Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import torch | |
| import torchvision.transforms as T | |
| from PIL import Image | |
| from torchvision.transforms.functional import InterpolationMode | |
| from transformers import AutoModel, AutoTokenizer | |
| import time | |
| import argparse | |
| import sys | |
| """ | |
| url: https://huggingface.co/5CD-AI/Vintern-1B-v3_5 | |
| """ | |
| # Ensure UTF-8 console output (fixes UnicodeEncodeError on Windows PowerShell) | |
| try: | |
| sys.stdout.reconfigure(encoding='utf-8') | |
| sys.stderr.reconfigure(encoding='utf-8') | |
| except Exception: | |
| pass | |
| # pip install ninja packaging wheel | |
| # pip install flash-attn --no-build-isolation | |
| # Khởi tạo timer | |
| start_time = time.time() | |
| # Chọn device (GPU nếu có) | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # Runtime backend optimizations | |
| torch.backends.cudnn.benchmark = True | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| print("Using device:", device) | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| def build_transform(input_size): | |
| return T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BILINEAR), | |
| T.ToTensor(), | |
| T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) | |
| ]) | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) | |
| for i in range(1, n + 1) | |
| for j in range(1, n + 1) | |
| if i * j <= max_num and i * j >= min_num | |
| ) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| def load_image(image_file, input_size=448, max_num=12, use_thumbnail=False, pin_memory=False): | |
| image = Image.open(image_file).convert('RGB') | |
| transform = build_transform(input_size=input_size) | |
| # Fast path when using only one tile and no thumbnail | |
| if max_num == 1 and not use_thumbnail: | |
| pixel_values = transform(image).unsqueeze(0) | |
| else: | |
| images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=use_thumbnail, max_num=max_num) | |
| pixel_values = [transform(img) for img in images] | |
| pixel_values = torch.stack(pixel_values) | |
| if pin_memory: | |
| pixel_values = pixel_values.pin_memory() | |
| return pixel_values | |
| # Load model lên GPU | |
| model_load_start = time.time() | |
| model = AutoModel.from_pretrained( | |
| "5CD-AI/Vintern-1B-v3_5", | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| use_flash_attn=True, # nếu đã cài flash-attn có thể đổi thành True | |
| ).to(device).eval() | |
| model_load_end = time.time() | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| "5CD-AI/Vintern-1B-v3_5", | |
| trust_remote_code=True, | |
| use_fast=False | |
| ) | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--image', type=str, default=r'C:\Users\ADMIN\Downloads\vintern_api\imgs\6.TKngknhnCMC_00001.png') | |
| parser.add_argument('--input_size', type=int, default=384) | |
| parser.add_argument('--max_num', type=int, default=1) | |
| parser.add_argument('--use_thumbnail', action='store_true', default=False) | |
| parser.add_argument('--max_new_tokens', type=int, default=128) | |
| parser.add_argument('--num_beams', type=int, default=1) | |
| parser.add_argument('--do_sample', action='store_true', default=False) | |
| parser.add_argument('--repetition_penalty', type=float, default=2.5) | |
| parser.add_argument('--question', type=str, default='<image>\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.') | |
| parser.add_argument('--compile', action='store_true', default=False) | |
| args = parser.parse_args() | |
| pin_mem = device.type == 'cuda' | |
| # Validate input size for this model family (fallback to 448 if incompatible) | |
| valid_input_size = args.input_size | |
| try: | |
| # Many InternVL/Vintern checkpoints expect 448 per tile | |
| if args.input_size != 448: | |
| print(f"[warn] input_size {args.input_size} may be incompatible; falling back to 448 for stability.") | |
| valid_input_size = 448 | |
| except Exception: | |
| valid_input_size = 448 | |
| # Image preprocessing and non-blocking GPU transfer | |
| pixel_values = load_image( | |
| args.image, | |
| input_size=valid_input_size, | |
| max_num=args.max_num, | |
| use_thumbnail=args.use_thumbnail, | |
| pin_memory=pin_mem | |
| ) | |
| pixel_values = pixel_values.contiguous(memory_format=torch.channels_last) | |
| pixel_values = pixel_values.to(device=device, dtype=torch.float16, non_blocking=True) | |
| # Optional compile for speedup (PyTorch 2.x). Fallback silently if unsupported. | |
| if args.compile: | |
| try: | |
| model_forward = model.forward | |
| model.forward = torch.compile(model_forward, mode='reduce-overhead', fullgraph=False) # type: ignore | |
| except Exception: | |
| pass | |
| generation_config = dict( | |
| max_new_tokens=args.max_new_tokens, | |
| do_sample=args.do_sample, | |
| num_beams=args.num_beams, | |
| repetition_penalty=args.repetition_penalty | |
| ) | |
| with torch.inference_mode(): | |
| response, history = model.chat( | |
| tokenizer, | |
| pixel_values, | |
| args.question, | |
| generation_config, | |
| history=None, | |
| return_history=True | |
| ) | |
| print(f'User: {args.question}\nAssistant: {response}') | |
| end_time = time.time() | |
| print(f'Model load: {model_load_end - model_load_start:.2f}s | Total: {end_time - start_time:.2f}s') | |
| del pixel_values | |
| if device.type == 'cuda': | |
| torch.cuda.empty_cache() | |
| if __name__ == '__main__': | |
| main() |