File size: 4,315 Bytes
edbbffa
 
 
 
 
def2cf6
edbbffa
 
 
 
49c5d4a
 
 
edbbffa
 
8662b29
edbbffa
8662b29
edbbffa
 
 
 
 
 
 
 
 
 
 
49c5d4a
 
 
 
 
2678eae
49c5d4a
2678eae
49c5d4a
 
2678eae
49c5d4a
 
 
 
 
2678eae
edbbffa
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2e34a
af0aeb3
4f2e34a
49c5d4a
4f2e34a
49c5d4a
 
7c3e7c7
49c5d4a
 
 
 
 
7c3e7c7
49c5d4a
 
 
 
 
 
 
 
 
 
 
 
 
7c3e7c7
49c5d4a
 
 
7c3e7c7
49c5d4a
4f2e34a
 
 
 
 
7c3e7c7
4f2e34a
 
 
 
 
7c3e7c7
cbbdd22
9b07b0d
 
 
 
 
 
 
7c3e7c7
49c5d4a
 
 
 
 
 
 
 
738a81e
 
c7dc050
 
873c510
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from keras.models import load_model
from PIL import Image
import numpy as np
import cv2 
import requests
from keras.models import model_from_json
import face_recognition
import os
from datetime import datetime

from keras.models import model_from_json
from keras.preprocessing.image import img_to_array
from PIL import Image

import io
import streamlit as st
bytes_data=None

Images = []
classnames = []
myList = os.listdir()
#st.write(myList)
for cls in myList:
    if os.path.splitext(cls)[1] == ".jpg"  :
        curImg = cv2.imread(f'{cls}')
        Images.append(curImg)
        classnames.append(os.path.splitext(cls)[0])
st.write(classnames)

# load model
emotion_dict = {0:'angry', 1 :'happy', 2: 'neutral', 3:'sad', 4: 'surprise'}
# load json and create model
json_file = open('emotion_model1.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
classifier = model_from_json(loaded_model_json)

# load weights into new model
classifier.load_weights("emotion_model1.h5")

#load face
try:
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
except Exception:
    st.write("Error loading cascade classifiers")

def findEncodings(Images):
    encodeList = []
    for img in Images:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        encode = face_recognition.face_encodings(img)[0]
        encodeList.append(encode)
    return encodeList

encodeListknown = findEncodings(Images)
st.write('Encoding Complete')

img_file_buffer=st.camera_input("Take a picture")
if img_file_buffer is not None:
     
    test_image = Image.open(img_file_buffer)
    image1 = Image.open(img_file_buffer)
    st.image(test_image, use_column_width=True)
    image = np.asarray(test_image)
    
    img = np.asarray(image1)
    img = cv2.resize(img,(0,0),None,0.25,0.25)
    st.write("resize")

    #image gray
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(
        image=img_gray, scaleFactor=1.3, minNeighbors=5)
    st.write("gray")
    for (x, y, w, h) in faces:
        cv2.rectangle(img=img, pt1=(x, y), pt2=(
            x + w, y + h), color=(255, 0, 0), thickness=2)
        roi_gray = img_gray[y:y + h, x:x + w]
        roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
        if np.sum([roi_gray]) != 0:
            roi = roi_gray.astype('float') / 255.0
            roi = img_to_array(roi)
            roi = np.expand_dims(roi, axis=0)
            prediction = classifier.predict(roi)[0]
            maxindex = int(np.argmax(prediction))
            finalout = emotion_dict[maxindex]
            output = str(finalout)
            st.write(output)
        label_position = (x, y)
        img = cv2.putText(img, output, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        st.image(img, use_column_width=True)
        st.write("emotion done")

    #########################
    imgS = cv2.resize(image,(0,0),None,0.25,0.25)
    imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
    facesCurFrame = face_recognition.face_locations(imgS)
    encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
    st.write("recog")
    for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
        matches = face_recognition.compare_faces(encodeListknown,encodeFace)
        faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
        #print(faceDis)
        matchIndex = np.argmin(faceDis)
        st.write("matching")
        if matches[matchIndex]:
            name = classnames[matchIndex]
            st.write(name)
            y1, x2, y2, x1 = faceLoc
            y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
            cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
            cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
            cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
            st.write("matched")
            ##############
            if name:
                if output=='happy':
                    url = "https://kiwi-whispering-plier.glitch.me/update" 
                    
                    data = {
                        'name': name,
                    }
                else:
                    st.write("Please smile")
        else:
            st.write("FAiled")