Spaces:
Sleeping
Sleeping
File size: 18,286 Bytes
0337d3f 31fd85f f406703 31fd85f bc872ec 31fd85f 4e6d72a 31fd85f 610674c bc872ec 48c5c63 d5562ee b638358 31fd85f 610674c 31fd85f 91f8b58 4e6d72a 21b2af3 bc872ec 31fd85f 4e6d72a bc872ec 31fd85f bc872ec 31fd85f bc872ec 610674c bc872ec 44073b3 610674c bc872ec 610674c bc872ec 610674c c8045ce 6500d36 91f8b58 d4b3c99 6500d36 d4b3c99 6500d36 91f8b58 6500d36 d4b3c99 6500d36 91f8b58 d4b3c99 6500d36 d4b3c99 6500d36 91f8b58 6500d36 91f8b58 d4b3c99 6500d36 d4b3c99 6500d36 91f8b58 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce 6500d36 c8045ce d4b3c99 6500d36 2aea707 e1d0661 2aea707 e1d0661 2aea707 c8045ce 6500d36 c8045ce e1d0661 c8045ce e1d0661 c8045ce 2aea707 338949d bc872ec 6500d36 be9b55d 29cf1cf aa500d3 29cf1cf ca6dc36 bc872ec 31fd85f bc872ec 31fd85f bc872ec 31fd85f 6500d36 4e6d72a 6500d36 31fd85f 6500d36 4e6d72a 6500d36 31fd85f be625c5 bc872ec 31fd85f be625c5 bc872ec 31fd85f 4e6d72a bc872ec be625c5 bc872ec 31fd85f 4e6d72a 44073b3 be625c5 bc872ec 4e6d72a bc872ec 4e6d72a bc872ec 4e6d72a bc872ec 4e6d72a 31fd85f be625c5 bc872ec 31fd85f d5562ee d8de06e bc872ec 6500d36 86bcd45 6500d36 cb0345f 31fd85f 4e6d72a d5562ee f19f260 4e6d72a 31fd85f 4e6d72a 6500d36 bc872ec 03281b1 bc872ec be625c5 bc872ec 31fd85f 4e6d72a 6500d36 4e6d72a 31fd85f 4e6d72a 31fd85f 6500d36 4e6d72a 6500d36 10fed76 d5562ee c8045ce ca6dc36 d5562ee b657c9c c8045ce ca6dc36 c8045ce b657c9c c8045ce ca6dc36 d5562ee c8045ce ca6dc36 c8045ce d5562ee 6500d36 29cf1cf 6500d36 c8045ce 29cf1cf c8045ce 0eefe69 c8045ce 29cf1cf c8045ce d5562ee c8045ce 29cf1cf c8045ce 6500d36 c8045ce 6500d36 be9b55d 29cf1cf ca6dc36 b657c9c 2c9ea62 3c1b17d 2c9ea62 10fed76 80d16dc 6863f8a bc872ec 006dec7 6d9d603 13d7e9d 73da21b d5562ee 31fd85f be625c5 31fd85f 6500d36 4e6d72a 6500d36 bc872ec 2dbaf32 ccfb8c0 877fa9d ccfb8c0 877fa9d ccfb8c0 2dbaf32 877fa9d 2dbaf32 877fa9d 74163b7 0acbc50 877fa9d 0acbc50 877fa9d 74163b7 877fa9d 4e6d72a 877fa9d 4e6d72a bc872ec 4e6d72a 31fd85f 4e6d72a 31fd85f 4e6d72a 31fd85f d5562ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
from flask import Flask, render_template, request, redirect, url_for, send_file
import os
import shutil
import pandas as pd
from werkzeug.utils import secure_filename
from joblib import load, dump
import numpy as np
from sklearn.preprocessing import LabelEncoder
from time import time
from huggingface_hub import hf_hub_download
import pickle
import uuid
from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from xgboost import XGBRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_squared_error
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PowerTransformer, StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split, cross_val_score, RandomizedSearchCV
import lightgbm as lgb
from catboost import CatBoostRegressor
from sklearn.ensemble import StackingRegressor
import json
import imblearn
app = Flask(__name__)
# Set the secret key for session management
app.secret_key = os.urandom(24)
# Configurations
UPLOAD_FOLDER = "uploads/"
DATA_FOLDER = "data/"
MODEL_FOLDER = "models/"
os.makedirs(MODEL_FOLDER, exist_ok=True)
# Define the model directory and label encoder directory
MODEL_DIR = r'./Model'
