File size: 35,388 Bytes
287c9ca
e0b9b11
cb93f9c
 
 
92cb699
cb93f9c
5089920
cb93f9c
5089920
cb93f9c
 
92cb699
5089920
9840152
5089920
990e23e
92cb699
 
 
 
 
5089920
92cb699
cb93f9c
200c5c4
 
59af6e7
f13d4b2
cb93f9c
59af6e7
f13d4b2
5089920
f13d4b2
59af6e7
 
 
5089920
d44d308
5089920
d44d308
cb93f9c
 
 
 
 
 
 
4c2220b
f13d4b2
287c9ca
92cb699
e0b9b11
 
cb93f9c
 
5089920
cb93f9c
 
e0b9b11
59af6e7
cb93f9c
 
 
 
 
d44d308
cb93f9c
 
59af6e7
5089920
cb93f9c
f02ab98
cb93f9c
59af6e7
d44d308
cb93f9c
 
 
 
d44d308
cb93f9c
 
 
200c5c4
09d5c67
59af6e7
92cb699
f13d4b2
5089920
d44d308
59af6e7
5089920
cb93f9c
59af6e7
cb93f9c
d44d308
 
cb93f9c
 
d44d308
cb93f9c
d44d308
cb93f9c
d44d308
cb93f9c
 
 
 
 
 
d44d308
 
 
 
cb93f9c
 
 
 
 
 
 
 
d44d308
 
cb93f9c
d44d308
 
cb93f9c
 
d44d308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
d44d308
 
 
 
 
 
 
 
 
 
 
cb93f9c
d44d308
 
 
 
cb93f9c
d44d308
 
cb93f9c
 
 
d44d308
cb93f9c
d44d308
 
 
cb93f9c
d44d308
cb93f9c
 
d44d308
 
 
 
 
 
cb93f9c
d44d308
 
cb93f9c
d44d308
 
 
 
 
cb93f9c
d44d308
cb93f9c
d44d308
cb93f9c
5089920
59af6e7
5089920
cb93f9c
 
 
d44d308
5089920
d44d308
cb93f9c
 
 
59af6e7
d44d308
 
 
59af6e7
d44d308
 
 
 
 
 
59af6e7
d44d308
 
 
 
 
 
 
 
 
 
 
 
cb93f9c
d44d308
 
 
 
 
 
cb93f9c
e0b9b11
d44d308
cb93f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
d44d308
cb93f9c
d44d308
cb93f9c
5089920
 
cb93f9c
 
 
63525c7
cb93f9c
 
5089920
cb93f9c
8583908
5089920
cb93f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5089920
cb93f9c
3313da9
d44d308
cb93f9c
 
 
 
 
 
d44d308
cb93f9c
 
59af6e7
cb93f9c
 
3313da9
cb93f9c
59af6e7
cb93f9c
 
d44d308
cb93f9c
 
d44d308
cb93f9c
 
 
 
d44d308
 
 
cb93f9c
 
 
b97795f
cb93f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754c854
3313da9
d44d308
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64 # For Data URI conversion

# --- MONKEY PATCH ---
try:
    if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
        if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
    elif hasattr(Image, 'LANCZOS'):
         if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
    elif not hasattr(Image, 'ANTIALIAS'): print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS patch error: {e_mp}")

from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
                            CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
import mimetypes # For Data URI

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

# --- SERVICE CLIENT IMPORTS ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
    from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
    from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
    ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
    ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")

RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClient = None
try:
    from runwayml import RunwayML as ImportedRunwayMLClient
    RunwayMLAPIClient = ImportedRunwayMLClient
    RUNWAYML_SDK_IMPORTED = True
    logger.info("RunwayML SDK imported successfully.")
except ImportError:
    logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
    logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")


class VisualEngine:
    def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        self.font_filename = "DejaVuSans-Bold.ttf"
        font_paths_to_try = [ self.font_filename, "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", "/System/Library/Fonts/Supplemental/Arial.ttf", "C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
        self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
        self.font_size_pil = 20; self.video_overlay_font_size = 30; self.video_overlay_font_color = 'white'
        self.video_overlay_font = 'DejaVu-Sans-Bold'
        try:
            self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
            if self.font_path_pil: logger.info(f"Pillow font: {self.font_path_pil}.")
            else: logger.warning("Default Pillow font."); self.font_size_pil = 10
        except IOError as e_font: logger.error(f"Pillow font IOError: {e_font}. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
        
        self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
        self.video_frame_size = (1280, 720)
        
        self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
        if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
        else: self.elevenlabs_voice_settings = None
        
        self.pexels_api_key = None; self.USE_PEXELS = False
        
        self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None
        if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
            try:
                if os.getenv("RUNWAYML_API_SECRET"):
                    self.runway_client = RunwayMLAPIClient()
                    logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
                # else: # No explicit else, will be handled by set_runway_api_key if key provided later
            except Exception as e_runway_init:
                logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)
        
        logger.info("VisualEngine initialized.")

