batch(rows=3, ds_type=DatasetType.Valid, figsize=(8,7)) show_doc(InputList, title_level=3, doc_string=False) show_doc(InputList.from_folder) show_doc(InputList.label_from_csv) jekyll_note("This method will only keep the filenames that are both present in the csv file and in `self.items`.") show_doc(InputList.label_from_df) jekyll_note("This method will only keep the filenames that are both present in the dataframe and in `self.items`.") show_doc(InputList.label_from_folder) jekyll_note("This method looks at the last subfolder in the path to determine the classes.") show_doc(InputList.label_from_func) show_doc(InputList.label_from_re) show_doc(LabelList, title_level=3, doc_string=False) show_doc(LabelList.random_split_by_pct) show_doc(LabelList.split_by_files) show_doc(LabelList.split_by_fname_file) show_doc(LabelList.split_by_folder) jekyll_note("This method looks at the folder immediately after `self.path` for `valid` and `train`.") show_doc(LabelList.split_by_idx) show_doc(SplitData, title_level=3) show_doc(SplitData.datasets) show_doc(SplitData.add_test) show_doc(SplitData.datasets) show_doc(SplitDatasets, title_level=3) show_doc(SplitDatasets.from_single) show_doc(SplitDatasets.single_from_c) show_doc(SplitDatasets.single_from_classes) show_doc(SplitDatasets.dataloaders) show_doc(ItemList, title_level=3) show_doc(PathItemList, title_level=3)
0.6137
0.980072
#### AFSK Demodulator ## Step 4: Low Pass Filter This is a Pynq portion of the AFSK demodulator project. We will be using the FPGA overlay that we created in Vivado. At this point we have created the bitstream for "project_04" and copied the bitstream, TCL wrapper, and hardware hand-off file to the Pynq board. Let's first verify that we can load the module. ``` from pynq import Overlay, Xlnk import numpy as np import pynq.lib.dma overlay = Overlay('project_04.bit') dma = overlay.demodulator.dma ``` ## Accellerating FIR Filters Below is the implementation of the AFSK demodulator in Python. We are now going to remove the low pass filter code and replace it with new code. ``` import sys sys.path.append('../../base') import numpy as np from scipy.signal import lfiltic, lfilter, firwin from scipy.io.wavfile import read from DigitalPLL import DigitalPLL from HDLC import HDLC from AX25 import AX25 import time block_size = 2640 xlnk = Xlnk() def demod(data): start_time = time.time() output = np.array([],dtype=np.bool) with xlnk.cma_array(shape=(block_size,), dtype=np.int16) as out_buffer, \ xlnk.cma_array(shape=(block_size,), dtype=np.int8) as in_buffer: for i in range(0, len(data), block_size): out_buffer[:len(data[i:i+block_size])] = data[i:i+block_size] dma.sendchannel.transfer(out_buffer) dma.recvchannel.transfer(in_buffer) dma.sendchannel.wait() dma.recvchannel.wait() output = np.append(output, in_buffer) stop_time = time.time() sw_exec_time = stop_time - start_time print('FPGA demodulator execution time: ',sw_exec_time) return output class NRZI: def __init__(self): self.state = False def __call__(self, x): result = (x == self.state) self.state = x return result audio_file = read('../../base/TNC_Test_Ver-1.102-26400-1sec.wav') sample_rate = audio_file[0] audio_data = audio_file[1] delay = 12 # ~446us bpf_delay = 70 lpf_delay = 50 filter_delay = bpf_delay + lpf_delay # demodulate the audio data d = demod(audio_data[:26400]) # like before, the sign has changed. We need to revert that before it goes into the PLL dx = np.append(d, demod(np.zeros(filter_delay)))[filter_delay:] * -1 print(dx[:16], len(dx)) # Create the PLL pll = DigitalPLL(sample_rate, 1200.0) locked = np.zeros(len(dx), dtype=int) sample = np.zeros(len(dx), dtype=int) # Clock recovery for i in range(len(dx)): sample[i] = pll(dx[i]) locked[i] = pll.locked() nrzi = NRZI() data = [int(nrzi(x)) for x,y in zip(dx, sample) if y] hdlc = HDLC() for b,s,l in zip(dx, sample, locked): if s: packet = hdlc(nrzi(b), l) if packet is not None: print(AX25(packet[1])) # xlnk.xlnk_reset() ```
github_jupyter
from pynq import Overlay, Xlnk import numpy as np import pynq.lib.dma overlay = Overlay('project_04.bit') dma = overlay.demodulator.dma import sys sys.path.append('../../base') import numpy as np from scipy.signal import lfiltic, lfilter, firwin from scipy.io.wavfile import read from DigitalPLL import DigitalPLL from HDLC import HDLC from AX25 import AX25 import time block_size = 2640 xlnk = Xlnk() def demod(data): start_time = time.time() output = np.array([],dtype=np.bool) with xlnk.cma_array(shape=(block_size,), dtype=np.int16) as out_buffer, \ xlnk.cma_array(shape=(block_size,), dtype=np.int8) as in_buffer: for i in range(0, len(data), block_size): out_buffer[:len(data[i:i+block_size])] = data[i:i+block_size] dma.sendchannel.transfer(out_buffer) dma.recvchannel.transfer(in_buffer) dma.sendchannel.wait() dma.recvchannel.wait() output = np.append(output, in_buffer) stop_time = time.time() sw_exec_time = stop_time - start_time print('FPGA demodulator execution time: ',sw_exec_time) return output class NRZI: def __init__(self): self.state = False def __call__(self, x): result = (x == self.state) self.state = x return result audio_file = read('../../base/TNC_Test_Ver-1.102-26400-1sec.wav') sample_rate = audio_file[0] audio_data = audio_file[1] delay = 12 # ~446us bpf_delay = 70 lpf_delay = 50 filter_delay = bpf_delay + lpf_delay # demodulate the audio data d = demod(audio_data[:26400]) # like before, the sign has changed. We need to revert that before it goes into the PLL dx = np.append(d, demod(np.zeros(filter_delay)))[filter_delay:] * -1 print(dx[:16], len(dx)) # Create the PLL pll = DigitalPLL(sample_rate, 1200.0) locked = np.zeros(len(dx), dtype=int) sample = np.zeros(len(dx), dtype=int) # Clock recovery for i in range(len(dx)): sample[i] = pll(dx[i]) locked[i] = pll.locked() nrzi = NRZI() data = [int(nrzi(x)) for x,y in zip(dx, sample) if y] hdlc = HDLC() for b,s,l in zip(dx, sample, locked): if s: packet = hdlc(nrzi(b), l) if packet is not None: print(AX25(packet[1])) # xlnk.xlnk_reset()
0.205775
0.79956
# Numerical Analysis - 8 ###### Rafael Barsotti #### 1) Implemente o método de Euler para resolver o problema de valor inicial (PVI) $x′ = x^{1/3}$, $x(0) = 0$. O que acontece ? (Observe que esse problema apresenta mais de uma solução analítica.) ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math as m # Questão 1 - Método de Euler #Função f(x,t) def f1(x): y = x**(1/3) return y # Método de Euler def euler_method(a,b,f1,x0,t0,n): D = np.array([[0,x0]]) h = (b-a)/n t = t0 x = x0 for i in range(n): x = x + h*f1(x) t = t + h D = np.append(D,[[t,x]], axis = 0) return D # Plot EDO def edo_plot(D): x = D[:,0] y = D[:,1] plt.plot(x,y, 'ro', color = 'b') plt.show() def euler_plot(D): x = D[:,0] y = D[:,1] plt.plot(x,y, color = 'b') plt.show() a = euler_method(0,100,f1,0,0,30) edo_plot(a) euler_plot(a) ``` #### 2) Considere o método de Heun, também conhecido como método dos trapézios para EDO’s ou método de Euler melhorado, dado por: #### $\overline{x}(t + h) = x(t) + hf(t, x(t))$ #### $x(t + h) = x(t) + \frac{h}{2}[f(t, x(t)) + f(t + h, \overline{x}(t + h))]$ #### (a) Utilize o método de Heun (na mão!) para obter uma solução para o PVI $x′ = −x + t + \frac{1}{2}$, $x(0) = 1$ no intervalo $[0, 1]$ com $h = 0.1$. Interpolando os pontos por um spline de ordem 1 obtenha a chamada aproximação poligonal de Euler. ``` #Questão 2a - Método de Heun #Função f(x,t) def f2(x,t): y = -x + t + 1/2 return y # Método de Heun def heun_method(f2,n): t = 0 x = 1 h = 0.1 D = np.array([[t,x]]) for i in range(n): xbarra = x + h*f2(x,t) x = x + h/2*(f2(x,t)+f2(xbarra,t) t = t + h print(t,xbarra,x) heun_method(f2,10) ``` #### (b) Implemente o método de Heun para obter uma solução para o PVI $x′ = −100x^2$ , $x(0) = 1$ com $h = 0.1$. Agora substitua $\overline{x}(t + h)$ por $x(t + h)$. Explique o que acontece. ``` #Questão 2b - Método de Heun #Função f(x,t) def f2(x): y = -100*(x**2) return y # Método de Heun def heun_method(f2,n): t = 0 x = 1 h = 0.1 D = np.array([[t,x]]) for i in range(n): xbarra = x + h*f2(x) x = x + h/2*(f2(x)+f2(xbarra)) t = t + h D = np.append(D,[[t,x]], axis = 0) return D ``` #### 3) Mostre que o método de Heun é um método de Runge-Kutta. Qual é a ordem? #### 4) Considere o PVI $x′ = (tx)^3 −(\frac{x}{t})^2$, $x(1) = 1$. Utilize (na mão) os métodos de Taylor e Runge-Kutta de ordem 2 para obter aproximações para $x(1 + h)$ com $h = 0.1$. Compare as respostas. #### 5a) Resolva o PVI $x′ = 10x − 5t^2 + 11t − 1$, $x(0) = 0$. Com $h = 2^{−8}$, obtenha uma solução computacional do PVI no intervalo $[0, 3]$ utilizando o RK4 descrito em sala. Faça um gráfico com a solução analítica e a aproximação poligonal obtida utilizando os pontos obtidos pelo RK4. ``` #Questão 5a - Método de RK4 # Função f(x,t) def f3(x,t): y = 10*x - 5*(t**2) + 11*t - 1 return y def f3_analytic(x,n,h): t = 0 c1 = x D = np.array([[t,x]]) for i in range(n): t = t + h x = c1*m.e**(10*t) + (t**2)/2 - t D = np.append(D,[[t,x]], axis = 0) return D # Método RK4 def rk4_method(f3,x,t,h,n): D = np.array([[t,x]]) for i in range(n): K1 = h*f3(x,t) K2 = h*f3(x+(1/2*K1),t+(h*1/2)) K3 = h*f3(x+(1/2*K2),t+(h*1/2)) K4 = h*f3(x+K3,t+h) x = x + 1/6*(K1 + 2*K2 + 2*K3 + K4) t = t + h D = np.append(D,[[t,x]], axis = 0) return D def erro_global(d1,d2): e = d2[:,1] - d1[:,1] error = np.amax(e) print("O erro global é {}".format(error)) # Solucao Analitica com c = 0 D = f3_analytic(0,768,2**-8) euler_plot(D) # Plot RK4 h = 2**-8 d = rk4_method(f3,0,0,h,768) edo_plot(d) euler_plot(d) ``` #### 5b) Refaça o item anterior substituindo a condição inicial por $x(0) = \epsilon$, com $\epsilon = 0.0001$. Obtenhao erro global, isto é, a máxima distância entre a solução analítica e a aproximação numérica. ``` # Plot Solucao Analitica c1 = 0.0001 D = f3_analytic(0.0001,768,2**-8) euler_plot(D) # Plot RK4 h = 2**-8 e = 0.0001 d = rk4_method(f3,e,0,h,768) edo_plot(d) euler_plot(d) erro_global(d,D) ``` #### 6) Determine se as soluções da EDO $x′ = t(x^3−6x^2+15x)$ convergem ou divergem uma das outras.
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math as m # Questão 1 - Método de Euler #Função f(x,t) def f1(x): y = x**(1/3) return y # Método de Euler def euler_method(a,b,f1,x0,t0,n): D = np.array([[0,x0]]) h = (b-a)/n t = t0 x = x0 for i in range(n): x = x + h*f1(x) t = t + h D = np.append(D,[[t,x]], axis = 0) return D # Plot EDO def edo_plot(D): x = D[:,0] y = D[:,1] plt.plot(x,y, 'ro', color = 'b') plt.show() def euler_plot(D): x = D[:,0] y = D[:,1] plt.plot(x,y, color = 'b') plt.show() a = euler_method(0,100,f1,0,0,30) edo_plot(a) euler_plot(a) #Questão 2a - Método de Heun #Função f(x,t) def f2(x,t): y = -x + t + 1/2 return y # Método de Heun def heun_method(f2,n): t = 0 x = 1 h = 0.1 D = np.array([[t,x]]) for i in range(n): xbarra = x + h*f2(x,t) x = x + h/2*(f2(x,t)+f2(xbarra,t) t = t + h print(t,xbarra,x) heun_method(f2,10) #Questão 2b - Método de Heun #Função f(x,t) def f2(x): y = -100*(x**2) return y # Método de Heun def heun_method(f2,n): t = 0 x = 1 h = 0.1 D = np.array([[t,x]]) for i in range(n): xbarra = x + h*f2(x) x = x + h/2*(f2(x)+f2(xbarra)) t = t + h D = np.append(D,[[t,x]], axis = 0) return D #Questão 5a - Método de RK4 # Função f(x,t) def f3(x,t): y = 10*x - 5*(t**2) + 11*t - 1 return y def f3_analytic(x,n,h): t = 0 c1 = x D = np.array([[t,x]]) for i in range(n): t = t + h x = c1*m.e**(10*t) + (t**2)/2 - t D = np.append(D,[[t,x]], axis = 0) return D # Método RK4 def rk4_method(f3,x,t,h,n): D = np.array([[t,x]]) for i in range(n): K1 = h*f3(x,t) K2 = h*f3(x+(1/2*K1),t+(h*1/2)) K3 = h*f3(x+(1/2*K2),t+(h*1/2)) K4 = h*f3(x+K3,t+h) x = x + 1/6*(K1 + 2*K2 + 2*K3 + K4) t = t + h D = np.append(D,[[t,x]], axis = 0) return D def erro_global(d1,d2): e = d2[:,1] - d1[:,1] error = np.amax(e) print("O erro global é {}".format(error)) # Solucao Analitica com c = 0 D = f3_analytic(0,768,2**-8) euler_plot(D) # Plot RK4 h = 2**-8 d = rk4_method(f3,0,0,h,768) edo_plot(d) euler_plot(d) # Plot Solucao Analitica c1 = 0.0001 D = f3_analytic(0.0001,768,2**-8) euler_plot(D) # Plot RK4 h = 2**-8 e = 0.0001 d = rk4_method(f3,e,0,h,768) edo_plot(d) euler_plot(d) erro_global(d,D)
0.353317
0.958226
# Conducting a simulation Running a simulation means taking a model and sampling sort of distribution with it. ![Example simulation][/images/mm/particle-box.gif] ## Recapping molecular modelling Remember, our **model** from a molecular modelling perspective is the **potential energy**, which depends on the coordinates of every atom or particle in the system. We can either model the system energy using **QM or MM** methods. QM methods are more accurate, but more expensive. MM methods simplify away some of the less-relevant details (this depends on your system), make some approximations, and allow us to study larger and slower systems. ## The Boltzmann distribution The **Boltzmann distribution** describes the probability of observing **states** as a function of its energy and other **thermodynamic variables** (like the temperature). Delving into the thermodynamic theory, *the Boltzmann distribution is the distribution that maximizes a system's entropy*, so this is a physically-rooted distribution. Concisely put into an equation: $\Huge p_i \; \alpha \; e^{E_i/k_BT}$ where $p_i$ is the probability of a state, $E$ is the energy of the system, $k_b$ is Boltzmann's constant, and $T$ is the temperature ## What is a 'state'? In the Boltmzann distribution, a state refers to an energetic state (which can be associated to a chemical structure's 3D coordinates. Going further, depending on our thermodynamic conditions, we have **macrostates** that desribe a system's macroscopic properties (like temperature, pressure, volume, energy, number of particles). There are a set of **microstates** that can satisfy or achieve a particular macrostate. For example, if you had 3 coins, you could have a macrostate consisting of 2 Tails and 1 Head. The corresopnding micorstates might be HTT, THT, TTH # Application to molecular simulation One often overlooked fact is that *all molecules move around, a lot or a little* (unless you're at absolute zero but that's not the point). Thermal motion means that every atom vibrates a little bit - every molecule can wiggle ever so slightly or fly around. However, *the physical phenomenon that atoms move around is the whole reason we have a distribution of configurations (coordinates)* Under the Boltzmann distribution, the probability of witnessing a chemical microstate (a particular set of coordinates that a chemical configuration occupies) is related to the energy of that state. *If a particular configuration is high-energy, we probably won't witness it. If it low-energy, there is a good chance we will* ## Monte Carlo methods Monte carlo (MC) sampling is not unique to molecular simulation, but molecular modellers do like to implement MC methods. Briefly, MC methods involve a trial where you try to change/alter some part of your system. In molecular modeling, your *MC trial moves involve altering your configuration* (rotating a molecule, displacing an atom, stretching a bond, etc.) The *choice to accept this move depends on the energy before and after the trial move*. If the energy is lower, we accept the move and proceed with the simulation. If the energy is higher, we calculate the relative probabilities (according to the Boltzmann distribution), and compare that to a randomly-generated number; we either reject the move and propose a new one or accept and proceed. There are lots of different algorithms, but a common one in the molecular modelling field is the **Metropolis-Hastings** algorithm If you *sample a lot of configurations*, you can eventually get a good idea of the distribution of various configurations of your system. From this resultant sample or **trajectory**, we can start computing various (static) properties. By nature of the sampling, the configurations are somewhat independent and uncorrelated compared to other sampling methods ## Molecular dynamics methods $\Huge F \; = \; ma$ In molecular dynamics (MD) sampling, we utilize kinetic energy and momentum to actually simulate the motion of these atoms. This is where we bring **Newton's laws of motion** in order to physically capture these motions - *the acceleration on an object is related to the forces acting upon it* To compute the forces acting upon each atom, we look back to another physical relationship - *force is the negative derivative of energy with respect to distance*. This works well because now we we can *relate motion to our molecular model*; given the energy of our system, compute the gradient to get the forces, and these forces dictate the acceleration $\Huge F(\vec r) = -\nabla U(\vec r)$ There a variety of other formalisms that have been used in MD like **Hamiltonian** or **Lagrangian mechanics**, but the idea is to relate potential and kinetic energy to the motion of a system We also know that $\huge a = \frac{d^2 x}{d t^2}$ Which means we can relate acceleration to position via a second order ordinary differential equation. If we integrate this, we can get a system's position over time. This is very hard to do analytically, so we often resort to various numerical methods to integrate a second order ODE (compute the gradient and take a small step in that direction). In MD, we call this an **integrator**, and the field is very interested in all the different integration algorithms, their computational complexity, and overall stability (energy conservation versus time step, time-reversibility, among others). Don't forget, this integration means we now also account for things like velocity and kinetic energy (which follow the **Maxwell-Boltzmann distribution**) To summarize molecular dynamics, we are *integrating Newton's equations of motion over time according to a potential energy function*. After integrating for a finite number of steps, we have sampled a number of configurations that are more correlated to each other compared to MC methods. ### Statistical side note As a molecular modeller venturing into broader areas of statistics and data science, I find myself trying to relate concepts like Markov chain Monte Carlo or Hamiltonian dynamics back to these molecular modelling notions of MC and MD. I think there are similarities in that the MC analogs are drawing random samples, but the Hamiltonian and MD methods are accounting for some sort of kinetics or momentum. Even the notion of some steepest descent gradient algorithms reminds me that we essentially compute a gradient (force) of our objecive function (energy). ## The law of large numbers, ergodicity, and phase space As in statistics, the only way we can reliably trust our sample is if we *draw enough samples*. If we sample enough, the sample statistics and population statistics relate well. In simulation, before we can even begin to think about drawing enough samples, we have to draw *physically correct* samples. We call this **ergodicity** - when our the probability distributions from our simulations don't change much. This means we need to run a simulation long enough such that our sampled configurations results replicate the underlying physical distributions. Here's a more involved discussion. For N atoms, we have 6 N variables (for the 3 dimensions we have a velocity/momentum and a position). This results in a 6N **phase space**. Over the course of the simulation, we are effectively traversing through 6N phase space, with some regions being more "popular" or favorable than others. When this probability density no longer changes with respect to time, our system is ergodic and we just need to generate a lot of samples from this probability distribution. The formulation (**Liouville's theorem**) is as follows $\large \frac{\partial \rho}{\partial t} = -iL = 0$ A simpler way of thinking about this: you can start a simulation from some very unrealistic coordinates (like water in a crystalline configuration even though you're at room temperature), but if you simulate long enough, eventually you begin visiting only the physically-realistic and probabilistic configurations. At this point, your system is **equilibrated** and then you begin the task of sampling from this distribution. So if you run a 100 ns simulation, you might discard the first 20 ns as "burn-in" or "equilibration" when you were trying to hit equilibration. The other 80 ns you actually care about and analyze - this is your "production" run where you are reliably sampling from the correct distribution. ## MC vs MD There are a variety of things to think about here: computational complexity, equilibration, and the physical properties you want to measure. But at the end of each simulation, you end up with a series of configurations (coordinates). ### Computational complexity In most force fields (potential energy functions), bonded interactions are cheap because each atom participates in maybe a dozen different bonded interactions. Nonbonded interactions are much harder becuase each atom participates in a nonbonded interaction with *every other atom in your system*, this is $O(n^2)$, and these nonbonded, pairwise interactions are *the most expensive calculations in a simulation code*. In reality, there are some simulation tricks to speed up this pairwise computation to only look at the relevant/nearby atoms (neighbor lists) or use reciprocal space to rapidly compute long-distance interactions (Ewald sums) In MC, you don't move EVERY atom, you move a few or just one. To evaluate a trial move, you need to compute how the energy changes. Fortunately, for the 99% of atoms that didn't move, that saves you some energy calculations. You only need to calculate the energy for the part of the system that changed. In MD, you are moving EVERY atom, so you have to do this $O(n^2)$ calculation every, single time. So comparing each iteration, a single MC iteration is faster than a single MD iteration. Actually, for various reasons, MD algorithms have found success being implemented as GPU kernels, so MD is really accelerated by GPUs. The complexity of MC has inhibited MC packages from really harnessing the computational power of a GPU. Don't get me wrong, there are some MC packages that utilize the GPU fantastically well, but you can find more MD packages that use the GPU. ### Equilibration MC means we take "random" moves - we could twist a long polymer, move an atom halfway across the simulation box, or something creative. Because MD aims to simulate the motion of atoms, our moves are somewhat constrained to local displacements. With a wider variety, and more "radical" moves, MC can reach equilibration faster than MD, whose moves are very dependent on small displacements ### Physical properties It's 2-0, so we have to find something in favor of MD. Some physical properties depend on the time-evolved-dynamics of a system - we care about how the coordinates relate to each other over time. MC cannot do this because each configuration is fairly uncorrelated from the previous one. In MD, these configurational correlations help us calculate transport properties like viscosity and diffusion. MC has a hard time computing these properties due to the lack of correlation between configurations ## A grad student confession Honestly, most comptuational grad students don't think about these underlying theories or formulations that often. We're more concerned with applying them to do our research. We often take coursework that covers these concepts, but more often than not, we shrug off simulation techniques as just calculating energy/forces and moving atoms. In terms of implementing these algorithms, they are already well-implemented in existing software packages. We don't have to write our Metropolis-Hastings algorithms, MC moves, or integrators - other generations of academics, scientists, and engineers have constructed and tested these tools and made sure they work. They made way for newer generations of students to spend their time applying these tools to research. Usually, a particular lab or field gravtitates to either MC or MD, and then that becomes the learning environment and code infrastructure for new students. Occasionally we move into another method, but only if the scientific problem truly necessitates using another method. Should the (unfortunate) time come when we have to find bugs in these packages, then we dust off the textbooks and re-re-re-re-learn these algorithms and techniques. # Conclusion There are a variety of simulation/sampling techniques (MD or MC), each with its own perks and drawbacks. Fundamentally, there is a lot of derivation and proof that validates these methods in sampling the Boltzmann distribution. The tools of other scientists and engineers have allowed us to study interesting scientific problems without being "caught in the weeds". In broader statistical/data science perspectives, we use simulation methods to sample from a distribution and compute various properties (some dependent on time-correlations), and we have to ensure that we have correctly sampled enough to draw reliable conclusions. Some build the model and simulation cornerstones, others apply these tools as they see fit.