LABEL_ENCODER_DIR = r'./Label_encoders' # Renamed for clarity
# Global file names for outputs; these will be updated per prediction.
# Note: we now include a unique id to avoid overwriting.
PRED_OUTPUT_FILE = None
CLASS_OUTPUT_FILE = None
ALLOWED_EXTENSIONS = {'csv', 'xlsx'}
# Create directories if they do not exist.
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
app.config['DATA_FOLDER'] = DATA_FOLDER
os.makedirs(app.config['DATA_FOLDER'], exist_ok=True)
os.makedirs("data", exist_ok=True)
app.config['MODEL_FOLDER'] = MODEL_FOLDER
os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
# Prediction analysis models loaded from Hugging Face.
#classsification model on the task
# ----------------------------------------------
# Code classification models for real data.
# ----------------------------------------------
#black code change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_blk(M)_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_blk(M)_change.pkl")
shutil.copy(src_path, dst_path)
blk_change = load(dst_path)
# white code change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_wht(M)_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_wht(M)_change.pkl")
shutil.copy(src_path, dst_path)
wht_change = load(dst_path)
# pav code change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_pav(M)_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_pav(M)_change.pkl")
shutil.copy(src_path, dst_path)
pav_change = load(dst_path)
#open code change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_open(M)_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_open(M)_change.pkl")
shutil.copy(src_path, dst_path)
open_change = load(dst_path)
# ----------------------------------------------
# parameter classification models for real data.
# ----------------------------------------------
#shape change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_shp_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_shp_change.pkl")
shutil.copy(src_path, dst_path)
shape_change = load(dst_path)
# color change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_col_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_col_change.pkl")
shutil.copy(src_path, dst_path)
col_change = load(dst_path)
# quality change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_qua_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_qua_change.pkl")
shutil.copy(src_path, dst_path)
qua_change = load(dst_path)
# cut change
src_path = hf_hub_download(
repo_id="WebashalarForML/Diamond_model_",
filename="CLASS_DUMMY/DT_best__2_class_cut_change.pkl",
cache_dir=MODEL_FOLDER
)
dst_path = os.path.join(MODEL_FOLDER, "DT_best__2_class_cut_change.pkl")
shutil.copy(src_path, dst_path)
cut_change = load(dst_path)
print("================================")
# List of label encoder names.
encoder_list = [
'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
'Change_cts_value_v2', 'Change_shape_value_v2', 'Change_quality_value_v2', 'Change_color_value_v2',
'Change_cut_value_v2', 'Change_Blk_Eng_to_Mkbl_value_2', 'Change_Wht_Eng_to_Mkbl_value_2',
'Change_Open_Eng_to_Mkbl_value_2', 'Change_Pav_Eng_to_Mkbl_value_2', 'Change_Blk_Eng_to_Grd_value_2',
'Change_Wht_Eng_to_Grd_value_2', 'Change_Open_Eng_to_Grd_value_2', 'Change_Pav_Eng_to_Grd_value_2',
'Change_Blk_Eng_to_ByGrd_value_2', 'Change_Wht_Eng_to_ByGrd_value_2', 'Change_Open_Eng_to_ByGrd_value_2',
'Change_Pav_Eng_to_ByGrd_value_2', 'Change_Blk_Eng_to_Gia_value_2', 'Change_Wht_Eng_to_Gia_value_2',
'Change_Open_Eng_to_Gia_value_2', 'Change_Pav_Eng_to_Gia_value_2'
]
# Load label encoders using pathlib for cleaner path management.
loaded_label_encoder = {}
enc_path = Path(LABEL_ENCODER_DIR)
for val in encoder_list:
encoder_file = enc_path / f"label_encoder_{val}.joblib"
loaded_label_encoder[val] = load(encoder_file)
# -----------------------------------------
# Utility: Allowed File Check
# -----------------------------------------
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# -----------------------------------------
# Routes
# -----------------------------------------
@app.route('/')
def index():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
if 'file' not in request.files:
print('No file part', 'error')
return redirect(url_for('index'))
file = request.files['file']
if file.filename == '':
print('No selected file', 'error')
return redirect(url_for('index'))
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
# Convert file to DataFrame
try:
if filename.endswith('.csv'):
df = pd.read_csv(filepath)
else:
df = pd.read_excel(filepath)
except Exception as e:
print(f'Error reading file: {e}', 'error')
return redirect(url_for('index'))
# Process the DataFrame and generate predictions and classification analysis.
df_pred, dx_class = process_dataframe(df)
if df_pred.empty:
print("Processed prediction DataFrame is empty. Check the input file and processing logic.", "error")
return redirect(url_for('index'))
