Spaces:
Sleeping
Sleeping
Enhanced Feedback System Documentation
Overview
The Feedback.py system has been significantly enhanced with production-ready improvements while maintaining full backward compatibility. All existing functionality remains unchanged, with new features added as optional enhancements.
Key Improvements Implemented
1. Chunking System β
- Purpose: Process long essays without truncation by splitting them into manageable chunks
- Implementation: Automatic chunking when text exceeds configurable token limits
- Benefits:
- No more missed content due to truncation
- Better coverage of entire essays
- Maintains essay structure and context
2. Enhanced Configuration Management β
- Purpose: Flexible configuration system for different deployment scenarios
- Features:
- Configurable chunk sizes and overlap
- Enable/disable features via flags
- Runtime configuration updates
- Fallback mechanisms
3. Validation and Error Recovery β
- Purpose: Ensure all feedback categories are present and valid
- Features:
- Automatic detection of missing feedback categories
- Retry mechanisms for failed chunks
- Graceful error handling with fallback responses
- Enhanced logging for debugging
4. Granular Feedback Mode β
- Purpose: Provide sentence and paragraph-level analysis
- Features:
- Sentence-by-sentence analysis
- Paragraph-level evaluation
- Detailed scoring for each component
- Actionable recommendations
5. Enhanced Logging and Monitoring β
- Purpose: Better visibility into processing and debugging
- Features:
- Detailed processing logs
- Token usage tracking
- Chunking statistics
- Error tracking and reporting
Configuration Options
Default Configuration
config = {
'enable_chunking': True, # Enable automatic chunking
'max_chunk_tokens': 6000, # Max tokens per chunk
'enable_granular_feedback': False, # Enable sentence-level analysis
'enable_validation': True, # Validate feedback completeness
'enable_enhanced_logging': True, # Enhanced logging
'fallback_to_legacy': True, # Fallback to original method
'chunk_overlap_tokens': 200, # Overlap between chunks
'max_retries_per_chunk': 2, # Retry attempts per chunk
'aggregate_scores': True, # Aggregate scores from chunks
'warn_on_truncation': True, # Warn when text is truncated
'log_missing_categories': True # Log missing feedback categories
}
Configuration Examples
Production Configuration (Conservative)
config = {
'enable_chunking': True,
'max_chunk_tokens': 4000,
'enable_granular_feedback': False,
'enable_validation': True,
'fallback_to_legacy': True,
'warn_on_truncation': True
}
Development Configuration (Full Features)
config = {
'enable_chunking': True,
'max_chunk_tokens': 6000,
'enable_granular_feedback': True,
'enable_validation': True,
'enable_enhanced_logging': True,
'fallback_to_legacy': False
}
New Methods and Features
1. Enhanced Grading Methods
grade_answer_with_gpt(student_answer, training_context)
- Enhanced: Now automatically uses chunking for long texts
- Backward Compatible: Same interface, enhanced functionality
- Features: Automatic chunking, validation, error recovery
grade_answer_with_question(student_answer, question)
- Enhanced: Question-specific chunking and analysis
- Features: Focused evaluation on question relevance
- Backward Compatible: Same interface
2. New Utility Methods
split_into_chunks(text, max_tokens=None)
- Splits text into logical chunks
- Preserves paragraph structure
- Configurable overlap for context
validate_essay_length(essay_text)
- Analyzes essay length and provides recommendations
- Returns processing suggestions
- Helps optimize chunking strategy
grade_essay_granular(essay_text, training_context="")
- New Feature: Sentence and paragraph-level analysis
- Provides detailed feedback for each component
- Generates actionable recommendations
3. Configuration Management
get_processing_stats()
- Returns current configuration and capabilities
- Useful for monitoring and debugging
update_config(new_config)
- Runtime configuration updates
- No restart required
reset_to_defaults()
- Reset to default configuration
- Useful for testing and recovery
Usage Examples
Basic Usage (Backward Compatible)
# Works exactly as before
grader = Grader(api_key="your-api-key")
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
Enhanced Usage with Configuration
# Enhanced configuration
config = {
'enable_chunking': True,
'max_chunk_tokens': 4000,
'enable_validation': True
}
grader = Grader(api_key="your-api-key", config=config)
# Validate essay length first
length_analysis = grader.validate_essay_length(student_answer)
print("Processing recommendation:", length_analysis['processing_recommendation'])
# Grade with enhanced features
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# Check if chunking was used
if 'chunk_analysis' in feedback:
print(f"Processed in {feedback['chunk_analysis']['total_chunks']} chunks")
Granular Feedback Usage
# Enable granular feedback
config = {'enable_granular_feedback': True}
grader = Grader(api_key="your-api-key", config=config)
# Get sentence and paragraph-level analysis
granular_feedback = grader.grade_essay_granular(student_answer)
# Access detailed analysis
for sentence in granular_feedback['sentence_analysis']:
print(f"Sentence {sentence['sentence_index']}: {sentence['grammar_score']}%")
Question-Specific Grading
question = "What are the main causes of climate change?"
