Spaces:
Build error
Build error
# Developer Guide | |
This guide provides comprehensive instructions for extending the Audio Translation System with new providers and contributing to the codebase. | |
## Table of Contents | |
- [Architecture Overview](#architecture-overview) | |
- [Adding New TTS Providers](#adding-new-tts-providers) | |
- [Adding New STT Providers](#adding-new-stt-providers) | |
- [Adding New Translation Providers](#adding-new-translation-providers) | |
- [Testing Guidelines](#testing-guidelines) | |
- [Code Style and Standards](#code-style-and-standards) | |
- [Debugging and Troubleshooting](#debugging-and-troubleshooting) | |
- [Performance Considerations](#performance-considerations) | |
## Architecture Overview | |
The system follows Domain-Driven Design (DDD) principles with clear separation of concerns: | |
``` | |
src/ | |
βββ domain/ # Core business logic | |
β βββ interfaces/ # Service contracts (ports) | |
β βββ models/ # Domain entities and value objects | |
β βββ services/ # Domain services | |
β βββ exceptions.py # Domain-specific exceptions | |
βββ application/ # Use case orchestration | |
β βββ services/ # Application services | |
β βββ dtos/ # Data transfer objects | |
β βββ error_handling/ # Application error handling | |
βββ infrastructure/ # External service implementations | |
β βββ tts/ # TTS provider implementations | |
β βββ stt/ # STT provider implementations | |
β βββ translation/ # Translation service implementations | |
β βββ base/ # Provider base classes | |
β βββ config/ # Configuration and DI container | |
βββ presentation/ # UI layer (app.py) | |
``` | |
### Key Design Patterns | |
1. **Provider Pattern**: Pluggable implementations for different services | |
2. **Factory Pattern**: Provider creation with fallback logic | |
3. **Dependency Injection**: Loose coupling between components | |
4. **Repository Pattern**: Data access abstraction | |
5. **Strategy Pattern**: Runtime algorithm selection | |
## Adding New TTS Providers | |
### Step 1: Implement the Provider Class | |
Create a new provider class that inherits from `TTSProviderBase`: | |
```python | |
# src/infrastructure/tts/my_tts_provider.py | |
import logging | |
from typing import Iterator, List | |
from ..base.tts_provider_base import TTSProviderBase | |
from ...domain.models.speech_synthesis_request import SpeechSynthesisRequest | |
from ...domain.exceptions import SpeechSynthesisException | |
logger = logging.getLogger(__name__) | |
class MyTTSProvider(TTSProviderBase): | |
"""Custom TTS provider implementation.""" | |
def __init__(self, api_key: str = None, **kwargs): | |
"""Initialize the TTS provider. | |
Args: | |
api_key: Optional API key for cloud-based services | |
**kwargs: Additional provider-specific configuration | |
""" | |
super().__init__( | |
provider_name="my_tts", | |
supported_languages=["en", "zh", "es", "fr"] | |
) | |
self.api_key = api_key | |
self._initialize_provider() | |
def _initialize_provider(self): | |
"""Initialize provider-specific resources.""" | |
try: | |
# Initialize your TTS engine/model here | |
# Example: self.engine = MyTTSEngine(api_key=self.api_key) | |
pass | |
except Exception as e: | |
logger.error(f"Failed to initialize {self.provider_name}: {e}") | |
raise SpeechSynthesisException(f"Provider initialization failed: {e}") | |
def is_available(self) -> bool: | |
"""Check if the provider is available and ready to use.""" | |
try: | |
# Check if dependencies are installed | |
# Check if models are loaded | |
# Check if API is accessible (for cloud services) | |
return True # Replace with actual availability check | |
except Exception: | |
return False | |
def get_available_voices(self) -> List[str]: | |
"""Get list of available voices for this provider.""" | |
# Return actual voice IDs supported by your provider | |
return ["voice1", "voice2", "voice3"] | |
def _generate_audio(self, request: SpeechSynthesisRequest) -> tuple[bytes, int]: | |
"""Generate audio data from synthesis request. | |
Args: | |
request: The speech synthesis request | |
Returns: | |
tuple: (audio_data_bytes, sample_rate) | |
""" | |
try: | |
text = request.text_content.text | |
voice_id = request.voice_settings.voice_id | |