github_jupyter
# Conducting a simulation Running a simulation means taking a model and sampling sort of distribution with it. ![Example simulation][/images/mm/particle-box.gif] ## Recapping molecular modelling Remember, our **model** from a molecular modelling perspective is the **potential energy**, which depends on the coordinates of every atom or particle in the system. We can either model the system energy using **QM or MM** methods. QM methods are more accurate, but more expensive. MM methods simplify away some of the less-relevant details (this depends on your system), make some approximations, and allow us to study larger and slower systems. ## The Boltzmann distribution The **Boltzmann distribution** describes the probability of observing **states** as a function of its energy and other **thermodynamic variables** (like the temperature). Delving into the thermodynamic theory, *the Boltzmann distribution is the distribution that maximizes a system's entropy*, so this is a physically-rooted distribution. Concisely put into an equation: $\Huge p_i \; \alpha \; e^{E_i/k_BT}$ where $p_i$ is the probability of a state, $E$ is the energy of the system, $k_b$ is Boltzmann's constant, and $T$ is the temperature ## What is a 'state'? In the Boltmzann distribution, a state refers to an energetic state (which can be associated to a chemical structure's 3D coordinates. Going further, depending on our thermodynamic conditions, we have **macrostates** that desribe a system's macroscopic properties (like temperature, pressure, volume, energy, number of particles). There are a set of **microstates** that can satisfy or achieve a particular macrostate. For example, if you had 3 coins, you could have a macrostate consisting of 2 Tails and 1 Head. The corresopnding micorstates might be HTT, THT, TTH # Application to molecular simulation One often overlooked fact is that *all molecules move around, a lot or a little* (unless you're at absolute zero but that's not the point). Thermal motion means that every atom vibrates a little bit - every molecule can wiggle ever so slightly or fly around. However, *the physical phenomenon that atoms move around is the whole reason we have a distribution of configurations (coordinates)* Under the Boltzmann distribution, the probability of witnessing a chemical microstate (a particular set of coordinates that a chemical configuration occupies) is related to the energy of that state. *If a particular configuration is high-energy, we probably won't witness it. If it low-energy, there is a good chance we will* ## Monte Carlo methods Monte carlo (MC) sampling is not unique to molecular simulation, but molecular modellers do like to implement MC methods. Briefly, MC methods involve a trial where you try to change/alter some part of your system. In molecular modeling, your *MC trial moves involve altering your configuration* (rotating a molecule, displacing an atom, stretching a bond, etc.) The *choice to accept this move depends on the energy before and after the trial move*. If the energy is lower, we accept the move and proceed with the simulation. If the energy is higher, we calculate the relative probabilities (according to the Boltzmann distribution), and compare that to a randomly-generated number; we either reject the move and propose a new one or accept and proceed. There are lots of different algorithms, but a common one in the molecular modelling field is the **Metropolis-Hastings** algorithm If you *sample a lot of configurations*, you can eventually get a good idea of the distribution of various configurations of your system. From this resultant sample or **trajectory**, we can start computing various (static) properties. By nature of the sampling, the configurations are somewhat independent and uncorrelated compared to other sampling methods ## Molecular dynamics methods $\Huge F \; = \; ma$ In molecular dynamics (MD) sampling, we utilize kinetic energy and momentum to actually simulate the motion of these atoms. This is where we bring **Newton's laws of motion** in order to physically capture these motions - *the acceleration on an object is related to the forces acting upon it* To compute the forces acting upon each atom, we look back to another physical relationship - *force is the negative derivative of energy with respect to distance*. This works well because now we we can *relate motion to our molecular model*; given the energy of our system, compute the gradient to get the forces, and these forces dictate the acceleration $\Huge F(\vec r) = -\nabla U(\vec r)$ There a variety of other formalisms that have been used in MD like **Hamiltonian** or **Lagrangian mechanics**, but the idea is to relate potential and kinetic energy to the motion of a system We also know that $\huge a = \frac{d^2 x}{d t^2}$ Which means we can relate acceleration to position via a second order ordinary differential equation. If we integrate this, we can get a system's position over time. This is very hard to do analytically, so we often resort to various numerical methods to integrate a second order ODE (compute the gradient and take a small step in that direction). In MD, we call this an **integrator**, and the field is very interested in all the different integration algorithms, their computational complexity, and overall stability (energy conservation versus time step, time-reversibility, among others). Don't forget, this integration means we now also account for things like velocity and kinetic energy (which follow the **Maxwell-Boltzmann distribution**) To summarize molecular dynamics, we are *integrating Newton's equations of motion over time according to a potential energy function*. After integrating for a finite number of steps, we have sampled a number of configurations that are more correlated to each other compared to MC methods. ### Statistical side note As a molecular modeller venturing into broader areas of statistics and data science, I find myself trying to relate concepts like Markov chain Monte Carlo or Hamiltonian dynamics back to these molecular modelling notions of MC and MD. I think there are similarities in that the MC analogs are drawing random samples, but the Hamiltonian and MD methods are accounting for some sort of kinetics or momentum. Even the notion of some steepest descent gradient algorithms reminds me that we essentially compute a gradient (force) of our objecive function (energy). ## The law of large numbers, ergodicity, and phase space As in statistics, the only way we can reliably trust our sample is if we *draw enough samples*. If we sample enough, the sample statistics and population statistics relate well. In simulation, before we can even begin to think about drawing enough samples, we have to draw *physically correct* samples. We call this **ergodicity** - when our the probability distributions from our simulations don't change much. This means we need to run a simulation long enough such that our sampled configurations results replicate the underlying physical distributions. Here's a more involved discussion. For N atoms, we have 6 N variables (for the 3 dimensions we have a velocity/momentum and a position). This results in a 6N **phase space**. Over the course of the simulation, we are effectively traversing through 6N phase space, with some regions being more "popular" or favorable than others. When this probability density no longer changes with respect to time, our system is ergodic and we just need to generate a lot of samples from this probability distribution. The formulation (**Liouville's theorem**) is as follows $\large \frac{\partial \rho}{\partial t} = -iL = 0$ A simpler way of thinking about this: you can start a simulation from some very unrealistic coordinates (like water in a crystalline configuration even though you're at room temperature), but if you simulate long enough, eventually you begin visiting only the physically-realistic and probabilistic configurations. At this point, your system is **equilibrated** and then you begin the task of sampling from this distribution. So if you run a 100 ns simulation, you might discard the first 20 ns as "burn-in" or "equilibration" when you were trying to hit equilibration. The other 80 ns you actually care about and analyze - this is your "production" run where you are reliably sampling from the correct distribution. ## MC vs MD There are a variety of things to think about here: computational complexity, equilibration, and the physical properties you want to measure. But at the end of each simulation, you end up with a series of configurations (coordinates). ### Computational complexity In most force fields (potential energy functions), bonded interactions are cheap because each atom participates in maybe a dozen different bonded interactions. Nonbonded interactions are much harder becuase each atom participates in a nonbonded interaction with *every other atom in your system*, this is $O(n^2)$, and these nonbonded, pairwise interactions are *the most expensive calculations in a simulation code*. In reality, there are some simulation tricks to speed up this pairwise computation to only look at the relevant/nearby atoms (neighbor lists) or use reciprocal space to rapidly compute long-distance interactions (Ewald sums) In MC, you don't move EVERY atom, you move a few or just one. To evaluate a trial move, you need to compute how the energy changes. Fortunately, for the 99% of atoms that didn't move, that saves you some energy calculations. You only need to calculate the energy for the part of the system that changed. In MD, you are moving EVERY atom, so you have to do this $O(n^2)$ calculation every, single time. So comparing each iteration, a single MC iteration is faster than a single MD iteration. Actually, for various reasons, MD algorithms have found success being implemented as GPU kernels, so MD is really accelerated by GPUs. The complexity of MC has inhibited MC packages from really harnessing the computational power of a GPU. Don't get me wrong, there are some MC packages that utilize the GPU fantastically well, but you can find more MD packages that use the GPU. ### Equilibration MC means we take "random" moves - we could twist a long polymer, move an atom halfway across the simulation box, or something creative. Because MD aims to simulate the motion of atoms, our moves are somewhat constrained to local displacements. With a wider variety, and more "radical" moves, MC can reach equilibration faster than MD, whose moves are very dependent on small displacements ### Physical properties It's 2-0, so we have to find something in favor of MD. Some physical properties depend on the time-evolved-dynamics of a system - we care about how the coordinates relate to each other over time. MC cannot do this because each configuration is fairly uncorrelated from the previous one. In MD, these configurational correlations help us calculate transport properties like viscosity and diffusion. MC has a hard time computing these properties due to the lack of correlation between configurations ## A grad student confession Honestly, most comptuational grad students don't think about these underlying theories or formulations that often. We're more concerned with applying them to do our research. We often take coursework that covers these concepts, but more often than not, we shrug off simulation techniques as just calculating energy/forces and moving atoms. In terms of implementing these algorithms, they are already well-implemented in existing software packages. We don't have to write our Metropolis-Hastings algorithms, MC moves, or integrators - other generations of academics, scientists, and engineers have constructed and tested these tools and made sure they work. They made way for newer generations of students to spend their time applying these tools to research. Usually, a particular lab or field gravtitates to either MC or MD, and then that becomes the learning environment and code infrastructure for new students. Occasionally we move into another method, but only if the scientific problem truly necessitates using another method. Should the (unfortunate) time come when we have to find bugs in these packages, then we dust off the textbooks and re-re-re-re-learn these algorithms and techniques. # Conclusion There are a variety of simulation/sampling techniques (MD or MC), each with its own perks and drawbacks. Fundamentally, there is a lot of derivation and proof that validates these methods in sampling the Boltzmann distribution. The tools of other scientists and engineers have allowed us to study interesting scientific problems without being "caught in the weeds". In broader statistical/data science perspectives, we use simulation methods to sample from a distribution and compute various properties (some dependent on time-correlations), and we have to ensure that we have correctly sampled enough to draw reliable conclusions. Some build the model and simulation cornerstones, others apply these tools as they see fit.
0.926487
0.987338
## Exercise 02 Metropolis simulation of the 1d quantum anharmonic oscillator. A c++ code to simulate the model is available in the folder 'code', and the data from which these plots are made are in 'code/results' ``` import matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = (20,10) plt.figure() dat = np.loadtxt("code/results/h_mu1_lamda0") plt.plot(dat[:,0],dat[:,1], '.', label="N=128") x = np.arange(-3,3,0.01) plt.plot(x, np.exp(-x*x)/np.sqrt(np.pi), '--', label="analytic") plt.xlim(-3,3) plt.title("lambda=0, mu^2=1") plt.legend() plt.show() plt.figure() dat = np.loadtxt("code/results/h_mu6") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=6") dat = np.loadtxt("code/results/h_mu3") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=3") dat = np.loadtxt("code/results/h_mu0") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=0") dat = np.loadtxt("code/results/h_mu-3") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=-3") dat = np.loadtxt("code/results/h_mu-5") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=-5") dat = np.loadtxt("code/results/h_mu-8") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=-8") plt.xlim(-3,3) plt.title("lambda=1, various mu^2") plt.legend() plt.rcParams["figure.figsize"] = (20,10) plt.show() plt.figure() dat = np.loadtxt("code/results/h_mu-1_corr") plt.errorbar(dat[:,0], dat[:,1], yerr = dat[:,2], marker = '.', label="mu^2=-1") dat = np.loadtxt("code/results/h_mu-2_corr") plt.errorbar(dat[:,0], dat[:,1], yerr = dat[:,2], marker = '.', label="mu^2=-2") dat = np.loadtxt("code/results/h_mu-3_corr") plt.errorbar(dat[:,0], dat[:,1], yerr = dat[:,2], marker = '.', label="mu^2=-3") plt.yscale("log", nonposy='clip') plt.xlim(1,50) plt.xlabel("t/a") plt.ylim(0.001,1) plt.title("Correlator: lambda=1, N=128") plt.legend() plt.rcParams["figure.figsize"] = (20,10) plt.show() plt.figure() color = ['r', 'g', 'b'] # these values for E_0 are copied from the output files in code/results: E0 = {} E0[-1]=0.50980651272806732 E0[-2]=0.33261720673993472 E0[-3]=0.12223116355668487 # value of lattice spacing to convert dimensionless lattice t/a to t. # (note this was previously missing, spotted by Carl-Joar.) a = 0.1 plt.xlim(1,24) plt.ylim(0,2.5) plt.title("E_1-E_0: lambda=1, N=128") plt.rcParams["figure.figsize"] = (20,10) for mu2 in [-1,-2,-3]: dat = np.loadtxt('code/results/h_mu'+str(mu2)+'_corr') plt.plot(2, E0[mu2], 'x', color=color[mu2], label='E_0: '+'mu^2='+str(mu2)) for dt_over_a in range(5,9): arr = [] for t_over_a in range(2,30): arr.append([t_over_a, -np.log((dat[t_over_a+dt_over_a]/dat[t_over_a])[1])/(dt_over_a*a)]) arr = np.array(arr) plt.plot(arr[:,0], arr[:,1]+E0[mu2], '.-', color=color[mu2], label = 'E_1: mu^2='+str(mu2)+' [dt/a='+str(dt_over_a)+']') plt.xlabel("t/a") plt.legend() plt.show() ```
github_jupyter
import matplotlib.pyplot as plt import numpy as np plt.rcParams["figure.figsize"] = (20,10) plt.figure() dat = np.loadtxt("code/results/h_mu1_lamda0") plt.plot(dat[:,0],dat[:,1], '.', label="N=128") x = np.arange(-3,3,0.01) plt.plot(x, np.exp(-x*x)/np.sqrt(np.pi), '--', label="analytic") plt.xlim(-3,3) plt.title("lambda=0, mu^2=1") plt.legend() plt.show() plt.figure() dat = np.loadtxt("code/results/h_mu6") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=6") dat = np.loadtxt("code/results/h_mu3") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=3") dat = np.loadtxt("code/results/h_mu0") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=0") dat = np.loadtxt("code/results/h_mu-3") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=-3") dat = np.loadtxt("code/results/h_mu-5") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=-5") dat = np.loadtxt("code/results/h_mu-8") plt.plot(dat[:,0],dat[:,1], '.-', label="mu^2=-8") plt.xlim(-3,3) plt.title("lambda=1, various mu^2") plt.legend() plt.rcParams["figure.figsize"] = (20,10) plt.show() plt.figure() dat = np.loadtxt("code/results/h_mu-1_corr") plt.errorbar(dat[:,0], dat[:,1], yerr = dat[:,2], marker = '.', label="mu^2=-1") dat = np.loadtxt("code/results/h_mu-2_corr") plt.errorbar(dat[:,0], dat[:,1], yerr = dat[:,2], marker = '.', label="mu^2=-2") dat = np.loadtxt("code/results/h_mu-3_corr") plt.errorbar(dat[:,0], dat[:,1], yerr = dat[:,2], marker = '.', label="mu^2=-3") plt.yscale("log", nonposy='clip') plt.xlim(1,50) plt.xlabel("t/a") plt.ylim(0.001,1) plt.title("Correlator: lambda=1, N=128") plt.legend() plt.rcParams["figure.figsize"] = (20,10) plt.show() plt.figure() color = ['r', 'g', 'b'] # these values for E_0 are copied from the output files in code/results: E0 = {} E0[-1]=0.50980651272806732 E0[-2]=0.33261720673993472 E0[-3]=0.12223116355668487 # value of lattice spacing to convert dimensionless lattice t/a to t. # (note this was previously missing, spotted by Carl-Joar.) a = 0.1 plt.xlim(1,24) plt.ylim(0,2.5) plt.title("E_1-E_0: lambda=1, N=128") plt.rcParams["figure.figsize"] = (20,10) for mu2 in [-1,-2,-3]: dat = np.loadtxt('code/results/h_mu'+str(mu2)+'_corr') plt.plot(2, E0[mu2], 'x', color=color[mu2], label='E_0: '+'mu^2='+str(mu2)) for dt_over_a in range(5,9): arr = [] for t_over_a in range(2,30): arr.append([t_over_a, -np.log((dat[t_over_a+dt_over_a]/dat[t_over_a])[1])/(dt_over_a*a)]) arr = np.array(arr) plt.plot(arr[:,0], arr[:,1]+E0[mu2], '.-', color=color[mu2], label = 'E_1: mu^2='+str(mu2)+' [dt/a='+str(dt_over_a)+']') plt.xlabel("t/a") plt.legend() plt.show()
0.336767
0.938011
``` import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import csv import re import seaborn; seaborn.set() %matplotlib inline #https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/knucleotide.html#knucleotide with open('main_data.csv') as f: f_csv = csv.reader(f) headers = next(f_csv) print(headers ) data = pd.read_csv('main_data.csv') data_r = data.iloc[:,[0,1,7,9]] data_lang = data_r[data_r['lang'].isin([] #+['gcc','gpp','java','node','rust','csharpcore','ghc'] #+['go','typescript'] #+['ghc','hipe','openj9','sbcl','fsharpcore'] +['ghc','fsharpcore'] #+['gpp','gcc','rust','go'] )] data_lang = data_lang[data_lang['elapsed(s)'] != 0] data_lang = data_lang[data_lang['status'] >= 0] data_binarytrees = data_lang[data_lang['name']=='binarytrees'].groupby('lang').min().sort_values(by=['lang']) data_fannkuchredux = data_lang[data_lang['name']=='fannkuchredux'].groupby('lang').min().sort_values(by=['lang']) data_fasta = data_lang[data_lang['name']=='fasta'].groupby('lang').min().sort_values(by=['lang']) data_knucleotide = data_lang[data_lang['name']=='knucleotide'].groupby('lang').min().sort_values(by=['lang']) data_mandelbrot = data_lang[data_lang['name']=='mandelbrot'].groupby('lang').min().sort_values(by=['lang']) data_nbody = data_lang[data_lang['name']=='nbody'].groupby('lang').min().sort_values(by=['lang']) data_pidigits = data_lang[data_lang['name']=='pidigits'].groupby('lang').min().sort_values(by=['lang']) data_regexredux = data_lang[data_lang['name']=='regexredux'].groupby('lang').min().sort_values(by=['lang']) data_revcomp = data_lang[data_lang['name']=='revcomp'].groupby('lang').min().sort_values(by=['lang']) data_spectralnorm = data_lang[data_lang['name']=='spectralnorm'].groupby('lang').min().sort_values(by=['lang']) #data_fasta_c = data_fasta['elapsed(s)']/data_fasta['elapsed(s)'].min() data_regexredux #plt.style.use('seaborn-whitegrid') #fig=plt.hist(data_fasta['elapsed(s)'], histtype='bar', color='steelblue') fig=plt.figure() plt.plot(data_fasta['elapsed(s)'],'-ob', label='fasta') #plt.plot(data_binarytrees['elapsed(s)'],'-og') #plt.plot(data_fannkuchredux['elapsed(s)'],'-or') #plt.plot(data_knucleotide['elapsed(s)'],'-oc') plt.plot(data_mandelbrot['elapsed(s)'],'-om', label='mandelbrot') #plt.plot(data_nbody['elapsed(s)'],'-oy') #plt.plot(data_pidigits['elapsed(s)'],'-ok', label='pidigits') plt.plot(data_regexredux['elapsed(s)'],'-og', label='regexredux') plt.plot(data_revcomp['elapsed(s)'],'-or', label='revcomp') plt.plot(data_spectralnorm['elapsed(s)'],'-oc', label='spectralnorm') plt.ylabel('elasped(s)') plt.xlim(-0.3,1.3) plt.legend(loc=0); """ plt.subplot(2,1,1) plt.title('Fasta') plt.ylabel('elapsed(s)') plt.ylim(0,5) plt.plot(data_fasta['elapsed(s)'],'-ok') plt.subplot(2,1,2) plt.plot([1,2,3],[2,3,4]) """ fig.savefig('data_1(Functional2).png') #plt.style.use('seaborn-whitegrid') fig2=plt.figure() plt.plot(data_binarytrees['elapsed(s)'],'-og', label='binarytrees') plt.plot(data_fannkuchredux['elapsed(s)'],'-or', label='fannkuchredux') plt.plot(data_knucleotide['elapsed(s)'],'-oc', label='knucleotide') plt.plot(data_nbody['elapsed(s)'],'-oy', label='nbody') plt.plot(data_pidigits['elapsed(s)'],'-ok', label='pidigits') plt.ylabel('elasped(s)') plt.xlim(-0.3,1.3) plt.legend(loc=0); fig2.savefig('data_2(Functional2).png') ```
github_jupyter
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import csv import re import seaborn; seaborn.set() %matplotlib inline #https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/knucleotide.html#knucleotide with open('main_data.csv') as f: f_csv = csv.reader(f) headers = next(f_csv) print(headers ) data = pd.read_csv('main_data.csv') data_r = data.iloc[:,[0,1,7,9]] data_lang = data_r[data_r['lang'].isin([] #+['gcc','gpp','java','node','rust','csharpcore','ghc'] #+['go','typescript'] #+['ghc','hipe','openj9','sbcl','fsharpcore'] +['ghc','fsharpcore'] #+['gpp','gcc','rust','go'] )] data_lang = data_lang[data_lang['elapsed(s)'] != 0] data_lang = data_lang[data_lang['status'] >= 0] data_binarytrees = data_lang[data_lang['name']=='binarytrees'].groupby('lang').min().sort_values(by=['lang']) data_fannkuchredux = data_lang[data_lang['name']=='fannkuchredux'].groupby('lang').min().sort_values(by=['lang']) data_fasta = data_lang[data_lang['name']=='fasta'].groupby('lang').min().sort_values(by=['lang']) data_knucleotide = data_lang[data_lang['name']=='knucleotide'].groupby('lang').min().sort_values(by=['lang']) data_mandelbrot = data_lang[data_lang['name']=='mandelbrot'].groupby('lang').min().sort_values(by=['lang']) data_nbody = data_lang[data_lang['name']=='nbody'].groupby('lang').min().sort_values(by=['lang']) data_pidigits = data_lang[data_lang['name']=='pidigits'].groupby('lang').min().sort_values(by=['lang']) data_regexredux = data_lang[data_lang['name']=='regexredux'].groupby('lang').min().sort_values(by=['lang']) data_revcomp = data_lang[data_lang['name']=='revcomp'].groupby('lang').min().sort_values(by=['lang']) data_spectralnorm = data_lang[data_lang['name']=='spectralnorm'].groupby('lang').min().sort_values(by=['lang']) #data_fasta_c = data_fasta['elapsed(s)']/data_fasta['elapsed(s)'].min() data_regexredux #plt.style.use('seaborn-whitegrid') #fig=plt.hist(data_fasta['elapsed(s)'], histtype='bar', color='steelblue') fig=plt.figure() plt.plot(data_fasta['elapsed(s)'],'-ob', label='fasta') #plt.plot(data_binarytrees['elapsed(s)'],'-og') #plt.plot(data_fannkuchredux['elapsed(s)'],'-or') #plt.plot(data_knucleotide['elapsed(s)'],'-oc') plt.plot(data_mandelbrot['elapsed(s)'],'-om', label='mandelbrot') #plt.plot(data_nbody['elapsed(s)'],'-oy') #plt.plot(data_pidigits['elapsed(s)'],'-ok', label='pidigits') plt.plot(data_regexredux['elapsed(s)'],'-og', label='regexredux') plt.plot(data_revcomp['elapsed(s)'],'-or', label='revcomp') plt.plot(data_spectralnorm['elapsed(s)'],'-oc', label='spectralnorm') plt.ylabel('elasped(s)') plt.xlim(-0.3,1.3) plt.legend(loc=0); """ plt.subplot(2,1,1) plt.title('Fasta') plt.ylabel('elapsed(s)') plt.ylim(0,5) plt.plot(data_fasta['elapsed(s)'],'-ok') plt.subplot(2,1,2) plt.plot([1,2,3],[2,3,4]) """ fig.savefig('data_1(Functional2).png') #plt.style.use('seaborn-whitegrid') fig2=plt.figure() plt.plot(data_binarytrees['elapsed(s)'],'-og', label='binarytrees') plt.plot(data_fannkuchredux['elapsed(s)'],'-or', label='fannkuchredux') plt.plot(data_knucleotide['elapsed(s)'],'-oc', label='knucleotide') plt.plot(data_nbody['elapsed(s)'],'-oy', label='nbody') plt.plot(data_pidigits['elapsed(s)'],'-ok', label='pidigits') plt.ylabel('elasped(s)') plt.xlim(-0.3,1.3) plt.legend(loc=0); fig2.savefig('data_2(Functional2).png')