question_feedback = grader.grade_answer_with_question(student_answer, question)
# Access question-specific analysis
question_analysis = question_feedback['question_specific_feedback']
print(f"Question relevance: {question_analysis['question_relevance_score']}%")
Error Handling and Recovery
Automatic Error Recovery
- Missing Categories: Automatically retries for missing feedback categories
- Chunk Failures: Falls back to legacy method for failed chunks
- JSON Parsing: Enhanced JSON cleaning and validation
- Token Limits: Intelligent truncation with warnings
Error Reporting
try:
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
except Exception as e:
print(f"Grading failed: {e}")
# Check processing stats for debugging
stats = grader.get_processing_stats()
print("Configuration:", stats['configuration'])
Monitoring and Logging
Enhanced Logging
- Processing Information: Token counts, chunking decisions, truncation warnings
- Error Tracking: Detailed error logs with context
- Performance Metrics: Processing time and success rates
Log Examples
INFO: Text is 8500 tokens, using chunked processing
INFO: Created 2 chunks from text
INFO: Processing chunk 1/2 (4000 tokens)
WARNING: Essay was truncated from 8500 to 4000 tokens
INFO: Aggregating feedback from 2 chunks
Production Deployment Guide
1. Gradual Rollout
# Phase 1: Enable chunking only
config = {
'enable_chunking': True,
'enable_granular_feedback': False,
'fallback_to_legacy': True
}
# Phase 2: Enable validation
config['enable_validation'] = True
# Phase 3: Enable granular feedback (optional)
config['enable_granular_feedback'] = True
2. Monitoring Setup
# Monitor processing statistics
stats = grader.get_processing_stats()
print("Chunking enabled:", stats['capabilities']['chunking_enabled'])
print("Validation enabled:", stats['capabilities']['validation_enabled'])
# Monitor essay length distribution
length_analysis = grader.validate_essay_length(essay_text)
if length_analysis['chunking_needed']:
logger.info("Long essay detected, chunking will be used")
3. Error Handling
# Set up comprehensive error handling
try:
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# Check for warnings
if feedback.get('token_info', {}).get('was_truncated'):
logger.warning("Text was truncated during processing")
# Validate feedback completeness
if 'chunk_analysis' in feedback:
logger.info(f"Successfully processed {feedback['chunk_analysis']['chunks_processed']} chunks")
except Exception as e:
logger.error(f"Grading failed: {e}")
# Fallback to legacy method if needed
if grader.config['fallback_to_legacy']:
feedback = grader._grade_answer_legacy(student_answer, training_context)
Performance Considerations
Token Usage Optimization
- Chunk Size: 4000-6000 tokens per chunk (configurable)
- Overlap: 200 tokens overlap for context preservation
- Validation: Only validates when enabled (minimal overhead)
Memory Usage
- Chunking: Processes chunks sequentially to minimize memory usage
- Aggregation: Efficient merging of chunk results
- Caching: No additional caching (stateless processing)
API Cost Optimization
- Intelligent Chunking: Only chunks when necessary
- Validation: Minimal additional API calls for missing categories
- Fallback: Uses legacy method for failed chunks (no additional cost)
Backward Compatibility
100% Backward Compatible
- Method Signatures: All existing methods work unchanged
- Return Formats: Same JSON structure as before
- API Interface: No breaking changes
- Configuration: Defaults to enhanced behavior with fallbacks
Migration Path
# Old code (still works)
grader = Grader(api_key="your-api-key")
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# New code (enhanced features)
grader = Grader(api_key="your-api-key", config={'enable_chunking': True})
feedback = grader.grade_answer_with_gpt(student_answer, training_context)
# Automatically uses chunking for long texts
Testing and Validation
Test Cases
- Short Essays: Should work exactly as before
- Long Essays: Should use chunking automatically
- Error Scenarios: Should handle gracefully with fallbacks
- Configuration Changes: Should apply immediately
- Granular Feedback: Should provide detailed analysis when enabled
Validation Checklist
- All existing functionality works unchanged
- Chunking works for long essays
- Error recovery works properly
- Configuration changes apply correctly
- Logging provides useful information
- Performance is acceptable
- API costs are reasonable
Troubleshooting
Common Issues
1. Chunking Not Working
# Check configuration
stats = grader.get_processing_stats()
print("Chunking enabled:", stats['capabilities']['chunking_enabled'])
# Check essay length
length_analysis = grader.validate_essay_length(essay_text)
print("Chunking needed:", length_analysis['chunking_needed'])
2. Missing Feedback Categories
# Enable validation
grader.update_config({'enable_validation': True})
# Check logs for missing categories
# System will automatically retry for missing categories
3. High API Costs
# Reduce chunk size
grader.update_config({'max_chunk_tokens': 3000})
# Disable granular feedback if not needed
grader.update_config({'enable_granular_feedback': False})
4. Performance Issues
# Increase chunk size to reduce API calls
grader.update_config({'max_chunk_tokens': 8000})
# Disable enhanced logging in production
grader.update_config({'enable_enhanced_logging': False})
Summary
The enhanced Feedback system provides:
- Better Coverage: No more missed content due to truncation
- Improved Reliability: Automatic error recovery and validation
- Enhanced Analysis: Optional granular feedback for detailed insights
- Production Ready: Comprehensive logging and monitoring
- Backward Compatible: Zero breaking changes to existing code
- Configurable: Flexible configuration for different use cases
- Cost Effective: Intelligent chunking to optimize API usage
All improvements are optional and can be enabled/disabled via configuration, ensuring a smooth transition and minimal risk for production deployments.