speed = request.voice_settings.speed | |
# Implement your TTS synthesis logic here | |
# Example: | |
# audio_data = self.engine.synthesize( | |
# text=text, | |
# voice=voice_id, | |
# speed=speed | |
# ) | |
# Return audio data and sample rate | |
audio_data = b"dummy_audio_data" # Replace with actual synthesis | |
sample_rate = 22050 # Replace with actual sample rate | |
return audio_data, sample_rate | |
except Exception as e: | |
self._handle_provider_error(e, "audio generation") | |
def _generate_audio_stream(self, request: SpeechSynthesisRequest) -> Iterator[tuple[bytes, int, bool]]: | |
"""Generate audio data stream from synthesis request. | |
Args: | |
request: The speech synthesis request | |
Yields: | |
tuple: (audio_data_bytes, sample_rate, is_final) | |
""" | |
try: | |
# Implement streaming synthesis if supported | |
# For non-streaming providers, you can yield the complete audio as a single chunk | |
audio_data, sample_rate = self._generate_audio(request) | |
yield audio_data, sample_rate, True | |
except Exception as e: | |
self._handle_provider_error(e, "streaming audio generation") | |
``` | |
### Step 2: Register the Provider | |
Add your provider to the factory registration: | |
```python | |
# src/infrastructure/tts/provider_factory.py | |
def _register_default_providers(self): | |
"""Register all available TTS providers.""" | |
# ... existing providers ... | |
# Try to register your custom provider | |
try: | |
from .my_tts_provider import MyTTSProvider | |
self._providers['my_tts'] = MyTTSProvider | |
logger.info("Registered MyTTS provider") | |
except ImportError as e: | |
logger.info(f"MyTTS provider not available: {e}") | |
``` | |
### Step 3: Add Configuration Support | |
Update the configuration to include your provider: | |
```python | |
# src/infrastructure/config/app_config.py | |
class AppConfig: | |
# ... existing configuration ... | |
# TTS Provider Configuration | |
TTS_PROVIDERS = os.getenv('TTS_PROVIDERS', 'kokoro,dia,cosyvoice2,my_tts,dummy').split(',') | |
# Provider-specific settings | |
MY_TTS_API_KEY = os.getenv('MY_TTS_API_KEY') | |
MY_TTS_MODEL = os.getenv('MY_TTS_MODEL', 'default') | |
``` | |
### Step 4: Add Tests | |
Create comprehensive tests for your provider: | |
```python | |
# tests/unit/infrastructure/tts/test_my_tts_provider.py | |
import pytest | |
from unittest.mock import Mock, patch | |
from src.infrastructure.tts.my_tts_provider import MyTTSProvider | |
from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest | |
from src.domain.models.text_content import TextContent | |
from src.domain.models.voice_settings import VoiceSettings | |
from src.domain.exceptions import SpeechSynthesisException | |
class TestMyTTSProvider: | |
"""Test suite for MyTTS provider.""" | |
@pytest.fixture | |
def provider(self): | |
"""Create a test provider instance.""" | |
return MyTTSProvider(api_key="test_key") | |
@pytest.fixture | |
def synthesis_request(self): | |
"""Create a test synthesis request.""" | |
text_content = TextContent(text="Hello world", language="en") | |
voice_settings = VoiceSettings(voice_id="voice1", speed=1.0) | |
return SpeechSynthesisRequest( | |
text_content=text_content, | |
voice_settings=voice_settings | |
) | |
def test_provider_initialization(self, provider): | |
"""Test provider initializes correctly.""" | |
assert provider.provider_name == "my_tts" | |
assert "en" in provider.supported_languages | |
assert provider.is_available() | |
def test_get_available_voices(self, provider): | |
"""Test voice listing.""" | |
voices = provider.get_available_voices() | |
assert isinstance(voices, list) | |
assert len(voices) > 0 | |
assert "voice1" in voices | |
def test_synthesize_success(self, provider, synthesis_request): | |
"""Test successful synthesis.""" | |
with patch.object(provider, '_generate_audio') as mock_generate: | |
mock_generate.return_value = (b"audio_data", 22050) | |
result = provider.synthesize(synthesis_request) | |
assert result.data == b"audio_data" | |
assert result.format == "wav" | |
assert result.sample_rate == 22050 | |
mock_generate.assert_called_once_with(synthesis_request) | |
def test_synthesize_failure(self, provider, synthesis_request): | |