0.302391
0.276245
# PVDAQ - PVData¶ This notebook is an example about how to access the PVdata and related metadata through OEDI data lake. ## 0. Prerequisites To run this example, it requires you have OEDI data lake deployed, where all quries run through. About how to deploy OEDI data lake, please refer to the documentation here - https://openedi.github.io/open-data-access-tools/. In this example, the deployed database is `oedi_data_lake`, where the tables related to pvdata are named: * `pvdaq_parquet_inverters` * `pvdaq_parquet_meters` * `pvdaq_parquet_metrics` * `pvdaq_parquet_modules` * `pvdaq_parquet_mount` * `pvdaq_parquet_other_instruments` * `pvdaq_parquet_pvdata` * `pvdaq_parquet_site` * `pvdaq_parquet_system` The staging location for queries is `s3://nrel-tests/pvdaq/`. ``` # database database_name = "oedi_pvdaq" # tables inverters_table = "pvdaq_parquet_inverters" meters_table = "pvdaq_parquet_meters" metrics_table = "pvdaq_parquet_metrics" modules_table = "pvdaq_parquet_modules" mount_table = "pvdaq_parquet_mount" other_instruments_table = "pvdaq_parquet_other_instruments" pvdata_table = "pvdaq_parquet_pvdata" site_table = "pvdaq_parquet_site" system_table = "pvdaq_parquet_system" staging_location = "s3://nrel-tests/pvdaq/" ``` ## 1. Metadata The metadata of pvdaq tables include 'Columns', 'Partition Keys' and 'Partition Values'. OEDIGlue class provides utility methods to retrieve the metadata from a given table. ``` from oedi.AWS.glue import OEDIGlue glue = OEDIGlue() # PVDAQ Site Table glue.get_table_columns(database_name, site_table) # PVDAQ System Table glue.get_table_columns(database_name, system_table) # PVDAQ Metrics Table glue.get_table_columns(database_name, metrics_table) # PVDAQ PVDATA Table glue.get_table_columns(database_name, pvdata_table) ``` ## 2. PV System Locations Visualize the locations of PV systems on the map ``` import pandas as pd from oedi.AWS.athena import OEDIAthena athena = OEDIAthena(staging_location=staging_location, region_name="us-west-2") query_string1 = f""" SELECT system.public_name, site.latitude, site.longitude FROM {database_name}.{system_table} AS system INNER JOIN {database_name}.{site_table} AS site ON cast(system.site_id as varchar)=site.site_id; """ systems = athena.run_query(query_string1) systems[["latitude", "longitude"]] = systems[["latitude", "longitude"]].apply(pd.to_numeric) import folium imap = folium.Map(location=[32.53056, -89.01959696969696], zoom_start=5, tiles="Stamen Terrain") for index, row in systems.iterrows(): folium.Marker( location=[row.latitude, row.longitude], fill_color="#43d9de", radius=8, popup=f"<i>{row.public_name}</i>", tooltip="Click Me" ).add_to(imap) imap ``` ## 3. PV System metrics ``` query_string2 = f""" select pvdata.measured_on, pvdata.value, metrics.common_name, metrics.system_id from {database_name}.{pvdata_table} as pvdata inner join {database_name}.{metrics_table} as metrics on pvdata.metric_id=metrics.metric_id where metrics.system_id=1230 AND year='2006'; """ pvdata = athena.run_query(query_string2) pvdata.head() pvdata["common_name"].unique() df = pd.DataFrame() for column in sorted(pvdata["common_name"].unique()): sub = pvdata[pvdata["common_name"] == column] sub = sub.set_index("measured_on") column = column.lower().replace(" ", "_") sub = sub.drop(columns=["common_name", "system_id"]) sub = sub.rename(columns={"value": column}) if df.empty: df = sub else: df = df.join(sub, on="measured_on") df.head() import matplotlib.pyplot as plt _, a = plt.subplots(4, 1, figsize=(18, 12), tight_layout=True) a[0].set_ylabel("unit: W") a[1].set_ylabel("unit: %") a[2].set_ylabel("unit: W/m^2") a[3].set_ylabel("unit: C") df.plot(ax=a, subplots=True) ```
github_jupyter
# database database_name = "oedi_pvdaq" # tables inverters_table = "pvdaq_parquet_inverters" meters_table = "pvdaq_parquet_meters" metrics_table = "pvdaq_parquet_metrics" modules_table = "pvdaq_parquet_modules" mount_table = "pvdaq_parquet_mount" other_instruments_table = "pvdaq_parquet_other_instruments" pvdata_table = "pvdaq_parquet_pvdata" site_table = "pvdaq_parquet_site" system_table = "pvdaq_parquet_system" staging_location = "s3://nrel-tests/pvdaq/" from oedi.AWS.glue import OEDIGlue glue = OEDIGlue() # PVDAQ Site Table glue.get_table_columns(database_name, site_table) # PVDAQ System Table glue.get_table_columns(database_name, system_table) # PVDAQ Metrics Table glue.get_table_columns(database_name, metrics_table) # PVDAQ PVDATA Table glue.get_table_columns(database_name, pvdata_table) import pandas as pd from oedi.AWS.athena import OEDIAthena athena = OEDIAthena(staging_location=staging_location, region_name="us-west-2") query_string1 = f""" SELECT system.public_name, site.latitude, site.longitude FROM {database_name}.{system_table} AS system INNER JOIN {database_name}.{site_table} AS site ON cast(system.site_id as varchar)=site.site_id; """ systems = athena.run_query(query_string1) systems[["latitude", "longitude"]] = systems[["latitude", "longitude"]].apply(pd.to_numeric) import folium imap = folium.Map(location=[32.53056, -89.01959696969696], zoom_start=5, tiles="Stamen Terrain") for index, row in systems.iterrows(): folium.Marker( location=[row.latitude, row.longitude], fill_color="#43d9de", radius=8, popup=f"<i>{row.public_name}</i>", tooltip="Click Me" ).add_to(imap) imap query_string2 = f""" select pvdata.measured_on, pvdata.value, metrics.common_name, metrics.system_id from {database_name}.{pvdata_table} as pvdata inner join {database_name}.{metrics_table} as metrics on pvdata.metric_id=metrics.metric_id where metrics.system_id=1230 AND year='2006'; """ pvdata = athena.run_query(query_string2) pvdata.head() pvdata["common_name"].unique() df = pd.DataFrame() for column in sorted(pvdata["common_name"].unique()): sub = pvdata[pvdata["common_name"] == column] sub = sub.set_index("measured_on") column = column.lower().replace(" ", "_") sub = sub.drop(columns=["common_name", "system_id"]) sub = sub.rename(columns={"value": column}) if df.empty: df = sub else: df = df.join(sub, on="measured_on") df.head() import matplotlib.pyplot as plt _, a = plt.subplots(4, 1, figsize=(18, 12), tight_layout=True) a[0].set_ylabel("unit: W") a[1].set_ylabel("unit: %") a[2].set_ylabel("unit: W/m^2") a[3].set_ylabel("unit: C") df.plot(ax=a, subplots=True)
0.345547
0.843959
# Preprocessing Boston Airbnb data # 1. Import libraries ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import seaborn as sns %matplotlib inline ``` # 2. Read in data and take a first look ``` # read data data = pd.read_csv('Boston Airbnb/listings.csv', sep=',') listings_df = data.copy() # display all columns at once pd.set_option('display.max_columns', 100) listings_df.head() ``` ### take a look at the size of the data --> approx. 3600 rows and 95 columns ``` # data shape listings_df.shape ``` ### data columns...many columns seem to be of no interest for us ``` # data columns listings_df.columns ``` # 3. Important columns / Columns of interest ## 3a. Remove columns with >= 98% NaN ``` # means of missing values listings_df.isnull().mean().sort_values(ascending=False).head(10) # find columns with >= 98% NaN's print('listings_df shape = {}'.format(listings_df.shape)) index1 = np.where(listings_df.isnull().mean()>=0.98)[0] drop_cols = listings_df.columns[index1] print('') print('drop_columns = {}'.format(drop_cols)) # remove said columns listings_df_reduced = listings_df.drop(columns=drop_cols) print('') print('listings_df_reduced shape without >= 98% NaN columns = {}'.format(listings_df_reduced.shape)) # take another look at the data listings_df_reduced.head() # ... and its columns listings_df_reduced.columns ``` # 3b. Select columns of possible interest (resp. drop columns of no interest) ``` # columns of interest cols_to_drop = ['id', 'listing_url', 'scrape_id', 'last_scraped', 'name', 'summary', 'space', 'description', 'experiences_offered', 'neighborhood_overview', 'notes', 'transit', 'access', 'interaction', 'house_rules', 'thumbnail_url', 'medium_url', 'picture_url', 'xl_picture_url', 'host_id', 'host_url', 'host_name', 'host_since', 'host_location', 'host_about', 'host_thumbnail_url', 'host_picture_url', 'host_neighbourhood', 'host_verifications', 'street', 'neighbourhood', 'city', 'state', 'zipcode', 'market', 'smart_location', 'country_code', 'country', 'amenities', 'weekly_price', 'monthly_price', 'calendar_updated', 'availability_30', 'availability_60', 'availability_90', 'availability_365', 'calendar_last_scraped', 'first_review', 'last_review',] # select columns of interest listings_df_reduced = listings_df_reduced.drop(columns=cols_to_drop) listings_df_reduced.shape # look at the data listings_df_reduced.head() # data types of columns listings_df_reduced.dtypes.sort_values() # check for missing values listings_df_reduced.isnull().mean().sort_values() ``` # 3c. Observations: * price & extra_people have no missing values * cleaning_fee and security_deposit have missing values but we assume that missing values correspond to 0 USD * extra_people, cleaning_fee, security_deposit & price are listed as strings/objects, due to the "$" sign. We should convert these columns to float * it does not clearly state if price is per night or per minimum nights resp. per 1 Person or for more people --> we need to make some assumptions # 4. Convert prices and fees to float ``` def convert_prices_and_fees_to_float(df, price_and_fees_cols): """ function to convert price/fee columns to float """ # fill missing values with 0 df[price_and_fees_cols] = df[price_and_fees_cols].fillna('$0.0') # remove '$' and ',' symbols for col_temp in price_and_fees_cols: df[col_temp] = df[col_temp].apply(lambda x: x.replace('$', '').replace(',','')).astype(float) return df # call function above price_and_fees_cols = ['extra_people', 'price', 'cleaning_fee', 'security_deposit'] listings_df_reduced = convert_prices_and_fees_to_float(listings_df_reduced, price_and_fees_cols) # check if missing values were replaced listings_df_reduced.isnull().mean().sort_values() # check if prices and fees are float now listings_df_reduced.dtypes.sort_values() ``` # 4a. add a total_price column * We assume "price" is the price per night per airbnb. We add a total_price column (price+cleaning_fee/minimum_nights) which is supposed to break down the cleaning fee and evenly add it to the price per night. * Obsivously in this case we assume that people stay for a minimum_nights amount of nights (which may not be 100% correct but we do not have much more information on that) ``` # calculate total price per night as price + cleaning_fee evenly distributed over the minimum_nights listings_df_reduced['total_price_per_night'] = listings_df_reduced['price']+listings_df_reduced['cleaning_fee']/listings_df_reduced['minimum_nights'] listings_df_reduced[['price', 'cleaning_fee', 'minimum_nights','total_price_per_night']][:10] ``` # 5. Take another look at the data ``` # look at the data listings_df_reduced.head(10) # data shape listings_df_reduced.shape ``` # 6. Convert True/False (t/f) columns to 1/0 ``` def convert_true_false_to_1_0(df, true_false_columns): """ function to convert boolean columns (true/false) to integer columns with 1/0 """ for col_temp in true_false_columns: df[col_temp] = df[col_temp].apply(lambda x: x.replace('t', '1').replace('f','0')).astype(int) return df # call function just above and convert columns true_false_columns = ['host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'is_location_exact', 'requires_license', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification'] listings_df_reduced = convert_true_false_to_1_0(listings_df_reduced, true_false_columns) listings_df_reduced.head(10) # check if true/false columns were converted to 1/0 (int) listings_df_reduced.dtypes.sort_values() # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() ``` # 7. Remove/Impute observations with missing values ##### We are going to remove missing values in the following columns (because these columns are important for the model later on and can not be imputed in a useful way): * property_type * beds * bedrooms * bathrooms ``` # drop columns with missing values in the 4 mentioned columns listings_df_reduced = listings_df_reduced.dropna(subset=['property_type', 'beds', 'bedrooms', 'bathrooms']) # data shape listings_df_reduced.shape ``` ### We reduced our dataset from 3585 rows to 3554 rows which means we removed 31 observations ``` # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() ``` ### For some reason there are airbnbs that do not have beds (although bed_type='Real Bed')?? We want to remove those observations ``` np.unique(listings_df_reduced['beds']) listings_df_reduced[listings_df_reduced['beds']==0].head(10) # remove observations where "beds=0" listings_df_reduced = listings_df_reduced[listings_df_reduced['beds'] > 0] # data shape listings_df_reduced.shape ``` ###### We removed another 4 observations ### We still have missing values in the review columns and host response/acceptance columns ``` # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() ``` ### We are going to impute the missing review scores with the mean of the corresponding columns ``` # all different review columns reviews = [i for i in listings_df_reduced if 'review' in i] reviews # mean function fill_mean = lambda col: col.fillna(col.mean()) # fill missing values with mean of corresponding column fill_df = listings_df_reduced.loc[:, reviews].apply(fill_mean, axis=0) # replace review columns with "mean-imputed" adjusted columns listings_df_reduced.loc[:, reviews] = fill_df.loc[:, :] listings_df_reduced[reviews].head(10) # data shape (obvisouly no loss of observations because we are only imputing values) listings_df_reduced.shape # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() ``` ### We still have missing values in the host acceptance/response columns. We are going to impute those observations ``` def convert_host_acceptance_and_response_columns_to_float_and_impute(df, host_cols): """ function to convert host response/acceptance columns impute values """ for col_temp in host_cols: df[col_temp] = df[col_temp].map(lambda x: x.replace('%',''), na_action='ignore') df[col_temp] = df[col_temp].fillna(method="backfill") return df # considered columns and call function just above host_cols = ['host_acceptance_rate', 'host_response_rate', 'host_response_time'] listings_df_reduced = convert_host_acceptance_and_response_columns_to_float_and_impute(listings_df_reduced, host_cols) # convert the rate-columns to float listings_df_reduced[['host_acceptance_rate', 'host_response_rate']] = listings_df_reduced[['host_acceptance_rate', 'host_response_rate']].astype(float) listings_df_reduced.head() # Now we converted many columns to int and float. Everything that is still of type "object" will be converted to dummies later listings_df_reduced.dtypes.sort_values() # And we finally do not have missing values anymore listings_df_reduced.isnull().sum().sort_values() ``` ### Now we have no missing values left in the dataset # 8. Distributions & Correlations in the data ``` # histogram of "total_price_per_night" plt.figure() plt.hist(listings_df_reduced['total_price_per_night'], bins= 50) plt.xlabel('total_price_per_night') plt.ylabel('frequency') plt.title('total_price_per_night') plt.show() ``` ### We notive a right skewed distribution of the total_price_per_night (which will later on be our response variable). In this case we might want to think about a transformation (such as log or sqrt) ### Log transformed data ``` # histogram of the log of "total_price_per_night" plt.figure() plt.hist(np.log(listings_df_reduced['total_price_per_night']), bins= 50) plt.xlabel('log(total_price_per_night)') plt.ylabel('frequency') plt.title('log(total_price_per_night)') plt.show() ``` ### We notice a log transformation seems to be a good one (will be done later in the other notebook when fitting the model) ``` # Take a look at the lowest prices min_price = min(listings_df_reduced['total_price_per_night']) print('Minimum price per night = {}'.format(min_price)) listings_df_reduced.sort_values(by=['total_price_per_night']).head() # Take a look a the highest prices max_price = max(listings_df_reduced['total_price_per_night']) print('Maximum price per night = {}'.format(max_price)) listings_df_reduced.sort_values(by=['total_price_per_night'], ascending=False).head() ### We have prices in the range from 10USD to 4000USD. In my opinion Airbnbs are mostly booked by younger people (which are usually not the rich age group). Therefore we want to remove Airbnbs that are too expensive, let's say where 'total_price_per_night > 500'. We also want to remove Airbnbs that are too cheap, e.g. 'total_price_per_night < 20' ### Moreover Airbnbs with really high security deposits (let's say >500 USD) will be removed ``` # 8a. Outliers ### The data seems to contain some outliers. We are going to remove: * total_price_per_night > 500 USD or total_price_per_night < 20 USD (Reason: Airbnbs are mostly booked by younger people (which are usually not the rich age group)) * security_deposit > 500 (Reason: People do not like to pay very high security deposits) * bathrooms >= 5 (Reason: Take a look at the table just below...some Airbnbs have 5 or more bathrooms but only 1 bed...this seems weird to me) * accommodates > 6 (Reason: Airbnbs in Boston are probably booked for a city trip for a couple of days. People usually do not go on city trips with too many people. Maybe a car full of people (5-6 people tops)) * minimum_nights >= 30 (Reason: Sometimes it might actually be useful to stay for a month, but most of the time people only tend to stay a few days. Everything more than 30 days is weird to me) ### Why do some places have so many bathrooms?? ``` listings_df_reduced[(listings_df_reduced['bathrooms'] >= 5)] ### Some places require a minimum amount of 90 or more nights, some even 300 nights. This seems a bit odd. We are going to remove observations with 90 or more nights listings_df_reduced['minimum_nights'].value_counts().sort_index() # Minimum nights > 30 listings_df_reduced[(listings_df_reduced['minimum_nights'] > 30)] # Remove outliers listings_df_reduced = listings_df_reduced[(listings_df_reduced['total_price_per_night'] >= 20) & (listings_df_reduced['total_price_per_night'] <= 500)] listings_df_reduced = listings_df_reduced[(listings_df_reduced['security_deposit'] <= 500)] listings_df_reduced = listings_df_reduced[(listings_df_reduced['bathrooms'] < 5)] listings_df_reduced = listings_df_reduced[listings_df_reduced['accommodates'] <= 6] listings_df_reduced = listings_df_reduced[listings_df_reduced['minimum_nights'] <= 30] listings_df_reduced.shape ``` ### We now reduced our dataset to 3260 observations ``` # Another look at the price distribution plt.figure() plt.hist(listings_df_reduced['total_price_per_night'], bins= 20) plt.xlabel('total_price_per_night') plt.ylabel('frequency') plt.title('total_price_per_night') plt.show() ``` # 8b. Transformation ### For the outlier-adjusted dataset, the square root seems to be a better transformation than the log (for later use) ``` # Another look at the price distribution plt.figure() plt.hist(np.sqrt(listings_df_reduced['total_price_per_night']), bins= 20) plt.xlabel('sqrt(total_price_per_night)') plt.ylabel('frequency') plt.title('sqrt(total_price_per_night)') plt.show() ``` # 8c. Data overview ``` listings_df_reduced.describe() ``` # 9. Check out the different * bed_types * room_types * property_types and * neighbourhoods #### These variables can later be converted to dummies for a regression model for instance ``` # df columns listings_df_reduced.columns # different bed_types np.unique(listings_df_reduced['bed_type']) # different room types np.unique(listings_df_reduced['room_type']) # different property types np.unique(listings_df_reduced['property_type']) # different neightbourhoods np.unique(listings_df_reduced['neighbourhood_cleansed']) # different cancellation policies np.unique(listings_df_reduced['cancellation_policy']) # different host response time np.unique(listings_df_reduced['host_response_time']) # shape of preprocessed df listings_df_reduced.shape # percentage of data left from the original data set listings_df_reduced.shape[0]/data.shape[0] ``` # 8. Export preprocessed dataset ``` # export data as csv listings_df_reduced.to_csv('Boston Airbnb/listings_preprocessed_new.csv', index=False) ```
github_jupyter
