talentscout-ai / Documentation.md
surabhic's picture
Upload 3 files
2645749 verified

A newer version of the Streamlit SDK is available: 1.49.0

Upgrade

πŸ“– TalentScout AI Hiring Assistant - Technical Documentation

Overview

The TalentScout AI Hiring Assistant is a comprehensive Streamlit application designed to automate the initial stages of candidate screening and technical assessment. This document provides detailed technical information about the application's architecture, components, and functionality.

πŸ—οΈ Architecture

Core Components

  1. CandidateInfo: Data structure for candidate information
  2. HiringAssistant: Main application logic and conversation management
  3. Streamlit UI: User interface and interaction layer
  4. Session State Management: Persistent state across user interactions

Application Flow

Start β†’ Greeting β†’ Data Collection β†’ Technical Assessment β†’ Completion

πŸ“‹ Detailed Code Documentation

1. CandidateInfo Class

@dataclass
class CandidateInfo:
    """Data class to store candidate information"""

Purpose: Structured storage of candidate data with default values.

Attributes:

  • full_name: Candidate's complete name
  • email: Email address (validated)
  • phone: Phone number (validated)
  • experience_years: Years of professional experience
  • desired_positions: Target job positions
  • current_location: Geographic location
  • tech_stack: Technical skills and technologies
  • session_start: Session initiation timestamp

Features:

  • Type hints for data validation
  • Default empty values for initialization
  • Automatic timestamp generation

2. HiringAssistant Class

The main application class handling all business logic.

2.1 Initialization

def __init__(self):
    self.conversation_stages = {...}
    self.tech_categories = {...}
    self.exit_keywords = [...]

Conversation Stages:

  • greeting (0): Initial welcome
  • name (1): Name collection
  • email (2): Email validation and collection
  • phone (3): Phone validation and collection
  • experience (4): Experience level assessment
  • position (5): Position preferences
  • location (6): Geographic information
  • tech_stack (7): Technical skills collection
  • technical_questions (8): Dynamic technical assessment
  • completed (9): Process completion

Tech Categories:

  • programming_languages: Core programming languages
  • web_frameworks: Web development frameworks
  • databases: Database technologies
  • cloud_platforms: Cloud and DevOps tools
  • data_science: Data science and ML libraries
  • mobile: Mobile development platforms

2.2 Session State Management

def initialize_session_state(self):
    """Initialize session state variables"""

Session Variables:

  • candidate_info: CandidateInfo instance
  • conversation_history: Q&A storage
  • current_stage: Current conversation stage
  • technical_questions: Generated questions list
  • current_question_index: Question progress tracker
  • conversation_ended: Termination flag

2.3 Input Validation

Email Validation:

def validate_email(self, email: str) -> bool:
    pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
    return re.match(pattern, email) is not None

Phone Validation:

def validate_phone(self, phone: str) -> bool:
    cleaned_phone = re.sub(r'[\s\-\(\)]', '', phone)
    pattern = r'^\+?[1-9]\d{9,14}$'
    return re.match(pattern, cleaned_phone) is not None

Validation Features:

  • Email: Standard RFC-compliant email format
  • Phone: International format support with cleaning
  • Real-time validation feedback
  • Error handling and user guidance

2.4 Technical Question Generation

def generate_technical_questions(self, tech_stack: str) -> List[str]:
    """Generate technical questions based on the candidate's tech stack"""

Question Generation Logic:

  1. Parse tech stack string (comma, semicolon, newline separated)
  2. Match technologies to question templates
  3. Select 2 questions per identified technology
  4. Maximum 5 questions total
  5. Fallback to generic questions if no matches

Question Templates:

  • Technology-specific questions
  • Skill-level appropriate content
  • Practical and theoretical balance
  • Real-world application focus

Example Question Categories:

  • Python: Decorators, data structures, exception handling
  • JavaScript: Closures, promises, ES6 features
  • React: Hooks, state management, virtual DOM
  • SQL: Joins, optimization, indexing
  • AWS: Services comparison, architecture patterns

2.5 Input Processing

def process_user_input(self, user_input: str) -> str:
    """Process user input based on current conversation stage"""

Processing Flow:

  1. Check for exit intent
  2. Validate input based on current stage
  3. Update candidate information
  4. Progress to next stage
  5. Generate appropriate response

Stage-Specific Processing:

  • Name: Length validation (minimum 2 characters)
  • Email: Format validation using regex
  • Phone: International format validation
  • Experience: Free text with guidance
  • Position: Role specification
  • Location: Geographic information
  • Tech Stack: Technology parsing and question generation
  • Technical Questions: Answer storage and progression

2.6 Response Generation

Greeting Message:

def generate_greeting(self) -> str:
    """Generate initial greeting message"""

