Final_Assignment_Template / langgraph_agent.py
philincloud's picture
Update langgraph_agent.py
1b3bfe1 verified
raw
history blame
7.2 kB
import os
import io
import contextlib
import pandas as pd # Added for Excel file handling
from typing import Dict, List, Union # Added for type hinting
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_openai import ChatOpenAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.tools import tool
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second; error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder of dividing first integer by second."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return up to 2 documents."""
try:
docs = WikipediaLoader(query=query, load_max_docs=2, lang="en").load() # Added lang="en" for clarity
if not docs:
return {"wiki_results": f"No documents found on Wikipedia for '{query}'."}
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata.get("source", "N/A")}"/>\n{d.page_content}' # Added .get for safety
for d in docs
)
return {"wiki_results": formatted}
except Exception as e:
# Log the full error for debugging if possible
print(f"Error in wiki_search tool: {e}")
return {"wiki_results": f"Error occurred while searching Wikipedia for '{query}'. Details: {str(e)}"}
@tool
def web_search(query: str) -> dict:
"""Perform a web search (via Tavily) and return up to 3 results."""
try: # Added try-except block for robustness
docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content}'
for d in docs
)
return {"web_results": formatted}
except Exception as e:
print(f"Error in web_search tool: {e}")
return {"web_results": f"Error occurred while searching the web for '{query}'. Details: {str(e)}"}
@tool
def arvix_search(query: str) -> dict:
"""Search arXiv for a query and return up to 3 paper excerpts."""
docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted = "\n\n---\n\n".join(
f'<Document source="{d.metadata["source"]}"/>\n{d.page_content[:1000]}'
for d in docs
)
return {"arvix_results": formatted}
@tool
def read_file_content(file_path: str) -> Dict[str, str]:
"""
Reads the content of a file and returns it.
Supports text (.txt), Python (.py), and Excel (.xlsx) files.
For other file types, returns a message indicating limited support.
"""
try:
_, file_extension = os.path.splitext(file_path)
content = ""
if file_extension.lower() in (".txt", ".py"):
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
elif file_extension.lower() == ".xlsx":
# Ensure pandas is installed for this.
df = pd.read_excel(file_path)
content = df.to_string() # Convert Excel to string representation
elif file_extension.lower() == ".mp3":
content = "Audio file provided. Unable to directly process audio. Consider using a transcription service if available."
elif file_extension.lower() == ".png":
content = "Image file provided. Unable to directly process images. Consider using an OCR or image analysis service if available."
else:
content = f"Unsupported file type: {file_extension}. Only .txt, .py, and .xlsx files are fully supported for reading content."
return {"file_content": content, "file_name": file_path}
except FileNotFoundError:
return {"file_error": f"File not found: {file_path}. Please ensure the file exists in the environment."}
except Exception as e:
return {"file_error": f"Error reading file {file_path}: {e}"}
@tool
def python_interpreter(code: str) -> Dict[str, str]:
"""
Executes Python code and returns its standard output.
If there's an error during execution, it returns the error message.
"""
old_stdout = io.StringIO()
# Redirect stdout to capture print statements
with contextlib.redirect_stdout(old_stdout):
try:
# Create a dictionary to hold the execution scope for exec
exec_globals = {}
exec_locals = {}
exec(code, exec_globals, exec_locals)
output = old_stdout.getvalue()
return {"execution_result": output.strip()}
except Exception as e:
return {"execution_error": str(e)}
API_KEY = os.getenv("GEMINI_API_KEY")
HF_SPACE_TOKEN = os.getenv("HF_SPACE_TOKEN")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
tools = [
multiply, add, subtract, divide, modulus,
wiki_search, web_search, arvix_search,
read_file_content, # Added new tool
python_interpreter, # Added new tool
]
with open("prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
def build_graph(provider: str = "gemini"):
"""Build the LangGraph agent with chosen LLM (default: Gemini)."""
if provider == "gemini":
llm = ChatGoogleGenerativeAI(
model= "gemini-2.5-flash-preview-05-20",
temperature=1.0,
max_retries=2,
api_key=GEMINI_API_KEY,
max_tokens=5000
)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'openai' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
messages_to_send = [sys_msg] + state["messages"]
return {"messages": [llm_with_tools.invoke(messages_to_send)]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
# This block is intentionally left empty as per user request to remove examples.
# Your agent will interact with the graph by invoking it with messages.
pass