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import seaborn as sns %matplotlib inline # read data data = pd.read_csv('Boston Airbnb/listings.csv', sep=',') listings_df = data.copy() # display all columns at once pd.set_option('display.max_columns', 100) listings_df.head() # data shape listings_df.shape # data columns listings_df.columns # means of missing values listings_df.isnull().mean().sort_values(ascending=False).head(10) # find columns with >= 98% NaN's print('listings_df shape = {}'.format(listings_df.shape)) index1 = np.where(listings_df.isnull().mean()>=0.98)[0] drop_cols = listings_df.columns[index1] print('') print('drop_columns = {}'.format(drop_cols)) # remove said columns listings_df_reduced = listings_df.drop(columns=drop_cols) print('') print('listings_df_reduced shape without >= 98% NaN columns = {}'.format(listings_df_reduced.shape)) # take another look at the data listings_df_reduced.head() # ... and its columns listings_df_reduced.columns # columns of interest cols_to_drop = ['id', 'listing_url', 'scrape_id', 'last_scraped', 'name', 'summary', 'space', 'description', 'experiences_offered', 'neighborhood_overview', 'notes', 'transit', 'access', 'interaction', 'house_rules', 'thumbnail_url', 'medium_url', 'picture_url', 'xl_picture_url', 'host_id', 'host_url', 'host_name', 'host_since', 'host_location', 'host_about', 'host_thumbnail_url', 'host_picture_url', 'host_neighbourhood', 'host_verifications', 'street', 'neighbourhood', 'city', 'state', 'zipcode', 'market', 'smart_location', 'country_code', 'country', 'amenities', 'weekly_price', 'monthly_price', 'calendar_updated', 'availability_30', 'availability_60', 'availability_90', 'availability_365', 'calendar_last_scraped', 'first_review', 'last_review',] # select columns of interest listings_df_reduced = listings_df_reduced.drop(columns=cols_to_drop) listings_df_reduced.shape # look at the data listings_df_reduced.head() # data types of columns listings_df_reduced.dtypes.sort_values() # check for missing values listings_df_reduced.isnull().mean().sort_values() def convert_prices_and_fees_to_float(df, price_and_fees_cols): """ function to convert price/fee columns to float """ # fill missing values with 0 df[price_and_fees_cols] = df[price_and_fees_cols].fillna('$0.0') # remove '$' and ',' symbols for col_temp in price_and_fees_cols: df[col_temp] = df[col_temp].apply(lambda x: x.replace('$', '').replace(',','')).astype(float) return df # call function above price_and_fees_cols = ['extra_people', 'price', 'cleaning_fee', 'security_deposit'] listings_df_reduced = convert_prices_and_fees_to_float(listings_df_reduced, price_and_fees_cols) # check if missing values were replaced listings_df_reduced.isnull().mean().sort_values() # check if prices and fees are float now listings_df_reduced.dtypes.sort_values() # calculate total price per night as price + cleaning_fee evenly distributed over the minimum_nights listings_df_reduced['total_price_per_night'] = listings_df_reduced['price']+listings_df_reduced['cleaning_fee']/listings_df_reduced['minimum_nights'] listings_df_reduced[['price', 'cleaning_fee', 'minimum_nights','total_price_per_night']][:10] # look at the data listings_df_reduced.head(10) # data shape listings_df_reduced.shape def convert_true_false_to_1_0(df, true_false_columns): """ function to convert boolean columns (true/false) to integer columns with 1/0 """ for col_temp in true_false_columns: df[col_temp] = df[col_temp].apply(lambda x: x.replace('t', '1').replace('f','0')).astype(int) return df # call function just above and convert columns true_false_columns = ['host_is_superhost', 'host_has_profile_pic', 'host_identity_verified', 'is_location_exact', 'requires_license', 'instant_bookable', 'require_guest_profile_picture', 'require_guest_phone_verification'] listings_df_reduced = convert_true_false_to_1_0(listings_df_reduced, true_false_columns) listings_df_reduced.head(10) # check if true/false columns were converted to 1/0 (int) listings_df_reduced.dtypes.sort_values() # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() # drop columns with missing values in the 4 mentioned columns listings_df_reduced = listings_df_reduced.dropna(subset=['property_type', 'beds', 'bedrooms', 'bathrooms']) # data shape listings_df_reduced.shape # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() np.unique(listings_df_reduced['beds']) listings_df_reduced[listings_df_reduced['beds']==0].head(10) # remove observations where "beds=0" listings_df_reduced = listings_df_reduced[listings_df_reduced['beds'] > 0] # data shape listings_df_reduced.shape # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() # all different review columns reviews = [i for i in listings_df_reduced if 'review' in i] reviews # mean function fill_mean = lambda col: col.fillna(col.mean()) # fill missing values with mean of corresponding column fill_df = listings_df_reduced.loc[:, reviews].apply(fill_mean, axis=0) # replace review columns with "mean-imputed" adjusted columns listings_df_reduced.loc[:, reviews] = fill_df.loc[:, :] listings_df_reduced[reviews].head(10) # data shape (obvisouly no loss of observations because we are only imputing values) listings_df_reduced.shape # check which columns still have missing values listings_df_reduced.isnull().sum().sort_values() def convert_host_acceptance_and_response_columns_to_float_and_impute(df, host_cols): """ function to convert host response/acceptance columns impute values """ for col_temp in host_cols: df[col_temp] = df[col_temp].map(lambda x: x.replace('%',''), na_action='ignore') df[col_temp] = df[col_temp].fillna(method="backfill") return df # considered columns and call function just above host_cols = ['host_acceptance_rate', 'host_response_rate', 'host_response_time'] listings_df_reduced = convert_host_acceptance_and_response_columns_to_float_and_impute(listings_df_reduced, host_cols) # convert the rate-columns to float listings_df_reduced[['host_acceptance_rate', 'host_response_rate']] = listings_df_reduced[['host_acceptance_rate', 'host_response_rate']].astype(float) listings_df_reduced.head() # Now we converted many columns to int and float. Everything that is still of type "object" will be converted to dummies later listings_df_reduced.dtypes.sort_values() # And we finally do not have missing values anymore listings_df_reduced.isnull().sum().sort_values() # histogram of "total_price_per_night" plt.figure() plt.hist(listings_df_reduced['total_price_per_night'], bins= 50) plt.xlabel('total_price_per_night') plt.ylabel('frequency') plt.title('total_price_per_night') plt.show() # histogram of the log of "total_price_per_night" plt.figure() plt.hist(np.log(listings_df_reduced['total_price_per_night']), bins= 50) plt.xlabel('log(total_price_per_night)') plt.ylabel('frequency') plt.title('log(total_price_per_night)') plt.show() # Take a look at the lowest prices min_price = min(listings_df_reduced['total_price_per_night']) print('Minimum price per night = {}'.format(min_price)) listings_df_reduced.sort_values(by=['total_price_per_night']).head() # Take a look a the highest prices max_price = max(listings_df_reduced['total_price_per_night']) print('Maximum price per night = {}'.format(max_price)) listings_df_reduced.sort_values(by=['total_price_per_night'], ascending=False).head() ### We have prices in the range from 10USD to 4000USD. In my opinion Airbnbs are mostly booked by younger people (which are usually not the rich age group). Therefore we want to remove Airbnbs that are too expensive, let's say where 'total_price_per_night > 500'. We also want to remove Airbnbs that are too cheap, e.g. 'total_price_per_night < 20' ### Moreover Airbnbs with really high security deposits (let's say >500 USD) will be removed listings_df_reduced[(listings_df_reduced['bathrooms'] >= 5)] ### Some places require a minimum amount of 90 or more nights, some even 300 nights. This seems a bit odd. We are going to remove observations with 90 or more nights listings_df_reduced['minimum_nights'].value_counts().sort_index() # Minimum nights > 30 listings_df_reduced[(listings_df_reduced['minimum_nights'] > 30)] # Remove outliers listings_df_reduced = listings_df_reduced[(listings_df_reduced['total_price_per_night'] >= 20) & (listings_df_reduced['total_price_per_night'] <= 500)] listings_df_reduced = listings_df_reduced[(listings_df_reduced['security_deposit'] <= 500)] listings_df_reduced = listings_df_reduced[(listings_df_reduced['bathrooms'] < 5)] listings_df_reduced = listings_df_reduced[listings_df_reduced['accommodates'] <= 6] listings_df_reduced = listings_df_reduced[listings_df_reduced['minimum_nights'] <= 30] listings_df_reduced.shape # Another look at the price distribution plt.figure() plt.hist(listings_df_reduced['total_price_per_night'], bins= 20) plt.xlabel('total_price_per_night') plt.ylabel('frequency') plt.title('total_price_per_night') plt.show() # Another look at the price distribution plt.figure() plt.hist(np.sqrt(listings_df_reduced['total_price_per_night']), bins= 20) plt.xlabel('sqrt(total_price_per_night)') plt.ylabel('frequency') plt.title('sqrt(total_price_per_night)') plt.show() listings_df_reduced.describe() # df columns listings_df_reduced.columns # different bed_types np.unique(listings_df_reduced['bed_type']) # different room types np.unique(listings_df_reduced['room_type']) # different property types np.unique(listings_df_reduced['property_type']) # different neightbourhoods np.unique(listings_df_reduced['neighbourhood_cleansed']) # different cancellation policies np.unique(listings_df_reduced['cancellation_policy']) # different host response time np.unique(listings_df_reduced['host_response_time']) # shape of preprocessed df listings_df_reduced.shape # percentage of data left from the original data set listings_df_reduced.shape[0]/data.shape[0] # export data as csv listings_df_reduced.to_csv('Boston Airbnb/listings_preprocessed_new.csv', index=False)
0.272702
0.926503
``` import numpy as np import os from sklearn.metrics import confusion_matrix import seaborn as sn; sn.set(font_scale=1.4) from sklearn.utils import shuffle import matplotlib.pyplot as plt import cv2 from random import randint import tensorflow.keras.layers as Layers import tensorflow.keras.activations as Actications import tensorflow.keras.models as Models import tensorflow.keras.optimizers as Optimizer import tensorflow.keras.metrics as Metrics import tensorflow.keras.utils as Utils from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout from keras.models import Sequential import tensorflow as tf from tqdm import tqdm class_names = ['angry', 'shock', 'normal', 'smile'] class_names_label = {class_name:i for i, class_name in enumerate(class_names)} nb_classes = len(class_names) IMAGE_SIZE = (120, 120) def load_data(): """ Load the data: - 200 images to train the network. - 40 images to evaluate how accurately the network learned to classify images. """ filters = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) datasets = ['dataset_rgb_01/train', 'dataset_rgb_01/test'] output = [] # Iterate through training and test sets for dataset in datasets: images = [] labels = [] print("Loading {}".format(dataset)) # Iterate through each folder corresponding to a category for folder in os.listdir(dataset): label = class_names_label[folder] # Iterate through each image in our folder for file in tqdm(os.listdir(os.path.join(dataset, folder))): # Get the path name of the image img_path = os.path.join(os.path.join(dataset, folder), file) # Open and resize the img image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, IMAGE_SIZE) image = cv2.filter2D(image,-1,filters) # Append the image and its corresponding label to the output images.append(image) labels.append(label) images = np.array(images, dtype = 'float32') labels = np.array(labels, dtype = 'int32') output.append((images, labels)) return output (train_images, train_labels), (test_images, test_labels) = load_data() train_images, train_labels = shuffle(train_images, train_labels, random_state=25) # Exploring Datasets n_train = train_labels.shape[0] n_test = test_labels.shape[0] print ("Number of Class: {}".format(nb_classes)) print ("Number of training examples: {}".format(n_train)) print ("Number of testing examples: {}".format(n_test)) print ("Each image is of size: {}".format(IMAGE_SIZE)) import pandas as pd _, train_counts = np.unique(train_labels, return_counts=True) _, test_counts = np.unique(test_labels, return_counts=True) pd.DataFrame({'train': train_counts, 'test': test_counts}, index=class_names ).plot.bar() plt.show() plt.pie(train_counts, explode=(0, 0, 0, 0) , labels=class_names, autopct='%1.1f%%' ) plt.axis('equal') plt.title('Proportion of each observed category') plt.show() # Data Normalization train_images = train_images / 255.0 test_images = test_images / 255.0 # Visualize the Data def display_random_image(class_names, images, labels): """ Display a random image from the images array and its correspond label from the labels array. """ index = np.random.randint(images.shape[0]) plt.figure() plt.imshow(images[index]) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.title('Image #{} : '.format(index) + class_names[labels[index]]) plt.show() display_random_image(class_names, train_images, train_labels) def display_examples(class_names, images, labels): """ Display 25 images from the images array with its corresponding labels """ fig = plt.figure(figsize=(10,10)) fig.suptitle("Some examples of images of the dataset", fontsize=16) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) plt.xlabel(class_names[labels[i]]) plt.show() display_examples(class_names, train_images, train_labels) # CNN models model = Models.Sequential() # CNN Architecture model.add(Layers.Conv2D(32,kernel_size=(3,3),activation='relu',input_shape=(120, 120, 3))) model.add(Layers.MaxPool2D(2,2)) model.add(Layers.Conv2D(64,kernel_size=(3,3),activation='relu')) model.add(Layers.MaxPool2D(2,2)) model.add(Layers.Conv2D(128,kernel_size=(3,3),activation='relu')) model.add(Layers.MaxPool2D(2,2)) model.add(Layers.Conv2D(256,kernel_size=(3,3),activation='relu')) model.add(Layers.MaxPool2D(2,2)) # ANN Architecture model.add(Layers.Flatten()) model.add(Layers.Dropout(0.2)) model.add(Layers.Dense(1000, activation='relu')) model.add(Layers.Dense(4, activation='softmax')) # Compiling Model model.compile(optimizer=Optimizer.Adam(lr=0.00001),loss='sparse_categorical_crossentropy',metrics=['accuracy']) model.summary() import time # START OF TIME start = time.time() ### MODEL FITTING history = model.fit(train_images, train_labels, batch_size= 16, epochs= 90, validation_split=0.2 ) ### MODEL FITTING # END OF TIME end = time.time() # RESULT print("Time elapsed for this training section: {0:.2f}s".format(end - start)) # EPOCHS RUNTIME # 30 Epochs = 75.61s # 60 Epochs = 147.82s # 90 Epochs = 220.07 # 120 Epochs = 292.83 def plot_accuracy_loss(history): """ Plot the accuracy and the loss during the training of the nn. """ fig = plt.figure(figsize=(20,10)) # Plot accuracy plt.subplot(221) plt.plot(history.history['accuracy'],'bo--', label = "acc") plt.plot(history.history['val_accuracy'], 'ro--', label = "val_acc") plt.title("train_acc vs val_acc") plt.ylabel("accuracy") plt.xlabel("epochs") plt.legend() # Plot loss function plt.subplot(222) plt.plot(history.history['loss'],'bo--', label = "loss") plt.plot(history.history['val_loss'], 'ro--', label = "val_loss") plt.title("train_loss vs val_loss") plt.ylabel("loss") plt.xlabel("epochs") plt.legend() plt.show() plot_accuracy_loss(history) loss, acc = model.evaluate(test_images, test_labels) print("System Accuracy : {0:.2f}%".format(acc*100)) print("System Loss : {0:.5f}".format(loss)) # 30 Epochs, Accuracy = 83.75% # 60 Epochs, Accuracy = 95.00% # 90 Epochs, Accuracy = 97.50 # 120 Epochs Accuracy = 100% predictions = model.predict(test_images) # Vector of probabilities pred_labels = np.argmax(predictions, axis = 1) # We take the highest probability display_random_image(class_names, test_images, pred_labels) def print_mislabeled_images(class_names, test_images, test_labels, pred_labels): """ Print 25 examples of mislabeled images by the classifier, e.g when test_labels != pred_labels """ BOO = (test_labels == pred_labels) mislabeled_indices = np.where(BOO == 0) mislabeled_images = test_images[mislabeled_indices] mislabeled_labels = pred_labels[mislabeled_indices] title = "Some examples of mislabeled images by the classifier:" display_examples(class_names, mislabeled_images, mislabeled_labels) print_mislabeled_images(class_names, test_images, test_labels, pred_labels) CM = confusion_matrix(test_labels, pred_labels) ax = plt.axes() sn.heatmap(CM, annot=True, annot_kws={"size": 10}, xticklabels=class_names, yticklabels=class_names, ax = ax) ax.set_title('Confusion matrix') plt.show() ```
github_jupyter
import numpy as np import os from sklearn.metrics import confusion_matrix import seaborn as sn; sn.set(font_scale=1.4) from sklearn.utils import shuffle import matplotlib.pyplot as plt import cv2 from random import randint import tensorflow.keras.layers as Layers import tensorflow.keras.activations as Actications import tensorflow.keras.models as Models import tensorflow.keras.optimizers as Optimizer import tensorflow.keras.metrics as Metrics import tensorflow.keras.utils as Utils from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Dropout from keras.models import Sequential import tensorflow as tf from tqdm import tqdm class_names = ['angry', 'shock', 'normal', 'smile'] class_names_label = {class_name:i for i, class_name in enumerate(class_names)} nb_classes = len(class_names) IMAGE_SIZE = (120, 120) def load_data(): """ Load the data: - 200 images to train the network. - 40 images to evaluate how accurately the network learned to classify images. """ filters = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]) datasets = ['dataset_rgb_01/train', 'dataset_rgb_01/test'] output = [] # Iterate through training and test sets for dataset in datasets: images = [] labels = [] print("Loading {}".format(dataset)) # Iterate through each folder corresponding to a category for folder in os.listdir(dataset): label = class_names_label[folder] # Iterate through each image in our folder for file in tqdm(os.listdir(os.path.join(dataset, folder))): # Get the path name of the image img_path = os.path.join(os.path.join(dataset, folder), file) # Open and resize the img image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, IMAGE_SIZE) image = cv2.filter2D(image,-1,filters) # Append the image and its corresponding label to the output images.append(image) labels.append(label) images = np.array(images, dtype = 'float32') labels = np.array(labels, dtype = 'int32') output.append((images, labels)) return output (train_images, train_labels), (test_images, test_labels) = load_data() train_images, train_labels = shuffle(train_images, train_labels, random_state=25) # Exploring Datasets n_train = train_labels.shape[0] n_test = test_labels.shape[0] print ("Number of Class: {}".format(nb_classes)) print ("Number of training examples: {}".format(n_train)) print ("Number of testing examples: {}".format(n_test)) print ("Each image is of size: {}".format(IMAGE_SIZE)) import pandas as pd _, train_counts = np.unique(train_labels, return_counts=True) _, test_counts = np.unique(test_labels, return_counts=True) pd.DataFrame({'train': train_counts, 'test': test_counts}, index=class_names ).plot.bar() plt.show() plt.pie(train_counts, explode=(0, 0, 0, 0) , labels=class_names, autopct='%1.1f%%' ) plt.axis('equal') plt.title('Proportion of each observed category') plt.show() # Data Normalization train_images = train_images / 255.0 test_images = test_images / 255.0 # Visualize the Data def display_random_image(class_names, images, labels): """ Display a random image from the images array and its correspond label from the labels array. """ index = np.random.randint(images.shape[0]) plt.figure() plt.imshow(images[index]) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.title('Image #{} : '.format(index) + class_names[labels[index]]) plt.show() display_random_image(class_names, train_images, train_labels) def display_examples(class_names, images, labels): """ Display 25 images from the images array with its corresponding labels """ fig = plt.figure(figsize=(10,10)) fig.suptitle("Some examples of images of the dataset", fontsize=16) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i], cmap=plt.cm.binary) plt.xlabel(class_names[labels[i]]) plt.show() display_examples(class_names, train_images, train_labels) # CNN models model = Models.Sequential() # CNN Architecture model.add(Layers.Conv2D(32,kernel_size=(3,3),activation='relu',input_shape=(120, 120, 3))) model.add(Layers.MaxPool2D(2,2)) model.add(Layers.Conv2D(64,kernel_size=(3,3),activation='relu')) model.add(Layers.MaxPool2D(2,2)) model.add(Layers.Conv2D(128,kernel_size=(3,3),activation='relu')) model.add(Layers.MaxPool2D(2,2)) model.add(Layers.Conv2D(256,kernel_size=(3,3),activation='relu')) model.add(Layers.MaxPool2D(2,2)) # ANN Architecture model.add(Layers.Flatten()) model.add(Layers.Dropout(0.2)) model.add(Layers.Dense(1000, activation='relu')) model.add(Layers.Dense(4, activation='softmax')) # Compiling Model model.compile(optimizer=Optimizer.Adam(lr=0.00001),loss='sparse_categorical_crossentropy',metrics=['accuracy']) model.summary() import time # START OF TIME start = time.time() ### MODEL FITTING history = model.fit(train_images, train_labels, batch_size= 16, epochs= 90, validation_split=0.2 ) ### MODEL FITTING # END OF TIME end = time.time() # RESULT print("Time elapsed for this training section: {0:.2f}s".format(end - start)) # EPOCHS RUNTIME # 30 Epochs = 75.61s # 60 Epochs = 147.82s # 90 Epochs = 220.07 # 120 Epochs = 292.83 def plot_accuracy_loss(history): """ Plot the accuracy and the loss during the training of the nn. """ fig = plt.figure(figsize=(20,10)) # Plot accuracy plt.subplot(221) plt.plot(history.history['accuracy'],'bo--', label = "acc") plt.plot(history.history['val_accuracy'], 'ro--', label = "val_acc") plt.title("train_acc vs val_acc") plt.ylabel("accuracy") plt.xlabel("epochs") plt.legend() # Plot loss function plt.subplot(222) plt.plot(history.history['loss'],'bo--', label = "loss") plt.plot(history.history['val_loss'], 'ro--', label = "val_loss") plt.title("train_loss vs val_loss") plt.ylabel("loss") plt.xlabel("epochs") plt.legend() plt.show() plot_accuracy_loss(history) loss, acc = model.evaluate(test_images, test_labels) print("System Accuracy : {0:.2f}%".format(acc*100)) print("System Loss : {0:.5f}".format(loss)) # 30 Epochs, Accuracy = 83.75% # 60 Epochs, Accuracy = 95.00% # 90 Epochs, Accuracy = 97.50 # 120 Epochs Accuracy = 100% predictions = model.predict(test_images) # Vector of probabilities pred_labels = np.argmax(predictions, axis = 1) # We take the highest probability display_random_image(class_names, test_images, pred_labels) def print_mislabeled_images(class_names, test_images, test_labels, pred_labels): """ Print 25 examples of mislabeled images by the classifier, e.g when test_labels != pred_labels """ BOO = (test_labels == pred_labels) mislabeled_indices = np.where(BOO == 0) mislabeled_images = test_images[mislabeled_indices] mislabeled_labels = pred_labels[mislabeled_indices] title = "Some examples of mislabeled images by the classifier:" display_examples(class_names, mislabeled_images, mislabeled_labels) print_mislabeled_images(class_names, test_images, test_labels, pred_labels) CM = confusion_matrix(test_labels, pred_labels) ax = plt.axes() sn.heatmap(CM, annot=True, annot_kws={"size": 10}, xticklabels=class_names, yticklabels=class_names, ax = ax) ax.set_title('Confusion matrix') plt.show()
0.731155
0.510619
