Spaces:
Sleeping
A newer version of the Streamlit SDK is available:
1.49.0
π TalentScout AI Hiring Assistant - Technical Documentation
Overview
The TalentScout AI Hiring Assistant is a comprehensive Streamlit application designed to automate the initial stages of candidate screening and technical assessment. This document provides detailed technical information about the application's architecture, components, and functionality.
ποΈ Architecture
Core Components
- CandidateInfo: Data structure for candidate information
- HiringAssistant: Main application logic and conversation management
- Streamlit UI: User interface and interaction layer
- Session State Management: Persistent state across user interactions
Application Flow
Start β Greeting β Data Collection β Technical Assessment β Completion
π Detailed Code Documentation
1. CandidateInfo Class
@dataclass
class CandidateInfo:
"""Data class to store candidate information"""
Purpose: Structured storage of candidate data with default values.
Attributes:
full_name
: Candidate's complete nameemail
: Email address (validated)phone
: Phone number (validated)experience_years
: Years of professional experiencedesired_positions
: Target job positionscurrent_location
: Geographic locationtech_stack
: Technical skills and technologiessession_start
: Session initiation timestamp
Features:
- Type hints for data validation
- Default empty values for initialization
- Automatic timestamp generation
2. HiringAssistant Class
The main application class handling all business logic.
2.1 Initialization
def __init__(self):
self.conversation_stages = {...}
self.tech_categories = {...}
self.exit_keywords = [...]
Conversation Stages:
greeting
(0): Initial welcomename
(1): Name collectionemail
(2): Email validation and collectionphone
(3): Phone validation and collectionexperience
(4): Experience level assessmentposition
(5): Position preferenceslocation
(6): Geographic informationtech_stack
(7): Technical skills collectiontechnical_questions
(8): Dynamic technical assessmentcompleted
(9): Process completion
Tech Categories:
programming_languages
: Core programming languagesweb_frameworks
: Web development frameworksdatabases
: Database technologiescloud_platforms
: Cloud and DevOps toolsdata_science
: Data science and ML librariesmobile
: Mobile development platforms
2.2 Session State Management
def initialize_session_state(self):
"""Initialize session state variables"""
Session Variables:
candidate_info
: CandidateInfo instanceconversation_history
: Q&A storagecurrent_stage
: Current conversation stagetechnical_questions
: Generated questions listcurrent_question_index
: Question progress trackerconversation_ended
: Termination flag
2.3 Input Validation
Email Validation:
def validate_email(self, email: str) -> bool:
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return re.match(pattern, email) is not None
Phone Validation:
def validate_phone(self, phone: str) -> bool:
cleaned_phone = re.sub(r'[\s\-\(\)]', '', phone)
pattern = r'^\+?[1-9]\d{9,14}$'
return re.match(pattern, cleaned_phone) is not None
Validation Features:
- Email: Standard RFC-compliant email format
- Phone: International format support with cleaning
- Real-time validation feedback
- Error handling and user guidance
2.4 Technical Question Generation
def generate_technical_questions(self, tech_stack: str) -> List[str]:
"""Generate technical questions based on the candidate's tech stack"""
Question Generation Logic:
- Parse tech stack string (comma, semicolon, newline separated)
- Match technologies to question templates
- Select 2 questions per identified technology
- Maximum 5 questions total
- Fallback to generic questions if no matches
Question Templates:
- Technology-specific questions
- Skill-level appropriate content
- Practical and theoretical balance
- Real-world application focus
Example Question Categories:
- Python: Decorators, data structures, exception handling
- JavaScript: Closures, promises, ES6 features
- React: Hooks, state management, virtual DOM
- SQL: Joins, optimization, indexing
- AWS: Services comparison, architecture patterns
2.5 Input Processing
def process_user_input(self, user_input: str) -> str:
"""Process user input based on current conversation stage"""
Processing Flow:
- Check for exit intent
- Validate input based on current stage
- Update candidate information
- Progress to next stage
- Generate appropriate response
Stage-Specific Processing:
- Name: Length validation (minimum 2 characters)
- Email: Format validation using regex
- Phone: International format validation
- Experience: Free text with guidance
- Position: Role specification
- Location: Geographic information
- Tech Stack: Technology parsing and question generation
