Spaces:
Build error
A newer version of the Streamlit SDK is available:
1.47.1
Developer Guide
This guide provides comprehensive instructions for extending the Audio Translation System with new providers and contributing to the codebase.
Table of Contents
- Architecture Overview
- Adding New TTS Providers
- Adding New STT Providers
- Adding New Translation Providers
- Testing Guidelines
- Code Style and Standards
- Debugging and Troubleshooting
- Performance Considerations
Architecture Overview
The system follows Domain-Driven Design (DDD) principles with clear separation of concerns:
src/
βββ domain/ # Core business logic
β βββ interfaces/ # Service contracts (ports)
β βββ models/ # Domain entities and value objects
β βββ services/ # Domain services
β βββ exceptions.py # Domain-specific exceptions
βββ application/ # Use case orchestration
β βββ services/ # Application services
β βββ dtos/ # Data transfer objects
β βββ error_handling/ # Application error handling
βββ infrastructure/ # External service implementations
β βββ tts/ # TTS provider implementations
β βββ stt/ # STT provider implementations
β βββ translation/ # Translation service implementations
β βββ base/ # Provider base classes
β βββ config/ # Configuration and DI container
βββ presentation/ # UI layer (app.py)
Key Design Patterns
- Provider Pattern: Pluggable implementations for different services
- Factory Pattern: Provider creation with fallback logic
- Dependency Injection: Loose coupling between components
- Repository Pattern: Data access abstraction
- Strategy Pattern: Runtime algorithm selection
Adding New TTS Providers
Step 1: Implement the Provider Class
Create a new provider class that inherits from TTSProviderBase
:
# src/infrastructure/tts/my_tts_provider.py
import logging
from typing import Iterator, List
from ..base.tts_provider_base import TTSProviderBase
from ...domain.models.speech_synthesis_request import SpeechSynthesisRequest
from ...domain.exceptions import SpeechSynthesisException
logger = logging.getLogger(__name__)
class MyTTSProvider(TTSProviderBase):
"""Custom TTS provider implementation."""
def __init__(self, api_key: str = None, **kwargs):
"""Initialize the TTS provider.
Args:
api_key: Optional API key for cloud-based services
**kwargs: Additional provider-specific configuration
"""
super().__init__(
provider_name="my_tts",
supported_languages=["en", "zh", "es", "fr"]
)
self.api_key = api_key
self._initialize_provider()
def _initialize_provider(self):
"""Initialize provider-specific resources."""
try:
# Initialize your TTS engine/model here
# Example: self.engine = MyTTSEngine(api_key=self.api_key)
pass
except Exception as e:
logger.error(f"Failed to initialize {self.provider_name}: {e}")
raise SpeechSynthesisException(f"Provider initialization failed: {e}")
def is_available(self) -> bool:
"""Check if the provider is available and ready to use."""
try:
# Check if dependencies are installed
# Check if models are loaded
# Check if API is accessible (for cloud services)
return True # Replace with actual availability check
except Exception:
return False
def get_available_voices(self) -> List[str]:
"""Get list of available voices for this provider."""
# Return actual voice IDs supported by your provider
return ["voice1", "voice2", "voice3"]
def _generate_audio(self, request: SpeechSynthesisRequest) -> tuple[bytes, int]:
"""Generate audio data from synthesis request.
Args:
request: The speech synthesis request
Returns:
tuple: (audio_data_bytes, sample_rate)
"""
try:
text = request.text_content.text
voice_id = request.voice_settings.voice_id
speed = request.voice_settings.speed
# Implement your TTS synthesis logic here
# Example:
# audio_data = self.engine.synthesize(
# text=text,
# voice=voice_id,
# speed=speed
# )
# Return audio data and sample rate
audio_data = b"dummy_audio_data" # Replace with actual synthesis
sample_rate = 22050 # Replace with actual sample rate
return audio_data, sample_rate
except Exception as e:
self._handle_provider_error(e, "audio generation")
def _generate_audio_stream(self, request: SpeechSynthesisRequest) -> Iterator[tuple[bytes, int, bool]]:
"""Generate audio data stream from synthesis request.