Completion Message:

def generate_completion_message(self) -> str:
    """Generate completion message"""

Response Features:

  • Personalized messaging
  • Clear next steps
  • Professional tone
  • Encouraging language
  • Summary information

3. Streamlit UI Implementation

3.1 Page Configuration

st.set_page_config(
    page_title="TalentScout - AI Hiring Assistant",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded"
)

3.2 Custom Styling

CSS Components:

  • .main-header: Gradient header with branding
  • .chat-message: Message container styling
  • .user-message: User input styling
  • .bot-message: AI response styling
  • .sidebar-info: Information panel styling

Design Features:

  • Responsive layout
  • Professional color scheme
  • Clear visual hierarchy
  • Accessibility considerations

3.3 Sidebar Implementation

Information Display:

  • Real-time candidate data
  • Progress tracking
  • Stage indicators
  • Export functionality

Progress Visualization:

  • Linear progress bar
  • Stage names and numbers
  • Completion percentage
  • Visual feedback

3.4 Chat Interface

Message Display:

  • Conversation history
  • User/bot message distinction
  • Timestamp tracking
  • Scrollable interface

Input Handling:

  • Text input field
  • Send button
  • Keyboard shortcuts
  • Input validation

4. Data Management

4.1 Export Functionality

def export_candidate_data(self) -> Dict:
    """Export candidate data for download"""

Export Contents:

  • Complete candidate information
  • Technical Q&A responses
  • Session metadata
  • Export timestamp

Export Format:

  • JSON structure
  • Human-readable format
  • Structured data organization
  • Easy integration support

4.2 Session Management

State Persistence:

  • Cross-interaction state maintenance
  • Stage progression tracking
  • Data integrity protection
  • Error recovery mechanisms

πŸ”§ Configuration Options

Environment Variables

The application supports configuration through environment variables:

  • OPENAI_API_KEY: OpenAI API key (if AI features are enabled)
  • DEBUG_MODE: Enable debug logging
  • MAX_QUESTIONS: Maximum technical questions per session

Customization Points

  1. Question Templates: Modify technical questions
  2. Validation Rules: Adjust email/phone patterns
  3. UI Styling: Update CSS styles
  4. Conversation Flow: Modify stage progression
  5. Tech Categories: Add new technology categories

πŸš€ Deployment Considerations

Hugging Face Spaces

Requirements:

  • requirements.txt with dependencies
  • Main application file (app.py)
  • Streamlit framework selection
  • Public repository access

Optimization:

  • Minimal dependencies
  • Efficient memory usage
  • Fast startup time
  • Responsive UI

Performance Optimization

Best Practices:

  • Session state management
  • Efficient data structures
  • Minimal API calls
  • Lazy loading strategies

πŸ” Testing Strategies

Unit Testing

Test Coverage:

  • Input validation functions
  • Question generation logic
  • Data export functionality
  • Stage progression logic

Test Cases:

  • Valid/invalid email formats
  • Phone number variations
  • Tech stack parsing
  • Edge cases and error conditions

Integration Testing

Test Scenarios:

  • Complete conversation flow
  • Data persistence across stages
  • Export functionality
  • UI responsiveness

User Acceptance Testing

Test Criteria:

  • Conversation flow intuitiveness
  • Technical question relevance
  • Data accuracy and completeness
  • Overall user experience

πŸ”’ Security Considerations

Data Protection

Privacy Measures:

  • No permanent data storage
  • Session-based data handling
  • Local export options
  • Minimal data collection

Input Sanitization:

  • Regex validation for emails/phones
  • Text input length limits
  • Special character handling
  • Injection prevention

Session Security

Best Practices:

  • Session state isolation
  • Secure data transmission
  • Input validation
  • Error handling

πŸ“ˆ Future Enhancements

Potential Features

  1. AI-Powered Question Generation: Dynamic question creation using LLMs
  2. Multi-language Support: Internationalization capabilities
  3. Advanced Analytics: Candidate scoring and ranking
  4. Integration APIs: HR system connectivity
  5. Video Interview Scheduling: Calendar integration
  6. Resume Parsing: Automatic data extraction
  7. Skill Assessment: Practical coding challenges
  8. Collaborative Filtering: Question recommendation

Technical Improvements

  1. Database Integration: Persistent data storage
  2. Authentication System: User management
  3. Advanced UI: React-based frontend
  4. Real-time Updates: WebSocket communication
  5. Mobile Optimization: Progressive web app
  6. Performance Monitoring: Analytics integration

πŸ“š References


This documentation provides comprehensive technical details for understanding, maintaining, and extending the TalentScout AI Hiring Assistant application.