metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:10000
- loss:MultipleNegativesRankingLoss
base_model: openai/clip-vit-large-patch14
widget:
- source_sentence: A man standing next to a little girl riding a horse.
sentences:
- The woman is working on her computer at the desk.
- A young man holding an umbrella next to a herd of cattle.
- 'a person sitting at a desk with a keyboard and monitor '
- source_sentence: 'A car at an intersection while a man is crossing the street. '
sentences:
- A plane that is flying in the air.
- a small girl sitting on a chair holding a white bear
- A young toddler walks across the grass in a park.
- source_sentence: A lady riding her bicycle on the side of a street.
sentences:
- Flowers hang from a small decorative post in a yard.
- Flowers in a clear vase sitting on a table.
- The toilet is near the door in the bathroom.
- source_sentence: 'A group of zebras standing beside each other in the desert. '
sentences:
- The bathroom is clean and ready for us to use.
- A woman throwing a frisbee as a child looks on.
- a bird with a pink eye is sitting on a branch in the woods.
- source_sentence: A large desk by a window is neatly arranged.
sentences:
- An old toilet sits in dirt with a helmet on top.
- A lady sitting at an enormous dining table with lots of food.
- A long hot dog on a plate on a table.
datasets:
- jxie/coco_captions
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 11.59757010411656
energy_consumed: 0.04333563796741882
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.137
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CLIP ViT-L/14 model trained on COCO Captions
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: coco eval
type: coco-eval
metrics:
- type: cosine_accuracy@1
value: 0.799
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.968
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.991
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.995
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.799
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3226666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19820000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09950000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.799
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.968
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.991
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.995
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9112246370033859
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8827011904761911
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8828050771692076
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: coco test
type: coco-test
metrics:
- type: cosine_accuracy@1
value: 0.776
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.959
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.986
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.995
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.776
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31966666666666665
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19720000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09950000000000003
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.776
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.959
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.986
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.995
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8996790966052481
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8674440476190487
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8678233839689722
name: Cosine Map@100
CLIP ViT-L/14 model trained on COCO Captions
This is a sentence-transformers model finetuned from openai/clip-vit-large-patch14 on the coco_captions dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: openai/clip-vit-large-patch14
- Maximum Sequence Length: None tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'CLIPModel'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/clip-vit-L14-coco")
# Run inference
sentences = [
'A large desk by a window is neatly arranged.',
'A long hot dog on a plate on a table.',
'A lady sitting at an enormous dining table with lots of food.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.0302, 0.1619],
# [-0.0302, 1.0000, 0.1578],
# [ 0.1619, 0.1578, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Datasets:
coco-eval
andcoco-test
- Evaluated with
InformationRetrievalEvaluator
Metric | coco-eval | coco-test |
---|---|---|
cosine_accuracy@1 | 0.799 | 0.776 |
cosine_accuracy@3 | 0.968 | 0.959 |
cosine_accuracy@5 | 0.991 | 0.986 |
cosine_accuracy@10 | 0.995 | 0.995 |
cosine_precision@1 | 0.799 | 0.776 |
cosine_precision@3 | 0.3227 | 0.3197 |
cosine_precision@5 | 0.1982 | 0.1972 |
cosine_precision@10 | 0.0995 | 0.0995 |
cosine_recall@1 | 0.799 | 0.776 |
cosine_recall@3 | 0.968 | 0.959 |
cosine_recall@5 | 0.991 | 0.986 |
cosine_recall@10 | 0.995 | 0.995 |
cosine_ndcg@10 | 0.9112 | 0.8997 |
cosine_mrr@10 | 0.8827 | 0.8674 |
cosine_map@100 | 0.8828 | 0.8678 |
Training Details
Training Dataset
coco_captions
- Dataset: coco_captions at a2ed90d
- Size: 10,000 training samples
- Columns:
image
andcaption
- Approximate statistics based on the first 1000 samples:
image caption type PIL.JpegImagePlugin.JpegImageFile string details - min: 28 characters
- mean: 52.56 characters
- max: 156 characters
- Samples:
image caption A woman wearing a net on her head cutting a cake.
A woman cutting a large white sheet cake.
A woman wearing a hair net cutting a large sheet cake.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
coco_captions
- Dataset: coco_captions at a2ed90d
- Size: 1,000 evaluation samples
- Columns:
image
andcaption
- Approximate statistics based on the first 1000 samples:
image caption type PIL.JpegImagePlugin.JpegImageFile string details - min: 27 characters
- mean: 52.45 characters
- max: 151 characters
- Samples:
image caption A child holding a flowered umbrella and petting a yak.
