talentscout-ai / Documentation.md
surabhic's picture
Upload 3 files
2645749 verified
# πŸ“– TalentScout AI Hiring Assistant - Technical Documentation
## Overview
The TalentScout AI Hiring Assistant is a comprehensive Streamlit application designed to automate the initial stages of candidate screening and technical assessment. This document provides detailed technical information about the application's architecture, components, and functionality.
## πŸ—οΈ Architecture
### Core Components
1. **CandidateInfo**: Data structure for candidate information
2. **HiringAssistant**: Main application logic and conversation management
3. **Streamlit UI**: User interface and interaction layer
4. **Session State Management**: Persistent state across user interactions
### Application Flow
```
Start β†’ Greeting β†’ Data Collection β†’ Technical Assessment β†’ Completion
```
## πŸ“‹ Detailed Code Documentation
### 1. CandidateInfo Class
```python
@dataclass
class CandidateInfo:
"""Data class to store candidate information"""
```
**Purpose**: Structured storage of candidate data with default values.
**Attributes**:
- `full_name`: Candidate's complete name
- `email`: Email address (validated)
- `phone`: Phone number (validated)
- `experience_years`: Years of professional experience
- `desired_positions`: Target job positions
- `current_location`: Geographic location
- `tech_stack`: Technical skills and technologies
- `session_start`: Session initiation timestamp
**Features**:
- Type hints for data validation
- Default empty values for initialization
- Automatic timestamp generation
### 2. HiringAssistant Class
The main application class handling all business logic.
#### 2.1 Initialization
```python
def __init__(self):
self.conversation_stages = {...}
self.tech_categories = {...}
self.exit_keywords = [...]
```
**Conversation Stages**:
- `greeting` (0): Initial welcome
- `name` (1): Name collection
- `email` (2): Email validation and collection
- `phone` (3): Phone validation and collection
- `experience` (4): Experience level assessment
- `position` (5): Position preferences
- `location` (6): Geographic information
- `tech_stack` (7): Technical skills collection
- `technical_questions` (8): Dynamic technical assessment
- `completed` (9): Process completion
**Tech Categories**:
- `programming_languages`: Core programming languages
- `web_frameworks`: Web development frameworks
- `databases`: Database technologies
- `cloud_platforms`: Cloud and DevOps tools
- `data_science`: Data science and ML libraries
- `mobile`: Mobile development platforms
#### 2.2 Session State Management
```python
def initialize_session_state(self):
"""Initialize session state variables"""
```
**Session Variables**:
- `candidate_info`: CandidateInfo instance
- `conversation_history`: Q&A storage
- `current_stage`: Current conversation stage
- `technical_questions`: Generated questions list
- `current_question_index`: Question progress tracker
- `conversation_ended`: Termination flag
#### 2.3 Input Validation
**Email Validation**:
```python
def validate_email(self, email: str) -> bool:
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
return re.match(pattern, email) is not None
```
**Phone Validation**:
```python
def validate_phone(self, phone: str) -> bool:
cleaned_phone = re.sub(r'[\s\-\(\)]', '', phone)
pattern = r'^\+?[1-9]\d{9,14}$'
return re.match(pattern, cleaned_phone) is not None
```
**Validation Features**:
- Email: Standard RFC-compliant email format
- Phone: International format support with cleaning
- Real-time validation feedback
- Error handling and user guidance
#### 2.4 Technical Question Generation
```python
def generate_technical_questions(self, tech_stack: str) -> List[str]:
"""Generate technical questions based on the candidate's tech stack"""
```
**Question Generation Logic**:
1. Parse tech stack string (comma, semicolon, newline separated)
2. Match technologies to question templates
3. Select 2 questions per identified technology
4. Maximum 5 questions total
5. Fallback to generic questions if no matches
**Question Templates**:
- Technology-specific questions
- Skill-level appropriate content
- Practical and theoretical balance
- Real-world application focus
**Example Question Categories**:
- **Python**: Decorators, data structures, exception handling
- **JavaScript**: Closures, promises, ES6 features
- **React**: Hooks, state management, virtual DOM
- **SQL**: Joins, optimization, indexing
- **AWS**: Services comparison, architecture patterns
#### 2.5 Input Processing
```python
def process_user_input(self, user_input: str) -> str:
"""Process user input based on current conversation stage"""
```
**Processing Flow**:
1. Check for exit intent
2. Validate input based on current stage
3. Update candidate information
4. Progress to next stage
5. Generate appropriate response
**Stage-Specific Processing**:
- **Name**: Length validation (minimum 2 characters)
- **Email**: Format validation using regex
- **Phone**: International format validation
- **Experience**: Free text with guidance
- **Position**: Role specification
- **Location**: Geographic information
- **Tech Stack**: Technology parsing and question generation
- **Technical Questions**: Answer storage and progression
#### 2.6 Response Generation
**Greeting Message**:
```python