"""Test synthesis failure handling.""" | |
with patch.object(provider, '_generate_audio') as mock_generate: | |
mock_generate.side_effect = Exception("Synthesis failed") | |
with pytest.raises(SpeechSynthesisException): | |
provider.synthesize(synthesis_request) | |
def test_synthesize_stream(self, provider, synthesis_request): | |
"""Test streaming synthesis.""" | |
chunks = list(provider.synthesize_stream(synthesis_request)) | |
assert len(chunks) > 0 | |
assert chunks[-1].is_final # Last chunk should be marked as final | |
# Verify chunk structure | |
for chunk in chunks: | |
assert hasattr(chunk, 'data') | |
assert hasattr(chunk, 'sample_rate') | |
assert hasattr(chunk, 'is_final') | |
``` | |
### Step 5: Add Integration Tests | |
```python | |
# tests/integration/test_my_tts_integration.py | |
import pytest | |
from src.infrastructure.config.container_setup import initialize_global_container | |
from src.infrastructure.tts.provider_factory import TTSProviderFactory | |
from src.domain.models.speech_synthesis_request import SpeechSynthesisRequest | |
from src.domain.models.text_content import TextContent | |
from src.domain.models.voice_settings import VoiceSettings | |
@pytest.mark.integration | |
class TestMyTTSIntegration: | |
"""Integration tests for MyTTS provider.""" | |
def test_provider_factory_integration(self): | |
"""Test provider works with factory.""" | |
factory = TTSProviderFactory() | |
if 'my_tts' in factory.get_available_providers(): | |
provider = factory.create_provider('my_tts') | |
assert provider.is_available() | |
assert len(provider.get_available_voices()) > 0 | |
def test_end_to_end_synthesis(self): | |
"""Test complete synthesis workflow.""" | |
container = initialize_global_container() | |
factory = container.resolve(TTSProviderFactory) | |
if 'my_tts' in factory.get_available_providers(): | |
provider = factory.create_provider('my_tts') | |
# Create synthesis request | |
text_content = TextContent(text="Integration test", language="en") | |
voice_settings = VoiceSettings(voice_id="voice1", speed=1.0) | |
request = SpeechSynthesisRequest( | |
text_content=text_content, | |
voice_settings=voice_settings | |
) | |
# Synthesize audio | |
result = provider.synthesize(request) | |
assert result.data is not None | |
assert result.duration > 0 | |
assert result.sample_rate > 0 | |
``` | |
## Adding New STT Providers | |
### Step 1: Implement the Provider Class | |
```python | |
# src/infrastructure/stt/my_stt_provider.py | |
import logging | |
from typing import List | |
from ..base.stt_provider_base import STTProviderBase | |
from ...domain.models.audio_content import AudioContent | |
from ...domain.models.text_content import TextContent | |
from ...domain.exceptions import SpeechRecognitionException | |
logger = logging.getLogger(__name__) | |
class MySTTProvider(STTProviderBase): | |
"""Custom STT provider implementation.""" | |
def __init__(self, model_path: str = None, **kwargs): | |
"""Initialize the STT provider. | |
Args: | |
model_path: Path to the STT model | |
**kwargs: Additional provider-specific configuration | |
""" | |
super().__init__( | |
provider_name="my_stt", | |
supported_languages=["en", "zh", "es", "fr"], | |
supported_models=["my_stt_small", "my_stt_large"] | |
) | |
self.model_path = model_path | |
self._initialize_provider() | |
def _initialize_provider(self): | |
"""Initialize provider-specific resources.""" | |
try: | |
# Initialize your STT engine/model here | |
# Example: self.model = MySTTModel.load(self.model_path) | |
pass | |
except Exception as e: | |
logger.error(f"Failed to initialize {self.provider_name}: {e}") | |
raise SpeechRecognitionException(f"Provider initialization failed: {e}") | |
def is_available(self) -> bool: | |
"""Check if the provider is available.""" | |
try: | |
# Check dependencies, model availability, etc. | |
return True # Replace with actual check | |
except Exception: | |
return False | |
def get_supported_models(self) -> List[str]: | |
"""Get list of supported models.""" | |
return self.supported_models | |
def _transcribe_audio(self, audio: AudioContent, model: str) -> tuple[str, float, dict]: | |
"""Transcribe audio using the specified model. | |
Args: | |
