File size: 35,388 Bytes
287c9ca e0b9b11 cb93f9c 92cb699 cb93f9c 5089920 cb93f9c 5089920 cb93f9c 92cb699 5089920 9840152 5089920 990e23e 92cb699 5089920 92cb699 cb93f9c 200c5c4 59af6e7 f13d4b2 cb93f9c 59af6e7 f13d4b2 5089920 f13d4b2 59af6e7 5089920 d44d308 5089920 d44d308 cb93f9c 4c2220b f13d4b2 287c9ca 92cb699 e0b9b11 cb93f9c 5089920 cb93f9c e0b9b11 59af6e7 cb93f9c d44d308 cb93f9c 59af6e7 5089920 cb93f9c f02ab98 cb93f9c 59af6e7 d44d308 cb93f9c d44d308 cb93f9c 200c5c4 09d5c67 59af6e7 92cb699 f13d4b2 5089920 d44d308 59af6e7 5089920 cb93f9c 59af6e7 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c 5089920 59af6e7 5089920 cb93f9c d44d308 5089920 d44d308 cb93f9c 59af6e7 d44d308 59af6e7 d44d308 59af6e7 d44d308 cb93f9c d44d308 cb93f9c e0b9b11 d44d308 cb93f9c 5089920 d44d308 cb93f9c d44d308 cb93f9c 5089920 cb93f9c 63525c7 cb93f9c 5089920 cb93f9c 8583908 5089920 cb93f9c 5089920 cb93f9c 3313da9 d44d308 cb93f9c d44d308 cb93f9c 59af6e7 cb93f9c 3313da9 cb93f9c 59af6e7 cb93f9c d44d308 cb93f9c d44d308 cb93f9c d44d308 cb93f9c b97795f cb93f9c 754c854 3313da9 d44d308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# core/visual_engine.py
from PIL import Image, ImageDraw, ImageFont, ImageOps
import base64 # For Data URI conversion
# --- MONKEY PATCH ---
try:
if hasattr(Image, 'Resampling') and hasattr(Image.Resampling, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.Resampling.LANCZOS
elif hasattr(Image, 'LANCZOS'):
if not hasattr(Image, 'ANTIALIAS'): Image.ANTIALIAS = Image.LANCZOS
elif not hasattr(Image, 'ANTIALIAS'): print("WARNING: Pillow ANTIALIAS/Resampling issue.")
except Exception as e_mp: print(f"WARNING: ANTIALIAS patch error: {e_mp}")
from moviepy.editor import (ImageClip, VideoFileClip, concatenate_videoclips, TextClip,
CompositeVideoClip, AudioFileClip)
import moviepy.video.fx.all as vfx
import numpy as np
import os
import openai
import requests
import io
import time
import random
import logging
import mimetypes # For Data URI
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# --- SERVICE CLIENT IMPORTS ---
ELEVENLABS_CLIENT_IMPORTED = False; ElevenLabsAPIClient = None; Voice = None; VoiceSettings = None
try:
from elevenlabs.client import ElevenLabs as ImportedElevenLabsClient
from elevenlabs import Voice as ImportedVoice, VoiceSettings as ImportedVoiceSettings
ElevenLabsAPIClient = ImportedElevenLabsClient; Voice = ImportedVoice; VoiceSettings = ImportedVoiceSettings
ELEVENLABS_CLIENT_IMPORTED = True; logger.info("ElevenLabs client components imported.")
except Exception as e_eleven: logger.warning(f"ElevenLabs client import failed: {e_eleven}. Audio disabled.")
RUNWAYML_SDK_IMPORTED = False; RunwayMLAPIClient = None
try:
from runwayml import RunwayML as ImportedRunwayMLClient
RunwayMLAPIClient = ImportedRunwayMLClient
RUNWAYML_SDK_IMPORTED = True
logger.info("RunwayML SDK imported successfully.")
except ImportError:
logger.warning("RunwayML SDK not found (pip install runwayml). RunwayML video generation will be disabled.")
except Exception as e_runway_sdk:
logger.warning(f"Error importing RunwayML SDK: {e_runway_sdk}. RunwayML features disabled.")