# Monetary Economics: Chapter 5 ### Preliminaries ``` # This line configures matplotlib to show figures embedded in the notebook, # instead of opening a new window for each figure. More about that later. # If you are using an old version of IPython, try using '%pylab inline' instead. %matplotlib inline import matplotlib.pyplot as plt from pysolve3.model import Model from pysolve3.utils import is_close,round_solution ``` ### Model LP1 ``` def create_lp1_model(): model = Model() model.set_var_default(0) model.var('Bcb', desc='Government bills held by the Central Bank') model.var('Bd', desc='Demand for government bills') model.var('Bh', desc='Government bills held by households') model.var('Bs', desc='Government bills supplied by government') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Government bonds held by households') model.var('BLs', desc='Supply of government bonds') model.var('CG', desc='Capital gains on bonds') model.var('CGe', desc='Expected capital gains on bonds') model.var('C', desc='Consumption') model.var('ERrbl', desc='Expected rate of return on bonds') model.var('Hd', desc='Demand for cash') model.var('Hh', desc='Cash held by households') model.var('Hs', desc='Cash supplied by the central bank') model.var('Pbl', desc='Price of bonds') model.var('Pble', desc='Expected price of bonds') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on government bonds') model.var('T', desc='Taxes') model.var('V', desc='Household wealth') model.var('Ve', desc='Expected household wealth') model.var('Y', desc='Income = GDP') model.var('YDr', desc='Regular disposable income of households') model.var('YDre', desc='Expected regular disposable income of households') model.set_param_default(0) model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('chi', desc='Weight of conviction in expected bond price') model.param('lambda10', desc='Parameter in asset demand function') model.param('lambda12', desc='Parameter in asset demand function') model.param('lambda13', desc='Parameter in asset demand function') model.param('lambda14', desc='Parameter in asset demand function') model.param('lambda20', desc='Parameter in asset demand function') model.param('lambda22', desc='Parameter in asset demand function') model.param('lambda23', desc='Parameter in asset demand function') model.param('lambda24', desc='Parameter in asset demand function') model.param('lambda30', desc='Parameter in asset demand function') model.param('lambda32', desc='Parameter in asset demand function') model.param('lambda33', desc='Parameter in asset demand function') model.param('lambda34', desc='Parameter in asset demand function') model.param('theta', desc='Tax rate') model.param('G', desc='Government goods') model.param('Rbar', desc='Exogenously set interest rate on govt bills') model.param('Pblbar', desc='Exogenously set price of bonds') model.add('Y = C + G') # 5.1 model.add('YDr = Y - T + Rb(-1)*Bh(-1) + BLh(-1)') # 5.2 model.add('T = theta *(Y + Rb(-1)*Bh(-1) + BLh(-1))') # 5.3 model.add('V - V(-1) = (YDr - C) + CG') # 5.4 model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') model.add('C = alpha1*YDre + alpha2*V(-1)') model.add('Ve = V(-1) + (YDre - C) + CG') model.add('Hh = V - Bh - Pbl*BLh') model.add('Hd = Ve - Bd - Pbl*BLd') model.add('Bd = Ve*lambda20 + Ve*lambda22*Rb' + '- Ve*lambda23*ERrbl - lambda24*YDre') model.add('BLd = (Ve*lambda30 - Ve*lambda32*Rb ' + '+ Ve*lambda33*ERrbl - lambda34*YDre)/Pbl') model.add('Bh = Bd') model.add('BLh = BLd') model.add('Bs - Bs(-1) = (G + Rb(-1)*Bs(-1) + ' + 'BLs(-1)) - (T + Rb(-1)*Bcb(-1)) - (BLs - BLs(-1))*Pbl') model.add('Hs - Hs(-1) = Bcb - Bcb(-1)') model.add('Bcb = Bs - Bh') model.add('BLs = BLh') model.add('ERrbl = Rbl + chi * (Pble - Pbl) / Pbl') model.add('Rbl = 1./Pbl') model.add('Pble = Pbl') model.add('CGe = chi * (Pble - Pbl)*BLh') model.add('YDre = YDr(-1)') model.add('Rb = Rbar') model.add('Pbl = Pblbar') return model lp1_parameters = {'alpha1': 0.8, 'alpha2': 0.2, 'chi': 0.1, 'lambda20': 0.44196, 'lambda22': 1.1, 'lambda23': 1, 'lambda24': 0.03, 'lambda30': 0.3997, 'lambda32': 1, 'lambda33': 1.1, 'lambda34': 0.03, 'theta': 0.1938} lp1_exogenous = {'G': 20, 'Rbar': 0.03, 'Pblbar': 20} lp1_variables = {'V': 95.803, 'Bh': 37.839, 'Bs': 57.964, 'Bcb': 57.964 - 37.839, 'BLh': 1.892, 'BLs': 1.892, 'Hs': 20.125, 'YDr': 95.803, 'Rb': 0.03, 'Pbl': 20} ``` ### Scenario: Interest rate shock ``` lp1 = create_lp1_model() lp1.set_values(lp1_parameters) lp1.set_values(lp1_exogenous) lp1.set_values(lp1_variables) for _ in range(15): lp1.solve(iterations=100, threshold=1e-6) # shock the system lp1.set_values({'Rbar': 0.04, 'Pblbar': 15}) for _ in range(45): lp1.solve(iterations=100, threshold=1e-6) ``` ###### Figure 5.2 ``` caption = ''' Figure 5.2 Evolution of the wealth to disposable income ratio, following an increase in both the short-term and long-term interest rates, with model LP1''' data = [s['V']/s['YDr'] for s in lp1.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.89, 1.01) axes.plot(data, 'k') # add labels plt.text(20, 0.98, 'Wealth to disposable income ratio') fig.text(0.1, -.05, caption); ``` ###### Figure 5.3 ``` caption = ''' Figure 5.3 Evolution of the wealth to disposable income ratio, following an increase in both the short-term and long-term interest rates, with model LP1''' ydrdata = [s['YDr'] for s in lp1.solutions[5:]] cdata = [s['C'] for s in lp1.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(92.5, 101.5) axes.plot(ydrdata, 'k') axes.plot(cdata, linestyle='--', color='r') # add labels plt.text(16, 98, 'Disposable') plt.text(16, 97.6, 'income') plt.text(22, 95, 'Consumption') fig.text(0.1, -.05, caption); ``` ###### Figure 5.4 ``` caption = ''' Figure 5.4 Evolution of the bonds to wealth ration and the bills to wealth ratio, following an increase from 3% to 4% in the short-term interest rate, while the long-term interest rates moves from 5% to 6.67%, with model LP1''' bhdata = [s['Bh']/s['V'] for s in lp1.solutions[5:]] pdata = [s['Pbl']*s['BLh']/s['V'] for s in lp1.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.382, 0.408) axes.plot(bhdata, 'k') axes.plot(pdata, linestyle='--', color='r') # add labels plt.text(14, 0.3978, 'Bonds to wealth ratio') plt.text(17, 0.39, 'Bills to wealth ratio') fig.text(0.1, -.05, caption); ``` ### Model LP2 ``` def create_lp2_model(): model = Model() model.set_var_default(0) model.var('Bcb', desc='Government bills held by the Central Bank') model.var('Bd', desc='Demand for government bills') model.var('Bh', desc='Government bills held by households') model.var('Bs', desc='Government bills supplied by government') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Government bonds held by households') model.var('BLs', desc='Supply of government bonds') model.var('CG', desc='Capital gains on bonds') model.var('CGe', desc='Expected capital gains on bonds') model.var('C', desc='Consumption') model.var('ERrbl', desc='Expected rate of return on bonds') model.var('Hd', desc='Demand for cash') model.var('Hh', desc='Cash held by households') model.var('Hs', desc='Cash supplied by the central bank') model.var('Pbl', desc='Price of bonds') model.var('Pble', desc='Expected price of bonds') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on government bonds') model.var('T', desc='Taxes') model.var('TP', desc='Target proportion in households portfolio') model.var('V', desc='Household wealth') model.var('Ve', desc='Expected household wealth') model.var('Y', desc='Income = GDP') model.var('YDr', desc='Regular disposable income of households') model.var('YDre', desc='Expected regular disposable income of households') model.var('z1', desc='Switch parameter') model.var('z2', desc='Switch parameter') model.set_param_default(0) model.param('add', desc='Random shock to expectations') model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('beta', desc='Adjustment parameter in price of bills') model.param('betae', desc='Adjustment parameter in expectations') model.param('bot', desc='Bottom value for TP') model.param('chi', desc='Weight of conviction in expected bond price') model.param('lambda10', desc='Parameter in asset demand function') model.param('lambda12', desc='Parameter in asset demand function') model.param('lambda13', desc='Parameter in asset demand function') model.param('lambda14', desc='Parameter in asset demand function') model.param('lambda20', desc='Parameter in asset demand function') model.param('lambda22', desc='Parameter in asset demand function') model.param('lambda23', desc='Parameter in asset demand function') model.param('lambda24', desc='Parameter in asset demand function') model.param('lambda30', desc='Parameter in asset demand function') model.param('lambda32', desc='Parameter in asset demand function') model.param('lambda33', desc='Parameter in asset demand function') model.param('lambda34', desc='Parameter in asset demand function') model.param('theta', desc='Tax rate') model.param('top', desc='Top value for TP') model.param('G', desc='Government goods') model.param('Pblbar', desc='Exogenously set price of bonds') model.param('Rbar', desc='Exogenously set interest rate on govt bills') model.add('Y = C + G') # 5.1 model.add('YDr = Y - T + Rb(-1)*Bh(-1) + BLh(-1)') # 5.2 model.add('T = theta *(Y + Rb(-1)*Bh(-1) + BLh(-1))') # 5.3 model.add('V - V(-1) = (YDr - C) + CG') # 5.4 model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') model.add('C = alpha1*YDre + alpha2*V(-1)') model.add('Ve = V(-1) + (YDre - C) + CG') model.add('Hh = V - Bh - Pbl*BLh') model.add('Hd = Ve - Bd - Pbl*BLd') model.add('Bd = Ve*lambda20 + Ve*lambda22*Rb' + '- Ve*lambda23*ERrbl - lambda24*YDre') model.add('BLd = (Ve*lambda30 - Ve*lambda32*Rb ' + '+ Ve*lambda33*ERrbl - lambda34*YDre)/Pbl') model.add('Bh = Bd') model.add('BLh = BLd') model.add('Bs - Bs(-1) = (G + Rb(-1)*Bs(-1) + BLs(-1))' + ' - (T + Rb(-1)*Bcb(-1)) - Pbl*(BLs - BLs(-1))') model.add('Hs - Hs(-1) = Bcb - Bcb(-1)') model.add('Bcb = Bs - Bh') model.add('BLs = BLh') model.add('ERrbl = Rbl + ((chi * (Pble - Pbl))/ Pbl)') model.add('Rbl = 1./Pbl') model.add('Pble = Pble(-1) - betae*(Pble(-1) - Pbl) + add') model.add('CGe = chi * (Pble - Pbl)*BLh') model.add('YDre = YDr(-1)') model.add('Rb = Rbar') model.add('Pbl = (1 + z1*beta - z2*beta)*Pbl(-1)') model.add('z1 = if_true(TP > top)') model.add('z2 = if_true(TP < bot)') model.add('TP = (BLh(-1)*Pbl(-1))/(BLh(-1)*Pbl(-1) + Bh(-1))') return model lp2_parameters = {'alpha1': 0.8, 'alpha2': 0.2, 'beta': 0.01, 'betae': 0.5, 'chi': 0.1, 'lambda20': 0.44196, 'lambda22': 1.1, 'lambda23': 1, 'lambda24': 0.03, 'lambda30': 0.3997, 'lambda32': 1, 'lambda33': 1.1, 'lambda34': 0.03, 'theta': 0.1938, 'bot': 0.495, 'top': 0.505 } lp2_exogenous = {'G': 20, 'Rbar': 0.03, 'Pblbar': 20, 'add': 0} lp2_variables = {'V': 95.803, 'Bh': 37.839, 'Bs': 57.964, 'Bcb': 57.964 - 37.839, 'BLh': 1.892, 'BLs': 1.892, 'Hs': 20.125, 'YDr': 95.803, 'Rb': 0.03, 'Pbl': 20, 'Pble': 20, 'TP': 1.892*20/(1.892*20+37.839), # BLh*Pbl/(BLh*Pbl+Bh) 'z1': 0, 'z2': 0} ``` ### Scenario: interest rate shock ``` lp2_bill = create_lp2_model() lp2_bill.set_values(lp2_parameters) lp2_bill.set_values(lp2_exogenous) lp2_bill.set_values(lp2_variables) lp2_bill.set_values({'z1': lp2_bill.evaluate('if_true(TP > top)'), 'z2': lp2_bill.evaluate('if_true(TP < bot)')}) for _ in range(10): lp2_bill.solve(iterations=100, threshold=1e-4) # shock the system lp2_bill.set_values({'Rbar': 0.035}) for _ in range(45): lp2_bill.solve(iterations=100, threshold=1e-4) ``` ###### Figure 5.5 ``` caption = ''' Figure 5.5 Evolution of the long-term interest rate (the bond yield), following an increase in the short-term interest rate (the bill rate), as a result of the response of the central bank and the Treasury, with Model LP2.''' rbdata = [s['Rb'] for s in lp2_bill.solutions[5:]] pbldata = [1./s['Pbl'] for s in lp2_bill.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.set_ylim(0.029, 0.036) axes.plot(rbdata, linestyle='--', color='r') axes2 = axes.twinx() axes2.spines['top'].set_visible(False) axes2.set_ylim(0.0495, 0.052) axes2.plot(pbldata, 'k') # add labels plt.text(12, 0.0518, 'Short-term interest rate') plt.text(15, 0.0513, 'Long-term interest rate') fig.text(0.05, 1.05, 'Bill rate') fig.text(1.15, 1.05, 'Bond yield') fig.text(0.1, -.1, caption); ``` ###### Figure 5.6 ``` caption = ''' Figure 5.6 Evolution of the target proportion (TP), that is the share of bonds in the government debt held by households, following an increase in the short-term interest rate (the bill rate) and the response of the central bank and of the Treasury, with Model LP2''' tpdata = [s['TP'] for s in lp2_bill.solutions[5:]] topdata = [s['top'] for s in lp2_bill.solutions[5:]] botdata = [s['bot'] for s in lp2_bill.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.set_ylim(0.490, 0.506) axes.plot(topdata, color='k') axes.plot(botdata, color='k') axes.plot(tpdata, linestyle='--', color='r') # add labels plt.text(30, 0.5055, 'Ceiling of target range') plt.text(30, 0.494, 'Floor of target range') plt.text(10, 0.493, 'Share of bonds') plt.text(10, 0.4922, 'in government debt') plt.text(10, 0.4914, 'held by households') fig.text(0.1, -.15, caption); ``` ### Scenario: Shock to the bond price expectations ``` lp2_bond = create_lp2_model() lp2_bond.set_values(lp2_parameters) lp2_bond.set_values(lp2_exogenous) lp2_bond.set_values(lp2_variables) lp2_bond.set_values({'z1': 'if_true(TP > top)', 'z2': 'if_true(TP < bot)'}) for _ in range(10): lp2_bond.solve(iterations=100, threshold=1e-5) # shock the system lp2_bond.set_values({'add': -3}) lp2_bond.solve(iterations=100, threshold=1e-5) lp2_bond.set_values({'add': 0}) for _ in range(43): lp2_bond.solve(iterations=100, threshold=1e-4) ``` ###### Figure 5.7 ``` caption = ''' Figure 5.7 Evolution of the long-term interest rate, following an anticipated fall in the price of bonds, as a consequence of the response of the central bank and of the Treasury, with Model LP2''' pbldata = [1./s['Pbl'] for s in lp2_bond.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.0497, 0.0512) axes.plot(pbldata, linestyle='--', color='k') # add labels plt.text(15, 0.0509, 'Long-term interest rate') fig.text(0.1, -.1, caption); ``` ###### Figure 5.8 ``` caption = ''' Figure 5.8 Evolution of the expected and actual bond prices, following an anticipated fall in the price of bonds, as a consequence of the response of the central bank and of the Treasury, with Model LP2''' pbldata = [s['Pbl'] for s in lp2_bond.solutions[5:]] pbledata = [s['Pble'] for s in lp2_bond.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(16.5, 21) axes.plot(pbldata, linestyle='--', color='k') axes.plot(pbledata, linestyle='-', color='r') # add labels plt.text(8, 20, 'Actual price of bonds') plt.text(10, 19, 'Expected price of bonds') fig.text(0.1, -.1, caption); ``` ###### Figure 5.9 ``` caption = ''' Figure 5.9 Evolution of the target proportion (TP), that is the share of bonds in the government debt held by households, following an anticipated fall in the price of bonds, as a consequence of the response of the central bank and of the Treasury, with Model LP2''' tpdata = [s['TP'] for s in lp2_bond.solutions[5:]] botdata = [s['top'] for s in lp2_bond.solutions[5:]] topdata = [s['bot'] for s in lp2_bond.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.47, 0.52) axes.plot(tpdata, linestyle='--', color='r') axes.plot(botdata, linestyle='-', color='k') axes.plot(topdata, linestyle='-', color='k') # add labels plt.text(30, 0.508, 'Ceiling of target range') plt.text(30, 0.491, 'Floor of target range') plt.text(10, 0.49, 'Share of bonds in') plt.text(10, 0.487, 'government debt') plt.text(10, 0.484, 'held by households') fig.text(0.1, -.15, caption); ``` ### Scenario: Model LP1, propensity to consume shock ``` lp1_alpha = create_lp1_model() lp1_alpha.set_values(lp1_parameters) lp1_alpha.set_values(lp1_exogenous) lp1_alpha.set_values(lp1_variables) for _ in range(10): lp1_alpha.solve(iterations=100, threshold=1e-6) # shock the system lp1_alpha.set_values({'alpha1': 0.7}) for _ in range(45): lp1_alpha.solve(iterations=100, threshold=1e-6) ``` ### Model LP3 ``` def create_lp3_model(): model = Model() model.set_var_default(0) model.var('Bcb', desc='Government bills held by the Central Bank') model.var('Bd', desc='Demand for government bills') model.var('Bh', desc='Government bills held by households') model.var('Bs', desc='Government bills supplied by government') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Government bonds held by households') model.var('BLs', desc='Supply of government bonds') model.var('CG', desc='Capital gains on bonds') model.var('CGe', desc='Expected capital gains on bonds') model.var('C', desc='Consumption') model.var('ERrbl', desc='Expected rate of return on bonds') model.var('Hd', desc='Demand for cash') model.var('Hh', desc='Cash held by households') model.var('Hs', desc='Cash supplied by the central bank') model.var('Pbl', desc='Price of bonds') model.var('Pble', desc='Expected price of bonds') model.var('PSBR', desc='Public sector borrowing requirement (PSBR)') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on government bonds') model.var('T', desc='Taxes') model.var('TP', desc='Target proportion in households portfolio') model.var('V', desc='Household wealth') model.var('Ve', desc='Expected household wealth') model.var('Y', desc='Income = GDP') model.var('YDr', desc='Regular disposable income of households') model.var('YDre', desc='Expected regular disposable income of households') model.var('z1', desc='Switch parameter') model.var('z2', desc='Switch parameter') model.var('z3', desc='Switch parameter') model.var('z4', desc='Switch parameter') # no longer exogenous model.var('G', desc='Government goods') model.set_param_default(0) model.param('add', desc='Random shock to expectations') model.param('add2', desc='Addition to the government expenditure setting rule') model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('beta', desc='Adjustment parameter in price of bills') model.param('betae', desc='Adjustment parameter in expectations') model.param('bot', desc='Bottom value for TP') model.param('chi', desc='Weight of conviction in expected bond price') model.param('lambda10', desc='Parameter in asset demand function') model.param('lambda12', desc='Parameter in asset demand function') model.param('lambda13', desc='Parameter in asset demand function') model.param('lambda14', desc='Parameter in asset demand function') model.param('lambda20', desc='Parameter in asset demand function') model.param('lambda22', desc='Parameter in asset demand function') model.param('lambda23', desc='Parameter in asset demand function') model.param('lambda24', desc='Parameter in asset demand function') model.param('lambda30', desc='Parameter in asset demand function') model.param('lambda32', desc='Parameter in asset demand function') model.param('lambda33', desc='Parameter in asset demand function') model.param('lambda34', desc='Parameter in asset demand function') model.param('theta', desc='Tax rate') model.param('top', desc='Top value for TP') model.param('Pblbar', desc='Exogenously set price of bonds') model.param('Rbar', desc='Exogenously set interest rate on govt bills') model.add('Y = C + G') # 5.1 model.add('YDr = Y - T + Rb(-1)*Bh(-1) + BLh(-1)') # 5.2 model.add('T = theta *(Y + Rb(-1)*Bh(-1) + BLh(-1))') # 5.3 model.add('V - V(-1) = (YDr - C) + CG') # 5.4 model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') model.add('C = alpha1*YDre + alpha2*V(-1)') model.add('Ve = V(-1) + (YDre - C) + CG') model.add('Hh = V - Bh - Pbl*BLh') model.add('Hd = Ve - Bd - Pbl*BLd') model.add('Bd = Ve*lambda20 + Ve*lambda22*Rb' + '- Ve*lambda23*ERrbl - lambda24*YDre') model.add('BLd = (Ve*lambda30 - Ve*lambda32*Rb ' + '+ Ve*lambda33*ERrbl - lambda34*YDre)/Pbl') model.add('Bh = Bd') model.add('BLh = BLd') model.add('Bs - Bs(-1) = (G + Rb(-1)*Bs(-1) + BLs(-1))' + ' - (T + Rb(-1)*Bcb(-1)) - Pbl*(BLs - BLs(-1))') model.add('Hs - Hs(-1) = Bcb - Bcb(-1)') model.add('Bcb = Bs - Bh') model.add('BLs = BLh') model.add('ERrbl = Rbl + ((chi * (Pble - Pbl))/ Pbl)') model.add('Rbl = 1./Pbl') model.add('Pble = Pble(-1) - betae*(Pble(-1) - Pbl) + add') model.add('CGe = chi * (Pble - Pbl)*BLh') model.add('YDre = YDr(-1)') model.add('Rb = Rbar') model.add('Pbl = (1 + z1*beta - z2*beta)*Pbl(-1)') model.add('z1 = if_true(TP > top)') model.add('z2 = if_true(TP < bot)') model.add('TP = (BLh(-1)*Pbl(-1))/(BLh(-1)*Pbl(-1) + Bh(-1))') model.add('PSBR = (G + Rb*Bs(-1) + BLs(-1)) - (T + Rb*Bcb(-1))') model.add('z3 = if_true((PSBR(-1)/Y(-1)) > 0.03)') model.add('z4 = if_true((PSBR(-1)/Y(-1)) < -0.03)') model.add('G = G(-1) - (z3 + z4)*PSBR(-1) + add2') return model lp3_parameters = {'alpha1': 0.8, 'alpha2': 0.2, 'beta': 0.01, 'betae': 0.5, 'chi': 0.1, 'lambda20': 0.44196, 'lambda22': 1.1, 'lambda23': 1, 'lambda24': 0.03, 'lambda30': 0.3997, 'lambda32': 1, 'lambda33': 1.1, 'lambda34': 0.03, 'theta': 0.1938, 'bot': 0.495, 'top': 0.505 } lp3_exogenous = {'Rbar': 0.03, 'Pblbar': 20, 'add': 0, 'add2': 0} lp3_variables = {'G': 20, 'V': 95.803, 'Bh': 37.839, 'Bs': 57.964, 'Bcb': 57.964 - 37.839, 'BLh': 1.892, 'BLs': 1.892, 'Hs': 20.125, 'YDr': 95.803, 'Rb': 0.03, 'Pbl': 20, 'Pble': 20, 'PSBR': 0, 'Y': 115.8, 'TP': 1.892*20/(1.892*20+37.839), # BLh*Pbl/(BLh*Pbl+Bh) 'z1': 0, 'z2': 0, 'z3': 0, 'z4': 0} ``` ### Scenario: LP3, decrease in propensity to consume ``` lp3_alpha = create_lp3_model() lp3_alpha.set_values(lp3_parameters) lp3_alpha.set_values(lp3_exogenous) lp3_alpha.set_values(lp3_variables) for _ in range(10): lp3_alpha.solve(iterations=100, threshold=1e-6) # shock the system lp3_alpha.set_values({'alpha1': 0.7}) for _ in range(45): lp3_alpha.solve(iterations=100, threshold=1e-6) ``` ###### Figure 5.10 ``` caption = ''' Figure 5.10 Evolution of national income (GDP), following a sharp decrease in the propensity to consume out of current income, with Model LP1''' ydata = [s['Y'] for s in lp1_alpha.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(90, 128) axes.plot(ydata, linestyle='--', color='k') # add labels plt.text(20, 110, 'Gross Domestic Product') fig.text(0.1, -.05, caption); ``` ###### Figure 5.11 ``` caption = ''' Figure 5.11 Evolution of national income (GDP), following a sharp decrease in the propensity to consume out of current income, with Model LP3''' ydata = [s['Y'] for s in lp3_alpha.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(90, 128) axes.plot(ydata, linestyle='--', color='k') # add labels plt.text(20, 110, 'Gross Domestic Product') fig.text(0.1, -.05, caption); ``` ###### Figure 5.12 ``` caption = ''' Figure 5.12 Evolution of pure government expenditures and of the government deficit to national income ratio (the PSBR to GDP ratio), following a sharp decrease in the propensity to consume out of current income, with Model LP3''' gdata = [s['G'] for s in lp3_alpha.solutions[5:]] ratiodata = [s['PSBR']/s['Y'] for s in lp3_alpha.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False) axes.spines['top'].set_visible(False) axes.set_ylim(16, 20.5) axes.plot(gdata, linestyle='--', color='r') plt.text(5, 20.4, 'Pure government') plt.text(5, 20.15, 'expenditures (LHS)') plt.text(30, 18, 'Deficit to national') plt.text(30, 17.75, 'income ration (RHS)') axes2 = axes.twinx() axes2.tick_params(top=False) axes2.spines['top'].set_visible(False) axes2.set_ylim(-.01, 0.04) axes2.plot(ratiodata, linestyle='-', color='b') # add labels fig.text(0.1, 1.05, 'G') fig.text(0.9, 1.05, 'PSBR to Y ratio') fig.text(0.1, -.1, caption); ```
github_jupyter
