Spaces:
Sleeping
Sleeping
# Enhanced Feedback System Documentation | |
## Overview | |
The Feedback.py system has been significantly enhanced with production-ready improvements while maintaining full backward compatibility. All existing functionality remains unchanged, with new features added as optional enhancements. | |
## Key Improvements Implemented | |
### 1. **Chunking System** β | |
- **Purpose**: Process long essays without truncation by splitting them into manageable chunks | |
- **Implementation**: Automatic chunking when text exceeds configurable token limits | |
- **Benefits**: | |
- No more missed content due to truncation | |
- Better coverage of entire essays | |
- Maintains essay structure and context | |
### 2. **Enhanced Configuration Management** β | |
- **Purpose**: Flexible configuration system for different deployment scenarios | |
- **Features**: | |
- Configurable chunk sizes and overlap | |
- Enable/disable features via flags | |
- Runtime configuration updates | |
- Fallback mechanisms | |
### 3. **Validation and Error Recovery** β | |
- **Purpose**: Ensure all feedback categories are present and valid | |
- **Features**: | |
- Automatic detection of missing feedback categories | |
- Retry mechanisms for failed chunks | |
- Graceful error handling with fallback responses | |
- Enhanced logging for debugging | |
### 4. **Granular Feedback Mode** β | |
- **Purpose**: Provide sentence and paragraph-level analysis | |
- **Features**: | |
- Sentence-by-sentence analysis | |
- Paragraph-level evaluation | |
- Detailed scoring for each component | |
- Actionable recommendations | |
### 5. **Enhanced Logging and Monitoring** β | |
- **Purpose**: Better visibility into processing and debugging | |
- **Features**: | |
- Detailed processing logs | |
- Token usage tracking | |
- Chunking statistics | |
- Error tracking and reporting | |
## Configuration Options | |
### Default Configuration | |
```python | |
config = { | |
'enable_chunking': True, # Enable automatic chunking | |
'max_chunk_tokens': 6000, # Max tokens per chunk | |
'enable_granular_feedback': False, # Enable sentence-level analysis | |
'enable_validation': True, # Validate feedback completeness | |
'enable_enhanced_logging': True, # Enhanced logging | |
'fallback_to_legacy': True, # Fallback to original method | |
'chunk_overlap_tokens': 200, # Overlap between chunks | |
'max_retries_per_chunk': 2, # Retry attempts per chunk | |
'aggregate_scores': True, # Aggregate scores from chunks | |
'warn_on_truncation': True, # Warn when text is truncated | |
'log_missing_categories': True # Log missing feedback categories | |
} | |
``` | |
### Configuration Examples | |
#### Production Configuration (Conservative) | |
```python | |
config = { | |
'enable_chunking': True, | |
'max_chunk_tokens': 4000, | |
'enable_granular_feedback': False, | |
'enable_validation': True, | |
'fallback_to_legacy': True, | |
'warn_on_truncation': True | |
} | |
``` | |
#### Development Configuration (Full Features) | |
```python | |
config = { | |
'enable_chunking': True, | |
'max_chunk_tokens': 6000, | |
'enable_granular_feedback': True, | |
'enable_validation': True, | |
'enable_enhanced_logging': True, | |
'fallback_to_legacy': False | |
} | |
``` | |
## New Methods and Features | |
### 1. Enhanced Grading Methods | |
#### `grade_answer_with_gpt(student_answer, training_context)` | |
- **Enhanced**: Now automatically uses chunking for long texts | |
- **Backward Compatible**: Same interface, enhanced functionality | |
- **Features**: Automatic chunking, validation, error recovery | |
#### `grade_answer_with_question(student_answer, question)` | |
- **Enhanced**: Question-specific chunking and analysis | |
- **Features**: Focused evaluation on question relevance | |
- **Backward Compatible**: Same interface | |
### 2. New Utility Methods | |
#### `split_into_chunks(text, max_tokens=None)` | |
- Splits text into logical chunks | |
- Preserves paragraph structure | |
- Configurable overlap for context | |
#### `validate_essay_length(essay_text)` | |
- Analyzes essay length and provides recommendations | |
- Returns processing suggestions | |
- Helps optimize chunking strategy | |
#### `grade_essay_granular(essay_text, training_context="")` | |
- **New Feature**: Sentence and paragraph-level analysis | |
- Provides detailed feedback for each component | |
- Generates actionable recommendations | |