class VisualEngine:
def __init__(self, output_dir="temp_cinegen_media", default_elevenlabs_voice_id="Rachel"):
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.font_filename = "DejaVuSans-Bold.ttf"
font_paths_to_try = [ self.font_filename, "/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf", "/usr/share/fonts/truetype/liberation/LiberationSans-Bold.ttf", "/System/Library/Fonts/Supplemental/Arial.ttf", "C:/Windows/Fonts/arial.ttf", f"/usr/local/share/fonts/truetype/mycustomfonts/arial.ttf"]
self.font_path_pil = next((p for p in font_paths_to_try if os.path.exists(p)), None)
self.font_size_pil = 20; self.video_overlay_font_size = 30; self.video_overlay_font_color = 'white'
self.video_overlay_font = 'DejaVu-Sans-Bold'
try:
self.font = ImageFont.truetype(self.font_path_pil, self.font_size_pil) if self.font_path_pil else ImageFont.load_default()
if self.font_path_pil: logger.info(f"Pillow font: {self.font_path_pil}.")
else: logger.warning("Default Pillow font."); self.font_size_pil = 10
except IOError as e_font: logger.error(f"Pillow font IOError: {e_font}. Default."); self.font = ImageFont.load_default(); self.font_size_pil = 10
self.openai_api_key = None; self.USE_AI_IMAGE_GENERATION = False; self.dalle_model = "dall-e-3"; self.image_size_dalle3 = "1792x1024"
self.video_frame_size = (1280, 720)
self.elevenlabs_api_key = None; self.USE_ELEVENLABS = False; self.elevenlabs_client = None; self.elevenlabs_voice_id = default_elevenlabs_voice_id
if VoiceSettings and ELEVENLABS_CLIENT_IMPORTED: self.elevenlabs_voice_settings = VoiceSettings(stability=0.60, similarity_boost=0.80, style=0.15, use_speaker_boost=True)
else: self.elevenlabs_voice_settings = None
self.pexels_api_key = None; self.USE_PEXELS = False
self.runway_api_key = None; self.USE_RUNWAYML = False; self.runway_client = None
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
try:
if os.getenv("RUNWAYML_API_SECRET"):
self.runway_client = RunwayMLAPIClient()
logger.info("RunwayML Client initialized using RUNWAYML_API_SECRET env var.")
# else: # No explicit else, will be handled by set_runway_api_key if key provided later
except Exception as e_runway_init:
logger.error(f"Failed to initialize RunwayML client during __init__: {e_runway_init}", exc_info=True)
logger.info("VisualEngine initialized.")
def set_openai_api_key(self,k): self.openai_api_key=k; self.USE_AI_IMAGE_GENERATION=bool(k); logger.info(f"DALL-E ({self.dalle_model}) {'Ready.' if k else 'Disabled.'}")
def set_elevenlabs_api_key(self,api_key, voice_id_from_secret=None):
self.elevenlabs_api_key=api_key
if voice_id_from_secret: self.elevenlabs_voice_id = voice_id_from_secret
if api_key and ELEVENLABS_CLIENT_IMPORTED and ElevenLabsAPIClient:
try: self.elevenlabs_client = ElevenLabsAPIClient(api_key=api_key); self.USE_ELEVENLABS=bool(self.elevenlabs_client); logger.info(f"ElevenLabs Client {'Ready' if self.USE_ELEVENLABS else 'Failed Init'} (Voice ID: {self.elevenlabs_voice_id}).")
except Exception as e: logger.error(f"ElevenLabs client init error: {e}. Disabled.", exc_info=True); self.USE_ELEVENLABS=False
else: self.USE_ELEVENLABS=False; logger.info("ElevenLabs Disabled (no key or SDK issue).")
def set_pexels_api_key(self,k): self.pexels_api_key=k; self.USE_PEXELS=bool(k); logger.info(f"Pexels Search {'Ready.' if k else 'Disabled.'}")
def set_runway_api_key(self, k):
self.runway_api_key = k
if k:
if RUNWAYML_SDK_IMPORTED and RunwayMLAPIClient:
if not self.runway_client:
try:
if not os.getenv("RUNWAYML_API_SECRET"):
logger.info("Setting RUNWAYML_API_SECRET environment variable from provided key for SDK.")
os.environ["RUNWAYML_API_SECRET"] = k
self.runway_client = RunwayMLAPIClient()
self.USE_RUNWAYML = True
logger.info("RunwayML Client initialized successfully via set_runway_api_key.")
except Exception as e_client_init:
logger.error(f"RunwayML Client initialization failed in set_runway_api_key: {e_client_init}", exc_info=True)
self.USE_RUNWAYML = False
else: # Client already initialized
self.USE_RUNWAYML = True; logger.info("RunwayML Client was already initialized.")
else: logger.warning("RunwayML SDK not imported. API key set, but integration requires SDK."); self.USE_RUNWAYML = False
else: self.USE_RUNWAYML = False; logger.info("RunwayML Disabled (no API key).")