Args:
request: The speech synthesis request
Yields:
tuple: (audio_data_bytes, sample_rate, is_final)
"""
try:
# Implement streaming synthesis if supported
# For non-streaming providers, you can yield the complete audio as a single chunk
audio_data, sample_rate = self._generate_audio(request)
yield audio_data, sample_rate, True
except Exception as e:
self._handle_provider_error(e, "streaming audio generation")
Step 2: Register the Provider
Add your provider to the factory registration:
# src/infrastructure/tts/provider_factory.py
def _register_default_providers(self):
"""Register all available TTS providers."""
# ... existing providers ...
# Try to register your custom provider
try:
from .my_tts_provider import MyTTSProvider
self._providers['my_tts'] = MyTTSProvider
logger.info("Registered MyTTS provider")
except ImportError as e:
logger.info(f"MyTTS provider not available: {e}")
Step 3: Add Configuration Support
Update the configuration to include your provider:
# src/infrastructure/config/app_config.py
class AppConfig:
# ... existing configuration ...
# TTS Provider Configuration
TTS_PROVIDERS = os.getenv('TTS_PROVIDERS', 'kokoro,dia,cosyvoice2,my_tts,dummy').split(',')
# Provider-specific settings
MY_TTS_API_KEY = os.getenv('MY_TTS_API_KEY')
MY_TTS_MODEL = os.getenv('MY_TTS_MODEL', 'default')
Step 4: Add Tests
Create comprehensive tests for your provider:
# tests/unit/infrastructure/tts/test_my_tts_provider.py
import pytest
from unittest.mock import Mock, patch
from src.infrastructure.tts.my_tts_provider import MyTTSProvider
from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest
from src.domain.models.text_content import TextContent
from src.domain.models.voice_settings import VoiceSettings
from src.domain.exceptions import SpeechSynthesisException
class TestMyTTSProvider:
"""Test suite for MyTTS provider."""
@pytest.fixture
def provider(self):
"""Create a test provider instance."""
return MyTTSProvider(api_key="test_key")
@pytest.fixture
def synthesis_request(self):
"""Create a test synthesis request."""
text_content = TextContent(text="Hello world", language="en")
voice_settings = VoiceSettings(voice_id="voice1", speed=1.0)
return SpeechSynthesisRequest(
text_content=text_content,
voice_settings=voice_settings
)
def test_provider_initialization(self, provider):
"""Test provider initializes correctly."""
assert provider.provider_name == "my_tts"
assert "en" in provider.supported_languages
assert provider.is_available()
def test_get_available_voices(self, provider):
"""Test voice listing."""
voices = provider.get_available_voices()
assert isinstance(voices, list)
assert len(voices) > 0
assert "voice1" in voices
def test_synthesize_success(self, provider, synthesis_request):
"""Test successful synthesis."""
with patch.object(provider, '_generate_audio') as mock_generate:
mock_generate.return_value = (b"audio_data", 22050)
result = provider.synthesize(synthesis_request)
assert result.data == b"audio_data"
assert result.format == "wav"
assert result.sample_rate == 22050
mock_generate.assert_called_once_with(synthesis_request)
def test_synthesize_failure(self, provider, synthesis_request):
"""Test synthesis failure handling."""
with patch.object(provider, '_generate_audio') as mock_generate:
mock_generate.side_effect = Exception("Synthesis failed")
with pytest.raises(SpeechSynthesisException):
provider.synthesize(synthesis_request)
def test_synthesize_stream(self, provider, synthesis_request):
"""Test streaming synthesis."""
chunks = list(provider.synthesize_stream(synthesis_request))
assert len(chunks) > 0
assert chunks[-1].is_final # Last chunk should be marked as final
# Verify chunk structure
for chunk in chunks:
assert hasattr(chunk, 'data')
assert hasattr(chunk, 'sample_rate')
assert hasattr(chunk, 'is_final')
Step 5: Add Integration Tests
# tests/integration/test_my_tts_integration.py
import pytest
from src.infrastructure.config.container_setup import initialize_global_container
from src.infrastructure.tts.provider_factory import TTSProviderFactory
from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest
from src.domain.models.text_content import TextContent
from src.domain.models.voice_settings import VoiceSettings
@pytest.mark.integration
class TestMyTTSIntegration:
"""Integration tests for MyTTS provider."""
def test_provider_factory_integration(self):
"""Test provider works with factory."""
factory = TTSProviderFactory()
if 'my_tts' in factory.get_available_providers():
provider = factory.create_provider('my_tts')
assert provider.is_available()
assert len(provider.get_available_voices()) > 0
def test_end_to_end_synthesis(self):
"""Test complete synthesis workflow."""