### 3. Configuration Management | |
#### `get_processing_stats()` | |
- Returns current configuration and capabilities | |
- Useful for monitoring and debugging | |
#### `update_config(new_config)` | |
- Runtime configuration updates | |
- No restart required | |
#### `reset_to_defaults()` | |
- Reset to default configuration | |
- Useful for testing and recovery | |
## Usage Examples | |
### Basic Usage (Backward Compatible) | |
```python | |
# Works exactly as before | |
grader = Grader(api_key="your-api-key") | |
feedback = grader.grade_answer_with_gpt(student_answer, training_context) | |
``` | |
### Enhanced Usage with Configuration | |
```python | |
# Enhanced configuration | |
config = { | |
'enable_chunking': True, | |
'max_chunk_tokens': 4000, | |
'enable_validation': True | |
} | |
grader = Grader(api_key="your-api-key", config=config) | |
# Validate essay length first | |
length_analysis = grader.validate_essay_length(student_answer) | |
print("Processing recommendation:", length_analysis['processing_recommendation']) | |
# Grade with enhanced features | |
feedback = grader.grade_answer_with_gpt(student_answer, training_context) | |
# Check if chunking was used | |
if 'chunk_analysis' in feedback: | |
print(f"Processed in {feedback['chunk_analysis']['total_chunks']} chunks") | |
``` | |
### Granular Feedback Usage | |
```python | |
# Enable granular feedback | |
config = {'enable_granular_feedback': True} | |
grader = Grader(api_key="your-api-key", config=config) | |
# Get sentence and paragraph-level analysis | |
granular_feedback = grader.grade_essay_granular(student_answer) | |
# Access detailed analysis | |
for sentence in granular_feedback['sentence_analysis']: | |
print(f"Sentence {sentence['sentence_index']}: {sentence['grammar_score']}%") | |
``` | |
### Question-Specific Grading | |
```python | |
question = "What are the main causes of climate change?" | |
question_feedback = grader.grade_answer_with_question(student_answer, question) | |
# Access question-specific analysis | |
question_analysis = question_feedback['question_specific_feedback'] | |
print(f"Question relevance: {question_analysis['question_relevance_score']}%") | |
``` | |
## Error Handling and Recovery | |
### Automatic Error Recovery | |
- **Missing Categories**: Automatically retries for missing feedback categories | |
- **Chunk Failures**: Falls back to legacy method for failed chunks | |
- **JSON Parsing**: Enhanced JSON cleaning and validation | |
- **Token Limits**: Intelligent truncation with warnings | |
### Error Reporting | |
```python | |
try: | |
feedback = grader.grade_answer_with_gpt(student_answer, training_context) | |
except Exception as e: | |
print(f"Grading failed: {e}") | |
# Check processing stats for debugging | |
stats = grader.get_processing_stats() | |
print("Configuration:", stats['configuration']) | |
``` | |
## Monitoring and Logging | |
### Enhanced Logging | |
- **Processing Information**: Token counts, chunking decisions, truncation warnings | |
- **Error Tracking**: Detailed error logs with context | |
- **Performance Metrics**: Processing time and success rates | |
### Log Examples | |
``` | |
INFO: Text is 8500 tokens, using chunked processing | |
INFO: Created 2 chunks from text | |
INFO: Processing chunk 1/2 (4000 tokens) | |
WARNING: Essay was truncated from 8500 to 4000 tokens | |
INFO: Aggregating feedback from 2 chunks | |
``` | |
## Production Deployment Guide | |
### 1. Gradual Rollout | |
```python | |
# Phase 1: Enable chunking only | |
config = { | |
'enable_chunking': True, | |
'enable_granular_feedback': False, | |
'fallback_to_legacy': True | |
} | |
# Phase 2: Enable validation | |
config['enable_validation'] = True | |
# Phase 3: Enable granular feedback (optional) | |
config['enable_granular_feedback'] = True | |
``` | |
### 2. Monitoring Setup | |
```python | |
# Monitor processing statistics | |
stats = grader.get_processing_stats() | |
print("Chunking enabled:", stats['capabilities']['chunking_enabled']) | |
print("Validation enabled:", stats['capabilities']['validation_enabled']) | |
# Monitor essay length distribution | |
length_analysis = grader.validate_essay_length(essay_text) | |
if length_analysis['chunking_needed']: | |
logger.info("Long essay detected, chunking will be used") | |
``` | |
### 3. Error Handling | |
```python | |
# Set up comprehensive error handling | |
try: | |
feedback = grader.grade_answer_with_gpt(student_answer, training_context) | |
# Check for warnings | |
if feedback.get('token_info', {}).get('was_truncated'): | |