def _image_to_data_uri(self, image_path):
try:
mime_type, _ = mimetypes.guess_type(image_path)
if not mime_type:
ext = os.path.splitext(image_path)[1].lower()
if ext == ".png": mime_type = "image/png"
elif ext in [".jpg", ".jpeg"]: mime_type = "image/jpeg"
else: mime_type = "application/octet-stream"; logger.warning(f"Unknown MIME for {image_path}, using {mime_type}.")
with open(image_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
data_uri = f"data:{mime_type};base64,{encoded_string}"
logger.debug(f"Data URI for {image_path} (first 100): {data_uri[:100]}"); return data_uri
except Exception as e: logger.error(f"Error converting {image_path} to data URI: {e}", exc_info=True); return None
def _map_resolution_to_runway_ratio(self, width, height):
# Based on Gen-4 supported ratios: "1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"
ratio_str = f"{width}:{height}"
supported_ratios = ["1280:720", "720:1280", "1104:832", "832:1104", "960:960", "1584:672"]
if ratio_str in supported_ratios: return ratio_str
logger.warning(f"Resolution {ratio_str} not directly supported by Gen-4. Defaulting to 1280:720.")
return "1280:720"
def _get_text_dimensions(self,text_content,font_obj):
# (Corrected version from previous, assuming font_obj.size exists or font_size_pil is fallback)
default_char_height = getattr(font_obj, 'size', self.font_size_pil)
if not text_content: return 0, default_char_height
try:
if hasattr(font_obj,'getbbox'): # Pillow 8.0.0+
bbox=font_obj.getbbox(text_content);w=bbox[2]-bbox[0];h=bbox[3]-bbox[1]
return w, h if h > 0 else default_char_height
elif hasattr(font_obj,'getsize'): # Older Pillow
w,h=font_obj.getsize(text_content)
return w, h if h > 0 else default_char_height
else: # Fallback if no standard method (should not happen for ImageFont)
return int(len(text_content)*default_char_height*0.6),int(default_char_height*1.2)
except Exception as e:
logger.warning(f"Error in _get_text_dimensions for '{text_content[:20]}...': {e}")
return int(len(text_content)*self.font_size_pil*0.6),int(self.font_size_pil*1.2) # Fallback to global default
def _create_placeholder_image_content(self,text_description,filename,size=None):
# <<< THIS IS THE CORRECTED METHOD >>>
if size is None: size = self.video_frame_size
img=Image.new('RGB',size,color=(20,20,40));d=ImageDraw.Draw(img);padding=25;max_w=size[0]-(2*padding);lines=[];
if not text_description: text_description="(Placeholder Image)"
words=text_description.split();current_line=""
for word_idx, word in enumerate(words):
# Add space correctly, not after the very last word of the text
prospective_line_addition = word + (" " if word_idx < len(words) - 1 else "")
test_line = current_line + prospective_line_addition
current_line_width, _ = self._get_text_dimensions(test_line, self.font)
if current_line_width == 0 and test_line.strip(): # Estimate if Pillow returns 0
current_line_width = len(test_line) * (self.font_size_pil * 0.6)
if current_line_width <= max_w:
current_line = test_line
else: # Word doesn't fit
if current_line.strip(): # Add previous line if it had content
lines.append(current_line.strip())
current_line = prospective_line_addition # Start new line with current word (plus its space if not last)