A young man holding an umbrella next to a herd of cattle.
a young boy barefoot holding an umbrella touching the horn of a cow
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseuse_cpu
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falsebf16
: Truefp16
: Falsehalf_precision_backend
: Nonebf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Nonegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_for_metrics
: []eval_do_concat_batches
: Truemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falseray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: noneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Trueprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.8902 | - |
0.0112 | 7 | 0.4782 | - | - | - |
0.0224 | 14 | 0.3108 | - | - | - |
0.0336 | 21 | 0.2212 | - | - | - |
0.0448 | 28 | 0.1612 | - | - | - |
0.056 | 35 | 0.1853 | - | - | - |
0.0672 | 42 | 0.0811 | - | - | - |
0.0784 | 49 | 0.0785 | - | - | - |
0.0896 | 56 | 0.1022 | - | - | - |
0.1008 | 63 | 0.0927 | 0.1433 | 0.9189 | - |
0.112 | 70 | 0.112 | - | - | - |
0.1232 | 77 | 0.1072 | - | - | - |
0.1344 | 84 | 0.1272 | - | - | - |
0.1456 | 91 | 0.1176 | - | - | - |
0.1568 | 98 | 0.1361 | - | - | - |
0.168 | 105 | 0.1281 | - | - | - |
0.1792 | 112 | 0.0961 | - | - | - |
0.1904 | 119 | 0.1038 | - | - | - |
0.2016 | 126 | 0.1019 | 0.1506 | 0.8929 | - |
0.2128 | 133 | 0.0657 | - | - | - |
0.224 | 140 | 0.1187 | - | - | - |
0.2352 | 147 | 0.0752 | - | - | - |
0.2464 | 154 | 0.2314 | - | - | - |
0.2576 | 161 | 0.0806 | - | - | - |
0.2688 | 168 | 0.1243 | - | - | - |
0.28 | 175 | 0.1179 | - | - | - |
0.2912 | 182 | 0.1174 | - | - | - |
0.3024 | 189 | 0.0926 | 0.1604 | 0.8907 | - |
0.3136 | 196 | 0.1327 | - | - | - |
0.3248 | 203 | 0.0861 | - | - | - |
0.336 | 210 | 0.0677 | - | - | - |
0.3472 | 217 | 0.1296 | - | - | - |
0.3584 | 224 | 0.1322 | - | - | - |
0.3696 | 231 | 0.1555 | - | - | - |
0.3808 | 238 | 0.0807 | - | - | - |
0.392 | 245 | 0.1134 | - | - | - |
0.4032 | 252 | 0.1826 | 0.1712 | 0.8840 | - |
0.4144 | 259 | 0.1796 | - | - | - |
0.4256 | 266 | 0.186 | - | - | - |
0.4368 | 273 | 0.0971 | - | - | - |
0.448 | 280 | 0.063 | - | - | - |
0.4592 | 287 | 0.1344 | - | - | - |
0.4704 | 294 | 0.072 | - | - | - |
0.4816 | 301 | 0.1233 | - | - | - |
0.4928 | 308 | 0.1152 | - | - | - |
0.504 | 315 | 0.148 | 0.1565 | 0.8960 | - |
0.5152 | 322 | 0.0836 | - | - | - |
0.5264 | 329 | 0.1171 | - | - | - |
0.5376 | 336 | 0.1433 | - | - | - |
0.5488 | 343 | 0.0494 | - | - | - |
0.56 | 350 | 0.1533 | - | - | - |
0.5712 | 357 | 0.0773 | - | - | - |
0.5824 | 364 | 0.0921 | - | - | - |
0.5936 | 371 | 0.0546 | - | - | - |
0.6048 | 378 | 0.1444 | 0.1496 | 0.9001 | - |
0.616 | 385 | 0.0956 | - | - | - |
0.6272 | 392 | 0.0445 | - | - | - |
0.6384 | 399 | 0.0939 | - | - | - |
0.6496 | 406 | 0.1109 | - | - | - |
0.6608 | 413 | 0.0466 | - | - | - |
0.672 | 420 | 0.0627 | - | - | - |
0.6832 | 427 | 0.0857 | - | - | - |
0.6944 | 434 | 0.058 | - | - | - |
0.7056 | 441 | 0.1542 | 0.1443 | 0.9031 | - |
0.7168 | 448 | 0.0972 | - | - | - |
0.728 | 455 | 0.0892 | - | - | - |
0.7392 | 462 | 0.0819 | - | - | - |
0.7504 | 469 | 0.0838 | - | - | - |
0.7616 | 476 | 0.0754 | - | - | - |
0.7728 | 483 | 0.0754 | - | - | - |
0.784 | 490 | 0.0638 | - | - | - |
0.7952 | 497 | 0.1006 | - | - | - |
0.8064 | 504 | 0.0398 | 0.1429 | 0.9122 | - |
0.8176 | 511 | 0.1562 | - | - | - |
0.8288 | 518 | 0.1039 | - | - | - |
0.84 | 525 | 0.0342 | - | - | - |
0.8512 | 532 | 0.0467 | - | - | - |
0.8624 | 539 | 0.0703 | - | - | - |
0.8736 | 546 | 0.0655 | - | - | - |
0.8848 | 553 | 0.0216 | - | - | - |
0.896 | 560 | 0.029 | - | - | - |
0.9072 | 567 | 0.0588 | 0.1530 | 0.9112 | - |
0.9184 | 574 | 0.1145 | - | - | - |
0.9296 | 581 | 0.0652 | - | - | - |
0.9408 | 588 | 0.0556 | - | - | - |
0.952 | 595 | 0.0458 | - | - | - |
0.9632 | 602 | 0.0085 | - | - | - |
0.9744 | 609 | 0.0572 | - | - | - |
0.9856 | 616 | 0.0942 | - | - | - |
0.9968 | 623 | 0.109 | - | - | - |
-1 | -1 | - | - | - | 0.8997 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.043 kWh
- Carbon Emitted: 0.012 kg of CO2
- Hours Used: 0.137 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 5.2.0.dev0
- Transformers: 4.57.0.dev0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}