Spaces:
Sleeping
Sleeping
# π TalentScout AI Hiring Assistant - Technical Documentation | |
## Overview | |
The TalentScout AI Hiring Assistant is a comprehensive Streamlit application designed to automate the initial stages of candidate screening and technical assessment. This document provides detailed technical information about the application's architecture, components, and functionality. | |
## ποΈ Architecture | |
### Core Components | |
1. **CandidateInfo**: Data structure for candidate information | |
2. **HiringAssistant**: Main application logic and conversation management | |
3. **Streamlit UI**: User interface and interaction layer | |
4. **Session State Management**: Persistent state across user interactions | |
### Application Flow | |
``` | |
Start β Greeting β Data Collection β Technical Assessment β Completion | |
``` | |
## π Detailed Code Documentation | |
### 1. CandidateInfo Class | |
```python | |
@dataclass | |
class CandidateInfo: | |
"""Data class to store candidate information""" | |
``` | |
**Purpose**: Structured storage of candidate data with default values. | |
**Attributes**: | |
- `full_name`: Candidate's complete name | |
- `email`: Email address (validated) | |
- `phone`: Phone number (validated) | |
- `experience_years`: Years of professional experience | |
- `desired_positions`: Target job positions | |
- `current_location`: Geographic location | |
- `tech_stack`: Technical skills and technologies | |
- `session_start`: Session initiation timestamp | |
**Features**: | |
- Type hints for data validation | |
- Default empty values for initialization | |
- Automatic timestamp generation | |
### 2. HiringAssistant Class | |
The main application class handling all business logic. | |
#### 2.1 Initialization | |
```python | |
def __init__(self): | |
self.conversation_stages = {...} | |
self.tech_categories = {...} | |
self.exit_keywords = [...] | |
``` | |
**Conversation Stages**: | |
- `greeting` (0): Initial welcome | |
- `name` (1): Name collection | |
- `email` (2): Email validation and collection | |
- `phone` (3): Phone validation and collection | |
- `experience` (4): Experience level assessment | |
- `position` (5): Position preferences | |
- `location` (6): Geographic information | |
- `tech_stack` (7): Technical skills collection | |
- `technical_questions` (8): Dynamic technical assessment | |
- `completed` (9): Process completion | |
**Tech Categories**: | |
- `programming_languages`: Core programming languages | |
- `web_frameworks`: Web development frameworks | |
- `databases`: Database technologies | |
- `cloud_platforms`: Cloud and DevOps tools | |
- `data_science`: Data science and ML libraries | |
- `mobile`: Mobile development platforms | |
#### 2.2 Session State Management | |
```python | |
def initialize_session_state(self): | |
"""Initialize session state variables""" | |
``` | |
**Session Variables**: | |
- `candidate_info`: CandidateInfo instance | |
- `conversation_history`: Q&A storage | |
- `current_stage`: Current conversation stage | |
- `technical_questions`: Generated questions list | |
- `current_question_index`: Question progress tracker | |
- `conversation_ended`: Termination flag | |
#### 2.3 Input Validation | |
**Email Validation**: | |
```python | |
def validate_email(self, email: str) -> bool: | |
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$' | |
return re.match(pattern, email) is not None | |
``` | |
**Phone Validation**: | |
```python | |
def validate_phone(self, phone: str) -> bool: | |
cleaned_phone = re.sub(r'[\s\-\(\)]', '', phone) | |
pattern = r'^\+?[1-9]\d{9,14}$' | |
return re.match(pattern, cleaned_phone) is not None | |
``` | |
**Validation Features**: | |
- Email: Standard RFC-compliant email format | |
- Phone: International format support with cleaning | |
- Real-time validation feedback | |
- Error handling and user guidance | |
#### 2.4 Technical Question Generation | |
```python | |
def generate_technical_questions(self, tech_stack: str) -> List[str]: | |
"""Generate technical questions based on the candidate's tech stack""" | |
``` | |
**Question Generation Logic**: | |
1. Parse tech stack string (comma, semicolon, newline separated) | |
2. Match technologies to question templates | |
3. Select 2 questions per identified technology | |
4. Maximum 5 questions total | |
5. Fallback to generic questions if no matches | |
**Question Templates**: | |
- Technology-specific questions | |
- Skill-level appropriate content | |
- Practical and theoretical balance | |
- Real-world application focus | |
**Example Question Categories**: | |
- **Python**: Decorators, data structures, exception handling | |
- **JavaScript**: Closures, promises, ES6 features | |
- **React**: Hooks, state management, virtual DOM | |
- **SQL**: Joins, optimization, indexing | |
- **AWS**: Services comparison, architecture patterns | |
#### 2.5 Input Processing | |
```python | |
def process_user_input(self, user_input: str) -> str: | |
"""Process user input based on current conversation stage""" | |
``` | |
**Processing Flow**: | |
1. Check for exit intent | |
2. Validate input based on current stage | |
3. Update candidate information | |
4. Progress to next stage | |
5. Generate appropriate response | |
**Stage-Specific Processing**: | |
- **Name**: Length validation (minimum 2 characters) | |
- **Email**: Format validation using regex | |
- **Phone**: International format validation | |
- **Experience**: Free text with guidance | |
- **Position**: Role specification | |
- **Location**: Geographic information | |
- **Tech Stack**: Technology parsing and question generation | |
- **Technical Questions**: Answer storage and progression | |
#### 2.6 Response Generation | |
**Greeting Message**: | |
```python | |
def generate_greeting(self) -> str: | |
"""Generate initial greeting message""" | |
``` | |
**Completion Message**: | |
```python | |
