Agent_OCR / vintern_fast.py
Shadow0704's picture
Upload 5 files
b85866b verified
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import time
import argparse
import sys
"""
url: https://huggingface.co/5CD-AI/Vintern-1B-v3_5
"""
# Ensure UTF-8 console output (fixes UnicodeEncodeError on Windows PowerShell)
try:
sys.stdout.reconfigure(encoding='utf-8')
sys.stderr.reconfigure(encoding='utf-8')
except Exception:
pass
# pip install ninja packaging wheel
# pip install flash-attn --no-build-isolation
# Khởi tạo timer
start_time = time.time()
# Chọn device (GPU nếu có)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runtime backend optimizations
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print("Using device:", device)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
return T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BILINEAR),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
])
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12, use_thumbnail=False, pin_memory=False):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
# Fast path when using only one tile and no thumbnail
if max_num == 1 and not use_thumbnail:
pixel_values = transform(image).unsqueeze(0)
else:
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=use_thumbnail, max_num=max_num)
pixel_values = [transform(img) for img in images]
pixel_values = torch.stack(pixel_values)
if pin_memory:
pixel_values = pixel_values.pin_memory()
return pixel_values
# Load model lên GPU
model_load_start = time.time()
model = AutoModel.from_pretrained(
"5CD-AI/Vintern-1B-v3_5",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_flash_attn=True, # nếu đã cài flash-attn có thể đổi thành True
).to(device).eval()
model_load_end = time.time()
tokenizer = AutoTokenizer.from_pretrained(
"5CD-AI/Vintern-1B-v3_5",
trust_remote_code=True,
use_fast=False
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--image', type=str, default=r'C:\Users\ADMIN\Downloads\vintern_api\imgs\6.TKngknhnCMC_00001.png')
parser.add_argument('--input_size', type=int, default=384)
parser.add_argument('--max_num', type=int, default=1)
parser.add_argument('--use_thumbnail', action='store_true', default=False)
parser.add_argument('--max_new_tokens', type=int, default=128)
parser.add_argument('--num_beams', type=int, default=1)
parser.add_argument('--do_sample', action='store_true', default=False)
parser.add_argument('--repetition_penalty', type=float, default=2.5)
parser.add_argument('--question', type=str, default='<image>\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.')
parser.add_argument('--compile', action='store_true', default=False)
args = parser.parse_args()
pin_mem = device.type == 'cuda'
# Validate input size for this model family (fallback to 448 if incompatible)
valid_input_size = args.input_size
try:
# Many InternVL/Vintern checkpoints expect 448 per tile
if args.input_size != 448:
print(f"[warn] input_size {args.input_size} may be incompatible; falling back to 448 for stability.")
valid_input_size = 448
except Exception:
valid_input_size = 448
# Image preprocessing and non-blocking GPU transfer
pixel_values = load_image(
args.image,
input_size=valid_input_size,
max_num=args.max_num,
use_thumbnail=args.use_thumbnail,
pin_memory=pin_mem
)
pixel_values = pixel_values.contiguous(memory_format=torch.channels_last)
pixel_values = pixel_values.to(device=device, dtype=torch.float16, non_blocking=True)
# Optional compile for speedup (PyTorch 2.x). Fallback silently if unsupported.
if args.compile:
try:
model_forward = model.forward
model.forward = torch.compile(model_forward, mode='reduce-overhead', fullgraph=False) # type: ignore
except Exception:
pass
generation_config = dict(
max_new_tokens=args.max_new_tokens,
do_sample=args.do_sample,
num_beams=args.num_beams,
repetition_penalty=args.repetition_penalty
)
with torch.inference_mode():
response, history = model.chat(
tokenizer,
pixel_values,
args.question,
generation_config,
history=None,
return_history=True
)
print(f'User: {args.question}\nAssistant: {response}')
end_time = time.time()
print(f'Model load: {model_load_end - model_load_start:.2f}s | Total: {end_time - start_time:.2f}s')
del pixel_values
if device.type == 'cuda':
torch.cuda.empty_cache()
if __name__ == '__main__':
main()