logger.warning("Text was truncated during processing") | |
# Validate feedback completeness | |
if 'chunk_analysis' in feedback: | |
logger.info(f"Successfully processed {feedback['chunk_analysis']['chunks_processed']} chunks") | |
except Exception as e: | |
logger.error(f"Grading failed: {e}") | |
# Fallback to legacy method if needed | |
if grader.config['fallback_to_legacy']: | |
feedback = grader._grade_answer_legacy(student_answer, training_context) | |
``` | |
## Performance Considerations | |
### Token Usage Optimization | |
- **Chunk Size**: 4000-6000 tokens per chunk (configurable) | |
- **Overlap**: 200 tokens overlap for context preservation | |
- **Validation**: Only validates when enabled (minimal overhead) | |
### Memory Usage | |
- **Chunking**: Processes chunks sequentially to minimize memory usage | |
- **Aggregation**: Efficient merging of chunk results | |
- **Caching**: No additional caching (stateless processing) | |
### API Cost Optimization | |
- **Intelligent Chunking**: Only chunks when necessary | |
- **Validation**: Minimal additional API calls for missing categories | |
- **Fallback**: Uses legacy method for failed chunks (no additional cost) | |
## Backward Compatibility | |
### 100% Backward Compatible | |
- **Method Signatures**: All existing methods work unchanged | |
- **Return Formats**: Same JSON structure as before | |
- **API Interface**: No breaking changes | |
- **Configuration**: Defaults to enhanced behavior with fallbacks | |
### Migration Path | |
```python | |
# Old code (still works) | |
grader = Grader(api_key="your-api-key") | |
feedback = grader.grade_answer_with_gpt(student_answer, training_context) | |
# New code (enhanced features) | |
grader = Grader(api_key="your-api-key", config={'enable_chunking': True}) | |
feedback = grader.grade_answer_with_gpt(student_answer, training_context) | |
# Automatically uses chunking for long texts | |
``` | |
## Testing and Validation | |
### Test Cases | |
1. **Short Essays**: Should work exactly as before | |
2. **Long Essays**: Should use chunking automatically | |
3. **Error Scenarios**: Should handle gracefully with fallbacks | |
4. **Configuration Changes**: Should apply immediately | |
5. **Granular Feedback**: Should provide detailed analysis when enabled | |
### Validation Checklist | |
- [ ] All existing functionality works unchanged | |
- [ ] Chunking works for long essays | |
- [ ] Error recovery works properly | |
- [ ] Configuration changes apply correctly | |
- [ ] Logging provides useful information | |
- [ ] Performance is acceptable | |
- [ ] API costs are reasonable | |
## Troubleshooting | |
### Common Issues | |
#### 1. Chunking Not Working | |
```python | |
# Check configuration | |
stats = grader.get_processing_stats() | |
print("Chunking enabled:", stats['capabilities']['chunking_enabled']) | |
# Check essay length | |
length_analysis = grader.validate_essay_length(essay_text) | |
print("Chunking needed:", length_analysis['chunking_needed']) | |
``` | |
#### 2. Missing Feedback Categories | |
```python | |
# Enable validation | |
grader.update_config({'enable_validation': True}) | |
# Check logs for missing categories | |
# System will automatically retry for missing categories | |
``` | |
#### 3. High API Costs | |
```python | |
# Reduce chunk size | |
grader.update_config({'max_chunk_tokens': 3000}) | |
# Disable granular feedback if not needed | |
grader.update_config({'enable_granular_feedback': False}) | |
``` | |
#### 4. Performance Issues | |
```python | |
# Increase chunk size to reduce API calls | |
grader.update_config({'max_chunk_tokens': 8000}) | |
# Disable enhanced logging in production | |
grader.update_config({'enable_enhanced_logging': False}) | |
``` | |
## Summary | |
The enhanced Feedback system provides: | |
1. **Better Coverage**: No more missed content due to truncation | |
2. **Improved Reliability**: Automatic error recovery and validation | |
3. **Enhanced Analysis**: Optional granular feedback for detailed insights | |
4. **Production Ready**: Comprehensive logging and monitoring | |
5. **Backward Compatible**: Zero breaking changes to existing code | |
6. **Configurable**: Flexible configuration for different use cases | |
7. **Cost Effective**: Intelligent chunking to optimize API usage | |
All improvements are optional and can be enabled/disabled via configuration, ensuring a smooth transition and minimal risk for production deployments. |