# If the word itself is too long for a line, it will just be one long line.
# Pillow's d.text will handle overflow if text anchor isn't 'lt' (left-top).
# For centered text, it might go off-canvas; more complex word splitting needed for that.
if current_line.strip(): # Add any remaining part
lines.append(current_line.strip())
if not lines and text_description:
avg_char_width, _ = self._get_text_dimensions("W", self.font)
if avg_char_width == 0: avg_char_width = self.font_size_pil * 0.6 # Estimate
chars_per_line = int(max_w / avg_char_width) if avg_char_width > 0 else 20
lines.append(text_description[:chars_per_line] + ("..." if len(text_description) > chars_per_line else ""))
elif not lines:
lines.append("(Placeholder Error)")
_,single_line_h=self._get_text_dimensions("Ay",self.font); single_line_h = single_line_h if single_line_h > 0 else self.font_size_pil + 2
max_lines_to_display=min(len(lines),(size[1]-(2*padding))//(single_line_h+2)) if single_line_h > 0 else 1
if max_lines_to_display <=0: max_lines_to_display = 1
y_text_start = padding + (size[1]-(2*padding) - max_lines_to_display*(single_line_h+2))/2.0
y_text = y_text_start
for i in range(max_lines_to_display):
line_content=lines[i]
line_w,_=self._get_text_dimensions(line_content,self.font)
if line_w == 0 and line_content.strip(): line_w = len(line_content) * (self.font_size_pil * 0.6)
x_text=(size[0]-line_w)/2.0
try: d.text((x_text,y_text),line_content,font=self.font,fill=(200,200,180))
except Exception as e_draw: logger.error(f"Pillow d.text error: {e_draw} for line '{line_content}'")
y_text+=single_line_h+2
if i==6 and max_lines_to_display > 7:
try: d.text((x_text,y_text),"...",font=self.font,fill=(200,200,180))
except Exception as e_ellipsis: logger.error(f"Pillow d.text ellipsis error: {e_ellipsis}")
break
filepath=os.path.join(self.output_dir,filename);
try:img.save(filepath);return filepath
except Exception as e:logger.error(f"Saving placeholder image {filepath}: {e}", exc_info=True);return None
def _search_pexels_image(self, q, ofnb):
# (Keep as before)
if not self.USE_PEXELS or not self.pexels_api_key: return None; h={"Authorization":self.pexels_api_key};p={"query":q,"per_page":1,"orientation":"landscape","size":"large2x"}
pfn=ofnb.replace(".png",f"_pexels_{random.randint(1000,9999)}.jpg").replace(".mp4",f"_pexels_{random.randint(1000,9999)}.jpg");fp=os.path.join(self.output_dir,pfn)
try: logger.info(f"Pexels search: '{q}'");eq=" ".join(q.split()[:5]);p["query"]=eq;r=requests.get("https://api.pexels.com/v1/search",headers=h,params=p,timeout=20)
r.raise_for_status();d=r.json()
if d.get("photos") and len(d["photos"])>0:pu=d["photos"][0]["src"]["large2x"];ir=requests.get(pu,timeout=60);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content))
if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(fp);logger.info(f"Pexels saved: {fp}");return fp # Fixed id to id_img
else: id_img.save(fp);logger.info(f"Pexels saved (was RGB): {fp}");return fp # Save even if already RGB
else: logger.info(f"No Pexels for: '{eq}'") # This else was misplaced
except Exception as e:logger.error(f"Pexels error ('{q}'): {e}",exc_info=True);return None # Fixed indent
def _generate_video_clip_with_runwayml(self, text_prompt_for_motion, input_image_path, scene_identifier_filename_base, target_duration_seconds=5):
# (Updated RunwayML integration)
if not self.USE_RUNWAYML or not self.runway_client: logger.warning("RunwayML not enabled/client not init. Skip video."); return None
if not input_image_path or not os.path.exists(input_image_path): logger.error(f"Runway Gen-4 needs input image. Path invalid: {input_image_path}"); return None
image_data_uri = self._image_to_data_uri(input_image_path)
if not image_data_uri: return None
runway_duration = 10 if target_duration_seconds > 7 else 5
runway_ratio_str = self._map_resolution_to_runway_ratio(self.video_frame_size[0], self.video_frame_size[1])
output_video_filename = scene_identifier_filename_base.replace(".png", f"_runway_gen4_d{runway_duration}s.mp4")
output_video_filepath = os.path.join(self.output_dir, output_video_filename)
logger.info(f"Runway Gen-4 task: motion='{text_prompt_for_motion[:100]}...', img='{os.path.basename(input_image_path)}', dur={runway_duration}s, ratio='{runway_ratio_str}'")
try:
task = self.runway_client.image_to_video.create(model='gen4_turbo', prompt_image=image_data_uri, prompt_text=text_prompt_for_motion, duration=runway_duration, ratio=runway_ratio_str)
logger.info(f"Runway Gen-4 task ID: {task.id}. Polling...")