# Save output files with a timestamp and unique id.
current_date = pd.Timestamp.now().strftime("%Y-%m-%d")
unique_id = uuid.uuid4().hex[:8]
global PRED_OUTPUT_FILE, CLASS_OUTPUT_FILE
PRED_OUTPUT_FILE = f'data/prediction_output_{current_date}_{unique_id}.csv'
CLASS_OUTPUT_FILE = f'data/classification_output_{current_date}_{unique_id}.csv'
df_pred.to_csv(PRED_OUTPUT_FILE, index=False)
dx_class.to_csv(CLASS_OUTPUT_FILE, index=False)
# Redirect to report view; default to prediction report, page 1.
return redirect(url_for('report_view', report_type='pred', page=1))
else:
print('Invalid file type. Only CSV and Excel files are allowed.', 'error')
return redirect(url_for('index'))
def process_dataframe(df):
try:
#df = df[df["MkblAmt"].notna()]
# Define the columns needed for two parts.
required_columns = ['EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
'EngPav', 'EngAmt']
required_columns_2 = ['EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
# Create two DataFrames: one for prediction and one for classification.
df_pred = df[required_columns].copy()
#df_pred = df_pred[(df_pred[['EngCts']] > 0.99).all(axis=1) & (df_pred[['EngCts']] < 1.50).all(axis=1)]
df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']]=df_pred[['EngBlk', 'EngWht', 'EngOpen', 'EngPav']].fillna("NA")
df_class = df[required_columns_2].fillna("NA").copy()
# Transform categorical columns for prediction DataFrame using the label encoders.
for col in ['EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
try:
encoder = loaded_label_encoder[col]
df_pred[col] = df_pred[col].map(lambda x: encoder.transform([x])[0] if x in encoder.classes_ else -1)
# df_pred[col] = loaded_label_encoder[col].transform(df_pred[col])
except ValueError as e:
print(f'Invalid value in column {col}: {e}', 'error')
return pd.DataFrame(), pd.DataFrame()
# Update the classification DataFrame with the transformed prediction columns.
for col in ['EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly']:
df_class[col] = df_pred[col]
df_pred = df_pred.astype(float)
df_class = df_class.astype(float)
# ------------------------------------
# Prediction Report Section
# ------------------------------------
try:
# for model BLK CODE
df_pred_0 = df_pred.copy()
df_pred_0['Change_Blk_Eng_to_Mkbl_value_2'] = pd.DataFrame(blk_change.predict(df_pred), columns=["Change_Blk_Eng_to_Mkbl_value_2"])
print(df_pred_0.columns)
# for model WHT CODE
df_pred_0['Change_Wht_Eng_to_Mkbl_value_2'] = pd.DataFrame(wht_change.predict(df_pred), columns=["Change_Wht_Eng_to_Mkbl_value_2"])
print(df_pred_0.columns)
# for model PAV CODE (need change)
df_pred_0['Change_Pav_Eng_to_Mkbl_value_2'] = pd.DataFrame(pav_change.predict(df_pred), columns=["Change_Pav_Eng_to_Mkbl_value_2"])
print(df_pred_0.columns)
# for model OPEN CODE (need change)
df_pred_0['Change_Open_Eng_to_Mkbl_value_2'] = pd.DataFrame(open_change.predict(df_pred), columns=["Change_Open_Eng_to_Mkbl_value_2"])
print(df_pred_0.columns)
# for model SHP CODE (need change)
df_pred_0['Change_shape_value_v2'] = pd.DataFrame(shape_change.predict(df_class), columns=["Change_shape_value_v2"])
print(df_pred_0.columns)
# for model COL CODE (need change)
df_pred_0['Change_color_value_v2'] = pd.DataFrame(col_change.predict(df_class), columns=["Change_color_value_v2"])
print(df_pred_0.columns)
# for model CUT CODE (need change)
df_pred_0['Change_cut_value_v2'] = pd.DataFrame(cut_change.predict(df_class), columns=["Change_cut_value_v2"])
print(df_pred_0.columns)
# for model QUA CODE (need change)
df_pred_0['Change_quality_value_v2'] = pd.DataFrame(qua_change.predict(df_class), columns=["Change_quality_value_v2"])
print(df_pred_0.columns)
# Concatenate the DataFrames row-wise
#df_pred_main = pd.concat([df_pred_0, df_pred_1, df_pred_0], ignore_index=True)
df_pred_main = df_pred_0.copy()
for col in ['EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo',
'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen','EngPav',