audio: Audio content to transcribe | |
model: Model identifier to use | |
Returns: | |
tuple: (transcribed_text, confidence_score, metadata) | |
""" | |
try: | |
# Implement your STT logic here | |
# Example: | |
# result = self.model.transcribe( | |
# audio_data=audio.data, | |
# sample_rate=audio.sample_rate, | |
# model=model | |
# ) | |
# Return transcription results | |
text = "Transcribed text" # Replace with actual transcription | |
confidence = 0.95 # Replace with actual confidence | |
metadata = { | |
"model_used": model, | |
"processing_time": 1.5, | |
"language_detected": "en" | |
} | |
return text, confidence, metadata | |
except Exception as e: | |
self._handle_provider_error(e, "transcription") | |
``` | |
### Step 2: Register and Test | |
Follow similar steps as TTS providers for registration, configuration, and testing. | |
## Adding New Translation Providers | |
### Step 1: Implement the Provider Class | |
```python | |
# src/infrastructure/translation/my_translation_provider.py | |
import logging | |
from typing import List, Dict | |
from ..base.translation_provider_base import TranslationProviderBase | |
from ...domain.models.translation_request import TranslationRequest | |
from ...domain.models.text_content import TextContent | |
from ...domain.exceptions import TranslationFailedException | |
logger = logging.getLogger(__name__) | |
class MyTranslationProvider(TranslationProviderBase): | |
"""Custom translation provider implementation.""" | |
def __init__(self, api_key: str = None, **kwargs): | |
"""Initialize the translation provider.""" | |
super().__init__( | |
provider_name="my_translation", | |
supported_languages=["en", "zh", "es", "fr", "de", "ja"] | |
) | |
self.api_key = api_key | |
self._initialize_provider() | |
def _initialize_provider(self): | |
"""Initialize provider-specific resources.""" | |
try: | |
# Initialize your translation engine/model here | |
pass | |
except Exception as e: | |
logger.error(f"Failed to initialize {self.provider_name}: {e}") | |
raise TranslationFailedException(f"Provider initialization failed: {e}") | |
def is_available(self) -> bool: | |
"""Check if the provider is available.""" | |
try: | |
# Check dependencies, API connectivity, etc. | |
return True # Replace with actual check | |
except Exception: | |
return False | |
def get_supported_language_pairs(self) -> List[tuple[str, str]]: | |
"""Get supported language pairs.""" | |
# Return list of (source_lang, target_lang) tuples | |
pairs = [] | |
for source in self.supported_languages: | |
for target in self.supported_languages: | |
if source != target: | |
pairs.append((source, target)) | |
return pairs | |
def _translate_text(self, request: TranslationRequest) -> tuple[str, float, dict]: | |
"""Translate text using the provider. | |
Args: | |
request: Translation request | |
Returns: | |
tuple: (translated_text, confidence_score, metadata) | |
""" | |
try: | |
source_text = request.text_content.text | |
source_lang = request.source_language or request.text_content.language | |
target_lang = request.target_language | |
# Implement your translation logic here | |
# Example: | |
# result = self.translator.translate( | |
# text=source_text, | |
# source_lang=source_lang, | |
# target_lang=target_lang | |
# ) | |
# Return translation results | |
translated_text = f"Translated: {source_text}" # Replace with actual translation | |
confidence = 0.92 # Replace with actual confidence | |
metadata = { | |
"source_language_detected": source_lang, | |
"target_language": target_lang, | |
"processing_time": 0.5, | |
"model_used": "my_translation_model" | |
} | |
return translated_text, confidence, metadata | |
except Exception as e: | |
self._handle_provider_error(e, "translation") | |
``` | |
## Testing Guidelines | |
### Unit Testing | |
- Test each provider in isolation using mocks | |
- Cover success and failure scenarios | |
- Test edge cases (empty input, invalid parameters) | |
- Verify error handling and exception propagation | |
### Integration Testing | |
- Test provider integration with factories | |
- Test complete pipeline workflows | |
- Test fallback mechanisms | |
- Test with real external services (when available) | |