# This line configures matplotlib to show figures embedded in the notebook, # instead of opening a new window for each figure. More about that later. # If you are using an old version of IPython, try using '%pylab inline' instead. %matplotlib inline import matplotlib.pyplot as plt from pysolve3.model import Model from pysolve3.utils import is_close,round_solution def create_lp1_model(): model = Model() model.set_var_default(0) model.var('Bcb', desc='Government bills held by the Central Bank') model.var('Bd', desc='Demand for government bills') model.var('Bh', desc='Government bills held by households') model.var('Bs', desc='Government bills supplied by government') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Government bonds held by households') model.var('BLs', desc='Supply of government bonds') model.var('CG', desc='Capital gains on bonds') model.var('CGe', desc='Expected capital gains on bonds') model.var('C', desc='Consumption') model.var('ERrbl', desc='Expected rate of return on bonds') model.var('Hd', desc='Demand for cash') model.var('Hh', desc='Cash held by households') model.var('Hs', desc='Cash supplied by the central bank') model.var('Pbl', desc='Price of bonds') model.var('Pble', desc='Expected price of bonds') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on government bonds') model.var('T', desc='Taxes') model.var('V', desc='Household wealth') model.var('Ve', desc='Expected household wealth') model.var('Y', desc='Income = GDP') model.var('YDr', desc='Regular disposable income of households') model.var('YDre', desc='Expected regular disposable income of households') model.set_param_default(0) model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('chi', desc='Weight of conviction in expected bond price') model.param('lambda10', desc='Parameter in asset demand function') model.param('lambda12', desc='Parameter in asset demand function') model.param('lambda13', desc='Parameter in asset demand function') model.param('lambda14', desc='Parameter in asset demand function') model.param('lambda20', desc='Parameter in asset demand function') model.param('lambda22', desc='Parameter in asset demand function') model.param('lambda23', desc='Parameter in asset demand function') model.param('lambda24', desc='Parameter in asset demand function') model.param('lambda30', desc='Parameter in asset demand function') model.param('lambda32', desc='Parameter in asset demand function') model.param('lambda33', desc='Parameter in asset demand function') model.param('lambda34', desc='Parameter in asset demand function') model.param('theta', desc='Tax rate') model.param('G', desc='Government goods') model.param('Rbar', desc='Exogenously set interest rate on govt bills') model.param('Pblbar', desc='Exogenously set price of bonds') model.add('Y = C + G') # 5.1 model.add('YDr = Y - T + Rb(-1)*Bh(-1) + BLh(-1)') # 5.2 model.add('T = theta *(Y + Rb(-1)*Bh(-1) + BLh(-1))') # 5.3 model.add('V - V(-1) = (YDr - C) + CG') # 5.4 model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') model.add('C = alpha1*YDre + alpha2*V(-1)') model.add('Ve = V(-1) + (YDre - C) + CG') model.add('Hh = V - Bh - Pbl*BLh') model.add('Hd = Ve - Bd - Pbl*BLd') model.add('Bd = Ve*lambda20 + Ve*lambda22*Rb' + '- Ve*lambda23*ERrbl - lambda24*YDre') model.add('BLd = (Ve*lambda30 - Ve*lambda32*Rb ' + '+ Ve*lambda33*ERrbl - lambda34*YDre)/Pbl') model.add('Bh = Bd') model.add('BLh = BLd') model.add('Bs - Bs(-1) = (G + Rb(-1)*Bs(-1) + ' + 'BLs(-1)) - (T + Rb(-1)*Bcb(-1)) - (BLs - BLs(-1))*Pbl') model.add('Hs - Hs(-1) = Bcb - Bcb(-1)') model.add('Bcb = Bs - Bh') model.add('BLs = BLh') model.add('ERrbl = Rbl + chi * (Pble - Pbl) / Pbl') model.add('Rbl = 1./Pbl') model.add('Pble = Pbl') model.add('CGe = chi * (Pble - Pbl)*BLh') model.add('YDre = YDr(-1)') model.add('Rb = Rbar') model.add('Pbl = Pblbar') return model lp1_parameters = {'alpha1': 0.8, 'alpha2': 0.2, 'chi': 0.1, 'lambda20': 0.44196, 'lambda22': 1.1, 'lambda23': 1, 'lambda24': 0.03, 'lambda30': 0.3997, 'lambda32': 1, 'lambda33': 1.1, 'lambda34': 0.03, 'theta': 0.1938} lp1_exogenous = {'G': 20, 'Rbar': 0.03, 'Pblbar': 20} lp1_variables = {'V': 95.803, 'Bh': 37.839, 'Bs': 57.964, 'Bcb': 57.964 - 37.839, 'BLh': 1.892, 'BLs': 1.892, 'Hs': 20.125, 'YDr': 95.803, 'Rb': 0.03, 'Pbl': 20} lp1 = create_lp1_model() lp1.set_values(lp1_parameters) lp1.set_values(lp1_exogenous) lp1.set_values(lp1_variables) for _ in range(15): lp1.solve(iterations=100, threshold=1e-6) # shock the system lp1.set_values({'Rbar': 0.04, 'Pblbar': 15}) for _ in range(45): lp1.solve(iterations=100, threshold=1e-6) caption = ''' Figure 5.2 Evolution of the wealth to disposable income ratio, following an increase in both the short-term and long-term interest rates, with model LP1''' data = [s['V']/s['YDr'] for s in lp1.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.89, 1.01) axes.plot(data, 'k') # add labels plt.text(20, 0.98, 'Wealth to disposable income ratio') fig.text(0.1, -.05, caption); caption = ''' Figure 5.3 Evolution of the wealth to disposable income ratio, following an increase in both the short-term and long-term interest rates, with model LP1''' ydrdata = [s['YDr'] for s in lp1.solutions[5:]] cdata = [s['C'] for s in lp1.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(92.5, 101.5) axes.plot(ydrdata, 'k') axes.plot(cdata, linestyle='--', color='r') # add labels plt.text(16, 98, 'Disposable') plt.text(16, 97.6, 'income') plt.text(22, 95, 'Consumption') fig.text(0.1, -.05, caption); caption = ''' Figure 5.4 Evolution of the bonds to wealth ration and the bills to wealth ratio, following an increase from 3% to 4% in the short-term interest rate, while the long-term interest rates moves from 5% to 6.67%, with model LP1''' bhdata = [s['Bh']/s['V'] for s in lp1.solutions[5:]] pdata = [s['Pbl']*s['BLh']/s['V'] for s in lp1.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.382, 0.408) axes.plot(bhdata, 'k') axes.plot(pdata, linestyle='--', color='r') # add labels plt.text(14, 0.3978, 'Bonds to wealth ratio') plt.text(17, 0.39, 'Bills to wealth ratio') fig.text(0.1, -.05, caption); def create_lp2_model(): model = Model() model.set_var_default(0) model.var('Bcb', desc='Government bills held by the Central Bank') model.var('Bd', desc='Demand for government bills') model.var('Bh', desc='Government bills held by households') model.var('Bs', desc='Government bills supplied by government') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Government bonds held by households') model.var('BLs', desc='Supply of government bonds') model.var('CG', desc='Capital gains on bonds') model.var('CGe', desc='Expected capital gains on bonds') model.var('C', desc='Consumption') model.var('ERrbl', desc='Expected rate of return on bonds') model.var('Hd', desc='Demand for cash') model.var('Hh', desc='Cash held by households') model.var('Hs', desc='Cash supplied by the central bank') model.var('Pbl', desc='Price of bonds') model.var('Pble', desc='Expected price of bonds') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on government bonds') model.var('T', desc='Taxes') model.var('TP', desc='Target proportion in households portfolio') model.var('V', desc='Household wealth') model.var('Ve', desc='Expected household wealth') model.var('Y', desc='Income = GDP') model.var('YDr', desc='Regular disposable income of households') model.var('YDre', desc='Expected regular disposable income of households') model.var('z1', desc='Switch parameter') model.var('z2', desc='Switch parameter') model.set_param_default(0) model.param('add', desc='Random shock to expectations') model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('beta', desc='Adjustment parameter in price of bills') model.param('betae', desc='Adjustment parameter in expectations') model.param('bot', desc='Bottom value for TP') model.param('chi', desc='Weight of conviction in expected bond price') model.param('lambda10', desc='Parameter in asset demand function') model.param('lambda12', desc='Parameter in asset demand function') model.param('lambda13', desc='Parameter in asset demand function') model.param('lambda14', desc='Parameter in asset demand function') model.param('lambda20', desc='Parameter in asset demand function') model.param('lambda22', desc='Parameter in asset demand function') model.param('lambda23', desc='Parameter in asset demand function') model.param('lambda24', desc='Parameter in asset demand function') model.param('lambda30', desc='Parameter in asset demand function') model.param('lambda32', desc='Parameter in asset demand function') model.param('lambda33', desc='Parameter in asset demand function') model.param('lambda34', desc='Parameter in asset demand function') model.param('theta', desc='Tax rate') model.param('top', desc='Top value for TP') model.param('G', desc='Government goods') model.param('Pblbar', desc='Exogenously set price of bonds') model.param('Rbar', desc='Exogenously set interest rate on govt bills') model.add('Y = C + G') # 5.1 model.add('YDr = Y - T + Rb(-1)*Bh(-1) + BLh(-1)') # 5.2 model.add('T = theta *(Y + Rb(-1)*Bh(-1) + BLh(-1))') # 5.3 model.add('V - V(-1) = (YDr - C) + CG') # 5.4 model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') model.add('C = alpha1*YDre + alpha2*V(-1)') model.add('Ve = V(-1) + (YDre - C) + CG') model.add('Hh = V - Bh - Pbl*BLh') model.add('Hd = Ve - Bd - Pbl*BLd') model.add('Bd = Ve*lambda20 + Ve*lambda22*Rb' + '- Ve*lambda23*ERrbl - lambda24*YDre') model.add('BLd = (Ve*lambda30 - Ve*lambda32*Rb ' + '+ Ve*lambda33*ERrbl - lambda34*YDre)/Pbl') model.add('Bh = Bd') model.add('BLh = BLd') model.add('Bs - Bs(-1) = (G + Rb(-1)*Bs(-1) + BLs(-1))' + ' - (T + Rb(-1)*Bcb(-1)) - Pbl*(BLs - BLs(-1))') model.add('Hs - Hs(-1) = Bcb - Bcb(-1)') model.add('Bcb = Bs - Bh') model.add('BLs = BLh') model.add('ERrbl = Rbl + ((chi * (Pble - Pbl))/ Pbl)') model.add('Rbl = 1./Pbl') model.add('Pble = Pble(-1) - betae*(Pble(-1) - Pbl) + add') model.add('CGe = chi * (Pble - Pbl)*BLh') model.add('YDre = YDr(-1)') model.add('Rb = Rbar') model.add('Pbl = (1 + z1*beta - z2*beta)*Pbl(-1)') model.add('z1 = if_true(TP > top)') model.add('z2 = if_true(TP < bot)') model.add('TP = (BLh(-1)*Pbl(-1))/(BLh(-1)*Pbl(-1) + Bh(-1))') return model lp2_parameters = {'alpha1': 0.8, 'alpha2': 0.2, 'beta': 0.01, 'betae': 0.5, 'chi': 0.1, 'lambda20': 0.44196, 'lambda22': 1.1, 'lambda23': 1, 'lambda24': 0.03, 'lambda30': 0.3997, 'lambda32': 1, 'lambda33': 1.1, 'lambda34': 0.03, 'theta': 0.1938, 'bot': 0.495, 'top': 0.505 } lp2_exogenous = {'G': 20, 'Rbar': 0.03, 'Pblbar': 20, 'add': 0} lp2_variables = {'V': 95.803, 'Bh': 37.839, 'Bs': 57.964, 'Bcb': 57.964 - 37.839, 'BLh': 1.892, 'BLs': 1.892, 'Hs': 20.125, 'YDr': 95.803, 'Rb': 0.03, 'Pbl': 20, 'Pble': 20, 'TP': 1.892*20/(1.892*20+37.839), # BLh*Pbl/(BLh*Pbl+Bh) 'z1': 0, 'z2': 0} lp2_bill = create_lp2_model() lp2_bill.set_values(lp2_parameters) lp2_bill.set_values(lp2_exogenous) lp2_bill.set_values(lp2_variables) lp2_bill.set_values({'z1': lp2_bill.evaluate('if_true(TP > top)'), 'z2': lp2_bill.evaluate('if_true(TP < bot)')}) for _ in range(10): lp2_bill.solve(iterations=100, threshold=1e-4) # shock the system lp2_bill.set_values({'Rbar': 0.035}) for _ in range(45): lp2_bill.solve(iterations=100, threshold=1e-4) caption = ''' Figure 5.5 Evolution of the long-term interest rate (the bond yield), following an increase in the short-term interest rate (the bill rate), as a result of the response of the central bank and the Treasury, with Model LP2.''' rbdata = [s['Rb'] for s in lp2_bill.solutions[5:]] pbldata = [1./s['Pbl'] for s in lp2_bill.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.set_ylim(0.029, 0.036) axes.plot(rbdata, linestyle='--', color='r') axes2 = axes.twinx() axes2.spines['top'].set_visible(False) axes2.set_ylim(0.0495, 0.052) axes2.plot(pbldata, 'k') # add labels plt.text(12, 0.0518, 'Short-term interest rate') plt.text(15, 0.0513, 'Long-term interest rate') fig.text(0.05, 1.05, 'Bill rate') fig.text(1.15, 1.05, 'Bond yield') fig.text(0.1, -.1, caption); caption = ''' Figure 5.6 Evolution of the target proportion (TP), that is the share of bonds in the government debt held by households, following an increase in the short-term interest rate (the bill rate) and the response of the central bank and of the Treasury, with Model LP2''' tpdata = [s['TP'] for s in lp2_bill.solutions[5:]] topdata = [s['top'] for s in lp2_bill.solutions[5:]] botdata = [s['bot'] for s in lp2_bill.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 1.1, 1.1]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.set_ylim(0.490, 0.506) axes.plot(topdata, color='k') axes.plot(botdata, color='k') axes.plot(tpdata, linestyle='--', color='r') # add labels plt.text(30, 0.5055, 'Ceiling of target range') plt.text(30, 0.494, 'Floor of target range') plt.text(10, 0.493, 'Share of bonds') plt.text(10, 0.4922, 'in government debt') plt.text(10, 0.4914, 'held by households') fig.text(0.1, -.15, caption); lp2_bond = create_lp2_model() lp2_bond.set_values(lp2_parameters) lp2_bond.set_values(lp2_exogenous) lp2_bond.set_values(lp2_variables) lp2_bond.set_values({'z1': 'if_true(TP > top)', 'z2': 'if_true(TP < bot)'}) for _ in range(10): lp2_bond.solve(iterations=100, threshold=1e-5) # shock the system lp2_bond.set_values({'add': -3}) lp2_bond.solve(iterations=100, threshold=1e-5) lp2_bond.set_values({'add': 0}) for _ in range(43): lp2_bond.solve(iterations=100, threshold=1e-4) caption = ''' Figure 5.7 Evolution of the long-term interest rate, following an anticipated fall in the price of bonds, as a consequence of the response of the central bank and of the Treasury, with Model LP2''' pbldata = [1./s['Pbl'] for s in lp2_bond.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.0497, 0.0512) axes.plot(pbldata, linestyle='--', color='k') # add labels plt.text(15, 0.0509, 'Long-term interest rate') fig.text(0.1, -.1, caption); caption = ''' Figure 5.8 Evolution of the expected and actual bond prices, following an anticipated fall in the price of bonds, as a consequence of the response of the central bank and of the Treasury, with Model LP2''' pbldata = [s['Pbl'] for s in lp2_bond.solutions[5:]] pbledata = [s['Pble'] for s in lp2_bond.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(16.5, 21) axes.plot(pbldata, linestyle='--', color='k') axes.plot(pbledata, linestyle='-', color='r') # add labels plt.text(8, 20, 'Actual price of bonds') plt.text(10, 19, 'Expected price of bonds') fig.text(0.1, -.1, caption); caption = ''' Figure 5.9 Evolution of the target proportion (TP), that is the share of bonds in the government debt held by households, following an anticipated fall in the price of bonds, as a consequence of the response of the central bank and of the Treasury, with Model LP2''' tpdata = [s['TP'] for s in lp2_bond.solutions[5:]] botdata = [s['top'] for s in lp2_bond.solutions[5:]] topdata = [s['bot'] for s in lp2_bond.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(0.47, 0.52) axes.plot(tpdata, linestyle='--', color='r') axes.plot(botdata, linestyle='-', color='k') axes.plot(topdata, linestyle='-', color='k') # add labels plt.text(30, 0.508, 'Ceiling of target range') plt.text(30, 0.491, 'Floor of target range') plt.text(10, 0.49, 'Share of bonds in') plt.text(10, 0.487, 'government debt') plt.text(10, 0.484, 'held by households') fig.text(0.1, -.15, caption); lp1_alpha = create_lp1_model() lp1_alpha.set_values(lp1_parameters) lp1_alpha.set_values(lp1_exogenous) lp1_alpha.set_values(lp1_variables) for _ in range(10): lp1_alpha.solve(iterations=100, threshold=1e-6) # shock the system lp1_alpha.set_values({'alpha1': 0.7}) for _ in range(45): lp1_alpha.solve(iterations=100, threshold=1e-6) def create_lp3_model(): model = Model() model.set_var_default(0) model.var('Bcb', desc='Government bills held by the Central Bank') model.var('Bd', desc='Demand for government bills') model.var('Bh', desc='Government bills held by households') model.var('Bs', desc='Government bills supplied by government') model.var('BLd', desc='Demand for government bonds') model.var('BLh', desc='Government bonds held by households') model.var('BLs', desc='Supply of government bonds') model.var('CG', desc='Capital gains on bonds') model.var('CGe', desc='Expected capital gains on bonds') model.var('C', desc='Consumption') model.var('ERrbl', desc='Expected rate of return on bonds') model.var('Hd', desc='Demand for cash') model.var('Hh', desc='Cash held by households') model.var('Hs', desc='Cash supplied by the central bank') model.var('Pbl', desc='Price of bonds') model.var('Pble', desc='Expected price of bonds') model.var('PSBR', desc='Public sector borrowing requirement (PSBR)') model.var('Rb', desc='Interest rate on government bills') model.var('Rbl', desc='Interest rate on government bonds') model.var('T', desc='Taxes') model.var('TP', desc='Target proportion in households portfolio') model.var('V', desc='Household wealth') model.var('Ve', desc='Expected household wealth') model.var('Y', desc='Income = GDP') model.var('YDr', desc='Regular disposable income of households') model.var('YDre', desc='Expected regular disposable income of households') model.var('z1', desc='Switch parameter') model.var('z2', desc='Switch parameter') model.var('z3', desc='Switch parameter') model.var('z4', desc='Switch parameter') # no longer exogenous model.var('G', desc='Government goods') model.set_param_default(0) model.param('add', desc='Random shock to expectations') model.param('add2', desc='Addition to the government expenditure setting rule') model.param('alpha1', desc='Propensity to consume out of income') model.param('alpha2', desc='Propensity to consume out of wealth') model.param('beta', desc='Adjustment parameter in price of bills') model.param('betae', desc='Adjustment parameter in expectations') model.param('bot', desc='Bottom value for TP') model.param('chi', desc='Weight of conviction in expected bond price') model.param('lambda10', desc='Parameter in asset demand function') model.param('lambda12', desc='Parameter in asset demand function') model.param('lambda13', desc='Parameter in asset demand function') model.param('lambda14', desc='Parameter in asset demand function') model.param('lambda20', desc='Parameter in asset demand function') model.param('lambda22', desc='Parameter in asset demand function') model.param('lambda23', desc='Parameter in asset demand function') model.param('lambda24', desc='Parameter in asset demand function') model.param('lambda30', desc='Parameter in asset demand function') model.param('lambda32', desc='Parameter in asset demand function') model.param('lambda33', desc='Parameter in asset demand function') model.param('lambda34', desc='Parameter in asset demand function') model.param('theta', desc='Tax rate') model.param('top', desc='Top value for TP') model.param('Pblbar', desc='Exogenously set price of bonds') model.param('Rbar', desc='Exogenously set interest rate on govt bills') model.add('Y = C + G') # 5.1 model.add('YDr = Y - T + Rb(-1)*Bh(-1) + BLh(-1)') # 5.2 model.add('T = theta *(Y + Rb(-1)*Bh(-1) + BLh(-1))') # 5.3 model.add('V - V(-1) = (YDr - C) + CG') # 5.4 model.add('CG = (Pbl - Pbl(-1))*BLh(-1)') model.add('C = alpha1*YDre + alpha2*V(-1)') model.add('Ve = V(-1) + (YDre - C) + CG') model.add('Hh = V - Bh - Pbl*BLh') model.add('Hd = Ve - Bd - Pbl*BLd') model.add('Bd = Ve*lambda20 + Ve*lambda22*Rb' + '- Ve*lambda23*ERrbl - lambda24*YDre') model.add('BLd = (Ve*lambda30 - Ve*lambda32*Rb ' + '+ Ve*lambda33*ERrbl - lambda34*YDre)/Pbl') model.add('Bh = Bd') model.add('BLh = BLd') model.add('Bs - Bs(-1) = (G + Rb(-1)*Bs(-1) + BLs(-1))' + ' - (T + Rb(-1)*Bcb(-1)) - Pbl*(BLs - BLs(-1))') model.add('Hs - Hs(-1) = Bcb - Bcb(-1)') model.add('Bcb = Bs - Bh') model.add('BLs = BLh') model.add('ERrbl = Rbl + ((chi * (Pble - Pbl))/ Pbl)') model.add('Rbl = 1./Pbl') model.add('Pble = Pble(-1) - betae*(Pble(-1) - Pbl) + add') model.add('CGe = chi * (Pble - Pbl)*BLh') model.add('YDre = YDr(-1)') model.add('Rb = Rbar') model.add('Pbl = (1 + z1*beta - z2*beta)*Pbl(-1)') model.add('z1 = if_true(TP > top)') model.add('z2 = if_true(TP < bot)') model.add('TP = (BLh(-1)*Pbl(-1))/(BLh(-1)*Pbl(-1) + Bh(-1))') model.add('PSBR = (G + Rb*Bs(-1) + BLs(-1)) - (T + Rb*Bcb(-1))') model.add('z3 = if_true((PSBR(-1)/Y(-1)) > 0.03)') model.add('z4 = if_true((PSBR(-1)/Y(-1)) < -0.03)') model.add('G = G(-1) - (z3 + z4)*PSBR(-1) + add2') return model lp3_parameters = {'alpha1': 0.8, 'alpha2': 0.2, 'beta': 0.01, 'betae': 0.5, 'chi': 0.1, 'lambda20': 0.44196, 'lambda22': 1.1, 'lambda23': 1, 'lambda24': 0.03, 'lambda30': 0.3997, 'lambda32': 1, 'lambda33': 1.1, 'lambda34': 0.03, 'theta': 0.1938, 'bot': 0.495, 'top': 0.505 } lp3_exogenous = {'Rbar': 0.03, 'Pblbar': 20, 'add': 0, 'add2': 0} lp3_variables = {'G': 20, 'V': 95.803, 'Bh': 37.839, 'Bs': 57.964, 'Bcb': 57.964 - 37.839, 'BLh': 1.892, 'BLs': 1.892, 'Hs': 20.125, 'YDr': 95.803, 'Rb': 0.03, 'Pbl': 20, 'Pble': 20, 'PSBR': 0, 'Y': 115.8, 'TP': 1.892*20/(1.892*20+37.839), # BLh*Pbl/(BLh*Pbl+Bh) 'z1': 0, 'z2': 0, 'z3': 0, 'z4': 0} lp3_alpha = create_lp3_model() lp3_alpha.set_values(lp3_parameters) lp3_alpha.set_values(lp3_exogenous) lp3_alpha.set_values(lp3_variables) for _ in range(10): lp3_alpha.solve(iterations=100, threshold=1e-6) # shock the system lp3_alpha.set_values({'alpha1': 0.7}) for _ in range(45): lp3_alpha.solve(iterations=100, threshold=1e-6) caption = ''' Figure 5.10 Evolution of national income (GDP), following a sharp decrease in the propensity to consume out of current income, with Model LP1''' ydata = [s['Y'] for s in lp1_alpha.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(90, 128) axes.plot(ydata, linestyle='--', color='k') # add labels plt.text(20, 110, 'Gross Domestic Product') fig.text(0.1, -.05, caption); caption = ''' Figure 5.11 Evolution of national income (GDP), following a sharp decrease in the propensity to consume out of current income, with Model LP3''' ydata = [s['Y'] for s in lp3_alpha.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False, right=False) axes.spines['top'].set_visible(False) axes.spines['right'].set_visible(False) axes.set_ylim(90, 128) axes.plot(ydata, linestyle='--', color='k') # add labels plt.text(20, 110, 'Gross Domestic Product') fig.text(0.1, -.05, caption); caption = ''' Figure 5.12 Evolution of pure government expenditures and of the government deficit to national income ratio (the PSBR to GDP ratio), following a sharp decrease in the propensity to consume out of current income, with Model LP3''' gdata = [s['G'] for s in lp3_alpha.solutions[5:]] ratiodata = [s['PSBR']/s['Y'] for s in lp3_alpha.solutions[5:]] fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.9, 0.9]) axes.tick_params(top=False) axes.spines['top'].set_visible(False) axes.set_ylim(16, 20.5) axes.plot(gdata, linestyle='--', color='r') plt.text(5, 20.4, 'Pure government') plt.text(5, 20.15, 'expenditures (LHS)') plt.text(30, 18, 'Deficit to national') plt.text(30, 17.75, 'income ration (RHS)') axes2 = axes.twinx() axes2.tick_params(top=False) axes2.spines['top'].set_visible(False) axes2.set_ylim(-.01, 0.04) axes2.plot(ratiodata, linestyle='-', color='b') # add labels fig.text(0.1, 1.05, 'G') fig.text(0.9, 1.05, 'PSBR to Y ratio') fig.text(0.1, -.1, caption);
0.628065
0.859251