poll_interval=10; max_polls=36 # Max 6 mins
for _ in range(max_polls):
time.sleep(poll_interval); task_details = self.runway_client.tasks.retrieve(id=task.id)
logger.info(f"Runway task {task.id} status: {task_details.status}")
if task_details.status == 'SUCCEEDED':
output_url = getattr(getattr(task_details, 'output', None), 'url', None) or \
(getattr(task_details, 'artifacts', None) and task_details.artifacts[0].url if task_details.artifacts and hasattr(task_details.artifacts[0], 'url') else None) or \
(getattr(task_details, 'artifacts', None) and task_details.artifacts[0].download_url if task_details.artifacts and hasattr(task_details.artifacts[0], 'download_url') else None)
if not output_url: logger.error(f"Runway task {task.id} SUCCEEDED, but no output URL in details: {vars(task_details) if hasattr(task_details, '__dict__') else task_details}"); return None
logger.info(f"Runway task {task.id} SUCCEEDED. Downloading from: {output_url}")
video_response = requests.get(output_url, stream=True, timeout=300); video_response.raise_for_status()
with open(output_video_filepath, 'wb') as f:
for chunk in video_response.iter_content(chunk_size=8192): f.write(chunk)
logger.info(f"Runway Gen-4 video saved: {output_video_filepath}"); return output_video_filepath
elif task_details.status in ['FAILED', 'ABORTED']:
em = getattr(task_details,'error_message',None) or getattr(getattr(task_details,'output',None),'error', "Unknown error")
logger.error(f"Runway task {task.id} status: {task_details.status}. Error: {em}"); return None
logger.warning(f"Runway task {task.id} timed out."); return None
except AttributeError as ae: logger.error(f"RunwayML SDK AttributeError: {ae}. SDK/methods might differ.", exc_info=True); return None
except Exception as e: logger.error(f"Runway Gen-4 API error: {e}", exc_info=True); return None
def _create_placeholder_video_content(self, td, fn, dur=4, sz=None): # Generic placeholder if input_image not available
if sz is None: sz = self.video_frame_size; fp = os.path.join(self.output_dir, fn); tc = None
try: tc = TextClip(td, fontsize=50, color='white', font=self.video_overlay_font, bg_color='black', size=sz, method='caption').set_duration(dur); tc.write_videofile(fp, fps=24, codec='libx264', preset='ultrafast', logger=None, threads=2); logger.info(f"Generic placeholder video: {fp}"); return fp
except Exception as e: logger.error(f"Generic placeholder video error {fp}: {e}", exc_info=True); return None
finally:
if tc and hasattr(tc, 'close'): tc.close()
def generate_scene_asset(self, image_generation_prompt_text, motion_prompt_text_for_video,
scene_data, scene_identifier_filename_base,
generate_as_video_clip=False, runway_target_duration=5):
# (Logic mostly as before, ensuring base image is robustly generated first)
base_name, _ = os.path.splitext(scene_identifier_filename_base)
asset_info = {'path': None, 'type': 'none', 'error': True, 'prompt_used': image_generation_prompt_text, 'error_message': 'Asset generation init failed'}
input_image_for_runway_path = None
base_image_filename = base_name + ("_base_for_video.png" if generate_as_video_clip else ".png")
base_image_filepath = os.path.join(self.output_dir, base_image_filename)
# Attempt base image generation
if self.USE_AI_IMAGE_GENERATION and self.openai_api_key: # DALL-E
max_r, att_n = 2,0;
for att_n in range(max_r):
try:logger.info(f"Att {att_n+1} DALL-E (base img): {image_generation_prompt_text[:70]}...");cl=openai.OpenAI(api_key=self.openai_api_key,timeout=90.0);r=cl.images.generate(model=self.dalle_model,prompt=image_generation_prompt_text,n=1,size=self.image_size_dalle3,quality="hd",response_format="url",style="vivid");iu=r.data[0].url;rp=getattr(r.data[0],'revised_prompt',None);
if rp:logger.info(f"DALL-E revised: {rp[:70]}...");ir=requests.get(iu,timeout=120);ir.raise_for_status();id_img=Image.open(io.BytesIO(ir.content));
if id_img.mode!='RGB':id_img=id_img.convert('RGB');id_img.save(base_image_filepath);logger.info(f"DALL-E base img saved: {base_image_filepath}");input_image_for_runway_path=base_image_filepath;asset_info={'path':base_image_filepath,'type':'image','error':False,'prompt_used':image_generation_prompt_text,'revised_prompt':rp};break
except openai.RateLimitError as e:logger.warning(f"OpenAI RateLimit {att_n+1}:{e}.Retry...");time.sleep(5*(att_n+1));asset_info['error_message']=str(e)
except Exception as e:logger.error(f"DALL-E base img error:{e}",exc_info=True);asset_info['error_message']=str(e);break
if asset_info['error']:logger.warning(f"DALL-E failed after {att_n+1} attempts for base img.")