### Performance Testing | |
- Measure processing times for different input sizes | |
- Test memory usage and resource cleanup | |
- Test concurrent processing capabilities | |
- Benchmark against existing providers | |
### Test Structure | |
``` | |
tests/ | |
βββ unit/ | |
β βββ domain/ | |
β βββ application/ | |
β βββ infrastructure/ | |
β βββ tts/ | |
β βββ stt/ | |
β βββ translation/ | |
βββ integration/ | |
β βββ test_complete_pipeline.py | |
β βββ test_provider_fallback.py | |
β βββ test_error_recovery.py | |
βββ performance/ | |
βββ test_processing_speed.py | |
βββ test_memory_usage.py | |
βββ test_concurrent_processing.py | |
``` | |
## Code Style and Standards | |
### Python Style Guide | |
- Follow PEP 8 for code formatting | |
- Use type hints for all public methods | |
- Write comprehensive docstrings (Google style) | |
- Use meaningful variable and function names | |
- Keep functions focused and small (< 50 lines) | |
### Documentation Standards | |
- Document all public interfaces | |
- Include usage examples in docstrings | |
- Explain complex algorithms and business logic | |
- Keep documentation up-to-date with code changes | |
### Error Handling | |
- Use domain-specific exceptions | |
- Provide detailed error messages | |
- Log errors with appropriate levels | |
- Implement graceful degradation where possible | |
### Logging | |
```python | |
import logging | |
logger = logging.getLogger(__name__) | |
# Use appropriate log levels | |
logger.info("Detailed debugging information") | |
logger.info("General information about program execution") | |
logger.warning("Something unexpected happened") | |
logger.error("A serious error occurred") | |
logger.critical("A very serious error occurred") | |
``` | |
## Debugging and Troubleshooting | |
### Common Issues | |
1. **Provider Not Available** | |
- Check dependencies are installed | |
- Verify configuration settings | |
- Check logs for initialization errors | |
2. **Poor Quality Output** | |
- Verify input audio quality | |
- Check model parameters | |
- Review provider-specific settings | |
3. **Performance Issues** | |
- Profile code execution | |
- Check memory usage | |
- Optimize audio processing pipeline | |
### Debugging Tools | |
- Use Python debugger (pdb) for step-through debugging | |
- Enable detailed logging for troubleshooting | |
- Use profiling tools (cProfile, memory_profiler) | |
- Monitor system resources during processing | |
### Logging Configuration | |
```python | |
# Enable debug logging for development | |
import logging | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler("debug.log"), | |
logging.StreamHandler() | |
] | |
) | |
``` | |
## Performance Considerations | |
### Optimization Strategies | |
1. **Audio Processing** | |
- Use appropriate sample rates | |
- Implement streaming where possible | |
- Cache processed results | |
- Optimize memory usage | |
2. **Model Loading** | |
- Load models once and reuse | |
- Use lazy loading for optional providers | |
- Implement model caching strategies | |
3. **Concurrent Processing** | |
- Use async/await for I/O operations | |
- Implement thread-safe providers | |
- Consider multiprocessing for CPU-intensive tasks | |
### Memory Management | |
- Clean up temporary files | |
- Release model resources when not needed | |
- Monitor memory usage in long-running processes | |
- Implement resource pooling for expensive operations | |
### Monitoring and Metrics | |
- Track processing times | |
- Monitor error rates | |
- Measure resource utilization | |
- Implement health checks | |
## Contributing Guidelines | |
### Development Workflow | |
1. Fork the repository | |
2. Create a feature branch | |
3. Implement changes with tests | |
4. Run the full test suite | |
5. Submit a pull request | |
### Code Review Process | |
- All changes require code review | |
- Tests must pass before merging | |
- Documentation must be updated | |
- Performance impact should be assessed | |
### Release Process | |
- Follow semantic versioning | |
- Update changelog | |
- Tag releases appropriately | |
- Deploy to staging before production | |
--- | |
For questions or support, please refer to the project documentation or open an issue in the repository. |