``` import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [8, 4] plt.rcParams['font.size'] = 12 ``` # Paths and waveguides gdsfactory leverages [PHIDL](https://github.com/amccaugh/phidl) efficient module for creating smooth curves, particularly useful for creating waveguide structures such as those used in photonics. Creating a path device is simple: - Create a blank `Path` - Append points to the `Path` either using the built-in functions (`arc()`, `straight()`, `euler()`, etc) or by providing your own lists of points - Specify what you want the cross-section (`CrossSection`) to look like - Combine the `Path` and the `CrossSection` (will output a Device with the path polygons in it) ## Path creation The first step is to generate the list of points we want the path to follow. Let's start out by creating a blank `Path` and using the built-in functions to make a few smooth turns. ``` from pp import Path, CrossSection, Component, qp from pp import path as pa import pp import numpy as np P = Path() P.append( pa.arc(radius = 10, angle = 90) ) # Circular arc P.append( pa.straight(length = 10) ) # Straight section P.append( pa.euler(radius = 3, angle = -90) ) # Euler bend (aka "racetrack" curve) P.append( pa.straight(length = 40) ) P.append( pa.arc(radius = 8, angle = -45) ) P.append( pa.straight(length = 10) ) P.append( pa.arc(radius = 8, angle = 45) ) P.append( pa.straight(length = 10) ) qp(P) ``` We can also modify our Path in the same ways as any other PHIDL object: - Manipulation with `move()`, `rotate()`, `mirror()`, etc - Accessing properties like `xmin`, `y`, `center`, `bbox`, etc ``` P.movey(10) P.xmin = 20 qp(P) ``` We can also check the length of the curve with the `length()` method: ``` P.length() ``` ## Defining the cross-section Now that we've got our path defined, the next step is to tell phidl what we want the cross-section of the path to look like. To do this, we create a blank `CrossSection` and add whatever cross-sections we want to it. We can then combine the `Path` and the `CrossSection` using the `extrude()` function to generate our final geometry: ``` # Create a blank CrossSection X = CrossSection() # Add a single "section" to the cross-section X.add(width = 1, offset = 0, layer = 0) # Combine the Path and the CrossSection waveguide_device = P.extrude(cross_section = X) # Quickplot the resulting Component qp(waveguide_device) ``` Now, what if we want a more complicated waveguide? For instance, in some photonic applications it's helpful to have a shallow etch that appears on either side of the waveguide (often called a "sleeve). Additionally, it might be nice to have a Port on either end of the center section so we can snap other geometries to it. Let's try adding something like that in: ``` # Create a blank CrossSection X = CrossSection() # Add a a few "sections" to the cross-section X.add(width = 1, offset = 0, layer = 0, ports = ('in','out')) X.add(width = 3, offset = 2, layer = 2) X.add(width = 3, offset = -2, layer = 2) # Combine the Path and the CrossSection waveguide_device = P.extrude(cross_section = X) # Quickplot the resulting Component waveguide_device ``` ## Building Paths quickly You can pass `append()` lists of path segments. This makes it easy to combine paths very quickly. Below we show 3 examples using this functionality: **Example 1:** Assemble a complex path by making a list of Paths and passing it to `append()` ``` P = Path() # Create the basic Path components left_turn = pa.euler(radius = 4, angle = 90) right_turn = pa.euler(radius = 4, angle = -90) straight = pa.straight(length = 10) # Assemble a complex path by making list of Paths and passing it to `append()` P.append([ straight, left_turn, straight, right_turn, straight, straight, right_turn, left_turn, straight, ]) qp(P) ``` **Example 2:** Create an "S-turn" just by making a list of `[left_turn, right_turn]` ``` P = Path() # Create an "S-turn" just by making a list s_turn = [left_turn, right_turn] P.append(s_turn) qp(P) ``` **Example 3:** Repeat the S-turn 3 times by nesting our S-turn list in another list ``` P = Path() # Create an "S-turn" using a list s_turn = [left_turn, right_turn] # Repeat the S-turn 3 times by nesting our S-turn list 3x times in another list triple_s_turn = [s_turn, s_turn, s_turn] P.append(triple_s_turn) qp(P) ``` Note you can also use the Path() constructor to immediately contruct your Path: ``` P = Path([straight, left_turn, straight, right_turn, straight]) qp(P) ``` ## Custom curves Now let's have some fun and try to make a loop-de-loop structure with parallel waveguides and several Ports. To create a new type of curve we simply make a function that produces an array of points. The best way to do that is to create a function which allows you to specify a large number of points along that curve -- in the case below, the `looploop()` function outputs 1000 points along a looping path. Later, if we want reduce the number of points in our geometry we can trivially `simplify` the path. ``` def looploop(num_pts = 1000): """ Simple limacon looping curve """ t = np.linspace(-np.pi,0,num_pts) r = 20 + 25*np.sin(t) x = r*np.cos(t) y = r*np.sin(t) points = np.array((x,y)).T return points # Create the path points P = Path() P.append( pa.arc(radius = 10, angle = 90) ) P.append( pa.straight()) P.append( pa.arc(radius = 5, angle = -90) ) P.append( looploop(num_pts = 1000) ) P.rotate(-45) # Create the crosssection X = CrossSection() X.add(width = 0.5, offset = 2, layer = 0, ports = [None,None]) X.add(width = 0.5, offset = 4, layer = 1, ports = [None,'out2']) X.add(width = 1.5, offset = 0, layer = 2, ports = ['in','out']) X.add(width = 1, offset = 0, layer = 3) D = P.extrude(cross_section = X) qp(D) # quickplot the resulting Component c = pp.import_phidl_component(component=D) pp.show(c) ``` You can create Paths from any array of points -- just be sure that they form smooth curves! If we examine our path `P` we can see that all we've simply created a long list of points: ``` import numpy as np path_points = P.points # Curve points are stored as a numpy array in P.points print(np.shape(path_points)) # The shape of the array is Nx2 print(len(P)) # Equivalently, use len(P) to see how many points are inside ``` ## Simplifying / reducing point usage One of the chief concerns of generating smooth curves is that too many points are generated, inflating file sizes and making boolean operations computationally expensive. Fortunately, PHIDL has a fast implementation of the [Ramer-Douglas–Peucker algorithm](https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm) that lets you reduce the number of points in a curve without changing its shape. All that needs to be done is when you `extrude()` the Component, you specify the `simplify` argument. If we specify `simplify = 1e-3`, the number of points in the line drops from 12,000 to 4,000, and the remaining points form a line that is identical to within `1e-3` distance from the original (for the default 1 micron unit size, this corresponds to 1 nanometer resolution): ``` # The remaining points form a identical line to within `1e-3` from the original D = P.extrude(cross_section = X, simplify = 1e-3) qp(D) # quickplot the resulting Component ``` Let's say we need fewer points. We can increase the simplify tolerance by specifying `simplify = 1e-1`. This drops the number of points to ~400 points form a line that is identical to within `1e-1` distance from the original: ``` D = P.extrude(cross_section = X, simplify = 1e-1) qp(D) # quickplot the resulting Component ``` Taken to absurdity, what happens if we set `simplify = 0.3`? Once again, the ~200 remaining points form a line that is within `0.3` units from the original -- but that line looks pretty bad. ``` D = P.extrude(cross_section = X, simplify = 0.3) qp(D) # quickplot the resulting Component ``` ## Curvature calculation The `Path` class has a `curvature()` method that computes the curvature `K` of your smooth path (K = 1/(radius of curvature)). This can be helpful for verifying that your curves transition smoothly such as in [track-transition curves](https://en.wikipedia.org/wiki/Track_transition_curve) (also known as "racetrack", "Euler", or "straight-to-bend" curves in the photonics world). Note this curvature is numerically computed so areas where the curvature jumps instantaneously (such as between an arc and a straight segment) will be slightly interpolated, and sudden changes in point density along the curve can cause discontinuities. ``` P = Path() P.append([ pa.straight(length = 10), # Should have a curvature of 0 # Euler straight-to-bend transition with min. bend radius of 3 (max curvature of 1/3) pa.euler(radius = 3, angle = 90, p = 0.5, use_eff = False), pa.straight(length = 10), # Should have a curvature of 0 pa.arc(radius = 10, angle = 90), # Should have a curvature of 1/10 pa.arc(radius = 5, angle = -90), # Should have a curvature of -1/5 pa.straight(length = 20), # Should have a curvature of 0 ]) s,K = P.curvature() plt.plot(s,K,'.-') plt.xlabel('Position along curve (arc length)') plt.ylabel('Curvature'); ``` ## Transitioning between cross-sections Often a critical element of building paths is being able to transition between cross-sections. You can use the `transition()` function to do exactly this: you simply feed it two `CrossSection`s and it will output a new `CrossSection` that smoothly transitions between the two. Let's start off by creating two cross-sections we want to transition between. Note we give all the cross-sectional elements names by specifying the `name` argument in the `add()` function -- this is important because the transition function will try to match names between the two input cross-sections, and any names not present in both inputs will be skipped. ``` from pp import Path, CrossSection, Component, qp from pp import path as pa import numpy as np import pp # Create our first CrossSection X1 = CrossSection() X1.add(width = 1.2, offset = 0, layer = 2, name = 'wg', ports = ('in1', 'out1')) X1.add(width = 2.2, offset = 0, layer = 3, name = 'etch') X1.add(width = 1.1, offset = 3, layer = 1, name = 'wg2') # Create the second CrossSection that we want to transition to X2 = CrossSection() X2.add(width = 1, offset = 0, layer = 2, name = 'wg', ports = ('in2', 'out2')) X2.add(width = 3.5, offset = 0, layer = 3, name = 'etch') X2.add(width = 3, offset = 5, layer = 1, name = 'wg2') # To show the cross-sections, let's create two Paths and # create Devices by extruding them P1 = pa.straight(length = 5) P2 = pa.straight(length = 5) WG1 = P1.extrude(cross_section = X1) WG2 = P2.extrude(cross_section = X2) # Place both cross-section Devices and quickplot them D = Component() wg1 = D << WG1 wg2 = D << WG2 wg2.movex(7.5) qp(D) ``` Now let's create the transitional CrossSection by calling `transition()` with these two CrossSections as input. If we want the width to vary as a smooth sinusoid between the sections, we can set `width_type` to `'sine'` (alternatively we could also use `'linear'`). ``` # Create the transitional CrossSection Xtrans = pa.transition(cross_section1 = X1, cross_section2 = X2, width_type = 'sine') # Create a Path for the transitional CrossSection to follow P3 = pa.straight(length = 15) # Use the transitional CrossSection to create a Component WG_trans = P3.extrude(Xtrans) qp(WG_trans) ``` Now that we have all of our components, let's `connect()` everything and see what it looks like ``` D = Component() wg1 = D << WG1 # First cross-section Component wg2 = D << WG2 wgt = D << WG_trans wgt.connect('in2', wg1.ports['out1']) wg2.connect('in2', wgt.ports['out1']) qp(D) ``` Note that since `transition()` outputs a `CrossSection`, we can make the transition follow an arbitrary path: ``` # Transition along a curving Path P4 = pa.euler(radius = 25, angle = 45, p = 0.5, use_eff = False) WG_trans = P4.extrude(Xtrans) D = Component() wg1 = D << WG1 # First cross-section Component wg2 = D << WG2 wgt = D << WG_trans wgt.connect('in2', wg1.ports['out1']) wg2.connect('in2', wgt.ports['out1']) qp(D) ``` ## Variable width / offset In some instances, you may want to vary the width or offset of the path's cross- section as it travels. This can be accomplished by giving the `CrossSection` arguments that are functions or lists. Let's say we wanted a width that varies sinusoidally along the length of the Path. To do this, we need to make a width function that is parameterized from 0 to 1: for an example function `my_width_fun(t)` where the width at `t==0` is the width at the beginning of the Path and the width at `t==1` is the width at the end. ``` def my_custom_width_fun(t): # Note: Custom width/offset functions MUST be vectorizable--you must be able # to call them with an array input like my_custom_width_fun([0, 0.1, 0.2, 0.3, 0.4]) num_periods = 5 w = 3 + np.cos(2*np.pi*t * num_periods) return w # Create the Path P = pa.straight(length = 40) # Create two cross-sections: one fixed width, one modulated by my_custom_offset_fun X = CrossSection() X.add(width = 3, offset = -6, layer = 0) X.add(width = my_custom_width_fun, offset = 0, layer = 0) # Extrude the Path to create the Component D = P.extrude(cross_section = X) qp(D) ``` We can do the same thing with the offset argument: ``` def my_custom_offset_fun(t): # Note: Custom width/offset functions MUST be vectorizable--you must be able # to call them with an array input like my_custom_offset_fun([0, 0.1, 0.2, 0.3, 0.4]) num_periods = 3 w = 3 + np.cos(2*np.pi*t * num_periods) return w # Create the Path P = pa.straight(length = 40) # Create two cross-sections: one fixed offset, one modulated by my_custom_offset_fun X = CrossSection() X.add(width = 1, offset = my_custom_offset_fun, layer = 0) X.add(width = 1, offset = 0, layer = 0) # Extrude the Path to create the Device D = P.extrude(cross_section = X) qp(D) ``` ## Offsetting a Path Sometimes it's convenient to start with a simple Path and offset the line it follows to suit your needs (without using a custom-offset CrossSection). Here, we start with two copies of simple straight Path and use the `offset()` function to directly modify each Path. ``` def my_custom_offset_fun(t): # Note: Custom width/offset functions MUST be vectorizable--you must be able # to call them with an array input like my_custom_offset_fun([0, 0.1, 0.2, 0.3, 0.4]) num_periods = 1 w = 2 + np.cos(2*np.pi*t * num_periods) return w P1 = pa.straight(length = 40) P2 = P1.copy() # Make a copy of the Path P1.offset(offset = my_custom_offset_fun) P2.offset(offset = my_custom_offset_fun) P2.mirror((1,0)) # reflect across X-axis qp([P1, P2]) ``` ## Modifying a CrossSection In case you need to modify the CrossSection, it can be done simply by specifying a `name` argument for the cross-sectional element you want to modify later. Here is an example where we name one of thee cross-sectional elements `'myelement1'` and `'myelement2'`: ``` # Create the Path P = pa.arc(radius = 10, angle = 45) # Create two cross-sections: one fixed width, one modulated by my_custom_offset_fun X = CrossSection() X.add(width = 1, offset = 0, layer = 0, ports = (1,2), name = 'myelement1') X.add(width = 1, offset = 3, layer = 0, ports = (3,4), name = 'myelement2') # Extrude the Path to create the Device D = P.extrude(cross_section = X) qp(D) ``` In case we want to change any of the CrossSection elements, we simply access the Python dictionary that specifies that element and modify the values ``` # Copy our original CrossSection Xcopy = X.copy() # Modify Xcopy['myelement2']['width'] = 2 # X['myelement2'] is a dictionary Xcopy['myelement2']['layer'] = 1 # X['myelement2'] is a dictionary # Extrude the Path to create the Device D = P.extrude(cross_section = Xcopy) qp(D) from pp import path as pa from pp import CrossSection, Component import pp X1 = CrossSection() X1.add(width = 1.2, offset = 0, layer = 2, name = 'wg', ports = ('in1', 'out1')) X1.add(width = 2.2, offset = 0, layer = 3, name = 'etch') X1.add(width = 1.1, offset = 3, layer = 1, name = 'wg2') # Create the second CrossSection that we want to transition to X2 = CrossSection() X2.add(width = 1, offset = 0, layer = 2, name = 'wg', ports = ('in2', 'out2')) X2.add(width = 3.5, offset = 0, layer = 3, name = 'etch') X2.add(width = 3, offset = 5, layer = 1, name = 'wg2') Xtrans = pa.transition(cross_section1 = X1, cross_section2 = X2, width_type = 'sine') P1 = pa.straight(length = 5) P2 = pa.straight(length = 5) WG1 = P1.extrude(cross_section = X1) WG2 = P2.extrude(cross_section = X2) P4 = pa.euler(radius = 25, angle = 45, p = 0.5, use_eff = False) WG_trans = P4.extrude(Xtrans) c = Component() wg1 = c << WG1 wg2 = c << WG2 wgt = c << WG_trans wgt.connect('in2', wg1.ports['out1']) wg2.connect('in2', wgt.ports['out1']) pp.qp(c) len(c.references) ```
github_jupyter
import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = [8, 4] plt.rcParams['font.size'] = 12 from pp import Path, CrossSection, Component, qp from pp import path as pa import pp import numpy as np P = Path() P.append( pa.arc(radius = 10, angle = 90) ) # Circular arc P.append( pa.straight(length = 10) ) # Straight section P.append( pa.euler(radius = 3, angle = -90) ) # Euler bend (aka "racetrack" curve) P.append( pa.straight(length = 40) ) P.append( pa.arc(radius = 8, angle = -45) ) P.append( pa.straight(length = 10) ) P.append( pa.arc(radius = 8, angle = 45) ) P.append( pa.straight(length = 10) ) qp(P) P.movey(10) P.xmin = 20 qp(P) P.length() # Create a blank CrossSection X = CrossSection() # Add a single "section" to the cross-section X.add(width = 1, offset = 0, layer = 0) # Combine the Path and the CrossSection waveguide_device = P.extrude(cross_section = X) # Quickplot the resulting Component qp(waveguide_device) # Create a blank CrossSection X = CrossSection() # Add a a few "sections" to the cross-section X.add(width = 1, offset = 0, layer = 0, ports = ('in','out')) X.add(width = 3, offset = 2, layer = 2) X.add(width = 3, offset = -2, layer = 2) # Combine the Path and the CrossSection waveguide_device = P.extrude(cross_section = X) # Quickplot the resulting Component waveguide_device P = Path() # Create the basic Path components left_turn = pa.euler(radius = 4, angle = 90) right_turn = pa.euler(radius = 4, angle = -90) straight = pa.straight(length = 10) # Assemble a complex path by making list of Paths and passing it to `append()` P.append([ straight, left_turn, straight, right_turn, straight, straight, right_turn, left_turn, straight, ]) qp(P) P = Path() # Create an "S-turn" just by making a list s_turn = [left_turn, right_turn] P.append(s_turn) qp(P) P = Path() # Create an "S-turn" using a list s_turn = [left_turn, right_turn] # Repeat the S-turn 3 times by nesting our S-turn list 3x times in another list triple_s_turn = [s_turn, s_turn, s_turn] P.append(triple_s_turn) qp(P) P = Path([straight, left_turn, straight, right_turn, straight]) qp(P) def looploop(num_pts = 1000): """ Simple limacon looping curve """ t = np.linspace(-np.pi,0,num_pts) r = 20 + 25*np.sin(t) x = r*np.cos(t) y = r*np.sin(t) points = np.array((x,y)).T return points # Create the path points P = Path() P.append( pa.arc(radius = 10, angle = 90) ) P.append( pa.straight()) P.append( pa.arc(radius = 5, angle = -90) ) P.append( looploop(num_pts = 1000) ) P.rotate(-45) # Create the crosssection X = CrossSection() X.add(width = 0.5, offset = 2, layer = 0, ports = [None,None]) X.add(width = 0.5, offset = 4, layer = 1, ports = [None,'out2']) X.add(width = 1.5, offset = 0, layer = 2, ports = ['in','out']) X.add(width = 1, offset = 0, layer = 3) D = P.extrude(cross_section = X) qp(D) # quickplot the resulting Component c = pp.import_phidl_component(component=D) pp.show(c) import numpy as np path_points = P.points # Curve points are stored as a numpy array in P.points print(np.shape(path_points)) # The shape of the array is Nx2 print(len(P)) # Equivalently, use len(P) to see how many points are inside # The remaining points form a identical line to within `1e-3` from the original D = P.extrude(cross_section = X, simplify = 1e-3) qp(D) # quickplot the resulting Component D = P.extrude(cross_section = X, simplify = 1e-1) qp(D) # quickplot the resulting Component D = P.extrude(cross_section = X, simplify = 0.3) qp(D) # quickplot the resulting Component P = Path() P.append([ pa.straight(length = 10), # Should have a curvature of 0 # Euler straight-to-bend transition with min. bend radius of 3 (max curvature of 1/3) pa.euler(radius = 3, angle = 90, p = 0.5, use_eff = False), pa.straight(length = 10), # Should have a curvature of 0 pa.arc(radius = 10, angle = 90), # Should have a curvature of 1/10 pa.arc(radius = 5, angle = -90), # Should have a curvature of -1/5 pa.straight(length = 20), # Should have a curvature of 0 ]) s,K = P.curvature() plt.plot(s,K,'.-') plt.xlabel('Position along curve (arc length)') plt.ylabel('Curvature'); from pp import Path, CrossSection, Component, qp from pp import path as pa import numpy as np import pp # Create our first CrossSection X1 = CrossSection() X1.add(width = 1.2, offset = 0, layer = 2, name = 'wg', ports = ('in1', 'out1')) X1.add(width = 2.2, offset = 0, layer = 3, name = 'etch') X1.add(width = 1.1, offset = 3, layer = 1, name = 'wg2') # Create the second CrossSection that we want to transition to X2 = CrossSection() X2.add(width = 1, offset = 0, layer = 2, name = 'wg', ports = ('in2', 'out2')) X2.add(width = 3.5, offset = 0, layer = 3, name = 'etch') X2.add(width = 3, offset = 5, layer = 1, name = 'wg2') # To show the cross-sections, let's create two Paths and # create Devices by extruding them P1 = pa.straight(length = 5) P2 = pa.straight(length = 5) WG1 = P1.extrude(cross_section = X1) WG2 = P2.extrude(cross_section = X2) # Place both cross-section Devices and quickplot them D = Component() wg1 = D << WG1 wg2 = D << WG2 wg2.movex(7.5) qp(D) # Create the transitional CrossSection Xtrans = pa.transition(cross_section1 = X1, cross_section2 = X2, width_type = 'sine') # Create a Path for the transitional CrossSection to follow P3 = pa.straight(length = 15) # Use the transitional CrossSection to create a Component WG_trans = P3.extrude(Xtrans) qp(WG_trans) D = Component() wg1 = D << WG1 # First cross-section Component wg2 = D << WG2 wgt = D << WG_trans wgt.connect('in2', wg1.ports['out1']) wg2.connect('in2', wgt.ports['out1']) qp(D) # Transition along a curving Path P4 = pa.euler(radius = 25, angle = 45, p = 0.5, use_eff = False) WG_trans = P4.extrude(Xtrans) D = Component() wg1 = D << WG1 # First cross-section Component wg2 = D << WG2 wgt = D << WG_trans wgt.connect('in2', wg1.ports['out1']) wg2.connect('in2', wgt.ports['out1']) qp(D) def my_custom_width_fun(t): # Note: Custom width/offset functions MUST be vectorizable--you must be able # to call them with an array input like my_custom_width_fun([0, 0.1, 0.2, 0.3, 0.4]) num_periods = 5 w = 3 + np.cos(2*np.pi*t * num_periods) return w # Create the Path P = pa.straight(length = 40) # Create two cross-sections: one fixed width, one modulated by my_custom_offset_fun X = CrossSection() X.add(width = 3, offset = -6, layer = 0) X.add(width = my_custom_width_fun, offset = 0, layer = 0) # Extrude the Path to create the Component D = P.extrude(cross_section = X) qp(D) def my_custom_offset_fun(t): # Note: Custom width/offset functions MUST be vectorizable--you must be able # to call them with an array input like my_custom_offset_fun([0, 0.1, 0.2, 0.3, 0.4]) num_periods = 3 w = 3 + np.cos(2*np.pi*t * num_periods) return w # Create the Path P = pa.straight(length = 40) # Create two cross-sections: one fixed offset, one modulated by my_custom_offset_fun X = CrossSection() X.add(width = 1, offset = my_custom_offset_fun, layer = 0) X.add(width = 1, offset = 0, layer = 0) # Extrude the Path to create the Device D = P.extrude(cross_section = X) qp(D) def my_custom_offset_fun(t): # Note: Custom width/offset functions MUST be vectorizable--you must be able # to call them with an array input like my_custom_offset_fun([0, 0.1, 0.2, 0.3, 0.4]) num_periods = 1 w = 2 + np.cos(2*np.pi*t * num_periods) return w P1 = pa.straight(length = 40) P2 = P1.copy() # Make a copy of the Path P1.offset(offset = my_custom_offset_fun) P2.offset(offset = my_custom_offset_fun) P2.mirror((1,0)) # reflect across X-axis qp([P1, P2]) # Create the Path P = pa.arc(radius = 10, angle = 45) # Create two cross-sections: one fixed width, one modulated by my_custom_offset_fun X = CrossSection() X.add(width = 1, offset = 0, layer = 0, ports = (1,2), name = 'myelement1') X.add(width = 1, offset = 3, layer = 0, ports = (3,4), name = 'myelement2') # Extrude the Path to create the Device D = P.extrude(cross_section = X) qp(D) # Copy our original CrossSection Xcopy = X.copy() # Modify Xcopy['myelement2']['width'] = 2 # X['myelement2'] is a dictionary Xcopy['myelement2']['layer'] = 1 # X['myelement2'] is a dictionary # Extrude the Path to create the Device D = P.extrude(cross_section = Xcopy) qp(D) from pp import path as pa from pp import CrossSection, Component import pp X1 = CrossSection() X1.add(width = 1.2, offset = 0, layer = 2, name = 'wg', ports = ('in1', 'out1')) X1.add(width = 2.2, offset = 0, layer = 3, name = 'etch') X1.add(width = 1.1, offset = 3, layer = 1, name = 'wg2') # Create the second CrossSection that we want to transition to X2 = CrossSection() X2.add(width = 1, offset = 0, layer = 2, name = 'wg', ports = ('in2', 'out2')) X2.add(width = 3.5, offset = 0, layer = 3, name = 'etch') X2.add(width = 3, offset = 5, layer = 1, name = 'wg2') Xtrans = pa.transition(cross_section1 = X1, cross_section2 = X2, width_type = 'sine') P1 = pa.straight(length = 5) P2 = pa.straight(length = 5) WG1 = P1.extrude(cross_section = X1) WG2 = P2.extrude(cross_section = X2) P4 = pa.euler(radius = 25, angle = 45, p = 0.5, use_eff = False) WG_trans = P4.extrude(Xtrans) c = Component() wg1 = c << WG1 wg2 = c << WG2 wgt = c << WG_trans wgt.connect('in2', wg1.ports['out1']) wg2.connect('in2', wgt.ports['out1']) pp.qp(c) len(c.references)