container = initialize_global_container()
factory = container.resolve(TTSProviderFactory)
if 'my_tts' in factory.get_available_providers():
provider = factory.create_provider('my_tts')
# Create synthesis request
text_content = TextContent(text="Integration test", language="en")
voice_settings = VoiceSettings(voice_id="voice1", speed=1.0)
request = SpeechSynthesisRequest(
text_content=text_content,
voice_settings=voice_settings
)
# Synthesize audio
result = provider.synthesize(request)
assert result.data is not None
assert result.duration > 0
assert result.sample_rate > 0
Adding New STT Providers
Step 1: Implement the Provider Class
# src/infrastructure/stt/my_stt_provider.py
import logging
from typing import List
from ..base.stt_provider_base import STTProviderBase
from ...domain.models.audio_content import AudioContent
from ...domain.models.text_content import TextContent
from ...domain.exceptions import SpeechRecognitionException
logger = logging.getLogger(__name__)
class MySTTProvider(STTProviderBase):
"""Custom STT provider implementation."""
def __init__(self, model_path: str = None, **kwargs):
"""Initialize the STT provider.
Args:
model_path: Path to the STT model
**kwargs: Additional provider-specific configuration
"""
super().__init__(
provider_name="my_stt",
supported_languages=["en", "zh", "es", "fr"],
supported_models=["my_stt_small", "my_stt_large"]
)
self.model_path = model_path
self._initialize_provider()
def _initialize_provider(self):
"""Initialize provider-specific resources."""
try:
# Initialize your STT engine/model here
# Example: self.model = MySTTModel.load(self.model_path)
pass
except Exception as e:
logger.error(f"Failed to initialize {self.provider_name}: {e}")
raise SpeechRecognitionException(f"Provider initialization failed: {e}")
def is_available(self) -> bool:
"""Check if the provider is available."""
try:
# Check dependencies, model availability, etc.
return True # Replace with actual check
except Exception:
return False
def get_supported_models(self) -> List[str]:
"""Get list of supported models."""
return self.supported_models
def _transcribe_audio(self, audio: AudioContent, model: str) -> tuple[str, float, dict]:
"""Transcribe audio using the specified model.
Args:
audio: Audio content to transcribe
model: Model identifier to use
Returns:
tuple: (transcribed_text, confidence_score, metadata)
"""
try:
# Implement your STT logic here
# Example:
# result = self.model.transcribe(
# audio_data=audio.data,
# sample_rate=audio.sample_rate,
# model=model
# )
# Return transcription results
text = "Transcribed text" # Replace with actual transcription
confidence = 0.95 # Replace with actual confidence
metadata = {
"model_used": model,
"processing_time": 1.5,
"language_detected": "en"
}
return text, confidence, metadata
except Exception as e:
self._handle_provider_error(e, "transcription")
Step 2: Register and Test
Follow similar steps as TTS providers for registration, configuration, and testing.
Adding New Translation Providers
Step 1: Implement the Provider Class
# src/infrastructure/translation/my_translation_provider.py
import logging
from typing import List, Dict
from ..base.translation_provider_base import TranslationProviderBase
from ...domain.models.translation_request import TranslationRequest
from ...domain.models.text_content import TextContent
from ...domain.exceptions import TranslationFailedException
logger = logging.getLogger(__name__)
class MyTranslationProvider(TranslationProviderBase):
"""Custom translation provider implementation."""
def __init__(self, api_key: str = None, **kwargs):
"""Initialize the translation provider."""
super().__init__(
provider_name="my_translation",
supported_languages=["en", "zh", "es", "fr", "de", "ja"]
)
self.api_key = api_key
self._initialize_provider()
def _initialize_provider(self):
"""Initialize provider-specific resources."""
try:
# Initialize your translation engine/model here
pass
except Exception as e:
logger.error(f"Failed to initialize {self.provider_name}: {e}")
raise TranslationFailedException(f"Provider initialization failed: {e}")
def is_available(self) -> bool:
"""Check if the provider is available."""
try:
# Check dependencies, API connectivity, etc.
return True # Replace with actual check
except Exception:
return False
def get_supported_language_pairs(self) -> List[tuple[str, str]]:
"""Get supported language pairs."""