def generate_completion_message(self) -> str: | |
"""Generate completion message""" | |
``` | |
**Response Features**: | |
- Personalized messaging | |
- Clear next steps | |
- Professional tone | |
- Encouraging language | |
- Summary information | |
### 3. Streamlit UI Implementation | |
#### 3.1 Page Configuration | |
```python | |
st.set_page_config( | |
page_title="TalentScout - AI Hiring Assistant", | |
page_icon="π€", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
``` | |
#### 3.2 Custom Styling | |
**CSS Components**: | |
- `.main-header`: Gradient header with branding | |
- `.chat-message`: Message container styling | |
- `.user-message`: User input styling | |
- `.bot-message`: AI response styling | |
- `.sidebar-info`: Information panel styling | |
**Design Features**: | |
- Responsive layout | |
- Professional color scheme | |
- Clear visual hierarchy | |
- Accessibility considerations | |
#### 3.3 Sidebar Implementation | |
**Information Display**: | |
- Real-time candidate data | |
- Progress tracking | |
- Stage indicators | |
- Export functionality | |
**Progress Visualization**: | |
- Linear progress bar | |
- Stage names and numbers | |
- Completion percentage | |
- Visual feedback | |
#### 3.4 Chat Interface | |
**Message Display**: | |
- Conversation history | |
- User/bot message distinction | |
- Timestamp tracking | |
- Scrollable interface | |
**Input Handling**: | |
- Text input field | |
- Send button | |
- Keyboard shortcuts | |
- Input validation | |
### 4. Data Management | |
#### 4.1 Export Functionality | |
```python | |
def export_candidate_data(self) -> Dict: | |
"""Export candidate data for download""" | |
``` | |
**Export Contents**: | |
- Complete candidate information | |
- Technical Q&A responses | |
- Session metadata | |
- Export timestamp | |
**Export Format**: | |
- JSON structure | |
- Human-readable format | |
- Structured data organization | |
- Easy integration support | |
#### 4.2 Session Management | |
**State Persistence**: | |
- Cross-interaction state maintenance | |
- Stage progression tracking | |
- Data integrity protection | |
- Error recovery mechanisms | |
## π§ Configuration Options | |
### Environment Variables | |
The application supports configuration through environment variables: | |
- `OPENAI_API_KEY`: OpenAI API key (if AI features are enabled) | |
- `DEBUG_MODE`: Enable debug logging | |
- `MAX_QUESTIONS`: Maximum technical questions per session | |
### Customization Points | |
1. **Question Templates**: Modify technical questions | |
2. **Validation Rules**: Adjust email/phone patterns | |
3. **UI Styling**: Update CSS styles | |
4. **Conversation Flow**: Modify stage progression | |
5. **Tech Categories**: Add new technology categories | |
## π Deployment Considerations | |
### Hugging Face Spaces | |
**Requirements**: | |
- `requirements.txt` with dependencies | |
- Main application file (`app.py`) | |
- Streamlit framework selection | |
- Public repository access | |
**Optimization**: | |
- Minimal dependencies | |
- Efficient memory usage | |
- Fast startup time | |
- Responsive UI | |
### Performance Optimization | |
**Best Practices**: | |
- Session state management | |
- Efficient data structures | |
- Minimal API calls | |
- Lazy loading strategies | |
## π Testing Strategies | |
### Unit Testing | |
**Test Coverage**: | |
- Input validation functions | |
- Question generation logic | |
- Data export functionality | |
- Stage progression logic | |
**Test Cases**: | |
- Valid/invalid email formats | |
- Phone number variations | |
- Tech stack parsing | |
- Edge cases and error conditions | |
### Integration Testing | |
**Test Scenarios**: | |
- Complete conversation flow | |
- Data persistence across stages | |
- Export functionality | |
- UI responsiveness | |
### User Acceptance Testing | |
**Test Criteria**: | |
- Conversation flow intuitiveness | |
- Technical question relevance | |
- Data accuracy and completeness | |
- Overall user experience | |
## π Security Considerations | |
### Data Protection | |
**Privacy Measures**: | |
- No permanent data storage | |
- Session-based data handling | |
- Local export options | |
- Minimal data collection | |
**Input Sanitization**: | |
- Regex validation for emails/phones | |
- Text input length limits | |
- Special character handling | |
- Injection prevention | |
### Session Security | |
**Best Practices**: | |
- Session state isolation | |
- Secure data transmission | |
- Input validation | |
- Error handling | |
## π Future Enhancements | |
### Potential Features | |
1. **AI-Powered Question Generation**: Dynamic question creation using LLMs | |
2. **Multi-language Support**: Internationalization capabilities | |
3. **Advanced Analytics**: Candidate scoring and ranking | |
4. **Integration APIs**: HR system connectivity | |
5. **Video Interview Scheduling**: Calendar integration | |
6. **Resume Parsing**: Automatic data extraction | |
7. **Skill Assessment**: Practical coding challenges | |
8. **Collaborative Filtering**: Question recommendation | |
### Technical Improvements | |
1. **Database Integration**: Persistent data storage | |
2. **Authentication System**: User management | |
3. **Advanced UI**: React-based frontend | |
4. **Real-time Updates**: WebSocket communication | |
5. **Mobile Optimization**: Progressive web app | |
6. **Performance Monitoring**: Analytics integration | |
## π References | |
- [Streamlit Documentation](https://docs.streamlit.io/) | |
- [Python Dataclasses](https://docs.python.org/3/library/dataclasses.html) | |
- [Regular Expressions](https://docs.python.org/3/library/re.html) | |
- [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces) | |
--- | |
This documentation provides comprehensive technical details for understanding, maintaining, and extending the TalentScout AI Hiring Assistant application. |