    def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
    def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
        self.elevenlabs_api_key=api_key
        if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
        if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
            try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
            except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
        else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK issue).")
    def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
    
    def set_runway_api_key(self, k):
        self.runway_api_key = k
        if k:
            if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
                if not self.runway_client:
                    try:
                        if not os.getenv("RUNWAYML_API_SECRET"):
                            logger.info("Setting RUNWAYML_API_SECRET environment variable from provided key for SDK.")
                            os.environ["RUNWAYML_API_SECRET"] = k
                        self.runway_client = RunwayMLAPIClient()
                        self.USE_RUNWAYML = True
                        logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
                    except Exception as e_client_init:
                        logger.error(f"RunwayML Client initialization failed in set_runway_api_key: {e_client_init}", exc_info=True)
                        self.USE_RUNWAYML = False
                else: # Client already initialized
                    self.USE_RUNWAYML = True; logger.info("RunwayML Client was already initialized.")
            else: logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK."); self.USE_RUNWAYML = False
        else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")

    def _image_to_data_uri(self, image_path):
        try:
            mime_type, _ = mimetypes.guess_type(image_path)
            if not mime_type:
                ext = os.path.splitext(image_path)[1].lower()
                if ext == ".png": mime_type = "image/png"
                elif ext in [".jpg", ".jpeg"]: mime_type = "image/jpeg"
                else: mime_type = "application/octet-stream"; logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
            with open(image_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
            data_uri = f"data:{mime_type};base64,{encoded_string}"
            logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}"); return data_uri
        except Exception as e: logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True); return None

    def _map_resolution_to_runway_ratio(self, width, height):
        # Based on Gen-4 supported ratios: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
        ratio_str = f"{width}:{height}"
        supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
        if ratio_str in supported_ratios: return ratio_str
        logger.warning(f"Resolution {ratio_str} not directly supported by Gen-4. Defaulting to 1280:720.")
        return "1280:720"

    def _get_text_dimensions(self,text_content,font_obj):
        # (Corrected version from previous, assuming font_obj.size exists or font_size_pil is fallback)
        default_char_height = getattr(font_obj, 'size', self.font_size_pil)
        if not text_content: return 0, default_char_height
        try:
            if hasattr(font_obj,'getbbox'): # Pillow 8.0.0+
                bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
                return w, h if h > 0 else default_char_height
            elif hasattr(font_obj,'getsize'): # Older Pillow
                w,h=font_obj.getsize(text_content)
                return w, h if h > 0 else default_char_height
            else: # Fallback if no standard method (should not happen for ImageFont)
                return int(len(text_content)*default_char_height*0.6),int(default_char_height*1.2)
        except Exception as e:
            logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
            return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2) # Fallback to global default

    def _create_placeholder_image_content(self,text_description,filename,size=None):
        # <<< THIS IS THE CORRECTED METHOD >>>
        if size is None: size = self.video_frame_size
        img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
        if not text_description: text_description="(Placeholder Image)"
        words=text_description.split();current_line=""
        for word_idx, word in enumerate(words):
            # Add space correctly, not after the very last word of the text
            prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "")
            test_line = current_line + prospective_line_addition
            
            current_line_width, _ = self._get_text_dimensions(test_line, self.font)
            if current_line_width == 0 and test_line.strip(): # Estimate if Pillow returns 0
                current_line_width = len(test_line) * (self.font_size_pil * 0.6)

            if current_line_width <= max_w:
                current_line = test_line
            else: # Word doesn't fit
                if current_line.strip(): # Add previous line if it had content
                    lines.append(current_line.strip())
                current_line = prospective_line_addition # Start new line with current word (plus its space if not last)
                # If the word itself is too long for a line, it will just be one long line.
                # Pillow's d.text will handle overflow if text anchor isn't 'lt' (left-top).
                # For centered text, it might go off-canvas; more complex word splitting needed for that.
        
        if current_line.strip(): # Add any remaining part
            lines.append(current_line.strip())

        if not lines and text_description:
            avg_char_width, _ = self._get_text_dimensions("W", self.font)
            if avg_char_width == 0: avg_char_width = self.font_size_pil * 0.6 # Estimate
            chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20
            lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
        elif not lines:
            lines.append("(Placeholder Error)")