if asset_info['error'] and self.USE_PEXELS: # Pexels Fallback
logger.info("Trying Pexels for base img.");pqt=scene_data.get('pexels_search_query_๊ฐ๋
',f"{scene_data.get('emotional_beat','')} {scene_data.get('setting_description','')}");pp=self._search_pexels_image(pqt,base_image_filename);
if pp:input_image_for_runway_path=pp;asset_info={'path':pp,'type':'image','error':False,'prompt_used':f"Pexels:{pqt}"}
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Pexels failed for base.").strip()
if asset_info['error']: # Placeholder Fallback
logger.warning("Base img (DALL-E/Pexels) failed. Using placeholder.");ppt=asset_info.get('prompt_used',image_generation_prompt_text);php=self._create_placeholder_image_content(f"[Base Placeholder]{ppt[:70]}...",base_image_filename);
if php:input_image_for_runway_path=php;asset_info={'path':php,'type':'image','error':False,'prompt_used':ppt}
else:current_em=asset_info.get('error_message',"");asset_info['error_message']=(current_em+" Base placeholder failed.").strip()
if generate_as_video_clip: # Now attempt RunwayML if requested
if not input_image_for_runway_path:logger.error("RunwayML video: base img failed.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"")+" Base img miss, Runway abort.").strip();asset_info['type']='none';return asset_info
if self.USE_RUNWAYML:
logger.info(f"Runway Gen-4 video for {base_name} using base: {input_image_for_runway_path}")
video_path=self._generate_video_clip_with_runwayml(motion_prompt_text_for_video,input_image_for_runway_path,base_name,runway_target_duration)
if video_path and os.path.exists(video_path):asset_info={'path':video_path,'type':'video','error':False,'prompt_used':motion_prompt_text_for_video,'base_image_path':input_image_for_runway_path}
else:logger.warning(f"RunwayML video failed for {base_name}. Fallback to base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML video fail; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
else:logger.warning("RunwayML selected but disabled. Use base img.");asset_info['error']=True;asset_info['error_message']=(asset_info.get('error_message',"Base img ok.")+" RunwayML disabled; use base img.").strip();asset_info['path']=input_image_for_runway_path;asset_info['type']='image';asset_info['prompt_used']=image_generation_prompt_text
return asset_info # Return image info if not video, or video result
def generate_narration_audio(self, text_to_narrate, output_filename="narration_overall.mp3"):
# (Keep as before)
if not self.USE_ELEVENLABS or not self.elevenlabs_client or not text_to_narrate: logger.info("11L skip."); return None; afp=os.path.join(self.output_dir,output_filename)
try: logger.info(f"11L audio (Voice:{self.elevenlabs_voice_id}): {text_to_narrate[:70]}..."); asm=None
if hasattr(self.elevenlabs_client,'text_to_speech')and hasattr(self.elevenlabs_client.text_to_speech,'stream'):asm=self.elevenlabs_client.text_to_speech.stream;logger.info("Using 11L .text_to_speech.stream()")
elif hasattr(self.elevenlabs_client,'generate_stream'):asm=self.elevenlabs_client.generate_stream;logger.info("Using 11L .generate_stream()")
elif hasattr(self.elevenlabs_client,'generate'):logger.info("Using 11L .generate()");vp=Voice(voice_id=str(self.elevenlabs_voice_id),settings=self.elevenlabs_voice_settings)if Voice and self.elevenlabs_voice_settings else str(self.elevenlabs_voice_id);ab=self.elevenlabs_client.generate(text=text_to_narrate,voice=vp,model="eleven_multilingual_v2");
with open(afp,"wb")as f:f.write(ab);logger.info(f"11L audio (non-stream): {afp}");return afp
else:logger.error("No 11L audio method.");return None
if asm:vps={"voice_id":str(self.elevenlabs_voice_id)}
if self.elevenlabs_voice_settings:
if hasattr(self.elevenlabs_voice_settings,'model_dump'):vps["voice_settings"]=self.elevenlabs_voice_settings.model_dump()
elif hasattr(self.elevenlabs_voice_settings,'dict'):vps["voice_settings"]=self.elevenlabs_voice_settings.dict()
else:vps["voice_settings"]=self.elevenlabs_voice_settings
adi=asm(text=text_to_narrate,model_id="eleven_multilingual_v2",**vps)
with open(afp,"wb")as f:
for c in adi:
if c:f.write(c)
logger.info(f"11L audio (stream): {afp}");return afp
except Exception as e:logger.error(f"11L audio error: {e}",exc_info=True);return None
def assemble_animatic_from_assets(self, asset_data_list, overall_narration_path=None, output_filename="final_video.mp4", fps=24):
# (Keep as in the version that has the robust image processing, C-contiguous array, and debug image saves)
if not asset_data_list: logger.warning("No assets for animatic."); return None
processed_clips = []; narration_clip = None; final_clip = None
logger.info(f"Assembling from {len(asset_data_list)} assets. Frame: {self.video_frame_size}.")