0.665084
0.976401
# Ground state solvers ## Introduction <img src="aux_files/H2_gs.png" width="200"> In this tutorial we are going to discuss the ground state calculation interface of Qiskit Nature. The goal is to compute the ground state of a molecular Hamiltonian. This Hamiltonian can be electronic or vibrational. To know more about the preparation of the Hamiltonian, check out the Electronic structure and Vibrational structure tutorials. The first step is to define the molecular system. In the following we ask for the electronic part of a hydrogen molecule. ``` from qiskit import Aer from qiskit_nature.drivers import PySCFDriver, UnitsType, Molecule from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]], charge=0, multiplicity=1) driver = PySCFDriver(molecule = molecule, unit=UnitsType.ANGSTROM, basis='sto3g') es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) ``` ## The Solver Then we need to define a solver. The solver is the algorithm through which the ground state is computed. Let's first start with a purely classical example: the NumPy minimum eigensolver. This algorithm exactly diagonalizes the Hamiltonian. Although it scales badly, it can be used on small systems to check the results of the quantum algorithms. ``` from qiskit.algorithms import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() ``` To find the ground state we coul also use the Variational Quantum Eigensolver (VQE) algorithm. The VQE algorithms works by exchanging information between a classical and a quantum computer as depicted in the following figure. <img src="aux_files/vqe.png" width="600"> Let's initialize a VQE solver. ``` from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend = Aer.get_backend('statevector_simulator')) vqe_solver = VQEUCCFactory(quantum_instance) ``` To define the VQE solver one needs two essential elements: 1. A variational form: here we use the Unitary Coupled Cluster (UCC) ansatz (see for instance [Physical Review A 98.2 (2018): 022322]). Since it is a chemistry standard, a factory is already available allowing a fast initialization of a VQE with UCC. The default is to use all single and double excitations. However, the excitation type (S, D, SD) as well as other parameters can be selected. 2. An initial state: the initial state of the qubits. In the factory used above, the qubits are initialized in the Hartree-Fock (see the electronic structure tutorial) initial state (the qubits corresponding to occupied MOs are $|1\rangle$ and those corresponding to virtual MOs are $|0\rangle$. 3. The backend: this is the quantum machine on which the right part of the figure above will be performed. Here we ask for the perfect quantum emulator (```statevector_simulator```). One could also use any available ansatz / initial state or even define one's own. For instance, ``` from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal(rotation_blocks = ['h', 'rx'], entanglement_blocks = 'cz', entanglement='full', reps=3, parameter_prefix = 'y') tl_circuit.draw(output='mpl') another_solver = VQE(ansatz = tl_circuit, quantum_instance = QuantumInstance(Aer.get_backend('statevector_simulator'))) ``` ## The calculation and results We are now ready to run the calculation. ``` from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res) ``` We can compare the VQE results to the NumPy exact solver and see that they match. ``` calc = GroundStateEigensolver(qubit_converter, numpy_solver) res = calc.solve(es_problem) print(res) ``` ## Using a filter function Sometimes the true ground state of the Hamiltonian is not of interest because it lies in a different symmetry sector of the Hilbert space. In this case the NumPy eigensolver can take a filter function to return only the eigenstates with for example the correct number of particles. This is of particular importance in the case of vibrational structure calculations where the true ground state of the Hamiltonian is the vacuum state. A default filter function to check the number of particles is implemented in the different transformations and can be used as ``` from qiskit_nature.drivers import GaussianForcesDriver from qiskit_nature.algorithms import NumPyMinimumEigensolverFactory from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.mappers.second_quantization import DirectMapper driver = GaussianForcesDriver(logfile='aux_files/CO2_freq_B3LYP_ccpVDZ.log') vib_problem = VibrationalStructureProblem(driver, num_modals=2, truncation_order=2) qubit_covnerter = QubitConverter(DirectMapper()) solver_without_filter = NumPyMinimumEigensolverFactory(use_default_filter_criterion=False) solver_with_filter = NumPyMinimumEigensolverFactory(use_default_filter_criterion=True) gsc_wo = GroundStateEigensolver(qubit_converter, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(qubit_converter, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print('\n\n') print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ```
github_jupyter
from qiskit import Aer from qiskit_nature.drivers import PySCFDriver, UnitsType, Molecule from qiskit_nature.problems.second_quantization import ElectronicStructureProblem from qiskit_nature.converters.second_quantization import QubitConverter from qiskit_nature.mappers.second_quantization import JordanWignerMapper molecule = Molecule(geometry=[['H', [0., 0., 0.]], ['H', [0., 0., 0.735]]], charge=0, multiplicity=1) driver = PySCFDriver(molecule = molecule, unit=UnitsType.ANGSTROM, basis='sto3g') es_problem = ElectronicStructureProblem(driver) qubit_converter = QubitConverter(JordanWignerMapper()) from qiskit.algorithms import NumPyMinimumEigensolver numpy_solver = NumPyMinimumEigensolver() from qiskit.providers.aer import StatevectorSimulator from qiskit import Aer from qiskit.utils import QuantumInstance from qiskit_nature.algorithms import VQEUCCFactory quantum_instance = QuantumInstance(backend = Aer.get_backend('statevector_simulator')) vqe_solver = VQEUCCFactory(quantum_instance) from qiskit.algorithms import VQE from qiskit.circuit.library import TwoLocal tl_circuit = TwoLocal(rotation_blocks = ['h', 'rx'], entanglement_blocks = 'cz', entanglement='full', reps=3, parameter_prefix = 'y') tl_circuit.draw(output='mpl') another_solver = VQE(ansatz = tl_circuit, quantum_instance = QuantumInstance(Aer.get_backend('statevector_simulator'))) from qiskit_nature.algorithms import GroundStateEigensolver calc = GroundStateEigensolver(qubit_converter, vqe_solver) res = calc.solve(es_problem) print(res) calc = GroundStateEigensolver(qubit_converter, numpy_solver) res = calc.solve(es_problem) print(res) from qiskit_nature.drivers import GaussianForcesDriver from qiskit_nature.algorithms import NumPyMinimumEigensolverFactory from qiskit_nature.problems.second_quantization import VibrationalStructureProblem from qiskit_nature.mappers.second_quantization import DirectMapper driver = GaussianForcesDriver(logfile='aux_files/CO2_freq_B3LYP_ccpVDZ.log') vib_problem = VibrationalStructureProblem(driver, num_modals=2, truncation_order=2) qubit_covnerter = QubitConverter(DirectMapper()) solver_without_filter = NumPyMinimumEigensolverFactory(use_default_filter_criterion=False) solver_with_filter = NumPyMinimumEigensolverFactory(use_default_filter_criterion=True) gsc_wo = GroundStateEigensolver(qubit_converter, solver_without_filter) result_wo = gsc_wo.solve(vib_problem) gsc_w = GroundStateEigensolver(qubit_converter, solver_with_filter) result_w = gsc_w.solve(vib_problem) print(result_wo) print('\n\n') print(result_w) import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright
0.761095
0.993524
# GDAL Test Notebook to check usage of GDAL library To avoid non compatibility between packages at the installation, install everything in one shot conda install -c conda-forge gdal matplotlib scikit-image tqdm tensorflow ``` from osgeo import gdal import matplotlib import tensorflow file_path = r"C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset\austin1.tif" raster = gdal.Open(file_path) type(raster) # Projection print(raster.GetProjection()) # Dimensions print(raster.RasterXSize) print(raster.RasterYSize) # Number of bands print(raster.RasterCount) # Metadata for the raster dataset print(raster.GetMetadata()) ulx, xres, xskew, uly, yskew, yres = raster.GetGeoTransform() # Xp = padfTransform[0] + P*padfTransform[1] + L*padfTransform[2]; # Yp = padfTransform[3] + P*padfTransform[4] + L*padfTransform[5]; # In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel height. # The upper left corner of the upper left pixel is at position (padfTransform[0],padfTransform[3]). print(raster.GetGeoTransform()) raster.GetProjection() !gdalinfo $file_path from tqdm import tqdm !gdalwarp -tr 0.6 0.6 $file_path cvt.tif import numpy !gdalinfo cvt.tif ext = GetExtent(raster) ext def GetExtent(ds): """ Return list of corner coordinates from a gdal Dataset """ xmin, xpixel, _, ymax, _, ypixel = ds.GetGeoTransform() width, height = ds.RasterXSize, ds.RasterYSize xmax = xmin + width * xpixel ymin = ymax + height * ypixel return (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin) # https://gis.stackexchange.com/questions/57834/how-to-get-raster-corner-coordinates-using-python-gdal-bindings ``` ``` import json with open(r'C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset\colab\val\bellingham1101.json') as json_file: data = json.load(json_file) for p in data['shapes']: print(p['points']) print(data["version"]) # print(data) for element in data: if 'imageData' in element: print(element['imageData']) # element.pop('imageData', None) print(data) ``` ## Preprocessing steps for 5000x5000px GeoTiff images ``` import os from tqdm import tqdm import json from osgeo import gdal dataset_dir = r"C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset" train_dir = os.path.join(dataset_dir, 'train', 'images') test_dir = os.path.join(dataset_dir, 'test', 'images') file_path = os.path.join(dataset_dir, 'austin1.tif') res_path = os.path.join(dataset_dir, 'austin1cvt.tif') final_path = os.path.join(dataset_dir, 'austin1fin.tif') !gdalwarp -tr 0.6 0.6 $file_path $res_path !gdalinfo $res_path def GetExtent(ds): """ Return list of corner coordinates from a gdal Dataset """ xmin, xpixel, _, ymax, _, ypixel = ds.GetGeoTransform() width, height = ds.RasterXSize, ds.RasterYSize xmax = xmin + width * xpixel ymin = ymax + height * ypixel return round(xmin,0), round(xmax,0), round(ymin,0), round(ymax, 0) # https://gis.stackexchange.com/questions/57834/how-to-get-raster-corner-coordinates-using-python-gdal-bindings raster = gdal.Open(file_path) ext = GetExtent(raster) #print(ext) xmin, xmax, ymin, ymax = [str(i) for i in ext] print('Tile extent is') print('Upper Left : ('+ xmin + ', ' + ymax + ') \n' 'Lower Left : (' + xmin + ', ' + ymin + ') \n' 'Upper Right : (' + xmax + ', ' + ymax + ') \n' 'Lower Right : (' + xmax + ', ' + ymin) nxmin = ext[0] nxmax = ext[0] + 1024 * 0.6 nymin = ext[3] - 1024 * 0.6 nymax = ext[3] !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $res_path $final_path !gdalinfo $res_path os.getcwd() def crop(dataset_dir, file_name): file_path = os.path.join(dataset_dir, file_name) name, ext = file_name.split('.') raster = gdal.Open(file_path) ext = GetExtent(raster) for i in range(raster.RasterXSize//1024+1): for j in range(raster.RasterYSize//1024+1): if i==raster.RasterXSize//1024 or j==raster.RasterYSize//1024: if i==raster.RasterXSize//1024 and j!=raster.RasterYSize//1024: nxmin = ext[1] - 1024 * 0.6 nxmax = ext[1] nymin = ext[3] - 1024 * 0.6 * (j+1) nymax = ext[3] - 1024 * 0.6 * j final_path = os.path.join(dataset_dir, name + '_'+str(i)+str(j)+ext) !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path elif i!=raster.RasterXSize//1024 and j==raster.RasterYSize//1024: nxmin = ext[0] + 1024 * 0.6 * i nxmax = ext[0] + 1024 * 0.6 * (i+1) nymin = ext[2] nymax = ext[2] + 1024 * 0.6 final_path = os.path.join(dataset_dir, 'austin1_'+str(i)+str(j)+'.tif') !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path elif i==raster.RasterXSize//1024 and j==raster.RasterYSize//1024: nxmin = ext[1] - 1024 * 0.6 nxmax = ext[1] nymin = ext[2] nymax = ext[2] + 1024 * 0.6 final_path = os.path.join(dataset_dir, 'austin1_'+str(i)+str(j)+'.tif') !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path continue nxmin = ext[0] + 1024 * 0.6 * i nxmax = ext[0] + 1024 * 0.6 * (i+1) nymin = ext[3] - 1024 * 0.6 * (j+1) nymax = ext[3] - 1024 * 0.6 * j final_path = os.path.join(dataset_dir, 'austin1_'+str(i)+str(j)+'.tif') !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path crop(dataset_dir, res_path) final_path = os.path.join(dataset_dir, 'austin1_22.tif') !gdalinfo $final_path import json import os dataset_dir = r"C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset" file_path = os.path.join(dataset_dir, 'austin711.json') with open(file_path) as json_file: data = json.load(json_file) i=0 j=1 pxmin=1024*i pxmax=1024*(i+1) pymin=1024*j pymax=1024*(j+1) del data['imageHeight'] for p in data['shapes']: print(p['points']) print(p['points'][0][0]) print(data['imageHeight']) data['imageHeight']=2048 print(data['imageHeight']) with open("to.json", "w") as to: destination = {} json.dump(to, destination) ```
github_jupyter
from osgeo import gdal import matplotlib import tensorflow file_path = r"C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset\austin1.tif" raster = gdal.Open(file_path) type(raster) # Projection print(raster.GetProjection()) # Dimensions print(raster.RasterXSize) print(raster.RasterYSize) # Number of bands print(raster.RasterCount) # Metadata for the raster dataset print(raster.GetMetadata()) ulx, xres, xskew, uly, yskew, yres = raster.GetGeoTransform() # Xp = padfTransform[0] + P*padfTransform[1] + L*padfTransform[2]; # Yp = padfTransform[3] + P*padfTransform[4] + L*padfTransform[5]; # In a north up image, padfTransform[1] is the pixel width, and padfTransform[5] is the pixel height. # The upper left corner of the upper left pixel is at position (padfTransform[0],padfTransform[3]). print(raster.GetGeoTransform()) raster.GetProjection() !gdalinfo $file_path from tqdm import tqdm !gdalwarp -tr 0.6 0.6 $file_path cvt.tif import numpy !gdalinfo cvt.tif ext = GetExtent(raster) ext def GetExtent(ds): """ Return list of corner coordinates from a gdal Dataset """ xmin, xpixel, _, ymax, _, ypixel = ds.GetGeoTransform() width, height = ds.RasterXSize, ds.RasterYSize xmax = xmin + width * xpixel ymin = ymax + height * ypixel return (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin) # https://gis.stackexchange.com/questions/57834/how-to-get-raster-corner-coordinates-using-python-gdal-bindings import json with open(r'C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset\colab\val\bellingham1101.json') as json_file: data = json.load(json_file) for p in data['shapes']: print(p['points']) print(data["version"]) # print(data) for element in data: if 'imageData' in element: print(element['imageData']) # element.pop('imageData', None) print(data) import os from tqdm import tqdm import json from osgeo import gdal dataset_dir = r"C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset" train_dir = os.path.join(dataset_dir, 'train', 'images') test_dir = os.path.join(dataset_dir, 'test', 'images') file_path = os.path.join(dataset_dir, 'austin1.tif') res_path = os.path.join(dataset_dir, 'austin1cvt.tif') final_path = os.path.join(dataset_dir, 'austin1fin.tif') !gdalwarp -tr 0.6 0.6 $file_path $res_path !gdalinfo $res_path def GetExtent(ds): """ Return list of corner coordinates from a gdal Dataset """ xmin, xpixel, _, ymax, _, ypixel = ds.GetGeoTransform() width, height = ds.RasterXSize, ds.RasterYSize xmax = xmin + width * xpixel ymin = ymax + height * ypixel return round(xmin,0), round(xmax,0), round(ymin,0), round(ymax, 0) # https://gis.stackexchange.com/questions/57834/how-to-get-raster-corner-coordinates-using-python-gdal-bindings raster = gdal.Open(file_path) ext = GetExtent(raster) #print(ext) xmin, xmax, ymin, ymax = [str(i) for i in ext] print('Tile extent is') print('Upper Left : ('+ xmin + ', ' + ymax + ') \n' 'Lower Left : (' + xmin + ', ' + ymin + ') \n' 'Upper Right : (' + xmax + ', ' + ymax + ') \n' 'Lower Right : (' + xmax + ', ' + ymin) nxmin = ext[0] nxmax = ext[0] + 1024 * 0.6 nymin = ext[3] - 1024 * 0.6 nymax = ext[3] !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $res_path $final_path !gdalinfo $res_path os.getcwd() def crop(dataset_dir, file_name): file_path = os.path.join(dataset_dir, file_name) name, ext = file_name.split('.') raster = gdal.Open(file_path) ext = GetExtent(raster) for i in range(raster.RasterXSize//1024+1): for j in range(raster.RasterYSize//1024+1): if i==raster.RasterXSize//1024 or j==raster.RasterYSize//1024: if i==raster.RasterXSize//1024 and j!=raster.RasterYSize//1024: nxmin = ext[1] - 1024 * 0.6 nxmax = ext[1] nymin = ext[3] - 1024 * 0.6 * (j+1) nymax = ext[3] - 1024 * 0.6 * j final_path = os.path.join(dataset_dir, name + '_'+str(i)+str(j)+ext) !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path elif i!=raster.RasterXSize//1024 and j==raster.RasterYSize//1024: nxmin = ext[0] + 1024 * 0.6 * i nxmax = ext[0] + 1024 * 0.6 * (i+1) nymin = ext[2] nymax = ext[2] + 1024 * 0.6 final_path = os.path.join(dataset_dir, 'austin1_'+str(i)+str(j)+'.tif') !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path elif i==raster.RasterXSize//1024 and j==raster.RasterYSize//1024: nxmin = ext[1] - 1024 * 0.6 nxmax = ext[1] nymin = ext[2] nymax = ext[2] + 1024 * 0.6 final_path = os.path.join(dataset_dir, 'austin1_'+str(i)+str(j)+'.tif') !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path continue nxmin = ext[0] + 1024 * 0.6 * i nxmax = ext[0] + 1024 * 0.6 * (i+1) nymin = ext[3] - 1024 * 0.6 * (j+1) nymax = ext[3] - 1024 * 0.6 * j final_path = os.path.join(dataset_dir, 'austin1_'+str(i)+str(j)+'.tif') !gdalwarp -overwrite -te $nxmin $nymin $nxmax $nymax $file_path $final_path crop(dataset_dir, res_path) final_path = os.path.join(dataset_dir, 'austin1_22.tif') !gdalinfo $final_path import json import os dataset_dir = r"C:\Users\VArri\Documents\Rooftop\dataset\dataset\dataset" file_path = os.path.join(dataset_dir, 'austin711.json') with open(file_path) as json_file: data = json.load(json_file) i=0 j=1 pxmin=1024*i pxmax=1024*(i+1) pymin=1024*j pymax=1024*(j+1) del data['imageHeight'] for p in data['shapes']: print(p['points']) print(p['points'][0][0]) print(data['imageHeight']) data['imageHeight']=2048 print(data['imageHeight']) with open("to.json", "w") as to: destination = {} json.dump(to, destination)
0.250454
0.779091
# From Decision Trees to Random Forests ``` Authors: Alexandre Gramfort Thomas Moreau ``` ## Bagging classifiers We saw that by increasing the depth of the tree, we are going to get an over-fitted model. A way to bypass the choice of a specific depth it to combine several trees together. Let's start by training several trees on slightly different data. The slightly different dataset could be generated by randomly sampling with replacement. In statistics, this called a boostrap sample. We will use the iris dataset to create such ensemble and ensure that we have some data for training and some left out data for testing. ``` import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) ``` Before to train several decision trees, we will run a single tree. However, instead to train this tree on `X_train`, we want to train it on a bootstrap sample. You can use the `np.random.choice` function sample with replacement some index. You will need to create a sample_weight vector and pass it to the `fit` method of the `DecisionTreeClassifier`. We provide the `generate_sample_weight` function which will generate the `sample_weight` array. ``` def bootstrap_idx(X): indices = np.random.choice( np.arange(X.shape[0]), size=X.shape[0], replace=True ) return indices bootstrap_idx(X_train) from collections import Counter Counter(bootstrap_idx(X_train)) def bootstrap_sample(X, y): indices = bootstrap_idx(X) return X[indices], y[indices] X_train_bootstrap, y_train_bootstrap = bootstrap_sample(X_train, y_train) print(f'Classes distribution in the original data: {Counter(y_train)}') print(f'Classes distribution in the bootstrap: {Counter(y_train_bootstrap)}') ``` <div class="alert alert-success"> <b>EXERCISE: Create a bagging classifier</b>:<br> <br> A bagging classifier will train several decision tree classifiers, each of them on a different bootstrap sample. <ul> <li> Create several <code>DecisionTreeClassifier</code> and store them in a Python list; </li> <li> Loop over these trees and <code>fit</code> them by generating a bootstrap sample using <code>bootstrap_sample</code> function; </li> <li> To predict with this ensemble of trees on new data (testing set), you can provide the same set to each tree and call the <code>predict</code> method. Aggregate all predictions in a NumPy array; </li> <li> Once the predictions available, you need to provide a single prediction: you can retain the class which was the most predicted which is called a majority vote; </li> <li> Finally, check the accuracy of your model. </li> </ul> </div> <div class="alert alert-success"> <b>EXERCISE: using scikit-learn</b>: <br> After implementing your own bagging classifier, use a <code>BaggingClassifier</code> from scikit-learn to fit the above data. </div> ## Random Forests A very famous classifier is the random forest classifier. It is similar to the bagging classifier. In addition of the bootstrap, the random forest will use a subset of features (selected randomly) to find the best split. <div class="alert alert-success"> <b>EXERCISE: Create a random forest classifier</b>: <br> Use your previous code which was generated several <code>DecisionTreeClassifier</code>. Check the list of the option of this classifier and modify one of the parameters such that only the $\sqrt{F}$ features are used for the splitting. $F$ represents the number of features in the dataset. </div> <div class="alert alert-success"> <b>EXERCISE: using scikit-learn</b>: <br> After implementing your own random forest classifier, use a <code>RandomForestClassifier</code> from scikit-learn to fit the above data. </div> ``` from figures import plot_forest_interactive plot_forest_interactive() ```
github_jupyter
Authors: Alexandre Gramfort Thomas Moreau import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split X, y = load_iris(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) def bootstrap_idx(X): indices = np.random.choice( np.arange(X.shape[0]), size=X.shape[0], replace=True ) return indices bootstrap_idx(X_train) from collections import Counter Counter(bootstrap_idx(X_train)) def bootstrap_sample(X, y): indices = bootstrap_idx(X) return X[indices], y[indices] X_train_bootstrap, y_train_bootstrap = bootstrap_sample(X_train, y_train) print(f'Classes distribution in the original data: {Counter(y_train)}') print(f'Classes distribution in the bootstrap: {Counter(y_train_bootstrap)}') from figures import plot_forest_interactive plot_forest_interactive()
0.748628
0.990385