        _,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
        max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
        if max_lines_to_display <=0: max_lines_to_display = 1
        
        y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
        y_text = y_text_start

        for i in range(max_lines_to_display):
            line_content=lines[i]
            line_w,_=self._get_text_dimensions(line_content,self.font)
            if line_w == 0 and line_content.strip(): line_w = len(line_content) * (self.font_size_pil * 0.6)
            x_text=(size[0]-line_w)/2.0
            try: d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180))
            except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'")
            y_text+=single_line_h+2
            if i==6 and max_lines_to_display > 7:
                try: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180))
                except Exception as e_ellipsis: logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}")
                break
        filepath=os.path.join(self.output_dir,filename);
        try:img.save(filepath);return filepath
        except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None

    def _search_pexels_image(self, q, ofnb):
        # (Keep as before)
        if not self.USE_PEXELS or not self.pexels_api_key: return None; h={"Authorization":self.pexels_api_key};p={"query":q,"per_page":1,"orientation":"landscape","size":"large2x"}
        pfn=ofnb.replace(".png",f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4",f"_pexels_{random.randint(1000,9999)}.jpg");fp=os.path.join(self.output_dir,pfn)
        try: logger.info(f"Pexels search: '{q}'");eq=" ".join(q.split()[:5]);p["query"]=eq;r=requests.get("https://api.pexels.com/v1/search",headers=h,params=p,timeout=20)
        r.raise_for_status();d=r.json()
        if d.get("photos") and len(d["photos"])>0:pu=d["photos"][0]["src"]["large2x"];ir=requests.get(pu,timeout=60);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content))
        if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(fp);logger.info(f"Pexels saved: {fp}");return fp # Fixed id to id_img
        else: id_img.save(fp);logger.info(f"Pexels saved (was RGB): {fp}");return fp # Save even if already RGB
        else: logger.info(f"No Pexels for: '{eq}'") # This else was misplaced
        except Exception as e:logger.error(f"Pexels error ('{q}'): {e}",exc_info=True);return None # Fixed indent

    def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
        # (Updated RunwayML integration)
        if not self.USE_RUNWAYML or not self.runway_client: logger.warning("RunwayML not enabled/client not init. Skip video."); return None
        if not input_image_path or not os.path.exists(input_image_path): logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}"); return None
        image_data_uri = self._image_to_data_uri(input_image_path)
        if not image_data_uri: return None
        runway_duration = 10 if target_duration_seconds > 7 else 5
        runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
        output_video_filename = scene_identifier_filename_base.replace(".png", f"_runway_gen4_d{runway_duration}s.mp4")
        output_video_filepath = os.path.join(self.output_dir, output_video_filename)
        logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
        try:
            task = self.runway_client.image_to_video.create(model='gen4_turbo', prompt_image=image_data_uri, prompt_text=text_prompt_for_motion, duration=runway_duration, ratio=runway_ratio_str)
            logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...")
            poll_interval=10; max_polls=36 # Max 6 mins
            for _ in range(max_polls):
                time.sleep(poll_interval); task_details = self.runway_client.tasks.retrieve(id=task.id)
                logger.info(f"Runway task {task.id} status: {task_details.status}")
                if task_details.status == 'SUCCEEDED':
                    output_url = getattr(getattr(task_details, 'output', None), 'url', None) or \
                                 (getattr(task_details, 'artifacts', None) and task_details.artifacts[0].url if task_details.artifacts and hasattr(task_details.artifacts[0], 'url') else None) or \
                                 (getattr(task_details, 'artifacts', None) and task_details.artifacts[0].download_url if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url') else None)
                    if not output_url: logger.error(f"Runway task {task.id} SUCCEEDED, but no output URL in details: {vars(task_details) if hasattr(task_details, '__dict__') else task_details}"); return None
                    logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}")
                    video_response = requests.get(output_url, stream=True, timeout=300); video_response.raise_for_status()
                    with open(output_video_filepath, 'wb') as f:
                        for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
                    logger.info(f"Runway Gen-4 video saved: {output_video_filepath}"); return output_video_filepath
                elif task_details.status in ['FAILED', 'ABORTED']:
                    em = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error', "Unknown error")
                    logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}"); return None
            logger.warning(f"Runway task {task.id} timed out."); return None
        except AttributeError as ae: logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True); return None
        except Exception as e: logger.error(f"Runway Gen-4 API error: {e}", exc_info=True); return None

    def _create_placeholder_video_content(self, td, fn, dur=4, sz=None): # Generic placeholder if input_image not available
        if sz is None: sz = self.video_frame_size; fp = os.path.join(self.output_dir, fn); tc = None
        try: tc = TextClip(td, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=sz, method='caption').set_duration(dur); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
        except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
        finally:
            if tc and hasattr(tc, 'close'): tc.close()

    def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
                             scene_data, scene_identifier_filename_base,
                             generate_as_video_clip=False, runway_target_duration=5):
        # (Logic mostly as before, ensuring base image is robustly generated first)
        base_name, _ = os.path.splitext(scene_identifier_filename_base)
        asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
        input_image_for_runway_path = None
        base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
        base_image_filepath = os.path.join(self.output_dir, base_image_filename)
        