for i, asset_info in enumerate(asset_data_list):
asset_path, asset_type, scene_dur = asset_info.get('path'), asset_info.get('type'), asset_info.get('duration', 4.5)
scene_num, key_action = asset_info.get('scene_num', i + 1), asset_info.get('key_action', '')
logger.info(f"S{scene_num}: Path='{asset_path}', Type='{asset_type}', Dur='{scene_dur}'s")
if not (asset_path and os.path.exists(asset_path)): logger.warning(f"S{scene_num}: Not found '{asset_path}'. Skip."); continue
if scene_dur <= 0: logger.warning(f"S{scene_num}: Invalid duration ({scene_dur}s). Skip."); continue
current_scene_mvpy_clip = None
try:
if asset_type == 'image':
pil_img = Image.open(asset_path); logger.debug(f"S{scene_num}: Loaded img. Mode:{pil_img.mode}, Size:{pil_img.size}")
img_rgba = pil_img.convert('RGBA') if pil_img.mode != 'RGBA' else pil_img.copy()
thumb = img_rgba.copy(); rf = Image.Resampling.LANCZOS if hasattr(Image.Resampling,'LANCZOS') else Image.BILINEAR; thumb.thumbnail(self.video_frame_size,rf)
cv_rgba = Image.new('RGBA',self.video_frame_size,(0,0,0,0)); xo,yo=(self.video_frame_size[0]-thumb.width)//2,(self.video_frame_size[1]-thumb.height)//2
cv_rgba.paste(thumb,(xo,yo),thumb)
final_rgb_pil = Image.new("RGB",self.video_frame_size,(0,0,0)); final_rgb_pil.paste(cv_rgba,mask=cv_rgba.split()[3])
dbg_path = os.path.join(self.output_dir,f"debug_PRE_NUMPY_S{scene_num}.png"); final_rgb_pil.save(dbg_path); logger.info(f"DEBUG: Saved PRE_NUMPY_S{scene_num} to {dbg_path}")
frame_np = np.array(final_rgb_pil,dtype=np.uint8);
if not frame_np.flags['C_CONTIGUOUS']: frame_np=np.ascontiguousarray(frame_np,dtype=np.uint8)
logger.debug(f"S{scene_num}: NumPy for MoviePy. Shape:{frame_np.shape}, DType:{frame_np.dtype}, C-Contig:{frame_np.flags['C_CONTIGUOUS']}")
if frame_np.size==0 or frame_np.ndim!=3 or frame_np.shape[2]!=3: logger.error(f"S{scene_num}: Invalid NumPy. Skip."); continue
clip_base = ImageClip(frame_np,transparent=False).set_duration(scene_dur)
mvpy_dbg_path=os.path.join(self.output_dir,f"debug_MOVIEPY_FRAME_S{scene_num}.png"); clip_base.save_frame(mvpy_dbg_path,t=0.1); logger.info(f"DEBUG: Saved MOVIEPY_FRAME_S{scene_num} to {mvpy_dbg_path}")
clip_fx = clip_base
try: es=random.uniform(1.03,1.08); clip_fx=clip_base.fx(vfx.resize,lambda t:1+(es-1)*(t/scene_dur) if scene_dur>0 else 1).set_position('center')
except Exception as e: logger.error(f"S{scene_num} Ken Burns error: {e}",exc_info=False)
current_scene_mvpy_clip = clip_fx
elif asset_type == 'video':
src_clip=None
try:
src_clip=VideoFileClip(asset_path,target_resolution=(self.video_frame_size[1],self.video_frame_size[0])if self.video_frame_size else None, audio=False)
tmp_clip=src_clip
if src_clip.duration!=scene_dur:
if src_clip.duration>scene_dur:tmp_clip=src_clip.subclip(0,scene_dur)
else:
if scene_dur/src_clip.duration > 1.5 and src_clip.duration>0.1:tmp_clip=src_clip.loop(duration=scene_dur)
else:tmp_clip=src_clip.set_duration(src_clip.duration);logger.info(f"S{scene_num} Video clip ({src_clip.duration:.2f}s) shorter than target ({scene_dur:.2f}s).")