def generate_greeting(self) -> str:
"""Generate initial greeting message"""
```
**Completion Message**:
```python
def generate_completion_message(self) -> str:
"""Generate completion message"""
```
**Response Features**:
- Personalized messaging
- Clear next steps
- Professional tone
- Encouraging language
- Summary information
### 3. Streamlit UI Implementation
#### 3.1 Page Configuration
```python
st.set_page_config(
page_title="TalentScout - AI Hiring Assistant",
page_icon="πŸ€–",
layout="wide",
initial_sidebar_state="expanded"
)
```
#### 3.2 Custom Styling
**CSS Components**:
- `.main-header`: Gradient header with branding
- `.chat-message`: Message container styling
- `.user-message`: User input styling
- `.bot-message`: AI response styling
- `.sidebar-info`: Information panel styling
**Design Features**:
- Responsive layout
- Professional color scheme
- Clear visual hierarchy
- Accessibility considerations
#### 3.3 Sidebar Implementation
**Information Display**:
- Real-time candidate data
- Progress tracking
- Stage indicators
- Export functionality
**Progress Visualization**:
- Linear progress bar
- Stage names and numbers
- Completion percentage
- Visual feedback
#### 3.4 Chat Interface
**Message Display**:
- Conversation history
- User/bot message distinction
- Timestamp tracking
- Scrollable interface
**Input Handling**:
- Text input field
- Send button
- Keyboard shortcuts
- Input validation
### 4. Data Management
#### 4.1 Export Functionality
```python
def export_candidate_data(self) -> Dict:
"""Export candidate data for download"""
```
**Export Contents**:
- Complete candidate information
- Technical Q&A responses
- Session metadata
- Export timestamp
**Export Format**:
- JSON structure
- Human-readable format
- Structured data organization
- Easy integration support
#### 4.2 Session Management
**State Persistence**:
- Cross-interaction state maintenance
- Stage progression tracking
- Data integrity protection
- Error recovery mechanisms
## πŸ”§ Configuration Options
### Environment Variables
The application supports configuration through environment variables:
- `OPENAI_API_KEY`: OpenAI API key (if AI features are enabled)
- `DEBUG_MODE`: Enable debug logging
- `MAX_QUESTIONS`: Maximum technical questions per session
### Customization Points
1. **Question Templates**: Modify technical questions
2. **Validation Rules**: Adjust email/phone patterns
3. **UI Styling**: Update CSS styles
4. **Conversation Flow**: Modify stage progression
5. **Tech Categories**: Add new technology categories
## πŸš€ Deployment Considerations
### Hugging Face Spaces
**Requirements**:
- `requirements.txt` with dependencies
- Main application file (`app.py`)
- Streamlit framework selection
- Public repository access
**Optimization**:
- Minimal dependencies
- Efficient memory usage
- Fast startup time
- Responsive UI
### Performance Optimization
**Best Practices**:
- Session state management
- Efficient data structures
- Minimal API calls
- Lazy loading strategies
## πŸ” Testing Strategies
### Unit Testing
**Test Coverage**:
- Input validation functions
- Question generation logic
- Data export functionality
- Stage progression logic
**Test Cases**:
- Valid/invalid email formats
- Phone number variations
- Tech stack parsing
- Edge cases and error conditions
### Integration Testing
**Test Scenarios**:
- Complete conversation flow
- Data persistence across stages
- Export functionality
- UI responsiveness
### User Acceptance Testing
**Test Criteria**:
- Conversation flow intuitiveness
- Technical question relevance
- Data accuracy and completeness
- Overall user experience
## πŸ”’ Security Considerations
### Data Protection
**Privacy Measures**:
- No permanent data storage
- Session-based data handling
- Local export options
- Minimal data collection
**Input Sanitization**:
- Regex validation for emails/phones
- Text input length limits
- Special character handling
- Injection prevention
### Session Security
**Best Practices**:
- Session state isolation
- Secure data transmission
- Input validation
- Error handling
## πŸ“ˆ Future Enhancements
### Potential Features
1. **AI-Powered Question Generation**: Dynamic question creation using LLMs
2. **Multi-language Support**: Internationalization capabilities
3. **Advanced Analytics**: Candidate scoring and ranking
4. **Integration APIs**: HR system connectivity
5. **Video Interview Scheduling**: Calendar integration
6. **Resume Parsing**: Automatic data extraction
7. **Skill Assessment**: Practical coding challenges
8. **Collaborative Filtering**: Question recommendation
### Technical Improvements
1. **Database Integration**: Persistent data storage
2. **Authentication System**: User management
3. **Advanced UI**: React-based frontend
4. **Real-time Updates**: WebSocket communication
5. **Mobile Optimization**: Progressive web app
6. **Performance Monitoring**: Analytics integration
## πŸ“š References
- [Streamlit Documentation](https://docs.streamlit.io/)
- [Python Dataclasses](https://docs.python.org/3/library/dataclasses.html)
- [Regular Expressions](https://docs.python.org/3/library/re.html)
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces)
---
This documentation provides comprehensive technical details for understanding, maintaining, and extending the TalentScout AI Hiring Assistant application.