        # Attempt base image generation
        if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: # DALL-E
            max_r, att_n = 2,0;
            for att_n in range(max_r):
                try:logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...");cl=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);r=cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");iu=r.data[0].url;rp=getattr(r.data[0],'revised_prompt',None);
                if rp:logger.info(f"DALL-E revised: {rp[:70]}...");ir=requests.get(iu,timeout=120);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content));
                if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(base_image_filepath);logger.info(f"DALL-E base img saved: {base_image_filepath}");input_image_for_runway_path=base_image_filepath;asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':rp};break
                except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...");time.sleep(5*(att_n+1));asset_info['error_message']=str(e)
                except Exception as e:logger.error(f"DALL-E base img error:{e}",exc_info=True);asset_info['error_message']=str(e);break
            if asset_info['error']:logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
        
        if asset_info['error'] and self.USE_PEXELS: # Pexels Fallback
            logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_๊ฐ๋…',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename);
            if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
            else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()

        if asset_info['error']: # Placeholder Fallback
            logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename);
            if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
            else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()

        if generate_as_video_clip: # Now attempt RunwayML if requested
            if not input_image_for_runway_path:logger.error("RunwayML video: base img failed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info['type']='none';return asset_info
            if self.USE_RUNWAYML:
                logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}")
                video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration)
                if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
                else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
            else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
        return asset_info # Return image info if not video, or video result

    def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
        # (Keep as before)
        if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
        try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
        if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
        elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
        elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
        with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
        else:logger.error("No 11L audio method.");return None
        if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
        if self.elevenlabs_voice_settings:
            if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
            elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
            else:vps["voice_settings"]=self.elevenlabs_voice_settings
        adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
        with open(afp,"wb")as f:
            for c in adi:
                if c:f.write(c)
        logger.info(f"11L audio (stream): {afp}");return afp
        except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None


    def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
        # (Keep as in the version that has the robust image processing, C-contiguous array, and debug image saves)
        if not asset_data_list: logger.warning("No assets for animatic."); return None
        processed_clips = []; narration_clip = None; final_clip = None
        logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")

        for i, asset_info in enumerate(asset_data_list):
            asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
            scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
            logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")

            if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
            if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue

            current_scene_mvpy_clip = None
            try:
                if asset_type == 'image':
                    pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
                    img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
                    thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
                    cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
                    cv_rgba.paste(thumb,(xo,yo),thumb)
                    final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
                    dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
                    frame_np = np.array(final_rgb_pil,dtype=np.uint8);
                    if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
                    logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
                    if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
                    clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
                    mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
                    clip_fx = clip_base
                    try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
                    except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
                    current_scene_mvpy_clip = clip_fx
                elif asset_type == 'video':
                    src_clip=None
                    try:
                        src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
                        tmp_clip=src_clip
                        if src_clip.duration!=scene_dur:
                            if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
                            else:
                                if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
                                else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
                        current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur) # Ensure target duration for concatenation
                        if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
                    except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
                    finally:
                        if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
                else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
                
                if current_scene_mvpy_clip and key_action:
                    try:
                        to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
                        to_start=0.25
                        if to_dur > 0:
                            txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
                            current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
                        else: logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
                    except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
                if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
            except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
            finally:
                if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
                    try: current_scene_mvpy_clip.close()
                    except: pass

        if not processed_clips:logger.warning("No clips processed. Abort.");return None
        td=0.75
        try:
            logger.info(f"Concatenating {len(processed_clips)} clips.");
            if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
            elif processed_clips:final_clip=processed_clips[0]
            if not final_clip:logger.error("Concatenation failed.");return None
            logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
            if td>0 and final_clip.duration>0:
                if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
                else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
            if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
                try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
                except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
            elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
            if final_clip and final_clip.duration>0:
                op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
                final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
                logger.info(f"Video created:{op}");return op
            else:logger.error("Final clip invalid. No write.");return None
        except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
        finally:
            logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
            all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else []) # Corrected variable name
            for clip_obj_to_close in all_clips_to_close:
                if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
                    try: clip_obj_to_close.close()
                    except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}")