- Technical Questions: Answer storage and progression
2.6 Response Generation
Greeting Message:
def generate_greeting(self) -> str:
"""Generate initial greeting message"""
Completion Message:
def generate_completion_message(self) -> str:
"""Generate completion message"""
Response Features:
- Personalized messaging
- Clear next steps
- Professional tone
- Encouraging language
- Summary information
3. Streamlit UI Implementation
3.1 Page Configuration
st.set_page_config(
page_title="TalentScout - AI Hiring Assistant",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
3.2 Custom Styling
CSS Components:
.main-header
: Gradient header with branding.chat-message
: Message container styling.user-message
: User input styling.bot-message
: AI response styling.sidebar-info
: Information panel styling
Design Features:
- Responsive layout
- Professional color scheme
- Clear visual hierarchy
- Accessibility considerations
3.3 Sidebar Implementation
Information Display:
- Real-time candidate data
- Progress tracking
- Stage indicators
- Export functionality
Progress Visualization:
- Linear progress bar
- Stage names and numbers
- Completion percentage
- Visual feedback
3.4 Chat Interface
Message Display:
- Conversation history
- User/bot message distinction
- Timestamp tracking
- Scrollable interface
Input Handling:
- Text input field
- Send button
- Keyboard shortcuts
- Input validation
4. Data Management
4.1 Export Functionality
def export_candidate_data(self) -> Dict:
"""Export candidate data for download"""
Export Contents:
- Complete candidate information
- Technical Q&A responses
- Session metadata
- Export timestamp
Export Format:
- JSON structure
- Human-readable format
- Structured data organization
- Easy integration support
4.2 Session Management
State Persistence:
- Cross-interaction state maintenance
- Stage progression tracking
- Data integrity protection
- Error recovery mechanisms
π§ Configuration Options
Environment Variables
The application supports configuration through environment variables:
OPENAI_API_KEY
: OpenAI API key (if AI features are enabled)DEBUG_MODE
: Enable debug loggingMAX_QUESTIONS
: Maximum technical questions per session
Customization Points
- Question Templates: Modify technical questions
- Validation Rules: Adjust email/phone patterns
- UI Styling: Update CSS styles
- Conversation Flow: Modify stage progression
- Tech Categories: Add new technology categories
π Deployment Considerations
Hugging Face Spaces
Requirements:
requirements.txt
with dependencies- Main application file (
app.py
) - Streamlit framework selection
- Public repository access
Optimization:
- Minimal dependencies
- Efficient memory usage
- Fast startup time
- Responsive UI
Performance Optimization
Best Practices:
- Session state management
- Efficient data structures
- Minimal API calls
- Lazy loading strategies
π Testing Strategies
Unit Testing
Test Coverage:
- Input validation functions
- Question generation logic
- Data export functionality
- Stage progression logic
Test Cases:
- Valid/invalid email formats
- Phone number variations
- Tech stack parsing
- Edge cases and error conditions
Integration Testing
Test Scenarios:
- Complete conversation flow
- Data persistence across stages
- Export functionality
- UI responsiveness
User Acceptance Testing
Test Criteria:
- Conversation flow intuitiveness
- Technical question relevance
- Data accuracy and completeness
- Overall user experience
π Security Considerations
Data Protection
Privacy Measures:
- No permanent data storage
- Session-based data handling
- Local export options
- Minimal data collection
Input Sanitization:
- Regex validation for emails/phones
- Text input length limits
- Special character handling
- Injection prevention
Session Security
Best Practices:
- Session state isolation
- Secure data transmission
- Input validation
- Error handling
π Future Enhancements
Potential Features
- AI-Powered Question Generation: Dynamic question creation using LLMs
- Multi-language Support: Internationalization capabilities
- Advanced Analytics: Candidate scoring and ranking
- Integration APIs: HR system connectivity
- Video Interview Scheduling: Calendar integration
- Resume Parsing: Automatic data extraction
- Skill Assessment: Practical coding challenges
- Collaborative Filtering: Question recommendation
Technical Improvements
- Database Integration: Persistent data storage
- Authentication System: User management
- Advanced UI: React-based frontend
- Real-time Updates: WebSocket communication
- Mobile Optimization: Progressive web app
- Performance Monitoring: Analytics integration
π References
This documentation provides comprehensive technical details for understanding, maintaining, and extending the TalentScout AI Hiring Assistant application.