'Change_shape_value_v2','Change_quality_value_v2', 'Change_color_value_v2', 'Change_cut_value_v2',
#'Change_cts_value_v2',
'Change_Blk_Eng_to_Mkbl_value_2',
'Change_Wht_Eng_to_Mkbl_value_2',
'Change_Open_Eng_to_Mkbl_value_2',
'Change_Pav_Eng_to_Mkbl_value_2',
#'Change_Blk_Eng_to_Grd_value_2','Change_Wht_Eng_to_Grd_value_2', 'Change_Open_Eng_to_Grd_value_2', 'Change_Pav_Eng_to_Grd_value_2',
#'Change_Blk_Eng_to_ByGrd_value_2', 'Change_Wht_Eng_to_ByGrd_value_2', 'Change_Open_Eng_to_ByGrd_value_2', 'Change_Pav_Eng_to_ByGrd_value_2',
#'Change_Blk_Eng_to_Gia_value_2', 'Change_Wht_Eng_to_Gia_value_2', 'Change_Open_Eng_to_Gia_value_2', 'Change_Pav_Eng_to_Gia_value_2'
]:
try:
#def safe_inverse_transform(le: LabelEncoder, codes: np.ndarray):
# known = set(le.classes_)
# return np.array([le.inverse_transform([c])[0] if c in known else "Unknown" for c in codes])
#df_pred_main[col] = safe_inverse_transform(loaded_label_encoder[col], df_pred_0[col])
df_pred_main[col] = loaded_label_encoder[col].inverse_transform(df_pred_main[col].astype(int))
except ValueError as e:
print(f'inverse transform fails value in column {col}: {e}', 'error')
except ValueError as e:
print(f'pred model error----->: {e}', 'error')
print("EngBlk", df_pred_main['EngBlk'].unique())
print("EngWht", df_pred_main['EngWht'].unique())
print("EngOpen", df_pred_main['EngOpen'].unique())
print("EngPav", df_pred_main['EngPav'].unique())
# Final return with full data for pagination.
df_pred_main['EngBlk'] = df_pred_main['EngBlk'].fillna("-")
df_pred_main['EngWht'] = df_pred_main['EngWht'].fillna("-")
df_pred_main['EngOpen'] = df_pred_main['EngOpen'].fillna("-")
df_pred_main['EngPav'] = df_pred_main['EngPav'].fillna("-")
df_pred_main['EngBlk'] = df_pred_main['EngBlk'].replace("NA", "-", regex=True)
df_pred_main['EngWht'] = df_pred_main['EngWht'].replace("NA", "-", regex=True)
df_pred_main['EngOpen'] = df_pred_main['EngOpen'].replace("NA", "-", regex=True)
df_pred_main['EngPav'] = df_pred_main['EngPav'].replace("NA", "-", regex=True)
# Final step to replace NaN or empty values with "-"
df_pred_main = df_pred_main.fillna("-")
df_pred_main = df_pred_main.replace(r'^\s*$', "-", regex=True)
return df_pred_main, df_pred_main
except Exception as e:
print(f'Error processing file: {e}', 'error')
return pd.DataFrame(), pd.DataFrame()
# ----------------------------------------------------
# Report View Route with Pagination & Toggle
# ----------------------------------------------------
@app.route("/report")
def report_view():
report_type = request.args.get('report_type', 'pred')
try:
page = int(request.args.get('page', 1))
except ValueError:
page = 1
per_page = 15
# load CSV
if report_type == 'pred':
df = pd.read_csv(PRED_OUTPUT_FILE)
else:
df = pd.read_csv(CLASS_OUTPUT_FILE)
# page slice
start = (page - 1) * per_page
end = start + per_page
df_page = df.iloc[start:end].copy()
# optional: colored arrow in Makable_Predicted
def add_colored_arrow(row):
try:
pred = float(row['Makable_Predicted'])
diff = float(row['Makable_Diff'])
arrow = '↑' if diff > 0 else '↓'
color = 'green' if diff > 0 else 'red'
return f"{pred:.3f} <span style='color:{color};'>{arrow}</span>"
except:
return row.get('Makable_Predicted', '')
df_page['Makable_Predicted'] = df_page.apply(add_colored_arrow, axis=1)
# render to HTML (allow our <span> tags)
table_html = df_page.to_html(
classes="report-table",
index=False,
escape=False
)
has_prev = page > 1
has_next = end < len(df)
return render_template(
"output.html",
report_type=report_type,
page=page,
has_prev=has_prev,
has_next=has_next,
table_html=table_html
)
# ------------------------------
# Download Routes
# ------------------------------
@app.route('/download_pred', methods=['GET'])
def download_pred():
return send_file(PRED_OUTPUT_FILE, as_attachment=True)
@app.route('/download_class', methods=['GET'])
def download_class():
return send_file(CLASS_OUTPUT_FILE, as_attachment=True)
if __name__ == "__main__":
app.run(debug=True) |