current_scene_mvpy_clip=tmp_clip.set_duration(scene_dur) # Ensure target duration for concatenation
if current_scene_mvpy_clip.size!=list(self.video_frame_size):current_scene_mvpy_clip=current_scene_mvpy_clip.resize(self.video_frame_size)
except Exception as e:logger.error(f"S{scene_num} Video load error '{asset_path}':{e}",exc_info=True);continue
finally:
if src_clip and src_clip is not current_scene_mvpy_clip and hasattr(src_clip,'close'):src_clip.close()
else: logger.warning(f"S{scene_num} Unknown asset type '{asset_type}'. Skip."); continue
if current_scene_mvpy_clip and key_action:
try:
to_dur=min(current_scene_mvpy_clip.duration-0.5,current_scene_mvpy_clip.duration*0.8)if current_scene_mvpy_clip.duration>0.5 else current_scene_mvpy_clip.duration
to_start=0.25
if to_dur > 0:
txt_c=TextClip(f"Scene {scene_num}\n{key_action}",fontsize=self.video_overlay_font_size,color=self.video_overlay_font_color,font=self.video_overlay_font,bg_color='rgba(10,10,20,0.7)',method='caption',align='West',size=(self.video_frame_size[0]*0.9,None),kerning=-1,stroke_color='black',stroke_width=1.5).set_duration(to_dur).set_start(to_start).set_position(('center',0.92),relative=True)
current_scene_mvpy_clip=CompositeVideoClip([current_scene_mvpy_clip,txt_c],size=self.video_frame_size,use_bgclip=True)
else: logger.warning(f"S{scene_num}: Text overlay duration is zero. Skip text.")
except Exception as e:logger.error(f"S{scene_num} TextClip error:{e}. No text.",exc_info=True)
if current_scene_mvpy_clip:processed_clips.append(current_scene_mvpy_clip);logger.info(f"S{scene_num} Processed. Dur:{current_scene_mvpy_clip.duration:.2f}s.")
except Exception as e:logger.error(f"MAJOR Error S{scene_num} ({asset_path}):{e}",exc_info=True)
finally:
if current_scene_mvpy_clip and hasattr(current_scene_mvpy_clip,'close'):
try: current_scene_mvpy_clip.close()
except: pass
if not processed_clips:logger.warning("No clips processed. Abort.");return None
td=0.75
try:
logger.info(f"Concatenating {len(processed_clips)} clips.");
if len(processed_clips)>1:final_clip=concatenate_videoclips(processed_clips,padding=-td if td>0 else 0,method="compose")
elif processed_clips:final_clip=processed_clips[0]
if not final_clip:logger.error("Concatenation failed.");return None
logger.info(f"Concatenated dur:{final_clip.duration:.2f}s")
if td>0 and final_clip.duration>0:
if final_clip.duration>td*2:final_clip=final_clip.fx(vfx.fadein,td).fx(vfx.fadeout,td)
else:final_clip=final_clip.fx(vfx.fadein,min(td,final_clip.duration/2.0))
if overall_narration_path and os.path.exists(overall_narration_path) and final_clip.duration>0:
try:narration_clip=AudioFileClip(overall_narration_path);final_clip=final_clip.set_audio(narration_clip);logger.info("Narration added.")
except Exception as e:logger.error(f"Narration add error:{e}",exc_info=True)
elif final_clip.duration<=0:logger.warning("Video no duration. No audio.")
if final_clip and final_clip.duration>0:
op=os.path.join(self.output_dir,output_filename);logger.info(f"Writing video:{op} (Dur:{final_clip.duration:.2f}s)")
final_clip.write_videofile(op,fps=fps,codec='libx264',preset='medium',audio_codec='aac',temp_audiofile=os.path.join(self.output_dir,f'temp-audio-{os.urandom(4).hex()}.m4a'),remove_temp=True,threads=os.cpu_count()or 2,logger='bar',bitrate="5000k",ffmpeg_params=["-pix_fmt", "yuv420p"])
logger.info(f"Video created:{op}");return op
else:logger.error("Final clip invalid. No write.");return None
except Exception as e:logger.error(f"Video write error:{e}",exc_info=True);return None
finally:
logger.debug("Closing all MoviePy clips in `assemble_animatic_from_assets` finally block.")
all_clips_to_close = processed_clips + ([narration_clip] if narration_clip else []) + ([final_clip] if final_clip else []) # Corrected variable name
for clip_obj_to_close in all_clips_to_close:
if clip_obj_to_close and hasattr(clip_obj_to_close, 'close'):
try: clip_obj_to_close.close()
except Exception as e_close: logger.warning(f"Ignoring error while closing a clip: {type(clip_obj_to_close).__name__} - {e_close}") |