|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3157 |
|
- loss:TripletLoss |
|
- dataset_size:2525 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
widget: |
|
- source_sentence: What is the role of the Public Information Officer during a radiological |
|
emergency? |
|
sentences: |
|
- The Public Information Officer (PIO), assigned duties at the Emergency Operations |
|
Center (EOC), and the Parish Spokesperson will be responsible for implementation |
|
of this procedure. |
|
- Be prepared to report to the Parish EOC if requested by the Director of the Office |
|
of Homeland Security and Emergency Preparedness. |
|
- HRI may proceed with its planned mining-related activities in these areas to the |
|
extent authorized by its NRC Materials License SUA-1508. |
|
- source_sentence: The NRC also regulates the licensing and reporting obligations |
|
for materials that are byproducts in the medical field. |
|
sentences: |
|
- Parts 30, 31, 32 and 150 |
|
- 'Exemptions From Licensing, General Licenses, and Distribution of Byproduct Material: |
|
Licensing and Reporting Requirements' |
|
- Containment vessel (CNV) pressure/temperature response analysis method, similar |
|
to method used in DCA technical report, responds to LOCA pipe break, secondary |
|
line breaks, IORV events, or inadvertent ECCS actuation. |
|
- source_sentence: What is the aging management program for concrete in nuclear facilities? |
|
sentences: |
|
- Further evaluation is required to determine if a plant-specific aging management |
|
program is needed. |
|
- The DCPP Structures Monitoring AMP (B.2.3.33) is credited with managing cracking |
|
due to reaction with aggregates (such as ASR), for DCPP group 1, 3, 4, 5, and |
|
7 structures, including inaccessible areas. |
|
- The Survey Units listed in Figure 4 measure various acreage sizes, detailing the |
|
land area covered by each unit within the Non-Industrialized section of the site. |
|
- source_sentence: What is the purpose of an emergency core cooling system in nuclear |
|
reactors? |
|
sentences: |
|
- The Commission issued Staff Requirements Memorandum (SRM) SECY-10-0113 directing |
|
the staff to consider alternative options for resolving GSI-191 (Reference 5). |
|
- preclude the formulation or implementation of reasonable and prudent alternatives |
|
to avoid jeopardizing the continued existence of endangered or threatened species |
|
or destroying or modifying critical habitat [Section 7(d)]. |
|
- ECCS must be designed so that calculated cooling performance following postulated |
|
loss-of-coolant accidents conforms to the criteria set forth in paragraph (b) |
|
of this section. |
|
- source_sentence: corrosion related to nuclear components |
|
sentences: |
|
- This alternative is requested for the duration of the Brunswick Steam Electric |
|
Plant, Units 1 & 2, Third Ten-Year Containment Inservice Inspection Interval, |
|
which is currently scheduled to end no later than May 10, 2028. |
|
- '*Note: Initiation of Reactor Enclosure isolation starts Reactor Enclosure Recirculation |
|
System (RERS) and SGTS. Ref: UFSAR 6.2.3.2.3*' |
|
- In the proposed alternative by the Owner (Duke Energy), corrosion or erosion that |
|
has reduced the component wall thickness to less than 145% of the minimum design |
|
wall thickness will be considered a relevant condition that will require evaluation |
|
or corrective measures to the extent necessary to meet the acceptance standards |
|
of IWE-3500 prior to continued service. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5 |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: validation |
|
type: validation |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.8797468543052673 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy |
|
value: 0.9556962251663208 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy |
|
value: 0.9588607549667358 |
|
name: Cosine Accuracy |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-base-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'corrosion related to nuclear components', |
|
'In the proposed alternative by the Owner (Duke Energy), corrosion or erosion that has reduced the component wall thickness to less than 145% of the minimum design wall thickness will be considered a relevant condition that will require evaluation or corrective measures to the extent necessary to meet the acceptance standards of IWE-3500 prior to continued service.', |