# Return list of (source_lang, target_lang) tuples
pairs = []
for source in self.supported_languages:
for target in self.supported_languages:
if source != target:
pairs.append((source, target))
return pairs
def _translate_text(self, request: TranslationRequest) -> tuple[str, float, dict]:
"""Translate text using the provider.
Args:
request: Translation request
Returns:
tuple: (translated_text, confidence_score, metadata)
"""
try:
source_text = request.text_content.text
source_lang = request.source_language or request.text_content.language
target_lang = request.target_language
# Implement your translation logic here
# Example:
# result = self.translator.translate(
# text=source_text,
# source_lang=source_lang,
# target_lang=target_lang
# )
# Return translation results
translated_text = f"Translated: {source_text}" # Replace with actual translation
confidence = 0.92 # Replace with actual confidence
metadata = {
"source_language_detected": source_lang,
"target_language": target_lang,
"processing_time": 0.5,
"model_used": "my_translation_model"
}
return translated_text, confidence, metadata
except Exception as e:
self._handle_provider_error(e, "translation")
Testing Guidelines
Unit Testing
- Test each provider in isolation using mocks
- Cover success and failure scenarios
- Test edge cases (empty input, invalid parameters)
- Verify error handling and exception propagation
Integration Testing
- Test provider integration with factories
- Test complete pipeline workflows
- Test fallback mechanisms
- Test with real external services (when available)
Performance Testing
- Measure processing times for different input sizes
- Test memory usage and resource cleanup
- Test concurrent processing capabilities
- Benchmark against existing providers
Test Structure
tests/
βββ unit/
β βββ domain/
β βββ application/
β βββ infrastructure/
β βββ tts/
β βββ stt/
β βββ translation/
βββ integration/
β βββ test_complete_pipeline.py
β βββ test_provider_fallback.py
β βββ test_error_recovery.py
βββ performance/
βββ test_processing_speed.py
βββ test_memory_usage.py
βββ test_concurrent_processing.py
Code Style and Standards
Python Style Guide
- Follow PEP 8 for code formatting
- Use type hints for all public methods
- Write comprehensive docstrings (Google style)
- Use meaningful variable and function names
- Keep functions focused and small (< 50 lines)
Documentation Standards
- Document all public interfaces
- Include usage examples in docstrings
- Explain complex algorithms and business logic
- Keep documentation up-to-date with code changes
Error Handling
- Use domain-specific exceptions
- Provide detailed error messages
- Log errors with appropriate levels
- Implement graceful degradation where possible
Logging
import logging
logger = logging.getLogger(__name__)
# Use appropriate log levels
logger.info("Detailed debugging information")
logger.info("General information about program execution")
logger.warning("Something unexpected happened")
logger.error("A serious error occurred")
logger.critical("A very serious error occurred")
Debugging and Troubleshooting
Common Issues
Provider Not Available
- Check dependencies are installed
- Verify configuration settings
- Check logs for initialization errors
Poor Quality Output
- Verify input audio quality
- Check model parameters
- Review provider-specific settings
Performance Issues
- Profile code execution
- Check memory usage
- Optimize audio processing pipeline
Debugging Tools
- Use Python debugger (pdb) for step-through debugging
- Enable detailed logging for troubleshooting
- Use profiling tools (cProfile, memory_profiler)
- Monitor system resources during processing
Logging Configuration
# Enable debug logging for development
import logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
Performance Considerations
Optimization Strategies
Audio Processing
- Use appropriate sample rates
- Implement streaming where possible
- Cache processed results
- Optimize memory usage
Model Loading
- Load models once and reuse
- Use lazy loading for optional providers
- Implement model caching strategies
Concurrent Processing
- Use async/await for I/O operations
- Implement thread-safe providers
- Consider multiprocessing for CPU-intensive tasks
Memory Management
- Clean up temporary files
- Release model resources when not needed
- Monitor memory usage in long-running processes
- Implement resource pooling for expensive operations
Monitoring and Metrics
- Track processing times
- Monitor error rates
- Measure resource utilization
- Implement health checks
Contributing Guidelines
Development Workflow
- Fork the repository
- Create a feature branch
- Implement changes with tests
- Run the full test suite
- Submit a pull request
Code Review Process
- All changes require code review
- Tests must pass before merging
- Documentation must be updated
- Performance impact should be assessed
Release Process
- Follow semantic versioning
- Update changelog
- Tag releases appropriately
- Deploy to staging before production
For questions or support, please refer to the project documentation or open an issue in the repository.