|
'This alternative is requested for the duration of the Brunswick Steam Electric Plant, Units 1 & 2, Third Ten-Year Containment Inservice Inspection Interval, which is currently scheduled to end no later than May 10, 2028.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
|
|
* Dataset: `validation` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.8797** | |
|
|
|
#### Triplet |
|
|
|
* Dataset: `validation` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.9557** | |
|
|
|
#### Triplet |
|
|
|
* Dataset: `validation` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| **cosine_accuracy** | **0.9589** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 2,525 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | sentence_2 | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 15.01 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 45.67 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 33.2 tokens</li><li>max: 228 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | sentence_2 | |
|
|:---------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What is the significance of groundwater monitoring wells in nuclear safety assessments?</code> | <code>Locations of monitoring wells B-22 and B-36 that showed groundwater “mounding” supported by maps of the stormwater drainage system near the wells (Related to Need GW-5)</code> | <code>To the extent that these components of the intake and discharge systems are accessible/viewable: - Submerged multi-port intake and intake tunnel, including depiction of location of intake - Traveling screens - Service water pumphouse - Emergency service water forebay - Cooling towers and cooling tower basin - Discharge tunnel and discharge outfall</code> | |
|
| <code>An analysis of the stresses experienced by reactor vessel studs is crucial for evaluating operational safety.</code> | <code>Table 2. Calculation of Primary Stresses in Reactor Vessel Studs, Two Studs Out of Service provides detailed calculations of primary stresses for each stud in the reactor vessel.</code> | <code>Regulatory filings often require extensive documentation to demonstrate compliance with safety protocols.</code> | |
|
| <code>An assessment was carried out to determine the potential for liquefaction at the EGC ESP Site.</code> | <code>An evaluation of liquefaction potential was conducted at the EGC ESP Site.</code> | <code>The static groundwater table within the Illinois till is approximately 30 ft below the ground surface, but that there are shallower perched groundwater layers closer to the surface.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 24 |
|
- `per_device_eval_batch_size`: 24 |
|
- `num_train_epochs`: 5 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 24 |
|
- `per_device_eval_batch_size`: 24 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | validation_cosine_accuracy | |
|
|:------:|:----:|:-------------:|:--------------------------:| |
|
| 2.5253 | 500 | 4.2171 | - | |
|
| 0.6329 | 100 | - | 0.9177 | |
|
| 1.0 | 158 | - | 0.8592 | |
|
| 1.2658 | 200 | - | 0.8972 | |
|
| 1.8987 | 300 | - | 0.875 | |
|
| 2.0 | 316 | - | 0.8940 | |
|
| 2.5316 | 400 | - | 0.8734 | |
|
| 3.0 | 474 | - | 0.8956 | |
|
| 3.1646 | 500 | 3.985 | 0.8813 | |
|
| 3.7975 | 600 | - | 0.8703 | |
|
| 4.0 | 632 | - | 0.9003 | |
|
| 4.4304 | 700 | - | 0.8797 | |
|
| 5.0 | 790 | - | 0.8797 | |
|
| 0.6329 | 100 | - | 0.8228 | |
|
| 1.0 | 158 | - | 0.9383 | |
|
| 1.2658 | 200 | - | 0.9541 | |
|
| 1.8987 | 300 | - | 0.9573 | |
|
| 2.0 | 316 | - | 0.9589 | |
|
| 2.5316 | 400 | - | 0.9541 | |
|
| 3.0 | 474 | - | 0.9525 | |
|
| 3.1646 | 500 | 2.0222 | 0.9525 | |
|
| 3.7975 | 600 | - | 0.9541 | |
|
| 4.0 | 632 | - | 0.9557 | |
|
| 4.4304 | 700 | - | 0.9573 | |
|
| 5.0 | 790 | - | 0.9557 | |
|
| 0.9434 | 100 | - | 0.9509 | |
|
| 1.0 | 106 | - | 0.9525 | |
|
| 1.8868 | 200 | - | 0.9541 | |
|
| 2.0 | 212 | - | 0.9573 | |
|
| 2.8302 | 300 | - | 0.9557 | |
|
| 3.0 | 318 | - | 0.9589 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.14 |
|
- Sentence Transformers: 4.0.2 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.2.2 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.5.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |