Serial Number
int64
1
6k
Issue Number
int64
75.6k
112k
Title
stringlengths
3
357
Labels
stringlengths
3
241
βŒ€
Body
stringlengths
9
74.5k
βŒ€
Comments
int64
0
867
4,201
97,248
A more systematic API for resolving the "vmap-incompatible in-place operation" error
triaged, actionable, needs design, module: functorch
# Motivation Users may run into "vmap-incompatible in-place operation" error when creating a Tensor via a factory function and in-placing into it. For example: ```py def f(x): y = torch.empty(x.shape) y.copy_(x) return y x = torch.randn(2, 3) vmap(f)(x) ``` In this example, inside `f`: `y` is a Tensor of shape [3], but we're trying to copy a BatchedTensor (which has underlying shape [2, 3]) into `y`. Our general advice for this situation is to use `Tensor.new_empty`. This ends up creating a `y` that is a BatchedTensor: ```py def f(x): y = x.new_empty(x.shape) y.copy_(x) return y x = torch.randn(2, 3) vmap(f)(x) ``` Sometimes, it is not completely obvious to the user what tensor to call new_empty on. Take the following code as example: ```py def f(x, y) z = torch.empty(x.shape) z.copy_(x) z.copy_(y) return z # Case 1 vmap(f, (0, None))(torch.randn(2, 3), torch.randn(3)) # Case 2 vmap(f, (None, 0))(torch.randn(3), torch.randn(2, 3)) ``` The way to rewrite f to support both of the above cases is a bit silly: ```py def f(x, y) z = torch.cat([x, y]).new_empty(x.shape) z.copy_(x) z.copy_(y) return z ``` # Pitch One possible API is that we provide an API to construct a BatchedTensor inside a function being vmapped. There are a couple of ideas on how it could look like: ```py def f(x, y) # Option 1 z = torch.empty(x.shape) z = torch.lift(z) # Option 2 z = torch.lifted_empty(x.shape) # Option 3 z = torch.empty(x.shape, lift=True) # Option 4 z = torch.empty(x.shape) z = torch.lift_as(z, (x, y)) # Grants z the properties of x and y z.copy_(x) z.copy_(y) return z ``` Other ideas welcome. cc @Chillee @samdow @soumith @kshitij12345 @janeyx99
1
4,202
89,065
Improve clarity of meaning of `torch.jit.trace`'s `example_inputs`
oncall: jit
### πŸ“š The doc issue The document in question is the [torch.jit.trace documentation](https://pytorch.org/docs/stable/generated/torch.jit.trace.html#torch.jit.trace). Specifically, it describes the `example_inputs` parameter as follows: > **example_inputs** ([tuple](https://docs.python.org/3/library/stdtypes.html#tuple) or [torch.Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)) – A tuple of example inputs that will be passed to the function while tracing. The resulting trace can be run with inputs of different types and shapes assuming the traced operations support those types and shapes. *example_inputs* may also be a single Tensor in which case it is automatically wrapped in a tuple. This may be perfectly clear to most people, but for several days I thought that the plural "example_input**s**" meant that I could provide a tuple of a bunch of different inputs of various shapes as a tuple, and they'd all be traced. That doesn't seem to be the case; at least, in my experience, all of the inputs are passed to my `forward` function at once. What I believe this actually means, in reality, is that if your `forward` function requires multiple inputs, you can pass those inputs as a tuple. ### Suggest a potential alternative/fix Something like this, in which I've tried to make it more clear that this is really just one example input, but it can be a tuple if the `forward` function uses multiple input values. > **example_inputs** ([tuple](https://docs.python.org/3/library/stdtypes.html#tuple) or [torch.Tensor](https://pytorch.org/docs/stable/tensors.html#torch.Tensor)) – An example input that will be passed to the function while tracing. If the `forward` function requires multiple inputs, then this example input should be a tuple of those inputs. The resulting trace can be run with inputs of different types and shapes assuming the traced operations support those types and shapes. *example_inputs* may also be a single Tensor in which case it is automatically wrapped in a tuple. If that is correct, then also it's a little confusing that this argument is called `example_inputs`, since it's more like "`example_input`, potentially with multiple parts", but for historical reasons I don't see that changing. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
4,203
89,064
UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`.
oncall: jit
### πŸ› Describe the bug This small script produces a warning, but the warning is not very actionable. Is there something we can do to make this not warn or tell me what to do to fix the warning? ```python import torch from torch.fx.experimental.proxy_tensor import make_fx from functorch._src.compile_utils import strip_overloads def f(x): return x fx = make_fx(f)(torch.ones(2, 3)) strip_overloads(fx) torch.jit.script(fx) ``` Output: ``` /usr/local/google/home/silvasean/.local/lib/python3.10/site-packages/torch/jit/_check.py:181: UserWarning: The TorchScript type system doesn't support instance-level annotations on empty non-base types in `__init__`. Instead, either 1) use a type annotation in the class body, or 2) wrap the type in `torch.jit.Attribute`. warnings.warn("The TorchScript type system doesn't support " ``` ### Versions Collecting environment information... PyTorch version: 1.14.0.dev20221114+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Debian GNU/Linux rodete (x86_64) GCC version: (Debian 12.2.0-3) 12.2.0 Clang version: 14.0.6-2 CMake version: version 3.24.3 Libc version: glibc-2.35 Python version: 3.10.7 (main, Sep 8 2022, 14:34:29) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-5.18.16-1rodete4-amd64-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.4 [pip3] torch==1.14.0.dev20221114+cpu [pip3] torchvision==0.15.0.dev20221114+cpu [conda] Could not collect cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
3
4,204
89,060
Extend test_proxy_tensor tests to support ops test non floating point types
module: tests, triaged, module: ProxyTensor
### πŸš€ The feature, motivation and pitch Currently, proxy tensor tests are only run for `torch.float` dtype. This means two things: 1. Ops that don't support floating point types (e.g., `bitwise_{...}` ops, `view_as_real` etc) are completely untested 2. Op behavior is only tested for floating point types and not for other dtypes. This means that we might completely miss on some dtype specific correctness for other dtypes. ### Alternatives _No response_ ### Additional context _No response_ cc @mruberry
0
4,205
89,054
Add a `device` keyword argument to `torch.manual_seed`
triaged, module: random
### πŸš€ The feature, motivation and pitch I would argue that the default way to set seeds and to retrieve generators in PyTorch ML is to use `torch.manual_seed` which creates a generator underneath. So it's a common use case to do the following: ```python import torch generator = torch.manual_seed(0) ``` and then make use of the generator for downsteam pipelines. Now in many cases one would like the generator to be directly on GPU if all the computation happens on GPU and random tensors that are created along the way should then also directly be created on gpu: ```python noise = torch.randn(shape, generator=generator, device="cuda") ``` In the above case, we would like `generator` to be on GPU, but it's currently a bit tedious to do this: ```python generator = torch.Generator(device="cuda").manual_seed(0) ``` => IMO a nicer API and easier to adapt API would be: ```python generator = torch.manual_seed(0, device="cuda") ``` ### Alternatives ```python generator = torch.Generator(device="cuda").manual_seed(0) ``` ### Additional context With the rise of Diffusion Modes for generative tasks in ML making pipelines more deterministic becomes more and more important . E.g. we rely on the above functionality **a lot** in `difffusers`: https://github.com/huggingface/diffusers - a nicer API here would be great here. cc @pbelevich
2
4,206
89,051
caffe2_interface_library CMake macro prevents linking to LibTorch as a transitive dependency
module: cpp, triaged
### πŸ› Describe the bug I have a CMake C++ library that uses LibTorch. It has a layout like this (if simplified): * `src/CMakeLists.txt` downloads Torch, finds it with `find_package`, and creates the main library `lib` that publicly links to `${TORCH_LIBRARIES}` * `tests/CMakeLists.txt` creates executable `tests` that links to `lib` * Top-level `CMakeLists.txt` adds the above directories with `add_subdirectory` in the order they are written above Here is the sample project: [project.zip](https://github.com/pytorch/pytorch/files/10010630/project.zip). The expected behavior is for the project to build fine but in reality it fails to configure with a lot of errors when `lib` is linked to `tests` (the `lib` itself can be built without any errors if `tests` is removed): ``` CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_COMPILE_DEFINITIONS> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_COMPILE_DEFINITIONS> Target "torch" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_INCLUDE_DIRECTORIES> Target "torch" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_SYSTEM_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_SYSTEM_INCLUDE_DIRECTORIES> Target "torch" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_INCLUDE_DIRECTORIES> Target "torch" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_COMPILE_OPTIONS> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_COMPILE_OPTIONS> Target "torch" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_COMPILE_DEFINITIONS> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_COMPILE_DEFINITIONS> Target "torch" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_INCLUDE_DIRECTORIES> Target "torch" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_SYSTEM_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_SYSTEM_INCLUDE_DIRECTORIES> Target "torch" not found. CMake Error: Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_INCLUDE_DIRECTORIES> Target "torch" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_COMPILE_DEFINITIONS> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_COMPILE_DEFINITIONS> Target "torch" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch_cpu,INTERFACE_INCLUDE_DIRECTORIES> Target "torch_cpu" not found. CMake Error at tests/CMakeLists.txt:5 (target_link_libraries): Error evaluating generator expression: $<TARGET_PROPERTY:torch,INTERFACE_INCLUDE_DIRECTORIES> Target "torch" not found. ``` I opened an issue at CMake's repo [here](https://gitlab.kitware.com/cmake/cmake/-/issues/24163) and one of the devs replied that this happened because [this caffe2_interface_library macro](https://github.com/pytorch/pytorch/blob/v1.13.0/cmake/public/utils.cmake#L195-L292) uses `$<TARGET_PROPERTY:tgt,prop>` instead of `target_link_libraries` (more details can be found in the reply itself). It seems like this is the expected behavior for CMake's implementation even though it is not properly documented. ### Versions CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2060 Nvidia driver version: 526.86 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] No relevant packages [conda] Could not collect cc @jbschlosser
2
4,207
89,050
torch.distributed can't establish connection.
oncall: distributed
### πŸ› Describe the bug I used three machines in the LAN to esbalish connection, it worked, however, when i can't esbalish connection with three machines in the WAN. I have closed the firewall and established connection by socket. ### Versions ``` PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~18.04) 9.4.0 Clang version: Could not collect CMake version: version 3.13.4 Libc version: glibc-2.9 Python version: 3.7.0 (default, Jun 28 2018, 13:15:42) [GCC 7.2.0] (64-bit runtime) Python platform: Linux-4.15.0-169-generic-x86_64-with-debian-buster-sid Is CUDA available: N/A CUDA runtime version: Could not collect GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] numpy==1.15.1 [pip3] numpydoc==0.8.0 [conda] blas 1.0 mkl defaults [conda] mkl 2019.0 118 defaults [conda] mkl-service 1.1.2 py37h90e4bf4_5 defaults [conda] mkl_fft 1.0.4 py37h4414c95_1 defaults [conda] mkl_random 1.0.1 py37h4414c95_1 defaults [conda] numpy 1.15.1 py37h1d66e8a_0 defaults [conda] numpy-base 1.15.1 py37h81de0dd_0 defaults [conda] numpydoc 0.8.0 py37_0 defaults ``` cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
1
4,208
89,041
cross compile pytoch using cmake , get an error : protobuf::protoc: command not found
needs reproduction, module: build, triaged
### πŸ› Describe the bug ``` .o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/TypeCast.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/TypeList.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/TypeTraits.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/Type_demangle.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/Type_no_demangle.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/Unicode.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/UniqueVoidPtr.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/complex_math.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/flags_use_gflags.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/flags_use_no_gflags.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/int128.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/intrusive_ptr.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/numa.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/signal_handler.cpp.o In file included from /pytorch/pytorch/third_party/fmt/include/fmt/format.h:49:0, from /pytorch/pytorch/c10/util/signal_handler.cpp:10: /pytorch/pytorch/third_party/fmt/include/fmt/core.h: In instantiation of β€˜struct fmt::v9::basic_format_specs<char>’: /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2205:8: required from β€˜struct fmt::v9::detail::dynamic_format_specs<char>’ /pytorch/pytorch/third_party/fmt/include/fmt/format.h:3932:38: required from here /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2154:19: warning: β€˜fmt::v9::basic_format_specs<char>::align’ is too small to hold all values of β€˜using align_t = enum fmt::v9::align::type {aka enum fmt::v9::align::type}’ align_t align : 4; ^ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2155:17: warning: β€˜fmt::v9::basic_format_specs<char>::sign’ is too small to hold all values of β€˜using sign_t = enum fmt::v9::sign::type {aka enum fmt::v9::sign::type}’ sign_t sign : 3; ^ /pytorch/pytorch/third_party/fmt/include/fmt/core.h: In function β€˜fmt::v9::detail::float_specs fmt::v9::detail::parse_float_type_spec(const fmt::v9::basic_format_specs<Char>&, ErrorHandler&&) [with ErrorHandler = fmt::v9::detail::error_handler; Char = char]’: /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2818:5: warning: this statement may fall through [-Wimplicit-fallthrough=] result.upper = true; ^~~~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2820:3: note: here case presentation_type::general_lower: ^~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2824:5: warning: this statement may fall through [-Wimplicit-fallthrough=] result.upper = true; ^~~~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2826:3: note: here case presentation_type::exp_lower: ^~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2831:5: warning: this statement may fall through [-Wimplicit-fallthrough=] result.upper = true; ^~~~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2833:3: note: here case presentation_type::fixed_lower: ^~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2838:5: warning: this statement may fall through [-Wimplicit-fallthrough=] result.upper = true; ^~~~~~ /pytorch/pytorch/third_party/fmt/include/fmt/core.h:2840:3: note: here case presentation_type::hexfloat_lower: ^~~~ [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/thread_name.cpp.o [ 75%] Building CXX object c10/CMakeFiles/c10.dir/util/typeid.cpp.o [ 75%] Linking CXX shared library ../lib/libc10.so [ 75%] Built target c10 Scanning dependencies of target python_copy_files [ 75%] Built target python_copy_files Scanning dependencies of target torch_global_deps [ 75%] Building C object caffe2/CMakeFiles/torch_global_deps.dir/__/torch/csrc/empty.c.o [ 75%] Linking C shared library ../lib/libtorch_global_deps.so [ 75%] Built target torch_global_deps [ 75%] Running C++/Python protocol buffer compiler on /pytorch/pytorch/caffe2/proto/caffe2.proto /bin/sh: protobuf::protoc: command not found make[2]: *** [caffe2/proto/CMakeFiles/Caffe2_PROTO.dir/build.make:78: caffe2/proto/caffe2.pb.cc] Error 127 make[1]: *** [CMakeFiles/Makefile2:3404: caffe2/proto/CMakeFiles/Caffe2_PROTO.dir/all] Error 2 make: *** [Makefile:141: all] Error 2 root@ubuntu:/pytorch/pytorch-build # ``` ### Versions cmake version: 3.16.3 cross compile toolchain: gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-gnu pytorch :1.13.0 commmand :cmake -DBUILD_SHARED_LIBS:BOOL=ON -DCMAKE_TOOLCHAIN_FILE=/pytorch/pytorch/arm_linux_setup.cmake -DUSE_MKLDNN=OFF -DUSE_QNNPACK=OFF -DUSE_PYTORCH_QNNPACK=OFF -DBUILD_TEST=OFF -DUSE_NNPACK=OFF -DCMAKE_BUILD_TYPE:STRING=Release -DPYTHON_EXECUTABLE:PATH=`which python3` -DCMAKE_INSTALL_PREFIX:PATH=../pytorch-install-aarch64 ../pytorch cc @malfet @seemethere
0
4,209
89,034
[PT][1.13] torch .numpy() fn broke for some scenario
module: cpu, triaged, module: numpy, module: regression, actionable, ZeroTensor
### πŸ› Describe the bug when backward tensor of sng operator is converted from torch tensor to numpy then output is not correct. it was expected that output should be 0's as torch tensor has filled with 0's but we get random output after performing .numpy() this happens only in 1.13 release, 1.12 works fine. Also if tensor is cloned then it works fine ``` import torch torch.__version__ # 1.13.0a0 x = torch.randn(20, dtype=torch.float32, requires_grad=True) res = torch.sgn(x) res_bwd = res.grad_fn(torch.ones(res.shape)) res_bwd # tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) np_res = res_bwd.detach().numpy() np_res ``` ``` output = array([5.3426861e-35, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.4012985e-45, 0.0000000e+00, 7.6396113e-35, 0.0000000e+00, 1.7767014e+09, 4.5693540e-41, 7.6396113e-35, 0.0000000e+00, 9.1476764e-41, 0.0000000e+00, 1.1210388e-43, 0.0000000e+00, 3.5873241e-43, 0.0000000e+00, 1.8342932e+09, 4.5693540e-41], dtype=float32 ``` ### Versions torch.__version__ # 1.13.0a0 cc @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @mruberry @rgommers
7
4,210
89,006
Add smoke-tests for CPP extensions compilations
high priority, module: cpp-extensions, triaged, module: regression
### πŸ› Describe the bug Followup for https://github.com/pytorch/pytorch/issues/88290 We should add CI/smoke tests for that by using something like the following: https://github.com/pytorch/pytorch/pull/87615#issuecomment-1289539357 ### Versions CI cc @ezyang @gchanan @zou3519
0
4,211
88,998
Fix fake tensor propagation for nvprims
triaged, open source, module: nvfuser, ciflow/inductor, no-stale
Fake tensors were not working with `torch.ops.nvprims` functions because the fake tensors code expects to see the "prim_meta_impl" attribute that was missing. Also fixes https://github.com/pytorch/pytorch/issues/87236 cc @kevinstephano @jjsjann123
7
4,212
88,992
Incorrect version in the instructions on official website
module: docs, triaged
### πŸ› Describe the bug ![image](https://user-images.githubusercontent.com/30036289/201680260-31e7ee10-38d6-4f0f-a485-38f1c77fcead.png) here https://pytorch.org/get-started/previous-versions/ in version 9.1 installation listed torchaudio of incomparable version ### Versions 9.1 cc @svekars @carljparker
0
4,213
88,991
nvprims.native_batch_norm doesn't support fake tensor inputs
triaged, module: nvfuser, module: primTorch
### πŸ› Describe the bug Add `tracing_mode="fake"` here to see the error: https://github.com/pytorch/pytorch/blob/9943d46aab4465b887039aa1a9b5d9ebc0a01a35/test/test_prims.py#L614 In order to support fake tensors `prim` should have "prim_meta_impl" attribute that is a callable used for propagating fake tensors. See the usage here: https://github.com/pytorch/pytorch/blob/9943d46aab4465b887039aa1a9b5d9ebc0a01a35/torch/_subclasses/fake_tensor.py#L864-L870 ### Versions latest master cc @kevinstephano @jjsjann123 @ezyang @mruberry @ngimel @Lezcano @fdrocha @peterbell10
0
4,214
88,980
Glog macro redefinition problem when including headers from both libtorch and glog
module: build, triaged
### πŸ› Describe the bug Hi, I am trying to build a C++ shared library that uses Pytorch C++ custom class (torchscript class). I linked the library aganist Libtorch and glog but got macro redefinition warnings. Those macros are loggers like `LOG` and `CHECK`, which are defined in both Libtorch (`torch/include/c10/util/logging_is_google_glog.h` or `torch/include/c10/util/logging_is_not_google_glog.h`) and glog. I can see Pytorch have similar issues before (#31822, #14724) and a PR (#41504) to solve the redefinition issue when libtorch is not built with glog. However, I still have the redefinition problem when including the headers of glog and `torch/custom_class.h` (which will include `torch/include/c10/util/logging_is_not_google_glog.h` in the end, resulting in macro redefinition). I wonder whether there is a workaround to get rid of this problem? ### Versions [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.22.1 [pip3] torch==1.12.1+cu113 [pip3] torchaudio==0.12.1+cu113 [pip3] torchmetrics==0.10.0 [pip3] torchvision==0.13.1+cu113 cc @malfet @seemethere
0
4,215
88,968
M1 runner i-090e1df32b6f48a20 run out of disk space
module: ci, triaged, module: m1
### πŸ› Describe the bug See https://github.com/pytorch/pytorch/actions/runs/3453509296/jobs/5764272366 https://github.com/pytorch/pytorch/actions/runs/3453862853/jobs/5764898047 https://github.com/pytorch/pytorch/actions/runs/3454468047/jobs/5765868837 https://github.com/pytorch/pytorch/actions/runs/3454765799/jobs/5766454600 https://github.com/pytorch/pytorch/actions/runs/3455173679/jobs/5767115747 ### Versions CI cc @ezyang @gchanan @zou3519 @seemethere @pytorch/pytorch-dev-infra
4
4,216
93,420
[Inductor] Constant folding support
triaged, enhancement, oncall: pt2, module: inductor
## Motivating Example Below is a case in MobileBertForMaskedLM which has a concatenation on two model parameters (`hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0))`). This concat takes >20% of the single-threaded inference time on CPU but this cost can be saved with constant folding. ```python class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states ``` cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @desertfire @ezyang @msaroufim @wconstab @ngimel @bdhirsh
0
4,217
88,950
`torch.nn.functional.embedding_bag` Trigger RuntimeError under UndefinedBehaviorSanitizer
triaged, module: sanitizers
### πŸ› Describe the bug The implementation of `torch.nn.functional.embedding_bag` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ```python import torch def test(): arg_1 = torch.randint(-1024,1024,[6], dtype=torch.int32).clone() arg_2 = torch.rand([5, 2], dtype=torch.float32).clone() arg_3 = torch.randint(-8192,0,[0], dtype=torch.int64).clone() arg_9 = torch.rand([6], dtype=torch.float32).clone() _ = torch.nn.functional.embedding_bag(arg_1, arg_2, arg_3, None, 2.0, False, "sum", False, arg_9, False, None) test() ``` Error log: ``` pytorch/aten/src/ATen/native/EmbeddingBag.cpp:708:11: runtime error: null pointer passed as argument 2, which is declared to never be null /usr/include/string.h:44:28: note: nonnull attribute specified here ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ```
1
4,218
88,949
`torch.set_rng_state` Trigger RuntimeError under UndefinedBehaviorSanitizer
triaged, module: sanitizers
### πŸ› Describe the bug The implementation of `torch.set_rng_state` contains undefined behavior caught by UB sanitizer. Test: ```python import torch def test(): arg_1 = torch.randint(0,64,[5056], dtype=torch.uint8).clone() _ = torch.set_rng_state(arg_1,) test() ``` Error log: ``` pytorch/aten/src/ATen/CPUGeneratorImpl.cpp:167:20: runtime error: load of value 46, which is not a valid value for type 'bool' ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ```
1
4,219
88,948
torch.linalg.matrix_rank memory leak
needs reproduction, module: memory usage, triaged, module: linear algebra
### πŸ› Describe the bug Below is a minimal script for reproducing. ```python import torch import os, psutil a = torch.randn(100, 100, 512) for _ in range(10): torch.linalg.matrix_rank(a) print(psutil.Process(os.getpid()).memory_info().rss) ``` The above script gives the following output: ``` 4214136832 8331022336 10537857024 12173451264 13269585920 14028787712 14656843776 15086813184 15620276224 16046718976 ``` I did some test, and it seems that it only happens when the tensor is high dimensional. For example, if the dimension of `a` is (100, 100, 100) then everything is fine. ### Versions PyTorch version: 1.13.0a0 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: SUSE Linux Enterprise Server 15 SP3 (x86_64) GCC version: (SUSE Linux) 7.5.0 Clang version: Could not collect CMake version: version 3.17.0 Libc version: glibc-2.31 Python version: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.3.18-150300.59.87-default-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 11.6.124 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy==0.982 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.20.3 [pip3] numpydoc==1.1.0 [pip3] torch==1.13.0a0+gitunknown [pip3] torchaudio==0.13.0+bc8640b [pip3] torchtext==0.14.0a0+e2b27f9 [pip3] torchvision==0.14.0a0 [conda] blas 1.0 mkl [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-include 2021.4.0 h06a4308_640 <unknown> [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.20.3 py39hf144106_0 [conda] numpy-base 1.20.3 py39h74d4b33_0 [conda] numpydoc 1.1.0 pyhd3eb1b0_1 cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
3
4,220
88,947
`torch.Tensor.msort` Trigger RuntimeError under UndefinedBehaviorSanitizer
triaged, module: sanitizers
### πŸ› Describe the bug The implementation of `torch.Tensor.msort` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ```python import torch def test(): arg_1 = torch.rand([0, 16, 1024, 1024], dtype=torch.float16).clone() res = torch.Tensor.msort(arg_1,) test() ``` Error log: ``` pytorch/aten/src/ATen/TensorIteratorInternal.h:34:17: runtime error: applying non-zero offset 1048576 to null pointer ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ```
0
4,221
88,945
`torch.linalg.eigvals` Trigger RuntimeError under UndefinedBehaviorSanitizer
triaged, module: sanitizers
### πŸ› Describe the bug The implementation of `torch.linalg.eigvals` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ``` import torch def test(): arg_1 = torch.rand([0, 3, 3], dtype=torch.float64).clone() res = torch.linalg.eigvals(arg_1,) test() ``` Error log: ``` pytorch/aten/src/ATen/native/BatchLinearAlgebra.cpp:954:18: runtime error: applying non-zero offset 24 to null pointer ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ```
0
4,222
88,944
`torch.topk` Trigger RuntimError under UndefinedBehaviorSanitizer
triaged, module: sanitizers
### πŸ› Describe the bug The implementation of `torch.topk` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ```python import torch def test(): arg_1 = torch.rand([3, 5], dtype=torch.float64).clone() res = torch.topk(arg_1,0,0,) test() ``` Error log: ``` pytorch/aten/src/ATen/native/TopKImpl.h:30:45: runtime error: applying non-zero offset 8 to null pointer ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ```
0
4,223
88,943
`torch.vander` Trigger RuntimeError with UndefinedBehaviorSanitizer
triaged, module: linear algebra, module: sanitizers, module: edge cases
### πŸ› Describe the bug The implementation of `torch.vander` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ```python import torch def test(): arg_1 = torch.randint(-1,512,[4], dtype=torch.int64).clone() res = torch.vander(arg_1,12,) test() ``` Error log: ``` pytorch/aten/src/ATen/native/cpu/ReduceOpsKernel.cpp:100:3: runtime error: signed integer overflow: 7179408129339016064 * 494 cannot be represented in type 'long' ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ``` cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
3
4,224
88,942
`torch.svd_lowrank` Trigger RuntimeError under UndefinedBehaviorSanitizer
module: sparse, triaged, module: linear algebra, actionable, module: sanitizers
### πŸ› Describe the bug The implementation of `torch.svd_lowrank` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ```python import torch def test(): arg_1 = torch.rand([5, 5], dtype=torch.float64).to_sparse() res = torch.svd_lowrank(arg_1,False,) test() ``` Error log: ``` pytorch/aten/src/ATen/native/sparse/SparseTensorMath.cpp:1270:19: runtime error: applying non-zero offset 8 to null pointer ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ``` cc @ezyang @gchanan @zou3519 @nikitaved @pearu @cpuhrsch @amjames @bhosmer @jianyuh @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
4
4,225
88,941
`torch.linalg.lstsq` Trigger RuntimeError under UndefinedBehaviorSanitizer
triaged, module: linear algebra, actionable, module: sanitizers, module: edge cases
### πŸ› Describe the bug The implementation of `torch.linalg.lstsq` contains undefined behavior caught by UB sanitizer. Without sanitizers, the test terminates normally. Test: ```python import torch def test(): arg_1 = torch.rand([2, 3, 5, 5, 0], dtype=torch.float64).clone() arg_2 = torch.rand([2, 3, 5, 5], dtype=torch.float64).clone() res = torch.linalg.lstsq(arg_1,arg_2,) test() ``` Error log: ``` pytorch/c10/core/TensorImpl.h:1521:38: runtime error: applying non-zero offset 40 to null pointer ``` ### Versions ``` PyTorch version: 1.14.0a0+git6e5f736 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Apr 5 2022, 06:56:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.21.5 [pip3] numpydoc==1.2 [pip3] torch==1.14.0a0+git6e5f736 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 [conda] torch 1.14.0a0+git6e5f736 pypi_0 pypi ``` cc @ezyang @gchanan @zou3519 @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
4
4,226
88,931
INTERNAL ASSERT FAILED. Missing scalar type infromation.
triaged, module: nvfuser
### πŸ› Describe the bug Hi, I'm trying to run [DiffDock](https://github.com/gcorso/diffdock) and I get the following error: ```tensor_type->scalarType().has_value() INTERNAL ASSERT FAILED at "/opt/conda/conda-bld/pytorch_1659484809662/work/torch/csrc/jit/codegen/cuda/type_promotion.cpp":111, please report a bug to PyTorch. Missing Scalar Type information``` I'm not able to share a minimal example as I don't know where the error arises from. Do you have any idea how to investigate this? How do I get a traceback? ### Versions Collecting environment information... PyTorch version: 1.12.1 Is debug build: False CUDA used to build PyTorch: 11.3 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 11 (bullseye) (x86_64) GCC version: (Debian 10.2.1-6) 10.2.1 20210110 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.9.13 (main, Oct 13 2022, 21:15:33) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-305.10.2.el8_4.x86_64-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB Nvidia driver version: 470.57.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.1 [pip3] torch==1.12.1 [pip3] torch-cluster==1.6.0 [pip3] torch-geometric==2.1.0.post1 [pip3] torch-scatter==2.0.9 [pip3] torch-sparse==0.6.15 [pip3] torch-spline-conv==1.2.1 [pip3] torchaudio==0.12.1 [pip3] torchvision==0.13.1 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.23.1 py39h6c91a56_0 [conda] numpy-base 1.23.1 py39ha15fc14_0 [conda] pyg 2.1.0 py39_torch_1.12.0_cu113 pyg [conda] pytorch 1.12.1 py3.9_cuda11.3_cudnn8.3.2_0 pytorch [conda] pytorch-cluster 1.6.0 py39_torch_1.12.0_cu113 pyg [conda] pytorch-mutex 1.0 cuda pytorch [conda] pytorch-scatter 2.0.9 py39_torch_1.12.0_cu113 pyg [conda] pytorch-sparse 0.6.15 py39_torch_1.12.0_cu113 pyg [conda] pytorch-spline-conv 1.2.1 py39_torch_1.12.0_cu113 pyg [conda] torchaudio 0.12.1 py39_cu113 pytorch [conda] torchvision 0.13.1 py39_cu113 pytorch cc @kevinstephano @jjsjann123
1
4,227
93,419
torchdynamo is not properly setting up input tracking (e.g., for symbolic shape guards) for view bases
triaged, bug, oncall: pt2
### πŸ› Describe the bug When we convert a real tensor to a fake tensor, if the original tensor was a differentiable view we will also convert its base to a fake tensor, so we can construct a fake tensor that also looks like a view. In dynamic shapes, this means that we will allocate symbolic sizes for both the base as well as the view, and it turned out that in some circumstances we could end up producing guards on the base! This is problematic, because dynamo only considers the view as a new tensor inputs and only tracks its symints. The assert that fails is typically: ``` assert expr_found, f"Failed to find {expr}" ``` in DynamoGuardPrinter in this case. In [92ef26b96bf0c36e4b8ad87dc0419f46dfc65c69](https://github.com/pytorch/pytorch/pull/84246/commits/92ef26b96bf0c36e4b8ad87dc0419f46dfc65c69) we make this problem less likely to occur by suppressing guards that occur when creating fake tensors, since the naughty guard we observed in practice was caused by the `as_strided` call we use to setup the view performing a bounds check. But it would be better to fix this properly, especially since we still have "failed to find sX" in our tests. The general idea is that whenever we allocate symbolic integers for a tensor, we should ALWAYS set it up in the environment. However, it is difficult to tell how many inputs a tensor will actually be (there is not only the _base field, but also the grad field); so it may be easiest if fake tensor converter communicates this information via a callback that has also says the attribute path, so we can make an appropriate source for the tensor. cc @soumith @msaroufim @wconstab @ngimel @bdhirsh @voznesenskym ### Error logs _No response_ ### Minified repro _No response_
0
4,228
88,902
MPS test_numpy_ref_mps_nn_functional_group_norm_mps_float32 is flaky?
triaged, module: flaky-tests, module: mps
### πŸ› Describe the bug https://github.com/pytorch/pytorch/actions/runs/3446932166/jobs/5752655448 ### Versions master cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
1
4,229
93,618
[dynamo+ddp+symbolic-shapes] Issue Tracker
triaged, oncall: pt2
we should support these systems working togehter. i think they should compose, but it requires some testing. - [ ] huggingface accelerate nlp_model crashes ([repro cmd](https://gist.github.com/wconstab/12ce82ceded7a3ee4748b24cc5ec502e#file-repro-instructions), [log](https://gist.github.com/wconstab/12ce82ceded7a3ee4748b24cc5ec502e#file-symbolic_nlp_example-log)) - [ ] torchbench hf_Bert is slow with symbolic-shapes (`python benchmarks/dynamo/distributed.py --torchbench_model hf_Bert --ddp --dynamo inductor` on symbolic-shapes branch) cc @ezyang @soumith @msaroufim @ngimel @bdhirsh
2
4,230
88,893
RuntimeError: derivative for aten::mps_max_pool2d_backward is not implemented
triaged, module: mps
### πŸ› Describe the bug Hi there, I encountered the runtime error "derivative for aten::mps_max_pool2d_backward is not implemented" when trying to use ```torch.autograd.grad``` to compute the Hessian of the loss function of a ResNet18 model w.r.t. model parameters, which is done by first using ```torch.autograd.grad``` to compute the gradient itself, and then using it again to compute the gradient of the gradient to get the Hessian. (Please kindly see lines 122-131 in the full traceback message below.) Thank you so much! ``` --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Input In [18], in <cell line: 2>() 1 Hess_eigval, \ ----> 2 Hess_eigval_density = Hess.LanczosApproxSpec(init_poly_deg=64, # iterations used to compute spectrum range 3 poly_deg=256) File ~/Documents/hessian.py:248, in Hessian.LanczosApproxSpec(self, init_poly_deg, poly_deg, spectrum_margin, poly_points, log_hessian, eps, denormalize) 244 print('LanczosApproxSpec') 246 print('Estimating spectrum range') --> 248 lb, ub = self.compute_lb_ub(init_poly_deg) 249 print('Estimated spectrum range:') 250 print('[{}\t{}]'.format(lb, ub)) File ~/Documents/hessian.py:217, in Hessian.compute_lb_ub(self, init_poly_deg) 216 def compute_lb_ub(self, init_poly_deg): --> 217 ritz_val, S, alp, bet = self.Lanczos(init_poly_deg) 219 theta_1 = ritz_val[0] 220 theta_k = ritz_val[-1] File ~/Documents/hessian.py:340, in Hessian.Lanczos(self, M) 337 for j in tqdm(range(M)): 338 sys.stdout.flush() --> 340 v_next = self.mat_vec(v) 342 if j: 343 v_next = self.my_sub(v_next, self.my_mult_const(v_prev,bet[j-1])) File ~/Documents/hessian.py:145, in Hessian.mat_vec(self, v) 144 def mat_vec(self, v): --> 145 Av = self.Hv(v) 147 for eigvec, eigval in zip(self.vecs, self.vals): 148 coeff = eigval * self.my_inner(eigvec, v) File ~/Documents/hessian.py:127, in Hessian.Hv(self, v) 122 elif self.hessian_type == 'Hessian': 123 grad = torch.autograd.grad(loss, 124 self.model.parameters(), 125 create_graph=True) --> 127 Hg_ = torch.autograd.grad(grad, 128 self.model.parameters(), 129 v) 130 else: 131 raise Exception('Wrong hessian type!') File ~/Coding/miniconda3/envs/torch-gpu/lib/python3.9/site-packages/torch/autograd/__init__.py:300, in grad(outputs, inputs, grad_outputs, retain_graph, create_graph, only_inputs, allow_unused, is_grads_batched) 298 return _vmap_internals._vmap(vjp, 0, 0, allow_none_pass_through=True)(grad_outputs_) 299 else: --> 300 return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass 301 t_outputs, grad_outputs_, retain_graph, create_graph, t_inputs, 302 allow_unused, accumulate_grad=False) RuntimeError: derivative for aten::mps_max_pool2d_backward is not implemented ``` ### Versions Jupyter Lab, Python 3.9, PyTorch 1.13.0 Stable, M1 Mac ``` PyTorch version: 1.13.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.0 (arm64) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.9.13 (main, Aug 25 2022, 18:24:45) [Clang 12.0.0 ] (64-bit runtime) Python platform: macOS-13.0-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.3 [pip3] torch==1.13.0 [pip3] torchaudio==0.13.0 [pip3] torchvision==0.14.0 [conda] numpy 1.23.3 py39h42add53_1 [conda] numpy-base 1.23.3 py39hadd41eb_1 [conda] pytorch 1.13.0 py3.9_0 pytorch [conda] torchaudio 0.13.0 py39_cpu pytorch [conda] torchvision 0.14.0 py39_cpu pytorch ``` cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
4
4,231
88,883
Investigate why `test_aot_autograd_symbolic_exhaustive_masked_median_cpu_float32` is flaky
triaged, module: flaky-tests
### πŸ› Describe the bug This failed on trunk, but I couldn't reproduce locally on Linux/M1: ``` test_aot_autograd_symbolic_exhaustive_masked_median_cpu_float32 (__main__.TestEagerFusionOpInfoCPU) ... unexpected success (2.010s) ``` For me, it just xfailed as it should. Added a skip for now. Perhaps related to sample inputs? It has some nan handling in the implementation, but that's just a guess. Reference: https://github.com/pytorch/pytorch/pull/88776 ### Versions https://github.com/pytorch/pytorch/pull/88776
0
4,232
88,882
Can't import torch --> OSError related to libcublasLt.so.11
oncall: binaries, module: cuda, module: regression
### πŸ› Describe the bug When I try to import torch in my docker container, I get an OSError: `/usr/local/lib/python3.8/dist-packages/torch/lib/../../nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtGetStatusString, version libcublasLt.so.11` I've followed the step from [Issue 51080](https://github.com/pytorch/pytorch/issues/51080), which seems like it might be similar, but to no effect. Note, I don't have conda, so I didn't follow those specific steps, just the pip ones. However, I have found that if I import tensorflow first, list my devices and then import torch it works fine... ``` try: import torch except OSError as e: print(e) import tensorflow as tf tf.config.list_physical_devices() import torch print([torch.device(i) for i in range(torch.cuda.device_count())]) ``` ``` >>> /usr/local/lib/python3.8/dist-packages/torch/lib/../../nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtGetStatusString, version libcublasLt.so.11 >>> [device(type='cuda', index=0), device(type='cuda', index=1)] ``` Which makes me suspect that this is a different issue to [Issue 51080](https://github.com/pytorch/pytorch/issues/51080). The full traceback of `import torch` is: ``` OSError Traceback (most recent call last) /root/GI_Data/KPVESQC5_AI4Q_P/Exp_workflow_a.ipynb Cell 2' in <cell line: 1>() ----> [1](vscode-notebook-cell://attached-container%2B7b22636f6e7461696e65724e616d65223a222f74625f656173657163222c2273657474696e6773223a7b22686f7374223a227373683a2f2f4750555f75736572227d7d/root/GI_Data/KPVESQC5_AI4Q_P/Exp_workflow_a.ipynb#ch0000009vscode-remote?line=0) import torch File /usr/local/lib/python3.8/dist-packages/torch/__init__.py:191, in <module> [180](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=179) else: [181](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=180) # Easy way. You want this most of the time, because it will prevent [182](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=181) # C++ symbols from libtorch clobbering C++ symbols from other (...) [188](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=187) # [189](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=188) # See Note [Global dependencies] [190](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=189) if USE_GLOBAL_DEPS: --> [191](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=190) _load_global_deps() [192](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=191) from torch._C import * # noqa: F403 [194](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=193) # Appease the type checker; ordinarily this binding is inserted by the [195](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=194) # torch._C module initialization code in C File /usr/local/lib/python3.8/dist-packages/torch/__init__.py:153, in _load_global_deps() [150](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=149) here = os.path.abspath(__file__) [151](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=150) lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name) --> [153](file:///usr/local/lib/python3.8/dist-packages/torch/__init__.py?line=152) ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL) File /usr/lib/python3.8/ctypes/__init__.py:373, in CDLL.__init__(self, name, mode, handle, use_errno, use_last_error, winmode) [370](file:///usr/lib/python3.8/ctypes/__init__.py?line=369) self._FuncPtr = _FuncPtr [372](file:///usr/lib/python3.8/ctypes/__init__.py?line=371) if handle is None: --> [373](file:///usr/lib/python3.8/ctypes/__init__.py?line=372) self._handle = _dlopen(self._name, mode) [374](file:///usr/lib/python3.8/ctypes/__init__.py?line=373) else: [375](file:///usr/lib/python3.8/ctypes/__init__.py?line=374) self._handle = handle OSError: /usr/local/lib/python3.8/dist-packages/torch/lib/../../nvidia/cublas/lib/libcublas.so.11: undefined symbol: cublasLtGetStatusString, version libcublasLt.so.11 ``` ### Versions Python version: 3.8.10 Docker version: 20.10.21 BASE_IMAGE=tensorflow/tensorflow IMAGE_VERSION=2.9.1-gpu-jupyter Output of `nvcc -V`: ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Sun_Feb_14_21:12:58_PST_2021 Cuda compilation tools, release 11.2, V11.2.152 Build cuda_11.2.r11.2/compiler.29618528_0 ``` Output of `torch.__version__` in python: ``` '1.13.0+cu117' ``` Output of collect_env.py: ``` PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.4 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.8.10 (default, Mar 15 2022, 12:22:08) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.29 Is CUDA available: N/A CUDA runtime version: 11.2.152 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA A10 GPU 1: NVIDIA A10 Nvidia driver version: 520.61.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.1.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.1.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] numpy==1.22.4 [pip3] torch==1.13.0 [pip3] torchaudio==0.13.0 [pip3] torchvision==0.14.0 [conda] Could not collect ``` cc @ezyang @seemethere @malfet @ngimel
4
4,233
88,880
Add alphatensor support for faster matrix multiplication?
feature, triaged, matrix multiplication
### πŸš€ The feature, motivation and pitch I didn't find any proposal or issue about it. In short alphatensor is a way to find a new faster algorithms for matrix multiplication operations. It even have a functionality to find the best algorithm adapted to particular hardware. It makes sense to add support for it in some way or another, becuase almost 100% of running models on pytorch is extensively using matrix multiplication operations. See - [alphatensor](https://github.com/deepmind/alphatensor) cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
2
4,234
93,617
[Inductor] Input Buffers Should Be Representable As Storage And Layout
triaged, oncall: pt2
### πŸ› Describe the bug [InputBuffer](https://github.com/pytorch/pytorch/blob/master/torch/_inductor/ir.py#L1897)'s currently do not have an associated storage. This prevents correct handling of aliased inputs - see [TODO here](https://github.com/pytorch/pytorch/blob/master/torch/_inductor/graph.py#L202). When calling [require_stride_order](https://github.com/pytorch/pytorch/blob/master/torch/_inductor/ir.py#L2465), because `is_storage_and_layout` returns False for InputBuffers we fall through to an unnecessary copy. A shorter term fix would be to handle InputBuffers in `require_stride_order`. cc @ezyang @soumith @msaroufim @wconstab @ngimel @bdhirsh
0
4,235
88,842
test/test_ops.py is segfaulting on master build with DEBUG assets
high priority, module: ci, triaged, module: testing
### πŸ› Describe the bug ``` test_dtypes__refs_add_cpu (__main__.TestCommonCPU) ... terminate called after throwing an instance of 'c10::Error' what(): !c10::impl::HermeticPyObjectTLS::get_state() INTERNAL ASSERT FAILED at "/scratch/chourdiaanjali/work/pytorch/torch/csrc/autograd/python_variable.cpp":310, please report a bug to PyTorch. Exception raised from decref at /scratch/chourdiaanjali/work/pytorch/torch/csrc/autograd/python_variable.cpp:310 (most recent call first): frame #0: <unknown function> + 0xce7f5 (0x7ff1c2c247f5 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #1: std::function<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > ()>::operator()() const + 0x4c (0x7ff1f6293cb0 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #2: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x40 (0x7ff1c2c23676 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #3: c10::detail::torchCheckFail(char const*, char const*, unsigned int, char const*) + 0x97 (0x7ff1c2c216f6 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #4: <unknown function> + 0xae356e (0x7ff204ef856e in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #5: <unknown function> + 0x10ad050 (0x7ff2054c2050 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #6: c10::TensorImpl::destroy_pyobj_if_needed() + 0x102 (0x7ff1c2beb724 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #7: c10::TensorImpl::~TensorImpl() + 0x2a (0x7ff1c2bea318 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #8: c10::TensorImpl::~TensorImpl() + 0x18 (0x7ff1c2bea390 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #9: <unknown function> + 0x291d0e8 (0x7ff1f0ab40e8 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #10: <unknown function> + 0x29f757e (0x7ff1f0b8e57e in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #11: <unknown function> + 0x29f6242 (0x7ff1f0b8d242 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #12: torch::autograd::SavedVariable::reset_data() + 0x3d (0x7ff1f61ab019 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #13: <unknown function> + 0x6874cc9 (0x7ff1f4a0bcc9 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #14: torch::autograd::deleteNode(torch::autograd::Node*) + 0x33 (0x7ff1f613653f in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #15: std::_Sp_counted_deleter<torch::autograd::generated::PowBackward1*, void (*)(torch::autograd::Node*), std::allocator<void>, (__gnu_cxx::_Lock_policy)2>::_M_dispose() + 0x2c (0x7ff1f4c1f7d4 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #16: std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release() + 0x42 (0x7ff204f0dec4 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #17: std::__shared_count<(__gnu_cxx::_Lock_policy)2>::~__shared_count() + 0x27 (0x7ff204f08ad3 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #18: <unknown function> + 0x68660b4 (0x7ff1f49fd0b4 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #19: <unknown function> + 0x68660d0 (0x7ff1f49fd0d0 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #20: <unknown function> + 0x7f603fc (0x7ff1f60f73fc in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #21: <unknown function> + 0x7f60444 (0x7ff1f60f7444 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_cpu.so) frame #22: std::default_delete<c10::AutogradMetaInterface>::operator()(c10::AutogradMetaInterface*) const + 0x2e (0x7ff205170d88 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #23: std::unique_ptr<c10::AutogradMetaInterface, std::default_delete<c10::AutogradMetaInterface> >::~unique_ptr() + 0x49 (0x7ff20516effb in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #24: c10::TensorImpl::~TensorImpl() + 0x6a (0x7ff1c2bea358 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #25: c10::TensorImpl::~TensorImpl() + 0x18 (0x7ff1c2bea390 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libc10.so) frame #26: <unknown function> + 0xaf9a5a (0x7ff204f0ea5a in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #27: <unknown function> + 0xaf4498 (0x7ff204f09498 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #28: <unknown function> + 0xae4420 (0x7ff204ef9420 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #29: <unknown function> + 0xae44a2 (0x7ff204ef94a2 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #30: <unknown function> + 0x10c5e2c (0x7ff2054dae2c in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #31: <unknown function> + 0x10ae081 (0x7ff2054c3081 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #32: THPVariable_subclass_dealloc(_object*) + 0x32e (0x7ff2054caa34 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) <omitting python frames> frame #43: THPSize_NewFromSymSizes(at::Tensor const&) + 0x64 (0x7ff205397d3b in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #44: THPVariable_get_shape(THPVariable*, void*) + 0xb9 (0x7ff2054c7e55 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #60: <unknown function> + 0x18add45 (0x7ff205cc2d45 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #61: <unknown function> + 0x18b21b4 (0x7ff205cc71b4 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #62: c10::BoxedKernel::makeFromFunctor<torch::impl::dispatch::PythonKernelHolder>(std::unique_ptr<torch::impl::dispatch::PythonKernelHolder, std::default_delete<torch::impl::dispatch::PythonKernelHolder> >)::{lambda(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)#1}::_FUN(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) + 0x38 (0x7ff205cc71ef in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) frame #63: c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const + 0x85 (0x7ff2054d5f27 in /scratch/chourdiaanjali/work/pytorch/torch/lib/libtorch_python.so) Aborted (core dumped) ``` ### Versions master cc @ezyang @gchanan @zou3519 @seemethere @malfet @pytorch/pytorch-dev-infra
12
4,236
88,838
[RFC] PyTorch DistributedTensor
oncall: distributed, module: dtensor
### πŸš€ The feature, motivation and pitch # RFC: PyTorch DistributedTensor We have been developing a DistributedTensor (a.k.a DTensor) concept under the [pytorch/tau](https://github.com/pytorch/tau/tree/main/spmd/tensor) repo in the past few months, and now we are moving the implementation over to pytorch with the stack https://github.com/pytorch/pytorch/pull/88180. This RFC proposes the DistributedTensor to torch.distributed. Any early feedbacks are welcomed! **Update**: DTensor now available in PyTorch 2.0 and nightly build! You can now play around with DTensor even in a co-lab Notebook! see a quick e2e tutorial here https://colab.research.google.com/drive/12Pl5fvh0eLPUrcVO7s6yY4n2_RZo8pLR#scrollTo=stYPKb9Beq4e ## Introduction We propose distributed tensor primitives to allow easier distributed computation authoring in SPMD(Single Program Multiple Devices) paradigm. The primitives are simple but powerful when used to express tensor distributions with both sharding and replication parallelism strategies. This could empower native Tensor parallelism among other advanced parallelism explorations. For example, to shard a big tensor across devices with 3 lines of code: ```python import torch from torch.distributed import DeviceMesh, Shard, distribute_tensor # Create a mesh topology with the available devices. mesh = DeviceMesh("cuda", list(range(world_size))) big_tensor = torch.randn(100000, 88) # Shard this tensor over the mesh by sharding `big_tensor`'s 0th dimension over the 0th dimension of `mesh`. my_dtensor = distribute_tensor(big_tensor, mesh, [Shard(dim=0)]) ``` ## Motivation Today there are mainly three ways to scale up distributed training: Data Parallel, Tensor Parallel and Pipeline Parallel. Each of them works on a separate dimension where solutions have been built independently (i.e. PyTorch DDP, FSDP, ShardedTensor, PiPPy, etc.). When training really large models, users would like to use these technologies together (i.e. 3-D Parallelism), while the interoperability of the existing solutions are not great and often hard to use (i.e. users might want arbitrary combinations of the data parallel, tensor parallel and pipeline parallel). This is becoming an issue for users and one of the biggest reasons is that there’s no common abstractions that build the bridge between different parallelism strategies. An ideal scenario is that users could just build their models like in a single node/device, without worrying about how to do distributed training in a cluster, and our solutions could help them run distributed training in an efficient manner. For example, researchers just need to build their big transformer model, and PyTorch Distributed automatically figures out how to split the model and run pipeline parallel across different nodes, how to run data parallel and tensor parallel within each node. In order to achieve this, we need some common abstractions to represent data distribution and run the distributed computation. There're many recent works that working on tensor level parallelism to provide common abstractions, see the `Related Works` in the last section for more details. Inspired by [GSPMD](https://arxiv.org/pdf/2105.04663.pdf), [Oneflow](https://arxiv.org/pdf/2110.15032.pdf) and [TF’s DTensor](https://www.tensorflow.org/guide/dtensor_overview), we introduce a DistributedTensor concept to represent generic data distributions across hosts. DistributedTensor is the next evolution of ShardedTensor and provides basic abstractions to distribute storage and compute. It serves as one of the basic building blocks for distributed program translations and describes the layout of a distributed training program. With the DistributedTensor abstraction, we can seamlessly build parallelism strategies such as tensor parallelism, DDP and FSDP. ## Value Propsition DistributedTensor primarily: - Offers a uniform way to save/load state dict during checkpointing, even when there’re complex data distribution strategies such as combining tensor parallelism with parameter sharding in FSDP. - Could natively offer Tensor Parallelism solution in eager mode, just like our current ShardedTensor solution. Moreover, it gives additional flexibility for advanced users who want to mix sharding and replication. - Could be the entry point of a SPMD programming model for ML System Engineers, providing good UX to mix up different types of parallelism, and could be used as a fundamental building block of a compiler based distributed training. ## PyTorch DistributedTensor ### DistributedTensor API We offer both a lower level DistributedTensor API and a module level API to create a `nn.Module` with β€œdistributed” parameters. #### Basic DistributedTensor API Examples Here are some basic DistributedTensor API examples that showcase: 1. How to construct a DistributedTensor directly, to represent different types of sharding, replication, sharding + replication strategies. 2. How to create DistributedTensor from a local `torch.Tensor`. 3. How to β€œreshard” an existing DistributedTensor to a different DistributedTensor with modified placement strategy or world size. ```python import torch import torch.distributed as distributed from torch.distributed import DTensor, DeviceMesh, Shard, Replicate, distribute_module # construct a device mesh with available devices (multi-host or single host) device_mesh = DeviceMesh(device_type="cuda", [0, 1, 2, 3]) # if we want to do row-wise sharding rowwise_placement=[Shard(0)] # if we want to do col-wise sharding colwise_placement=[Shard(1)] # distributed tensor returned will be sharded across the dimension specified in placements distributed.empty((8, 12), device_mesh=device_mesh, placements=rowwise_placement) # if we want to do replication across a certain device list replica_placement = [Replicate()] # distributed tensor will be replicated to all four GPUs. distributed.empty((8, 12), device_mesh=device_mesh, placements=replica_placement) # if we want to distributed a tensor with both replication and sharding device_mesh = DeviceMesh(device_type="cuda", [[0, 1], [2, 3]]) # replicate across the first dimension of device mesh, then sharding on the second dimension of device mesh spec=[Replicate(), Shard(0)] distributed.empty((8, 8), device_mesh=device_mesh, placements=spec) # create a DistributedTensor that shards on dim 0, from a local torch.Tensor local_tensor = torch.randn((8, 8), requires_grad=True) rowwise_tensor = DTensor.from_local(local_tensor, device_mesh, rowwise_placement) # reshard the current rowise tensor to a colwise tensor or replicate tensor colwise_tensor = rowwise_tensor.redistribute(device_mesh, colwise_placement) replica_tensor = colwise_tensor.redistribute(device_mesh, replica_placement) ``` #### High level User Facing APIs Users can use DistributedTensor tensor constructors directly to create a distributed tensor (i.e. `distributed.ones/empty`), but for existing modules like nn.Linear that are already having torch.Tensor as parameters, how to make them distributed parameters? We offer a way to directly distribute a torch.Tensor and a module level APIs to directly distribute the module parameters. Below is the high level API we introduce: ```python def distribute_tensor(tensor: torch.Tensor, device_mesh: DeviceMesh=None, placements: List[Placement]=None): ''' distribute the tensor according to device_mesh and placements, `tensor` could be a "meta" tensor. ''' def distribute_module( module: nn.Module, device_mesh: DeviceMesh=None, partition_fn: Callable[[str, nn.Module, DeviceMesh], ...]=None, input_fn: Callable[...., None]=None, output_fn: Callable[...., None]=None, ): ''' This function converts all module parameters to distributed tensor parameters according to the `partition_fn` specified. It could also control the input/output of the module by specifying the `input_fn` and `output_fn`. ''' ``` #### High level API examples: ```python def MyModule(nn.Module): def __init__(self): super.__init__() self.fc1 = nn.Linear(8, 8) self.fc2 = nn.Linear(8, 8) self.relu = nn.ReLU() def forward(self, input): return self.relu(self.fc1(input) + self.fc2(input)) mesh = DeviceMesh(device_type="cuda", [[0, 1], [2, 3]]) def shard_params(mod_name, mod, mesh): rowwise_placement = [Shard(0)] def to_dist_tensor(t): return distribute_tensor(t, mesh, rowwise_placement) mod._apply(to_dist_tensor) sharded_module = distribute_module(model, device_mesh, partition_fn=shard_params) def shard_fc(mod_name, mod, mesh): rowwise_placement = [Shard(0)] if mod_name == "fc1": mod.weight = torch.nn.Parameter(distribute_tensor(mod.weight, mesh, rowwise_placement)) sharded_module = distribute_module(model, device_mesh, partition_fn=shard_fc) ``` ## Compiler and DistributedTensor DistributedTensor provides efficient solutions for cases like Tensor Parallelism. But when using the DTensor's replication in a data parallel fashion, it might become observably slow compared to our existing solutions like DDP/FSDP. This is mainly because existing solutions like DDP/FSDP could have the global view of entire model architecture, thus could optimize for data parallel specifically, i.e. collective fusion and computation overlap, etc. DistributedTensor itself is only a Tensor-like object and only knows its local computation operation, it does not know the subsequent operations that happened afterwards. In order to make the performance on par when using DistributedTensor directly to do data parallel training, DistributedTensor also needs the global view to do things like communication optimization. We are exploring a compiler based solution accompanied with DistributedTensor so that we could run optimizations on top of it, which will be shared later. ## Related Works This work is mainly inspired by [GSPMD](https://arxiv.org/pdf/2105.04663.pdf), [Oneflow](https://arxiv.org/pdf/2110.15032.pdf) and [TF’s DTensor](https://www.tensorflow.org/guide/dtensor_overview). All of these three works use a single β€œdistributed tensor” concept for both replication and sharding, and the solutions could enable users to build up their distributed training program in a uniform SPMD programming model. Specifically: GSPMD: - GSPMD is now the fundamental component of JAX/TensorFlow distributed training and enables various optimizations with the XLA compiler to allow users to train their models efficiently in a large scale setting. - Fundamentally, GSPMD have three types of sharding strategies within a tensor: β€œtiled”, β€œreplicated”, β€œpartially tiled” to represent sharding and replication. - At the core of GSPMD Partitioner, it utilizes the XLA compiler to do advanced optimizations, i.e. sharding propagation and compiler based fusion. - XLA mark_sharding API: PyTorch XLA’s [mark_sharding](https://github.com/pytorch/xla/pull/3476) API uses [XLAShardedTensor](https://github.com/pytorch/xla/issues/3871) abstraction (i.e. sharding specs) in PyTorch/XLA. Under the hood XLAShardedTensor is utilizing the GPSMD partitioner to enable SPMD style training on TPU. OneFlow GlobalTensor: - OneFlow is building up their own solution of the β€œGlobalTensor” concept, which is a variant form of GSPMD sharding, allowing users to explore different parallel strategies with GlobalTensor. - OneFlow also has three types of tensor, but they are slightly different from GSPMD: β€œsplit”, β€œbroadcast”, and β€œpartial sum”. They don’t use partially tiled and instead have a concept of partial sum to partition the values. TensorFlow DTensor: - [DTensor Concepts](https://www.tensorflow.org/guide/dtensor_overview) is an extension of TensorFlow synchronous distributed training. its sharding API, supported features and its compilation passes with MLIR. - DTensor also allows sharding and replication on an n-d mesh like device network. - DTensor implements MLIR passes to do propagation and operator implementations. There are also several cutting edge research fields that embeds tensor sharding as part of the system, i.e. [Megatron-LM](https://arxiv.org/pdf/1909.08053.pdf) for tensor parallelism on Transformer based models. [DeepSpeed](https://github.com/microsoft/DeepSpeed) for training large scale models with different optimization techniques on top of tensor sharding. ### Alternatives In PyTorch, we have existing [ShardedTensor](https://docs.google.com/document/d/1WEjwKYv022rc1lSrYcNWh3Xjx9fJC7zsrTKTg0wbPj0/edit?usp=sharing) work in the prototype stage, which introduces basic PyTorch sharding primitives as our Tensor Parallelism solution. But ShardedTensor only has tensor sharding support, which makes it hard to be used by users to describe other data distributions strategies like replication or replication + sharding. As a distributed system developer who wants to explore more parallelism patterns, it’s crucial to have a basic building block that describes the data distribution in a uniform way. This DistributedTensor RFC aims at solving this and provide a fundamental abstraction for distributed training. ### Additional context We are gathering early feedbacks about this proposal. We have also posted this [RFC](https://dev-discuss.pytorch.org/t/rfc-pytorch-distributedtensor/740) to the dev-discuss forum, please feel free to comment directly in this issue or in the forum post. To see a complete design doc with additional details about this proposal, please refer to this [doc](https://docs.google.com/document/d/1nFeJ8NSFNhNlCkNgWK31ZGRqm1L9rd0i_XN_RprphaI/edit#heading=h.6sovjqv9jiqn) cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @fduwjj @XilunWu @gnadathur @anj-s @zdevito @ezyang @albanD
24
4,237
88,813
Inductor may merge two output tensors into one
triaged, module: inductor
### πŸ› Describe the bug Consider the following example: ```python import torch._dynamo import logging def g(a): b = a * 2 c = a * 2 return b, c x = torch.rand((1000000,), device="cuda", requires_grad=True) expect = g(x) actual = torch._dynamo.optimize("inductor")(g)(x) assert expect[0] is not expect[1] assert actual[0] is actual[1] ``` The outputs have been merged into a single tensor, so downstream users of this function may get silently wrong results if `a` or `b` are mutated. ### Versions ``` PyTorch version: 1.14.0a0+git034872d Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (conda-forge gcc 9.5.0-17) 9.5.0 Clang version: Could not collect CMake version: version 3.24.1 Python version: 3.8 (64-bit runtime) Is CUDA available: True CUDA runtime version: Could not collect GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2060 GPU 1: NVIDIA GeForce RTX 2060 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 HIP runtime version: N/A MIOpen runtime version: N/A ``` cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @desertfire
2
4,238
88,810
Return the attention weights using the Transformer Encoder class.
triaged, oncall: transformer/mha
### πŸš€ The feature, motivation and pitch Hey, when using the Transformer Encoder class it would be nice to have ```need_weights``` as an additional variable that can be passed down to ```F.multi_head_attention_forward ```. Right now the feature of returning the attention weights is as far as my understanding goes not accessible from the Transformer class since ```need_weights``` is manually set to false. It would be great if this was possible since one could very easily compute the attention rollout. ### Alternatives _No response_ ### Additional context _No response_ cc @jbschlosser @bhosmer @cpuhrsch @erichan1
6
4,239
93,616
[Inductor] Vectorize Embedding Lookup in CPP
triaged, oncall: pt2, module: cpu inductor
We explicitly disable vectorization on indirect indexing right now: https://github.com/pytorch/pytorch/blob/7c353eb39559f2c8897a0580700dd0a6f943d34f/torch/_inductor/codegen/cpp.py#L929 It is a conservative design choice and would miss some cases like embedding with large enough vector length. Below is the generated code from DistilBertForQuestionAnswering as an example: ```c++ #include "/tmp/torchinductor_jgong5/uh/cuhop6zhqdvygrhcsy2duu7yusyui3ja4mmjk5kccnhxojwtrwhg.h" extern "C" void kernel(const long* __restrict__ in_ptr0, const float* __restrict__ in_ptr1, const long* __restrict__ in_ptr2, const float* __restrict__ in_ptr3, const float* __restrict__ in_ptr4, const float* __restrict__ in_ptr5, float* __restrict__ out_ptr0, float* __restrict__ out_ptr1, float* __restrict__ out_ptr2, float* __restrict__ out_ptr3) { #pragma GCC ivdep for(long i0=0; i0<128; i0+=1) { { { float tmp5 = 0; for(long i1=0; i1<768; i1+=1) { { auto tmp0 = in_ptr0[i0]; auto tmp2 = in_ptr2[i0]; auto tmp1 = in_ptr1[i1 + (768*tmp0)]; auto tmp3 = in_ptr3[i1 + (768*tmp2)]; auto tmp4 = tmp1 + tmp3; tmp5 += tmp4; } } out_ptr0[i0] = tmp5; } } } #pragma GCC ivdep for(long i0=0; i0<128; i0+=1) { { { float tmp10 = 0; float tmp11 = 0; for(long i1=0; i1<768; i1+=1) { { auto tmp0 = in_ptr0[i0]; auto tmp2 = in_ptr2[i0]; auto tmp5 = out_ptr0[i0]; auto tmp1 = in_ptr1[i1 + (768*tmp0)]; auto tmp3 = in_ptr3[i1 + (768*tmp2)]; auto tmp4 = tmp1 + tmp3; auto tmp6 = static_cast<float>(768); auto tmp7 = tmp5 / tmp6; auto tmp8 = tmp4 - tmp7; auto tmp9 = tmp8 * tmp8; tmp10 += tmp9; tmp11 += tmp4; } } out_ptr1[i0] = tmp10; out_ptr2[i0] = tmp11; } } } #pragma GCC ivdep for(long i0=0; i0<128; i0+=1) { #pragma GCC ivdep for(long i1=0; i1<768; i1+=1) { { { auto tmp0 = in_ptr0[i0]; auto tmp2 = in_ptr2[i0]; auto tmp5 = out_ptr2[i0]; auto tmp9 = out_ptr1[i0]; auto tmp16 = in_ptr4[i1]; auto tmp18 = in_ptr5[i1]; auto tmp1 = in_ptr1[i1 + (768*tmp0)]; auto tmp3 = in_ptr3[i1 + (768*tmp2)]; auto tmp4 = tmp1 + tmp3; auto tmp6 = static_cast<float>(768); auto tmp7 = tmp5 / tmp6; auto tmp8 = tmp4 - tmp7; auto tmp10 = tmp9 / tmp6; auto tmp11 = static_cast<float>(1e-12); auto tmp12 = tmp10 + tmp11; auto tmp13 = std::sqrt(tmp12); auto tmp14 = 1 / tmp13; auto tmp15 = tmp8 * tmp14; auto tmp17 = tmp15 * tmp16; auto tmp19 = tmp17 + tmp18; out_ptr3[i1 + (768*i0)] = tmp19; } } } } } ``` cc @ezyang @soumith @msaroufim @wconstab @ngimel @bdhirsh
0
4,240
88,805
[feature request] Get/set fastmath CPU bit (and some other FPU flags?)
module: numerical-stability, module: cpu, triaged
### πŸš€ The feature, motivation and pitch Originally proposed at: https://github.com/pytorch/pytorch/issues/81690#issuecomment-1309911123 Loading third-party libraries may affect CPU fpu bits such as denormals mode and fastmath (also affecting CPU reproducibility, see https://moyix.blogspot.com/2022/09/someones-been-messing-with-my-subnormals.html). It's useful to be able to detect and reset these bits directly from PyTorch API. Currently there only exists `torch.set_flush_denormal`. There is no `get_flush_denormal`. It would be useful to have extensive set of functions for getting/setting these CPU flags (FTZ/DAZ?). It may also be good for having a single function for getting/setting all such flags. Then it'd be easy to dump to a file all flags and then recover them in one go and also provide end-user visibility into this age-old concern. ### Alternatives _No response_ ### Additional context _No response_ cc @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
5
4,241
88,802
ImportError: libcupti.so.11.2: cannot open shared object file: No such file or directory
module: build, module: cuda, triaged
### πŸ› Describe the bug --------------------------------------------------------------------------- ImportError Traceback (most recent call last) 4 import random 5 import copy ----> 6 import torch 7 #import learn2learn as l2l 8 import numpy as np File /dev_data_1/conda/envs/meta/lib/python3.8/site-packages/torch/__init__.py:202, in <module> 200 if USE_GLOBAL_DEPS: 201 _load_global_deps() --> 202 from torch._C import * # noqa: F403 204 # Appease the type checker; ordinarily this binding is inserted by the 205 # torch._C module initialization code in C 206 if TYPE_CHECKING: ImportError: libcupti.so.11.2: cannot open shared object file: No such file or directory ### Versions torch 1.12.0 python 3.8.13 cc @malfet @seemethere @ngimel
2
4,242
88,801
[ONNX] Convert to onnx scatter op and LSTMCell op and for Loop
module: onnx, triaged, onnx-needs-info
### πŸ› Describe the bug ```python import torch import torch.nn as nn import torch.nn.functional as F device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class Attention(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(Attention, self).__init__() self.attention_cell = AttentionCell(input_size, hidden_size, num_classes) self.hidden_size = hidden_size self.num_classes = num_classes self.generator = nn.Linear(hidden_size, num_classes) def _char_to_onehot(self, input_char, onehot_dim=38): input_char = input_char.unsqueeze(1) batch_size = input_char.size(0) one_hot = torch.FloatTensor(batch_size, onehot_dim).zero_().to(device) one_hot = one_hot.scatter(1, input_char, 1) return one_hot def forward(self, batch_H, text, is_train=False, batch_max_length=25): batch_size = batch_H.size(0) num_steps = batch_max_length + 1 # +1 for [s] at end of sentence. output_hiddens = torch.FloatTensor(batch_size, num_steps, self.hidden_size).fill_(0).to(device) hidden = (torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device),torch.FloatTensor(batch_size, self.hidden_size).fill_(0).to(device)) if is_train: for i in range(num_steps): # one-hot vectors for a i-th char. in a batch char_onehots = self._char_to_onehot(text[:, i], onehot_dim=self.num_classes) # hidden : decoder's hidden s_{t-1}, batch_H : encoder's hidden H, char_onehots : one-hot(y_{t-1}) hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots) output_hiddens[:, i, :] = hidden[0] # LSTM hidden index (0: hidden, 1: Cell) probs = self.generator(output_hiddens) else: targets = torch.LongTensor(batch_size.item()).fill_(0).to(device) # [GO] token probs = torch.FloatTensor(batch_size, num_steps, self.num_classes).fill_(0).to(device) for i in range(num_steps): char_onehots = self._char_to_onehot(targets, onehot_dim=self.num_classes) hidden, alpha = self.attention_cell(hidden, batch_H, char_onehots) probs_step = self.generator(hidden[0]) probs[:, i, :] = probs_step _, next_input = probs_step.max(1) targets = next_input return probs # batch_size x num_steps x num_classes class AttentionCell(nn.Module): def __init__(self, input_size, hidden_size, num_embeddings): super(AttentionCell, self).__init__() self.i2h = nn.Linear(input_size, hidden_size, bias=False) self.h2h = nn.Linear(hidden_size, hidden_size) # either i2i or h2h should have bias self.score = nn.Linear(hidden_size, 1, bias=False) self.rnn = nn.LSTMCell(input_size + num_embeddings, hidden_size) #self.rnn = nn.LSTM(input_size + num_embeddings,hidden_size,1) #self.c2h = nn.Linear(input_size + num_embeddings,hidden_size) self.hidden_size = hidden_size def forward(self, prev_hidden, batch_H, char_onehots): #k->hi,q->s0 # [batch_size x num_encoder_step x num_channel] -> [batch_size x num_encoder_step x hidden_size] batch_H_proj = self.i2h(batch_H) #w*st+wf*fi,j prev_hidden_proj = self.h2h(prev_hidden[0]).unsqueeze(1) e = self.score(torch.tanh(batch_H_proj + prev_hidden_proj)) # batch_size x num_encoder_step * 1 alpha = F.softmax(e, dim=1) context = torch.bmm(alpha.permute(0, 2, 1), batch_H).squeeze(1) # batch_size x num_channel concat_context = torch.cat([context, char_onehots], 1) # batch_size x (num_channel + num_embedding) cur_hidden = self.rnn(concat_context, prev_hidden) return cur_hidden, alpha if __name__=="__main__": model = Attention(512,256,38) batch_H = torch.rand(2,26,512).to(device) pred = torch.LongTensor(1, 26).fill_(0).to(device) probs = model(batch_H,pred) print(probs) onnx_file_name = "atten.onnx" input_names = ["input","pred"] output_names = ["out"] dynamic_axes = {"input":{1:"width"}} torch.onnx.export(model, (batch_H,pred), onnx_file_name, #example_outputs=dummy_output, export_params=True, opset_version=11, do_constant_folding=True, verbose=True, input_names=input_names, output_names=output_names, dynamic_axes=dynamic_axes) ``` i try to modify the code to conver onnx , but all failed ### Versions pytorch 1.6 gpu
1
4,243
88,800
Quantization error between fake-quantized model and quantized model using the new observer
oncall: quantization, triaged
### πŸ› Describe the bug Interesting findings: ```python from collections import Counter import torch import torch.nn as nn import warnings from distutils.version import LooseVersion warnings.simplefilter("ignore") USE_LEGACY_FAKE_QUANT = True class SimpleConv(nn.Module): def __init__(self) -> None: super().__init__() self.q = torch.quantization.QuantStub() self.conv = nn.Conv2d(3, 3, 1) self.dq = torch.quantization.DeQuantStub() def forward(self, x): return self.dq(self.conv(self.q(x))) x = torch.rand(1, 3, 224, 224) m = SimpleConv() m.train() backend = 'qnnpack' if USE_LEGACY_FAKE_QUANT: if LooseVersion(torch.__version__) >= '1.12.0': m.qconfig = torch.quantization.get_default_qat_qconfig(backend, 0) else: m.qconfig = torch.quantization.get_default_qat_qconfig(backend, None) else: m.qconfig = torch.quantization.get_default_qat_qconfig(backend) torch.backends.quantized.engine = backend m = torch.quantization.prepare_qat(m, inplace=True) for _ in range(10): m(x) with torch.no_grad(): m.eval() m.apply(torch.quantization.disable_observer) y = m(x) print('Result is stable during QAT:', torch.allclose(y, m(x))) m = torch.quantization.convert(m, inplace=True) y_ = m(x) print('Result is stable after conversion:', torch.allclose(y_, m(x))) print('Result is stable regardless of conversion:', torch.allclose(y, y_)) float_diff = (y - m(x)).abs().flatten() int_diff = torch.round(float_diff / m.conv.scale) counter = Counter(int_diff.tolist()) total = int_diff.numel() print('Difference value (ratio):') for k, v in counter.most_common(): print(f'{k}: {v} ({v/total*100:.2f}%)') ``` With `USE_LEGACY_FAKE_QUANT=True`, I get the following result. ``` Result is stable during QAT: True Result is stable after conversion: True Result is stable regardless of conversion: False Difference value (ratio): 0.0: 150431 (99.94%) 1.0: 97 (0.06%) ``` The difference is always within 1 of the quantized values, and the ratio with conversion error is lower than 0.1%. However, when I set `USE_LEGACY_FAKE_QUANT=False` (which is the default behavior for `get_default_qat_qconfig`), I get ``` Result is stable during QAT: True Result is stable after conversion: True Result is stable regardless of conversion: False Difference value (ratio): 0.0: 104794 (69.62%) 1.0: 45734 (30.38%) ``` The error rate could be something between 10-30% and there could be some cases for 2 quantized value difference. I understand that there could be some difference for models for fake-quantized and quantized models but 30% for a layer is just too much. ### Versions Collecting environment information... PyTorch version: 1.13.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.6.1 (x86_64) GCC version: Could not collect Clang version: 12.0.0 (clang-1200.0.32.28) CMake version: version 3.18.0 Libc version: N/A Python version: 3.8.6 (default, Oct 8 2020, 14:06:32) [Clang 12.0.0 (clang-1200.0.32.2)] (64-bit runtime) Python platform: macOS-10.16-x86_64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.4 [pip3] torch==1.13.0 [pip3] torchvision==0.14.0 [conda] Could not collect cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel
9
4,244
88,791
Potential bug in torch.optim.lr_scheduler.CosineAnnealingWarmRestarts
triaged, actionable, module: LrScheduler
ERROR: type should be string, got "https://github.com/pytorch/pytorch/blob/fb5c6ae61f1f622ec388ae9fa00e7683ce1729ce/torch/optim/lr_scheduler.py#L1407\r\n\r\nShould be self.T_cur = self.T_cur % self.T_i, not self.T_cur = self.T_cur - self.T_i."
3
4,245
88,775
Batched Random Number Generators
triaged, module: random
### πŸš€ The feature, motivation and pitch Hello there, The vast majority of PyTorch methods support batched inputs and outputs. However, the random generators are left behind in this regard! This is particularly important for applications were most of the heavy-lifting comes from training many identically-shaped models independently and simultaneously in a batched manner. I understand that one can sample batched random tensors from a single generator. That being said, you cannot reproduce each slice without reproducing the entire tensor. There are many applications which could benefit from training many reproducible configurations in a batch-wise manner. For example, take few-shot learning evaluations where most settings deal with 1-layer classifiers but tens of thousands of independent episodes and classifiers. You can create your own batched layers and modules from scratch using batched matrix multiplications and so on, but a truly batched RNG is still unavailable. ### Alternatives For now, I've written my own "fake" batch RNG shell, where I create many generators in a list and seed them manually. Upon random generation requests, the shell has to call each generator, and stack the resulting random samples. This is of course very inefficient. To improve the time efficiency of this approach, I defined random number caches, in order to reduce the number of calls to the generators. This induces an almost unnecessary memory-computation trade-off, and still loses to a truly efficient batched RNG. The GPU memory also limits the caching benefits. ### Additional context _No response_ cc @pbelevich
0
4,246
88,765
torch.jit.trace() - AttributeError: 'NoneType' object has no attribute '__module__
oncall: jit
### πŸ› Describe the bug The examples in the following tutorials: https://pytorch.org/docs/stable/generated/torch.jit.trace.html (the second example) https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html (examples starting from Tracing Modules) raise the error ``` AttributeError: 'NoneType' object has no attribute '__module__'``` in the code line ``` torch.jit.trace() ``` ### Versions ``` PyTorch version: 1.13.0+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Enterprise GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.8.10 (tags/v3.8.10:3d8993a, May 3 2021, 11:48:03) [MSC v.1928 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19044-SP0 Is CUDA available: True CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Nvidia driver version: 517.40 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.22.4 [pip3] pytorch-lightning==1.7.7 [pip3] torch==1.13.0+cu117 [pip3] torch-model-archiver==0.6.0 [pip3] torch-workflow-archiver==0.2.4 [pip3] torchaudio==0.13.0+cu117 [pip3] torchmetrics==0.10.0 [pip3] torchserve==0.6.0 [pip3] torchvision==0.14.0+cu117 [conda] Could not collect ``` cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
8
4,247
88,735
RuntimeError: method '__torch__.___torch_mangle_0.MyModule.sin' already defined.
oncall: package/deploy
### πŸ› Describe the bug The following program runs into the following error. It appears that the script and trace somehow collide on their use of the global compilation unit? Adding `_compilation_unit=torch._C.CompilationUnit()` doesn't seem to help though. ```python import torch class MyModule(torch.nn.Module): @torch.jit.export def sin(self, x): return torch.ops.aten.sin(x) module = MyModule() example_input = torch.ones(2, 3) torch.jit.script(module) torch.jit.trace_module(module, {"sin": example_input}) ``` ``` Traceback (most recent call last): File "/tmp/repro2.py", line 12, in <module> torch.jit.trace_module(module, {"sin": example_input}) File "/usr/local/google/home/silvasean/.local/lib/python3.10/site-packages/torch/jit/_trace.py", line 1049, in trace_module module._c._create_method_from_trace( RuntimeError: method '__torch__.___torch_mangle_0.MyModule.sin' already defined. ``` ### Versions Collecting environment information... PyTorch version: 1.14.0.dev20221028+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Debian GNU/Linux rodete (x86_64) GCC version: (Debian 12.2.0-3) 12.2.0 Clang version: 14.0.6-2 CMake version: version 3.24.1 Libc version: glibc-2.35 Python version: 3.10.7 (main, Sep 8 2022, 14:34:29) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-5.18.16-1rodete1-amd64-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.3 [pip3] torch==1.14.0.dev20221028+cpu [pip3] torchvision==0.15.0.dev20221028+cpu [conda] Could not collect
0
4,248
88,732
scatter_ op convert onnx exception
module: onnx, triaged, onnx-needs-info
### πŸ› Describe the bug ```python input_char = torch.LongTensor(batch_size).fill_(0).to(device) def _char_to_onehot(self, input_char, onehot_dim=38): input_char = input_char.unsqueeze(1) batch_size = input_char.size(0) one_hot = torch.FloatTensor(batch_size, onehot_dim).zero_().to(device) one_hot = one_hot.scatter_(1, input_char, 1) return one_hot ``` when scatter_ op convert to onnx,,it can convert success,but then run onnx with onnxruntime.InferenceSession(ModelPath) errors: failed:Type Error: Type parameter (T) bound to different types (tensor(float) and tensor(int64) in node (ScatterElements_53). why it hints different types ### Versions pytorch 1.6 gpu onnx 1.8 onnxruntime 1.6 cpu
1
4,249
88,721
DISABLED test_extract_gradients_from_optimizer_set_to_none (__main__.TestIdentifyGradients)
module: flaky-tests, skipped, oncall: profiler
Platforms: mac, macos, win, windows This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_extract_gradients_from_optimizer_set_to_none&suite=TestIdentifyGradients) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/9376140274). Over the past 3 hours, it has been determined flaky in 2 workflow(s) with 2 failures and 2 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT BE ALARMED IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_extract_gradients_from_optimizer_set_to_none` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. cc @robieta @chaekit @aaronenyeshi @ngimel @nbcsm @guotuofeng @guyang3532 @gaoteng-git @tiffzhaofb
16
4,250
88,691
forward AD for _euclidean_dist
module: autograd, triaged, actionable, module: forward ad, module: functorch
### πŸš€ The feature, motivation and pitch Submitting this feature request to get functorch.hessians downstream of torch.cdist, and the error issued by pytorch asked me to submit this to prioritize this. ### Alternatives I'll try autograd hessian. ### Additional context <img width="1035" alt="image" src="https://user-images.githubusercontent.com/4132346/200657073-54ef92cf-9c51-4f4b-9f57-ac47159c5d88.png"> cc @ezyang @albanD @zou3519 @gqchen @pearu @nikitaved @soulitzer @Lezcano @Varal7 @Chillee @samdow @soumith
2
4,251
88,686
Consolidate binary build matrix for core and validation workflows
module: ci, triaged
cc @seemethere @malfet @pytorch/pytorch-dev-infra
0
4,252
93,614
API For Registering Stride Preferences For User Fallback Kernels
triaged, oncall: pt2
Calling `.contiguous()` or `.contiguous(memory_format=torch.channels_last)` within extern kernels instead of the inputs being passed in the right layout can lead to perf regression as seen by https://github.com/pytorch/torchdynamo/issues/1833. We should either have an API for registering stride preferences or default to contiguous. cc @ezyang @soumith @msaroufim @wconstab @ngimel @bdhirsh
0
4,253
88,658
nn.Linear allocate too many space which lead to CPUAllocator "allocate memory failure" if it's BF16. good for FP32.
module: cpu, triaged, intel
### πŸ› Describe the bug Torch version: 1.13.0+cpu BF16 code ```python from torch import nn import torch lm_head = nn.Linear(1536, 250880, bias=False, dtype=torch.bfloat16) input=torch.ones(size=(8,1024,1536), dtype=torch.bfloat16) output=lm_head(input) ``` crash: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/skyrex05/wangyi/miniconda3/envs/compatibility_test/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) File "/skyrex05/wangyi/miniconda3/envs/compatibility_test/lib/python3.9/site-packages/torch/nn/modules/linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) RuntimeError: [enforce fail at alloc_cpu.cpp:75] err == 0. DefaultCPUAllocator: can't allocate memory: you tried to allocate 189079224448 bytes. Error code 12 (Cannot allocate memory) FP32 code ```python from torch import nn import torch lm_head = nn.Linear(1536, 250880, bias=False) input=torch.ones(size=(8,1024,1536)) output=lm_head(input) ``` no crash ### Versions PyTorch version: 1.13.0+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.9.13 (main, Oct 13 2022, 21:15:33) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-46-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 10.1.243 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] intel-extension-for-pytorch==1.12.300 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.4 [pip3] torch==1.13.0+cpu [pip3] torchaudio==0.13.0+cpu [pip3] torchvision==0.14.0+cpu [conda] intel-extension-for-pytorch 1.12.300 pypi_0 pypi [conda] numpy 1.23.4 pypi_0 pypi [conda] torch 1.13.0+cpu pypi_0 pypi [conda] torchaudio 0.13.0+cpu pypi_0 pypi [conda] torchvision 0.14.0+cpu pypi_0 pypi cc @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
5
4,254
93,613
Minifier crash
triaged, bug, oncall: pt2
### πŸ› Describe the bug Minifier launcher: https://gist.github.com/5f8a42f8f0f72ab96e82a098fa147462 Run on a781b92acd8098018521addc4fbb184ded83e914 (latest symbolic-shapes branch at time of writing) with `TORCHDYNAMO_DYNAMIC_SHAPES=1 AOT_DYNAMIC_SHAPES=1` Crashes with: ``` File "/scratch/ezyang/work/pytorch/functorch/_src/fx_minifier.py", line 267, in try_granularity new_state = strategy(failing_state, granularity) File "/scratch/ezyang/work/pytorch/functorch/_src/fx_minifier.py", line 104, in new_func new_state = strategy(deepcopy_fx_graph(old_state.graph), list(old_state.inps), granularity) File "/scratch/ezyang/work/pytorch/functorch/_src/fx_minifier.py", line 245, in delta_debugging if graph_fails(new_state.graph, new_state.inps): File "/scratch/ezyang/work/pytorch/functorch/_src/fx_minifier.py", line 92, in graph_fails return module_fails(mod, inps) File "/scratch/ezyang/work/pytorch/torch/_dynamo/debug_utils.py", line 670, in backend_accuracy_fails compiled_gm = compiler_fn(copy.deepcopy(gm), clone_inputs(example_inputs)) File "/scratch/ezyang/work/pytorch/torch/_dynamo/optimizations/training.py", line 94, in compile_fn return cls(gm, example_inputs).verified_candidate() File "/scratch/ezyang/work/pytorch/torch/_dynamo/optimizations/training.py", line 116, in __init__ if not is_aot_autograd_safe_to_run(gm, example_inputs): File "/scratch/ezyang/work/pytorch/torch/_dynamo/optimizations/training.py", line 64, in is_aot_autograd_safe_to_run mutated = has_mutation(gm, example_inputs, inputs_only=True) File "/scratch/ezyang/work/pytorch/torch/_dynamo/optimizations/analysis.py", line 144, in has_mutation ShapeAliasingAndMutationProp(new_gm).run(*example_inputs) File "/scratch/ezyang/work/pytorch/torch/_dynamo/optimizations/analysis.py", line 113, in run super().run(*args) File "/scratch/ezyang/work/pytorch/torch/fx/interpreter.py", line 130, in run self.env[node] = self.run_node(node) File "/scratch/ezyang/work/pytorch/torch/_dynamo/optimizations/analysis.py", line 48, in run_node result = getattr(self, n.op)(n.target, args, kwargs) File "/scratch/ezyang/work/pytorch/torch/fx/interpreter.py", line 288, in call_module return submod(*args, **kwargs) File "/scratch/ezyang/work/pytorch/torch/nn/modules/module.py", line 1423, in _call_impl return forward_call(*input, **kwargs) File "/scratch/ezyang/work/pytorch/torch/nn/modules/conv.py", line 463, in forward return self._conv_forward(input, self.weight, self.bias) File "/scratch/ezyang/work/pytorch/torch/nn/modules/conv.py", line 459, in _conv_forward return F.conv2d(input, weight, bias, self.stride, RuntimeError: Expected 3D (unbatched) or 4D (batched) input to conv2d, but got input of size: [768] While executing %self_self_blocks_0_local_mp_conv1 : [#users=1] = call_module[target=self_self_blocks_0_local_mp_conv1](args = (%reshape_3,), kwargs = {}) ``` ### Error logs _No response_ ### Minified repro _No response_ cc @soumith @msaroufim @wconstab @ngimel @bdhirsh
1
4,255
88,648
`MultiMarginLoss` doesn't check the value of `target` on CUDA
module: cuda, module: error checking, triaged
### πŸ› Describe the bug `MultiMarginLoss` doesn't check the value of `target` on CUDA. By the [doc](https://pytorch.org/docs/stable/generated/torch.nn.MultiMarginLoss.html) of `MultiMarginLoss`, the value of target should be `0<=v<=Cβˆ’1`, where the shape of input is `C` or `N,C`. The CPU does check the validity of the value of `target` but CUDA will not and may return a value for some invalid `target` ```py import torch torch.manual_seed(420) input = torch.randn(3, 5, requires_grad=True).cuda() target = torch.tensor([1, 0, 5]).cuda() loss = torch.nn.MultiMarginLoss() output = loss(input, target) print(output) # CUDA # tensor(0.7524, device='cuda:0', grad_fn=<MultiMarginLossBackward0>) ``` By contrast, ```py import torch torch.manual_seed(420) input = torch.randn(3, 5, requires_grad=True) target = torch.tensor([1, 0, 5]) loss = torch.nn.MultiMarginLoss() output = loss(input, target) # CPU # RuntimeError: target out of range ``` ### Versions Collecting environment information... PyTorch version: 1.12.1+cu113 Is debug build: False CUDA used to build PyTorch: 11.3 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final) CMake version: version 3.22.6 Libc version: glibc-2.26 Python version: 3.7.15 (default, Oct 12 2022, 19:14:55) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic Is CUDA available: True CUDA runtime version: 11.2.152 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 460.32.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.1.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.21.6 [pip3] torch==1.12.1+cu113 [pip3] torchaudio==0.12.1+cu113 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.13.1 [pip3] torchvision==0.13.1+cu113 [conda] Could not collect cc @ngimel
0
4,256
88,647
`ConvTranspose` fails on CPU but returns an empty tensor on CUDA
module: cuda, module: error checking, triaged
### πŸ› Describe the bug `ConvTranspose` fails on CPU but returns an empty tensor on CUDA ```py import torch input = torch.randn(1, 1, 2, 2, requires_grad=True) weight = torch.randn(1, 1, 2, 2, requires_grad=True) output = torch.nn.functional.conv_transpose2d(input, weight, stride=2, padding=2) # CPU # RuntimeError: Given input size per channel: (2 x 2). Calculated output size per channel: (0 x 0). Output size is too small ``` ```py import torch input = torch.randn(1, 1, 2, 2, requires_grad=True).cuda() weight = torch.randn(1, 1, 2, 2, requires_grad=True).cuda() output = torch.nn.functional.conv_transpose2d(input, weight, stride=2, padding=2) print(output) # CUDA # tensor([], device='cuda:0', size=(1, 1, 0, 0), grad_fn=<ConvolutionBackward0>) ``` I think they should both raise an error or succeed in this case ### Versions Collecting environment information... PyTorch version: 1.12.1+cu113 Is debug build: False CUDA used to build PyTorch: 11.3 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: 6.0.0-1ubuntu2 (tags/RELEASE_600/final) CMake version: version 3.22.6 Libc version: glibc-2.26 Python version: 3.7.15 (default, Oct 12 2022, 19:14:55) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic Is CUDA available: True CUDA runtime version: 11.2.152 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 460.32.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.1.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.1.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.21.6 [pip3] torch==1.12.1+cu113 [pip3] torchaudio==0.12.1+cu113 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.13.1 [pip3] torchvision==0.13.1+cu113 [conda] Could not collect cc @ngimel @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
1
4,257
88,643
pack_sequence() always fail after set_default_tensor_type to CUDA
module: rnn, triaged
### πŸ› Describe the bug It seems that after `torch.set_default_tensor_type('torch.cuda.FloatTensor')`, certain functions does not work, for example, `torch.nn.utils.rnn.pack_sequence`. ``` >>>pack_sequence([torch.tensor([1,2,3]), torch.tensor([4,5])]) Out[1]: PackedSequence(data=tensor([1, 4, 2, 5, 3]), batch_sizes=tensor([2, 2, 1]), sorted_indices=None, unsorted_indices=None) pack_sequence([torch.tensor([1,2,3]).cuda(), torch.tensor([4,5]).cuda()]) Out[2]: PackedSequence(data=tensor([1, 4, 2, 5, 3], device='cuda:0'), batch_sizes=tensor([2, 2, 1]), sorted_indices=None, unsorted_indices=None) pack_sequence([torch.tensor([1,2,3]).cuda(0), torch.tensor([4,5]).cuda(0)]) Out[3]: PackedSequence(data=tensor([1, 4, 2, 5, 3], device='cuda:0'), batch_sizes=tensor([2, 2, 1]), sorted_indices=None, unsorted_indices=None) torch.set_default_tensor_type('torch.cuda.FloatTensor') pack_sequence([torch.tensor([1,2,3]), torch.tensor([4,5])]) Traceback (most recent call last): File "/home/xuancong/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py", line 3441, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-5-2a6bbd446608>", line 1, in <module> pack_sequence([torch.tensor([1,2,3]), torch.tensor([4,5])]) File "/home/xuancong/anaconda3/lib/python3.8/site-packages/torch/nn/utils/rnn.py", line 484, in pack_sequence return pack_padded_sequence(pad_sequence(sequences), lengths, enforce_sorted=enforce_sorted) File "/home/xuancong/anaconda3/lib/python3.8/site-packages/torch/nn/utils/rnn.py", line 262, in pack_padded_sequence _VF._pack_padded_sequence(input, lengths, batch_first) RuntimeError: 'lengths' argument should be a 1D CPU int64 tensor, but got 1D cuda:0 Long tensor pack_sequence([torch.tensor([1,2,3],device='cpu'), torch.tensor([4,5],device='cpu')]) Traceback (most recent call last): File "/home/xuancong/anaconda3/lib/python3.8/site-packages/IPython/core/interactiveshell.py", line 3441, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-6-4b903e3514ab>", line 1, in <module> pack_sequence([torch.tensor([1,2,3],device='cpu'), torch.tensor([4,5],device='cpu')]) File "/home/xuancong/anaconda3/lib/python3.8/site-packages/torch/nn/utils/rnn.py", line 484, in pack_sequence return pack_padded_sequence(pad_sequence(sequences), lengths, enforce_sorted=enforce_sorted) File "/home/xuancong/anaconda3/lib/python3.8/site-packages/torch/nn/utils/rnn.py", line 262, in pack_padded_sequence _VF._pack_padded_sequence(input, lengths, batch_first) RuntimeError: 'lengths' argument should be a 1D CPU int64 tensor, but got 1D cuda:0 Long tensor ``` From the error messages above, it seems that each `torch.tensor` has a field called `lengths` which is usually stored in CPU. `torch.set_default_tensor_type('torch.cuda.FloatTensor')` will cause this field to be stored into GPU and then pack_sequence() will always fail even if I put `device="cpu"` in the tensor creation function. ### Versions PyTorch version: 1.13.0+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 11 (bullseye) (x86_64) GCC version: (Ubuntu 10.3.0-1ubuntu1~20.04) 10.3.0 Clang version: Could not collect CMake version: version 3.20.4 Libc version: glibc-2.31 Python version: 3.8.2 (default, Mar 26 2020, 15:53:00) [GCC 7.3.0] (64-bit runtime) Python platform: Linux-5.15.40-x86_64-with-glibc2.10 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1050 Ti with Max-Q Design Nvidia driver version: 520.56.06 cuDNN version: Probably one of the following: /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.2.2 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.19.5 [pip3] numpydoc==1.1.0 [pip3] torch==1.13.0 [pip3] torchaudio==0.13.0 [pip3] torchvision==0.14.0 [conda] blas 1.0 mkl [conda] mkl 2020.4 intel_304 intel [conda] mkl-service 2.3.0 py38he904b0f_0 [conda] mkl_fft 1.2.0 py38h23d657b_0 [conda] mkl_random 1.1.1 py38h0573a6f_0 [conda] numpy 1.19.5 pypi_0 pypi [conda] numpy-base 1.19.2 py38hfa32c7d_0 [conda] numpydoc 1.1.0 pyhd3eb1b0_1 [conda] torch 1.13.0 pypi_0 pypi [conda] torchaudio 0.13.0 pypi_0 pypi [conda] torchvision 0.14.0 pypi_0 pypi cc @zou3519
1
4,258
88,639
CUDA unknown error after suspend during debugging
module: cuda, triaged
### πŸ› Describe the bug On Linux/Debian, during debugging of any CUDA program, if the system suspends and enters standby, after wake up, running any CUDA program will give rise to the following error (which will not occur initially) ``` /opt/anaconda3/lib/python3.8/site-packages/torch/cuda/__init__.py:88: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:109.) return torch._C._cuda_getDeviceCount() > 0 ``` Apparently, the explanation is irrelevant and it has nothing to do with CUDA_VISIBLE_DEVICES, because if I run `rmmod nvidia*` and re-insert `nvidia.ko` (the driver module), CUDA get back working again. Otherwise, it keeps failing. I have encountered this bug long time ago and have already reported to the NVIDIA driver team years ago, but it still exists now. ### Versions PyTorch version: 1.13.0+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 11 (bullseye) (x86_64) GCC version: (Ubuntu 10.3.0-1ubuntu1~20.04) 10.3.0 Clang version: Could not collect CMake version: version 3.20.4 Libc version: glibc-2.31 Python version: 3.8.2 (default, Mar 26 2020, 15:53:00) [GCC 7.3.0] (64-bit runtime) Python platform: Linux-5.15.40-x86_64-with-glibc2.10 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1050 Ti with Max-Q Design Nvidia driver version: 520.56.06 cuDNN version: Probably one of the following: /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.2.2 /usr/local/cuda-11.4/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.2.2 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.19.5 [pip3] numpydoc==1.1.0 [pip3] torch==1.13.0 [pip3] torchaudio==0.13.0 [pip3] torchvision==0.14.0 [conda] blas 1.0 mkl [conda] mkl 2020.4 intel_304 intel [conda] mkl-service 2.3.0 py38he904b0f_0 [conda] mkl_fft 1.2.0 py38h23d657b_0 [conda] mkl_random 1.1.1 py38h0573a6f_0 [conda] numpy 1.19.5 pypi_0 pypi [conda] numpy-base 1.19.2 py38hfa32c7d_0 [conda] numpydoc 1.1.0 pyhd3eb1b0_1 [conda] torch 1.13.0 pypi_0 pypi [conda] torchaudio 0.13.0 pypi_0 pypi [conda] torchvision 0.14.0 pypi_0 pypi cc @ngimel
0
4,259
88,631
GitHub first-time contributors box pops up unexpectedly
module: ci, triaged
### πŸ› Describe the bug For example, https://github.com/pytorch/pytorch/pull/88504 ![Screen Shot 2022-11-07 at 16 46 37](https://user-images.githubusercontent.com/475357/200446531-be43c56d-22c7-488b-bdcd-bcbd075a2f8e.png) After a quick check, it seems that the issue comes from the new [check-labels](https://github.com/pytorch/pytorch/blob/master/.github/workflows/check-labels.yml) workflow. There are multiple instances of it shows up on the example PR https://github.com/pytorch/pytorch/pull/88504/checks and one of them requires approval from maintainer https://github.com/pytorch/pytorch/actions/runs/3395637495 ![Screen Shot 2022-11-07 at 16 51 09](https://user-images.githubusercontent.com/475357/200447028-0d2c02e3-6262-427e-8e8f-e05c1894db01.png) ### Versions CI workflow cc @seemethere @malfet @pytorch/pytorch-dev-infra
0
4,260
88,626
Cloud-based rendezvous backend / distributed store?
oncall: distributed
We're submitting elastic PyTorch runs on top of Azure Machine Learning The two in-built rendezvous backends are c10d and etcd. We were wondering if you considered a rendezvous backend based on a cloud storage provider? Both c10d and etcd require a stable endpoint / dedicated compute. (c10d requires a stable master node in the training cluster, and etcd requires a stable etcd server running on dedicated compute.) We're trying to train only on top of low-priority Spot VMs, which can enter / leave the training at any time. To unblock ourselves, we implemented `AzureBlobRendezvousBackend` on top of `torch.distributed.elastic.rendezvous.dynamic_rendezvous.RendezvousBackend` and `AzureBlobStore` on top of `torch.distributed.Store`. Using Azure Blob as the key-value store, we didn't need an endpoint hosted by separate dedicated compute. We were wondering if you've considered this approach before? (Also, in the same spirit, in addition to `torch.distributed.FileStore`, have you considered something like `FolderStore`, which would be like `FileStore`, but where each key-value pair is stored in a separate file? If this had been present, we could have avoided implementing `AzureBlobStore`. Instead, we could have configured the nodes to use a common file system and then used `FolderStore`. (The common file system could have been a mounted Blob store, a shared NFS, etc.)) cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
1
4,261
88,621
[FSDP] FSDP produces different gradient norms vs DDP, and w/ grad norm clipping creates different training results
oncall: distributed, triaged, release notes: distributed (fsdp)
### πŸ› Describe the bug Running a T5 large on C4 dataset, and using same random seeding, optimizer, lr scheduler, etc, training with DDP vs FSDP NO_SHARD and FULL_SHARD produce different gradient norms and with norm clipping different training outcomes: ![comparison](https://user-images.githubusercontent.com/46302957/200437760-cb9df95e-0aa3-435a-a574-bed5bd4ff14e.png) The core issue is shown in this logging of the gradient norms: ![comparison_norm](https://user-images.githubusercontent.com/46302957/200437875-f282d44f-b62b-4a25-baf3-a06b2b2ce236.png) Details on grad norm calculations: Training was run with l2 norm. FSDP uses FSDP clip_grad_norm_() DDP uses nn.utils.clip_grad_norm_() code: ~~~ if isinstance(model, FSDP): # grad_norm_before_clip = get_grad_norm_fsdp(model, local_rank) model.clip_grad_norm_(clip_th) grad_norm_after_clip = get_grad_norm_fsdp(model, local_rank, model_sharding_strategy) else: # grad_norm_before_clip = get_grad_norm_local(model) nn.utils.clip_grad_norm_(model.parameters(), clip_th) grad_norm_after_clip = get_grad_norm_local(model) ~~~ For logging, this is the code used: ~~~ def get_grad_norm_local(model): total_norm = 0.0 for p in model.parameters(): local_norm = torch.linalg.vector_norm(p.grad, dtype=p.dtype) total_norm += local_norm ** 2 return total_norm ** 0.5 def get_grad_norm_fsdp(model, rank, sharding_strategy=ShardingStrategy.FULL_SHARD): local_norm = get_grad_norm_local(model) op = torch.distributed.ReduceOp.SUM return_norm = local_norm.clone().detach().requires_grad_(False).to(rank)**2 dist.all_reduce(return_norm, op=op) if sharding_strategy == ShardingStrategy.NO_SHARD: return_norm = return_norm / world_size return return_norm ** 0.5 ~~~ ### Versions pending...opening issue from partner. cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
0
4,262
93,612
[inductor] Accuracy failure in torchbench hf_T5
triaged, oncall: pt2
initially thought this was a DDP-Dynamo issue. Turns out to be an inductor issue, with or without DDP. Log: https://gist.github.com/wconstab/1dfd032ed5cf4ff86b105aa4da6fa32c#file-torchbench_hf_t5_inductor_ddp_no_optimimze-log @anijain2305 could you triage this? Insofar as, just close the issue if you are already aware/tracking this accuracy failure, or put it in a backlog otherwise? cc @ezyang @soumith @msaroufim @ngimel @bdhirsh
0
4,263
88,617
The libtorch tests Simplify.{SimplifySymbolicMinMax,SimplifyNestedMax,SimplifyNestedMin} fail on Apple Silicon
oncall: jit, module: m1
### πŸ› Describe the bug Following [these docs](https://github.com/pytorch/pytorch/blob/v1.13.0/docs/libtorch.rst#building-libtorch-using-python) to build libtorch v1.13.0, then running one of the test binaries: ```sh gh repo clone pytorch/pytorch && cd pytorch git checkout v1.13.0 git submodule update --init --recursive mkdir build_libtorch && cd build_libtorch python ../tools/build_libtorch.py build/bin/test_tensorexpr ``` I get these errors: ``` [ RUN ] Simplify.SimplifySymbolicMinMax /Users/samueles/github/pytorch/pytorch/test/cpp/tensorexpr/test_simplify.cpp:1997: Failure Expected: (nullptr) != (node_), actual: (nullptr) vs (nullptr) [ FAILED ] Simplify.SimplifySymbolicMinMax (0 ms) [ RUN ] Simplify.SimplifyNestedMax /Users/samueles/github/pytorch/pytorch/test/cpp/tensorexpr/test_simplify.cpp:2020: Failure Expected: (nullptr) != (max), actual: (nullptr) vs (nullptr) [ FAILED ] Simplify.SimplifyNestedMax (0 ms) [ RUN ] Simplify.SimplifyNestedMin /Users/samueles/github/pytorch/pytorch/test/cpp/tensorexpr/test_simplify.cpp:2296: Failure Expected: (nullptr) != (min), actual: (nullptr) vs (nullptr) [ FAILED ] Simplify.SimplifyNestedMin (0 ms) ``` ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: macOS 12.6.1 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: version 3.24.2 Libc version: N/A Python version: 3.9.7 (default, Sep 8 2021, 10:47:21) [Clang 12.0.5 (clang-1205.0.22.11)] (64-bit runtime) Python platform: macOS-12.6.1-arm64-arm-64bit Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.2 [pip3] torch==1.12.1 [pip3] torchvision==0.13.1 [conda] Could not collect cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
4,264
88,616
The libtorch test SequentialTest.ModuleForwardMethodOptionalArg fails on Apple Silicon
module: build, triaged, module: m1
### πŸ› Describe the bug Following [these docs](https://github.com/pytorch/pytorch/blob/v1.13.0/docs/libtorch.rst#building-libtorch-using-python) to build libtorch v1.13.0, then running one of the test binaries: ```sh gh repo clone pytorch/pytorch && cd pytorch git checkout v1.13.0 git submodule update --init --recursive mkdir build_libtorch && cd build_libtorch python ../tools/build_libtorch.py build/bin/test_api ``` I get this error: ``` [ RUN ] SequentialTest.ModuleForwardMethodOptionalArg unknown file: Failure C++ exception with description "Expected argument #1 to be of type c10::optional<c10::ArrayRef<long long> >, but received value of type c10::optional<c10::ArrayRef<long long> > Exception raised from operator() at /Users/samueles/github/pytorch/pytorch/torch/csrc/api/include/torch/nn/modules/container/any_module_holder.h:55 (most recent call first): frame #0: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) + 92 (0x105e4669c in libc10.dylib) frame #1: std::__1::decay<c10::optional<c10::ArrayRef<long long> > const&>::type&& torch::nn::AnyModuleHolder<torch::nn::ConvTranspose1dImpl, at::Tensor const&, c10::optional<c10::ArrayRef<long long> > const&>::CheckedGetter::operator()<c10::optional<c10::ArrayRef<long long> > const&>(unsigned long) + 348 (0x10529c608 in test_api) frame #2: torch::nn::AnyModuleHolder<torch::nn::ConvTranspose1dImpl, at::Tensor const&, c10::optional<c10::ArrayRef<long long> > const&>::forward(std::__1::vector<torch::nn::AnyValue, std::__1::allocator<torch::nn::AnyValue> >&&) + 480 (0x10529bd24 in test_api) frame #3: torch::nn::AnyValue torch::nn::AnyModule::any_forward<torch::nn::AnyValue>(torch::nn::AnyValue&&) + 136 (0x1051c6ac8 in test_api) frame #4: at::Tensor torch::nn::SequentialImpl::forward<at::Tensor, at::Tensor&>(at::Tensor&) + 84 (0x1051c65fc in test_api) frame #5: SequentialTest_ModuleForwardMethodOptionalArg_Test::TestBody() + 1696 (0x105226274 in test_api) frame #6: void testing::internal::HandleExceptionsInMethodIfSupported<testing::Test, void>(testing::Test*, void (testing::Test::*)(), char const*) + 116 (0x1055a2588 in test_api) frame #7: testing::Test::Run() + 812 (0x1055a24bc in test_api) frame #8: testing::TestInfo::Run() + 840 (0x1055a3de4 in test_api) frame #9: testing::TestSuite::Run() + 348 (0x1055a4890 in test_api) frame #10: testing::internal::UnitTestImpl::RunAllTests() + 1632 (0x1055b5a54 in test_api) frame #11: bool testing::internal::HandleExceptionsInMethodIfSupported<testing::internal::UnitTestImpl, bool>(testing::internal::UnitTestImpl*, bool (testing::internal::UnitTestImpl::*)(), char const*) + 116 (0x1055b523c in test_api) frame #12: testing::UnitTest::Run() + 124 (0x1055b5194 in test_api) frame #13: main + 440 (0x104accb30 in test_api) frame #14: start + 520 (0x105c6508c in dyld) " thrown in the test body. [ FAILED ] SequentialTest.ModuleForwardMethodOptionalArg (0 ms) ``` ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: macOS 12.6.1 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: version 3.24.2 Libc version: N/A Python version: 3.9.7 (default, Sep 8 2021, 10:47:21) [Clang 12.0.5 (clang-1205.0.22.11)] (64-bit runtime) Python platform: macOS-12.6.1-arm64-arm-64bit Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.2 [pip3] torch==1.12.1 [pip3] torchvision==0.13.1 [conda] Could not collect cc @malfet @seemethere
1
4,265
88,614
The libtorch test TestScalarTensor.TestScalarTensorMPS fails on Apple Silicon
triaged, actionable, module: mps, module: m1
### πŸ› Describe the bug Following [these docs](https://github.com/pytorch/pytorch/blob/v1.13.0/docs/libtorch.rst#building-libtorch-using-python) to build libtorch v1.13.0, then running one of the test binaries: ```sh gh repo clone pytorch/pytorch && cd pytorch git checkout v1.13.0 git submodule update --init --recursive mkdir build_libtorch && cd build_libtorch python ../tools/build_libtorch.py build/bin/scalar_tensor_test ``` I get this error: ``` [ RUN ] TestScalarTensor.TestScalarTensorMPS /Users/samueles/github/pytorch/pytorch/aten/src/ATen/test/scalar_tensor_test.cpp:64: Failure Expected: ss << t << std::endl doesn't throw an exception. Actual: it throws c10::TypeError with description "Cannot convert a MPS Tensor to float64 dtype as the MPS framework doesn't support float64. Please use float32 instead. Exception raised from empty_mps at /Users/samueles/github/pytorch/pytorch/aten/src/ATen/mps/EmptyTensor.cpp:40 (most recent call first): frame #0: at::detail::empty_mps(c10::ArrayRef<long long>, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, c10::optional<c10::MemoryFormat>) + 1048 (0x10e32c944 in libtorch_cpu.dylib) frame #1: at::native::empty_mps(c10::ArrayRef<long long>, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, c10::optional<c10::MemoryFormat>) + 48 (0x10e3370c4 in libtorch_cpu.dylib) frame #2: at::native::mps::mps_copy_(at::Tensor&, at::Tensor const&, bool) + 6116 (0x10e368718 in libtorch_cpu.dylib) frame #3: at::native::copy_impl(at::Tensor&, at::Tensor const&, bool) + 1484 (0x10a4dba5c in libtorch_cpu.dylib) frame #4: at::native::copy_(at::Tensor&, at::Tensor const&, bool) + 100 (0x10a4db3d0 in libtorch_cpu.dylib) frame #5: at::_ops::copy_::call(at::Tensor&, at::Tensor const&, bool) + 288 (0x10b114334 in libtorch_cpu.dylib) frame #6: at::native::_to_copy(at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>) + 2984 (0x10a801564 in libtorch_cpu.dylib) frame #7: at::_ops::_to_copy::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>) + 188 (0x10aca4588 in libtorch_cpu.dylib) frame #8: at::_ops::_to_copy::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>) + 188 (0x10aca4588 in libtorch_cpu.dylib) frame #9: c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>), &(torch::autograd::VariableType::(anonymous namespace)::_to_copy(c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>))>, at::Tensor, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat> > >, at::Tensor (c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>) + 1096 (0x10c836cc8 in libtorch_cpu.dylib) frame #10: at::_ops::_to_copy::call(at::Tensor const&, c10::optional<c10::ScalarType>, c10::optional<c10::Layout>, c10::optional<c10::Device>, c10::optional<bool>, bool, c10::optional<c10::MemoryFormat>) + 340 (0x10aca4250 in libtorch_cpu.dylib) frame #11: at::_ops::to_device::call(at::Tensor const&, c10::Device, c10::ScalarType, bool, bool, c10::optional<c10::MemoryFormat>) + 320 (0x10ae5c320 in libtorch_cpu.dylib) frame #12: at::print(std::__1::basic_ostream<char, std::__1::char_traits<char> >&, at::Tensor const&, long long) + 188 (0x10a323804 in libtorch_cpu.dylib) frame #13: test(at::DeprecatedTypeProperties&) + 2136 (0x100a1c9c4 in scalar_tensor_test) frame #14: void testing::internal::HandleExceptionsInMethodIfSupported<testing::Test, void>(testing::Test*, void (testing::Test::*)(), char const*) + 116 (0x100a380c8 in scalar_tensor_test) frame #15: testing::Test::Run() + 812 (0x100a37ffc in scalar_tensor_test) frame #16: testing::TestInfo::Run() + 840 (0x100a39924 in scalar_tensor_test) frame #17: testing::TestSuite::Run() + 348 (0x100a3a3d0 in scalar_tensor_test) frame #18: testing::internal::UnitTestImpl::RunAllTests() + 1632 (0x100a4b594 in scalar_tensor_test) frame #19: bool testing::internal::HandleExceptionsInMethodIfSupported<testing::internal::UnitTestImpl, bool>(testing::internal::UnitTestImpl*, bool (testing::internal::UnitTestImpl::*)(), char const*) + 116 (0x100a4ad7c in scalar_tensor_test) frame #20: testing::UnitTest::Run() + 124 (0x100a4acd4 in scalar_tensor_test) frame #21: main + 68 (0x100a29234 in scalar_tensor_test) frame #22: start + 520 (0x100c7508c in dyld) ". [ FAILED ] TestScalarTensor.TestScalarTensorMPS (20 ms) ``` ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: macOS 12.6.1 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: version 3.24.2 Libc version: N/A Python version: 3.9.7 (default, Sep 8 2021, 10:47:21) [Clang 12.0.5 (clang-1205.0.22.11)] (64-bit runtime) Python platform: macOS-12.6.1-arm64-arm-64bit Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.2 [pip3] torch==1.12.1 [pip3] torchvision==0.13.1 [conda] Could not collect cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
1
4,266
88,613
The libtorch test ConstantPropagation.CustomClassesCanBePropagated fails on Apple Silicon
oncall: quantization, triaged, module: m1
### πŸ› Describe the bug I have tried this both on v1.13.0 and on `master` (currently commit 23a3eb37cfa52fcbfb766bd733cfa60b28b83f42) and get the same error. Specifically (following [these docs](https://github.com/pytorch/pytorch/blob/v1.13.0/docs/libtorch.rst#building-libtorch-using-python)): ```sh gh repo clone pytorch/pytorch && cd pytorch git checkout v1.13.0 git submodule update --init --recursive mkdir build_libtorch && cd build_libtorch python ../tools/build_libtorch.py build/bin/test_jit ``` Failing output: ``` [----------] 1 test from ConstantPropagation [ RUN ] ConstantPropagation.CustomClassesCanBePropagated unknown file: Failure C++ exception with description "Expected to not find "quantized::linear_prepack" but found it %0 : NoneType = prim::Constant() %11 : QInt8(3, 3, strides=[3, 1], requires_grad=0, device=cpu) = prim::Constant[value= 1 1 1 1 1 1 1 1 1 [ QuantizedCPUQInt8Type{3,3}, qscheme: per_tensor_affine, scale: 1, zero_point: 0 ]]() %8 : __torch__.torch.classes.quantized.LinearPackedParamsBase = quantized::linear_prepack(%11, %0) ~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE return (%8) From CHECK-NOT: quantized::linear_prepack " thrown in the test body. [ FAILED ] ConstantPropagation.CustomClassesCanBePropagated (2 ms) [----------] 1 test from ConstantPropagation (2 ms total) ``` ### Versions Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: macOS 12.6.1 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: version 3.24.2 Libc version: N/A Python version: 3.9.7 (default, Sep 8 2021, 10:47:21) [Clang 12.0.5 (clang-1205.0.22.11)] (64-bit runtime) Python platform: macOS-12.6.1-arm64-arm-64bit Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.2 [pip3] torch==1.12.1 [pip3] torchvision==0.13.1 [conda] Could not collect cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel
3
4,267
88,612
Bernoulli uses legacy contiguous memory format
triaged, module: memory format
### πŸ› Describe the bug ``` RuntimeError: output 0: meta disagrees with real impl: aten.bernoulli.default( tensor(..., device='meta', size=(2, 3, 4)) stride=(1, 2, 6), ) = ( tensor(..., device='meta', size=(2, 3, 4)) stride=(1, 2, 6) ) but real stride was (12, 4, 1) ``` after patching in bernoulli metas ``` +@register_meta([aten.bernoulli.default, aten.bernoulli.out]) +@out_wrapper() +def meta_bernoulli(self, *, generator=None): + return torch.empty_like(self) + + @register_meta(aten.bernoulli_.float) def meta_bernoulli_(self, p=0.5, generator=None): return self +@register_meta(aten.bernoulli.p) +def meta_bernoulli_p(self, p=0.5, generator=None): + return torch.empty_like(self) + + ``` python test/test_meta.py -k test_dispatch_symbolic_meta_outplace_all_strides_bernoulli_cuda_float32 cpu passes with these metas ### Versions master cc @VitalyFedyunin @jamesr66a
2
4,268
88,609
quantization convert should warn the user if calibration has not happened
oncall: quantization, triaged
### πŸ› Describe the bug It's an easy mistake to pass the wrong model into `prepare_fx`, such as ``` import copy import torch import torch.ao.quantize_fx as quantize_fx m = M(...) mp = prepare_fx(copy.deepcopy(m), ...) # wrong model used for calibration calibrate(m, data_loader) mq = convert_fx(mp) evaluate(mq, data_loader) ``` Currently there is no way for user to realize the mistake until after they evaluated the accuracy, which can take awhile depending on model/dataset. If the user is doing static quantization, we should warn the user during convert if any activation observers have not seen any data. ### Versions master cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @jgong5 @Xia-Weiwen @leslie-fang-intel
3
4,269
88,598
Despite having aten::diag_embed.out, torch.diag_embed doesn't support out= argument
triaged, module: codegen
### πŸ› Describe the bug Discovered while working on https://github.com/pytorch/pytorch/pull/88584 You can test by trying to call diag_embed with an out= argument. I think it has to do with the autogenerated schema machinery, as I don't see a denylist for diag_embed anywhere in codegen cc @bhosmer @bdhirsh ### Versions master
0
4,270
88,591
`pack_padded_sequence` not compatible with deterministic mode it calls `torch.scatter`
module: rnn, triaged, module: determinism
### πŸ› Describe the bug Calling `pack_padded_sequence` in deterministic mode leads to a bug because it calls `torch.scatter` underneath. ```python import torch from torch.nn.utils.rnn import pack_padded_sequence # Preprocessing minibatch_size = 1 max_seq_length = 1 input_dim = 3 seq_lengths = [ torch.randint(1, max_seq_length + 1, (1,)).item() for _ in range(minibatch_size) ] padded_data = torch.zeros((max_seq_length, minibatch_size, input_dim)) for i in range(minibatch_size): padded_data[: seq_lengths[i], i, :] = torch.randn(seq_lengths[i], input_dim) # Main problem torch.use_deterministic_algorithms(True) packed_data = pack_padded_sequence( padded_data, seq_lengths, batch_first=False, enforce_sorted=False ) ``` Traceback ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/private/home/asablayrolles/miniconda3/envs/_throwaway_nightly/lib/python3.9/site-packages/torch/nn/utils/rnn.py", line 263, in pack_padded_sequence return _packed_sequence_init(data, batch_sizes, sorted_indices, None) File "/private/home/asablayrolles/miniconda3/envs/_throwaway_nightly/lib/python3.9/site-packages/torch/nn/utils/rnn.py", line 195, in _packed_sequence_init data, batch_sizes, sorted_indices, unsorted_indices = _packed_sequence_init_args( File "/private/home/asablayrolles/miniconda3/envs/_throwaway_nightly/lib/python3.9/site-packages/torch/nn/utils/rnn.py", line 169, in _packed_sequence_init_args unsorted_indices = invert_permutation(sorted_indices) File "/private/home/asablayrolles/miniconda3/envs/_throwaway_nightly/lib/python3.9/site-packages/torch/nn/utils/rnn.py", line 204, in invert_permutation output.scatter_(0, permutation, RuntimeError: scatter with src tensor and reduce=None does not have a deterministic implementation, but you set 'torch.use_deterministic_algorithms(True)'. You can turn off determinism just for this operation, or you can use the 'warn_only=True' option, if that's acceptable for your application. You can also file an issue at https://github.com/pytorch/pytorch/issues to help us prioritize adding deterministic support for this operation. ``` ### Versions Collecting environment information... PyTorch version: 1.14.0.dev20221107 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.2 LTS (x86_64) GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.9.13 (main, Oct 13 2022, 21:15:33) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-81-generic-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 11.6.112 GPU models and configuration: GPU 0: Quadro GP100 GPU 1: Quadro GP100 Nvidia driver version: 470.57.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.3 [pip3] torch==1.14.0.dev20221107 [pip3] torchaudio==0.14.0.dev20221107 [pip3] torchvision==0.15.0.dev20221107 [conda] blas 1.0 mkl [conda] cpuonly 2.0 0 pytorch-nightly [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.23.3 py39h14f4228_1 [conda] numpy-base 1.23.3 py39h31eccc5_1 [conda] pytorch 1.14.0.dev20221107 py3.9_cpu_0 pytorch-nightly [conda] pytorch-mutex 1.0 cpu pytorch-nightly [conda] torchaudio 0.14.0.dev20221107 py39_cpu pytorch-nightly [conda] torchvision 0.15.0.dev20221107 py39_cpu pytorch-nightly cc @zou3519 @mruberry @kurtamohler
0
4,271
88,581
cpp_extension CUDA library path hard-coded as "lib64" but may be "lib"
module: cpp-extensions, triaged, actionable
### πŸ› Describe the bug The path to libcudart.so is [hard-coded to be "lib64"](https://github.com/pytorch/pytorch/blob/71fe069d985e97b5947d133f2f2bde9adea01ed7/torch/utils/cpp_extension.py#L1691) when using the "load" and "load_inline" (Ninja) methods for C++ extensions. It may sometimes, however, instead be "lib". This is acknowledged in [the alternative setuptools installation method](https://github.com/pytorch/pytorch/blob/71fe069d985e97b5947d133f2f2bde9adea01ed7/torch/utils/cpp_extension.py#L1171). This will cause loading C++ extensions to fail for those whose libcudart.so is in "lib". ### Versions N/A cc @malfet @zou3519
1
4,272
88,579
[Quant] Validate FixedQParams observers in eager mode
oncall: quantization, triaged
Currently, in eager mode, we treat fixed qparams ops such as `torch.nn.Sigmoid` and `torch.nn.Tanh` as having "special activation post process" according to this mapping: https://github.com/pytorch/pytorch/blob/a16ced03c93dcbc5b08d0f9a36f8feab583f129a/torch/ao/quantization/quantization_mappings.py#L188-L193 Even if the user explicitly configured a QConfig for these modules, we would overwrite the configured observers with a `FixedQParamsFakeQuantize`. https://github.com/pytorch/pytorch/pull/88498 recently added a workaround for users to override this behavior, but requires users to explicitly specify these modules in `non_leaf_module_list`. Instead, what we should do is don't overwrite the observers set by the users, but instead validate whether these observers satisfy our requirements. We did this recently with FX graph mode quantization already (https://github.com/pytorch/pytorch/pull/80184) and we should do the same for eager mode. cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @vkuzo @jgong5 @Xia-Weiwen @leslie-fang-intel
1
4,273
88,576
Dynamo handling for all methods of torch.Generator
triaged, module: dynamo
### πŸ› Describe the bug We have a few different conditionals (https://github.com/pytorch/pytorch/blob/7076a6481d9f6d3ed40af1eac285fe5046a87531/torch/_dynamo/variables/torch.py#L294-L313, https://github.com/pytorch/pytorch/blob/7076a6481d9f6d3ed40af1eac285fe5046a87531/torch/_dynamo/variables/torch.py#L314-L337, https://github.com/pytorch/pytorch/blob/7076a6481d9f6d3ed40af1eac285fe5046a87531/torch/_dynamo/variables/tensor.py#L233-L241) to handle methods on torch.Generator and some torch.random functions, but it doesn't cover every function and method, for e.g., https://pytorch.org/docs/stable/generated/torch.Generator.html?highlight=manual_seed#torch.Generator.manual_seed. Creating this issue for a general strategy as well as figure out how to add support for `Generator.manual_seed` ### Versions master cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @desertfire
0
4,274
88,574
Add support for `torch.Generator` in the FX IR
oncall: fx
### πŸ› Describe the bug Code samples that don't work: ``` def fn1(x): return torch.manual_seed(x) def fn2(x): g_cpu = torch.Generator() return g_cpu.manual_seed(x) ``` ``` b = make_fx(fn1) # b = make_fx(fn2) b(1729).print_readable() ``` ``` incomplete graph: class fn1(torch.nn.Module): def forward(self, x_1): pass Traceback (most recent call last): File "/scratch/chourdiaanjali/work/pytorch/tryy2.py", line 22, in <module> b(1729).print_readable() File "/scratch/chourdiaanjali/work/pytorch/torch/fx/experimental/proxy_tensor.py", line 665, in wrapped t = dispatch_trace(wrap_key(func, args, fx_tracer), tracer=fx_tracer, concrete_args=tuple(phs)) File "/scratch/chourdiaanjali/work/pytorch/torch/fx/experimental/proxy_tensor.py", line 422, in dispatch_trace graph = tracer.trace(root, concrete_args) File "/scratch/chourdiaanjali/work/pytorch/torch/fx/_symbolic_trace.py", line 739, in trace (self.create_arg(fn(*args)),), File "/scratch/chourdiaanjali/work/pytorch/torch/fx/experimental/proxy_tensor.py", line 412, in create_arg return super().create_arg(a) File "/scratch/chourdiaanjali/work/pytorch/torch/fx/_symbolic_trace.py", line 344, in create_arg return super().create_arg(a) File "/scratch/chourdiaanjali/work/pytorch/torch/fx/proxy.py", line 165, in create_arg raise NotImplementedError(f"argument of type: {type(a)}") NotImplementedError: argument of type: <class 'torch._C.Generator'> ``` ### Versions master cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
1
4,275
88,565
What causes CPU to degrade when I load the weight with torch.hub.load()
module: cpu, triaged, module: hub, intel
### πŸ› Describe the bug ## My problem Hi @pytorchbot I use detect.py file to detect object then CPU: 78.1%. On the other hand, I load weight by **_torch.hub.load()_** then CPU: 16,2%. - torch.hub.load() ![Screenshot from 2022-11-04 15-43-55](https://user-images.githubusercontent.com/83366198/199931602-25dbd47d-26c3-44f1-aeef-1fe65100d775.png) - run detect.py ![Screenshot from 2022-11-04 15-51-50](https://user-images.githubusercontent.com/83366198/199932821-5232721a-f356-4aba-aef8-4b15093f3fd6.png) Can you point out what the cause is? ### Versions i load weight by **torch.hub.load()** such as in line 10: https://github.com/TRINHHOANGANH/test_yolov5_torch_hub.git ![image](https://user-images.githubusercontent.com/83366198/200096005-faca8e3d-30e2-4c5b-bb98-f04609b6c8c6.png) cc @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @nairbv @NicolasHug @vmoens @jdsgomes
6
4,276
88,563
`nn.functional.embedding_bag` Trigger out-of-bound Read under Compute Sanitizer
module: cuda, triaged
### πŸ› Describe the bug A test case for `torch.nn.functional.embedding_bag` behaves differently under CPU and GPU. The test is shown as follows: ```python import torch def test(): arg_1 = torch.randint(-2048,256,[8], dtype=torch.int64).clone().cuda() arg_2 = torch.rand([10, 3], dtype=torch.float64).clone().cuda() arg_3 = torch.randint(-8192,128,[2], dtype=torch.int64).clone().cuda() arg_4 = False res = torch.nn.functional.embedding_bag(arg_1,arg_2,arg_3,arg_4,) test() ``` The test with `.cuda()` is supposed to be run under GPU and it exits with `returncode=0`. If we remove the `.cuda()`, i.e, run the test under CPU, it reports an invalid argument error with `returncode=1`: ``` IndexError: select(): index -1923 out of range for tensor of size [10, 3] at dimension 0 ``` Additionally, we use compute sanitizer to run the GPU version test and it reports an out-of-bound read error: ``` # command: compute-sanitizer python3 test.py ========= COMPUTE-SANITIZER ========= Invalid __global__ read of size 8 bytes ========= at 0x310 in void at::native::<unnamed>::renorm_kernel<double, double, long>(T1 *, T3 *, T2, T2, long, long, long, long *) ========= by thread (0,0,0) in block (0,0,0) ========= Address 0x7fb982ffa800 is out of bounds ========= and is 22,528 bytes before the nearest allocation at 0x7fb983000000 of size 2,097,152 bytes ========= ========= Invalid __global__ read of size 8 bytes ========= at 0x310 in void at::native::<unnamed>::renorm_kernel<double, double, long>(T1 *, T3 *, T2, T2, long, long, long, long *) ========= by thread (1,0,0) in block (0,0,0) ========= Address 0x7fb982ffa808 is out of bounds ========= and is 22,520 bytes before the nearest allocation at 0x7fb983000000 of size 2,097,152 bytes ========= ... (omitte) ========= ERROR SUMMARY: 21 errors ``` ### Versions ``` PyTorch version: 1.14.0a0+git81042d3 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: 11.1.0-6 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.6 (main, Nov 2 2022, 18:53:38) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.6.124 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.65.01 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.21.5 [pip3] torch==1.14.0a0+git81042d3 [pip3] torchvision==0.13.1 [conda] blas 1.0 mkl [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39he7a7128_1 [conda] numpy-base 1.21.5 py39hf524024_1 [conda] numpydoc 1.2 pyhd3eb1b0_0 ``` cc @ngimel
4
4,277
93,610
We probably are allowing mutations to happen on fake tensor in VariableTracker
triaged, bug, module: dynamo
### πŸ› Describe the bug VariableTracker is supposed to be immutable, so we can do checkpointing and rollback when instruction translation fails and we need to create a graph break. However, we (indirectly) store fake tensor in VariableTracker, and fake tensor is not treated immutably. In particular, when we run nodes on fake tensor, those nodes may modify the metadata of the input fake tensor, and I don't see any logic that appropriately duplicates fake tensors so that we can safely run modifications on them. The hypothetical bug is that we checkpoint, we then run the symbolic evaluator on `squeeze_`, and that mutates the fake tensor, but then we discover we need to rollback, and now subsequent code will see incorrect metadata for the input to squeeze. Discussing this with jansel, this is unlikely to happen in practice today, because the only time we rollback is right before we are generating a graph break, and at that point we're not going to actually insert any more nodes into the graph. But it will be good to get this correct, in case we end up using checkpointing more seriously in the future. More generally, we probably need some sort of lint to make sure that VariableTrackers do not actually get mutated, because they're not going to turn into real bugs immediately if you corrupt the state. cc @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @desertfire @eellison @jansel ### Error logs _No response_ ### Minified repro _No response_
7
4,278
88,505
quantization: error message when using `convert_fx` on a model on cuda should be better
oncall: quantization, triaged
### πŸ› Describe the bug When a user tries to use `convert_fx` on a model which is on cuda, the error message doesn't make sense. We should either throw an error message which asks the user to move the model to cuda, or we should lower successfully. Repro script: ``` import torch import torch.ao.quantization.quantize_fx as quantize_fx qconfig_mapping = torch.ao.quantization.get_default_qconfig_mapping('fbgemm') m = torch.nn.Sequential(torch.nn.Linear(1, 1)).to('cuda') mp = quantize_fx.prepare_fx(m, qconfig_mapping, (torch.randn(1),)) mq = quantize_fx.convert_fx(mp) ``` Error message: ``` import torch.ao.quantization.quantize_fx as quantize_fx (pytorch) [vasiliy@devgpu032.ftw6 ~/local/pytorch (master)]$ python ../tmp/test.py /data/users/vasiliy/pytorch/torch/ao/quantization/observer.py:214: UserWarning: Please use quant_min and quant_max to spe cify the range for observers. reduce_range will be deprecated in a future release of PyTorch. warnings.warn( /data/users/vasiliy/pytorch/torch/ao/quantization/observer.py:1204: UserWarning: must run observer before calling calcula te_qparams. Returning default scale and zero point warnings.warn( Traceback (most recent call last): File "/data/users/vasiliy/pytorch/../tmp/test.py", line 18, in <module> mq = quantize_fx.convert_fx(mp) File "/data/users/vasiliy/pytorch/torch/ao/quantization/quantize_fx.py", line 622, in convert_fx return _convert_fx( File "/data/users/vasiliy/pytorch/torch/ao/quantization/quantize_fx.py", line 548, in _convert_fx quantized = convert( File "/data/users/vasiliy/pytorch/torch/ao/quantization/fx/convert.py", line 766, in convert model = lower_to_fbgemm(model, node_name_to_qconfig, node_name_to_scope) File "/data/users/vasiliy/pytorch/torch/ao/quantization/fx/lower_to_fbgemm.py", line 16, in lower_to_fbgemm return _lower_to_native_backend(model, qconfig_map, node_name_to_scope) File "/data/users/vasiliy/pytorch/torch/ao/quantization/fx/_lower_to_native_backend.py", line 928, in _lower_to_native_ backend _lower_static_weighted_ref_module(model, qconfig_map) File "/data/users/vasiliy/pytorch/torch/ao/quantization/fx/_lower_to_native_backend.py", line 499, in _lower_static_wei ghted_ref_module q_module = q_class.from_reference(ref_module, output_scale, output_zero_point) File "/data/users/vasiliy/pytorch/torch/ao/nn/quantized/modules/linear.py", line 298, in from_reference qlinear.set_weight_bias(qweight, ref_qlinear.bias) File "/data/users/vasiliy/pytorch/torch/ao/nn/quantized/modules/linear.py", line 240, in set_weight_bias self._packed_params.set_weight_bias(w, b) File "/data/users/vasiliy/pytorch/torch/ao/nn/quantized/modules/linear.py", line 32, in set_weight_bias self._packed_params = torch.ops.quantized.linear_prepack(weight, bias) File "/data/users/vasiliy/pytorch/torch/_ops.py", line 446, in __call__ return self._op(*args, **kwargs or {}) RuntimeError: Unsupported qscheme: per_channel_affine ``` ### Versions master cc @jerryzh168 @jianyuh @raghuramank100 @jamesr66a @jgong5 @Xia-Weiwen @leslie-fang-intel
2
4,279
93,609
Don't store example_value on FX node meta
triaged, bug
### πŸ› Describe the bug Storing it in the meta dict implies that we will pass it to the backend compiler. But actually we strip all of the example values from the FX graph when we're done. So this is really just an internal concept to Dynamo. I propose we store it on TensorVariable instead. BTW, you don't want to actually pass this metadata on to the backend, because in the presence of metadata mutation it can be misleading. E.g.: ``` @torch._dynamo.optimize(my_backend) def f(x): y = x.clone() y.transpose_(0, 1) return y f(torch.randn(4, 5)) ``` What do you expect the example value of y to be? cc @eellison @Chillee @voznesenskym @jansel ### Error logs _No response_ ### Minified repro _No response_
2
4,280
88,491
torch.set_grad_enabled results in RuntimeError with torch.jit.script
oncall: jit
### πŸ› Describe the bug Calling `torch.set_grad_enabled` in `nn.Module.forward` results in RuntimeError when compiling a module with `torch.jit.script`. Minimal Example: ```python import torch import torch.nn as nn class BrokenModule(nn.Module): def __init__(self, freeze: bool) -> None: super().__init__() self.freeze = freeze self.maybe_frozen = nn.Linear(10, 10) self.never_frozen = nn.Linear(10, 10) def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.set_grad_enabled(not self.freeze): x = self.maybe_frozen(x) x = self.never_frozen(x) return x # This raises RuntimeError script = torch.jit.script(BrokenModule(freeze=True)) # type: ignore ``` The full error message: ``` Traceback (most recent call last): File "/home/xxx/repos/yyy/torchbug.py", line 39, in <module> script = torch.jit.script(BrokenModule(freeze=True)) # type: ignore File "/home/xxx/venvs/dev38/lib/python3.8/site-packages/torch/jit/_script.py", line 1286, in script return torch.jit._recursive.create_script_module( File "/home/xxx/venvs/dev38/lib/python3.8/site-packages/torch/jit/_recursive.py", line 458, in create_script_module return create_script_module_impl(nn_module, concrete_type, stubs_fn) File "/home/lxxx/venvs/dev38/lib/python3.8/site-packages/torch/jit/_recursive.py", line 524, in create_script_module_impl create_methods_and_properties_from_stubs(concrete_type, method_stubs, property_stubs) File "/home/xxx/venvs/dev38/lib/python3.8/site-packages/torch/jit/_recursive.py", line 375, in create_methods_and_properties_from_stubs concrete_type._create_methods_and_properties(property_defs, property_rcbs, method_defs, method_rcbs, method_defaults) RuntimeError: With item expression must return an object: File "/home/xxx/repos/yyy/torchbug.py", line 14 def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.set_grad_enabled(not self.freeze): ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE x = self.maybe_frozen(x) x = self.never_frozen(x) ``` Ugly Workaround: ```python def forward(self, x: torch.Tensor) -> torch.Tensor: if self.freeze: with torch.no_grad(): x = self.maybe_frozen(x) else: x = self.maybe_frozen(x) x = self.never_frozen(x) return x ``` Why can't I just use the original script? ### Versions PyTorch version: 1.12.0+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.24.3 Libc version: glibc-2.31 Python version: 3.8.10 (default, Jun 22 2022, 20:18:18) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.29 Is CUDA available: True CUDA runtime version: 11.6.124 CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2080 Ti Nvidia driver version: 510.85.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.1 [pip3] numpy-quaternion==2022.4.2 [pip3] pytorch-lightning==1.6.5 [pip3] torch==1.12.0+cu116 [pip3] torchmetrics==0.9.3 [pip3] torchvision==0.13.0+cu116 [conda] Could not collect cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
4,281
88,475
DISABLED test_module_attribute_mutation_violation_negative_2 (__main__.MutationExportTests)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: linux, mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_module_attribute_mutation_violation_negative_2&suite=MutationExportTests) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/9284427989). Over the past 3 hours, it has been determined flaky in 6 workflow(s) with 6 failures and 6 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT BE ALARMED IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_module_attribute_mutation_violation_negative_2` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
12
4,282
88,474
Mixed precision training fails due to NaN in batch norm running_mean
triaged, module: amp (automated mixed precision)
### πŸ› Describe the bug During mixed precision training, the NaN gradient is skipped by grad_scaler. However, the NaN output will destroy the batch norm running mean and variance. This is severe because: 1. It can only be observed during validation since during training the running_mean and running_variance are not used. 2. It will break the whole training process of AMP. Can batch norm skip NaN samples while updating the running_mean and running_var? Is there any way to achieve such a purpose? Following is an MRE. ```python import torch data = torch.rand(2, 3, 10).cuda() from torch import nn from torch.cuda.amp import autocast as autocast network = nn.Sequential( nn.Conv1d(3, 16, 3, padding=1), nn.ReLU(), nn.BatchNorm1d(16)).cuda() with autocast(): data = data.half() * 100000 output = network[0](data) output = network[1](output) output = network[2](output) print(network[1].running_mean) ``` The output is : ``` tensor([nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan], device='cuda:0') ``` ### Versions PyTorch version: 1.10.1 Is debug build: False CUDA used to build PyTorch: 11.3 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.3 LTS (x86_64) GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.31 Python version: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 cc @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @mcarilli @ptrblck @leslie-fang-intel
6
4,283
88,472
DISABLED test_index_put_accumulate_large_tensor_cpu (__main__.TestIndexingCPU)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: dynamo This is related to https://github.com/pytorch/pytorch/issues/88413 This test was disabled because it is suspected to cause `test_indexing.py` to become flaky with SIGKILL. Looking into the log such as https://github.com/pytorch/pytorch/actions/runs/3388902619/jobs/5631574640, it's unclear which sends SIGKILL to the test, but it's always at `test_index_put_accumulate_large_tensor_cpu`. For example: ``` test_boolean_assignment_value_mismatch_cpu (__main__.NumpyTestsCPU) ... ok test_boolean_indexing_alldims_cpu (__main__.NumpyTestsCPU) ... ok test_boolean_indexing_onedim_cpu (__main__.NumpyTestsCPU) ... ok test_boolean_indexing_twodim_cpu (__main__.NumpyTestsCPU) ... ok test_boolean_indexing_weirdness_cpu (__main__.NumpyTestsCPU) ...ok test_boolean_indexing_weirdness_tensors_cpu (__main__.NumpyTestsCPU) ... ok test_boolean_list_indexing_cpu (__main__.NumpyTestsCPU) ... ok test_boolean_shape_mismatch_cpu (__main__.NumpyTestsCPU) ... ok test_broadcast_subspace_cpu (__main__.NumpyTestsCPU) ... ok test_broaderrors_indexing_cpu (__main__.NumpyTestsCPU) ... ok test_ellipsis_index_cpu (__main__.NumpyTestsCPU) ... ok test_empty_fancy_index_cpu (__main__.NumpyTestsCPU) ... ok test_empty_tuple_index_cpu (__main__.NumpyTestsCPU) ... ok test_everything_returns_views_cpu (__main__.NumpyTestsCPU) ... ok test_index_is_larger_cpu (__main__.NumpyTestsCPU) ... ok test_index_no_floats_cpu (__main__.NumpyTestsCPU) ... ok test_none_index_cpu (__main__.NumpyTestsCPU) ... ok test_single_bool_index_cpu (__main__.NumpyTestsCPU) ... ok test_single_int_index_cpu (__main__.NumpyTestsCPU) ... ok test_trivial_fancy_out_of_bounds_cpu (__main__.NumpyTestsCPU) ... ok test_advancedindex_big_cpu (__main__.TestIndexingCPU) ... ok test_advancedindex_cpu_float16 (__main__.TestIndexingCPU) ... ok test_advancedindex_cpu_float64 (__main__.TestIndexingCPU) ...ok test_basic_advanced_combined_cpu (__main__.TestIndexingCPU) ... ok test_bool_indices_accumulate_cpu (__main__.TestIndexingCPU) ... ok test_bool_indices_cpu (__main__.TestIndexingCPU) ... ok test_byte_mask2d_cpu (__main__.TestIndexingCPU) ... ok test_byte_mask_accumulate_cpu (__main__.TestIndexingCPU) ... ok test_byte_mask_cpu (__main__.TestIndexingCPU) ... ok test_byte_tensor_assignment_cpu (__main__.TestIndexingCPU) ... ok test_cpu_indices_cpu (__main__.TestIndexingCPU) ... skip: Only runs on cuda (0.002s) test_ellipsis_tensor_cpu (__main__.TestIndexingCPU) ... ok test_empty_index_cpu (__main__.TestIndexingCPU) ... ok test_empty_ndim_index_bool_cpu (__main__.TestIndexingCPU) ... ok test_empty_ndim_index_cpu (__main__.TestIndexingCPU) ... ok test_empty_slice_cpu (__main__.TestIndexingCPU) ... ok test_gather_take_along_dim_cross_device_cpu_float32 (__main__.TestIndexingCPU) ... skip: Only runs on cuda test_getitem_scalars_cpu (__main__.TestIndexingCPU) ... ok test_index_cpu (__main__.TestIndexingCPU) ... ok test_index_getitem_copy_bools_slices_cpu (__main__.TestIndexingCPU) ... ok test_index_ind_dtype_cpu (__main__.TestIndexingCPU) ... ok test_index_put_accumulate_duplicate_indices_cpu (__main__.TestIndexingCPU) ... ok test_index_put_accumulate_expanded_values_cpu (__main__.TestIndexingCPU) ... ok test_index_put_accumulate_large_tensor_cpu (__main__.TestIndexingCPU) ... Traceback (most recent call last): File "test/run_test.py", line 1283, in <module> main() File "test/run_test.py", line 1258, in main raise RuntimeError(err_message) RuntimeError: test_indexing failed! Received signal: SIGKILL ``` I'm trying to do an experimentation and disable this test for a few days to see if it helps and go from there cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
2
4,284
88,468
DISABLED test_module_attribute_mutation_violation_negative_1 (__main__.MutationExportTests)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: linux, macos, mac This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_module_attribute_mutation_violation_negative_1&suite=MutationExportTests) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/9284368349). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 7 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT BE ALARMED IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_module_attribute_mutation_violation_negative_1` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
10
4,285
88,467
DISABLED test_module_attribute_mutation_violation_negative_4 (__main__.MutationExportTests)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: linux, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_module_attribute_mutation_violation_negative_4&suite=MutationExportTests) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/9279095156). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT BE ALARMED IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_module_attribute_mutation_violation_negative_4` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
8
4,286
88,466
DISABLED test_module_attribute_mutation_violation_negative_3 (__main__.MutationExportTests)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: linux, mac, macos This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_module_attribute_mutation_violation_negative_3&suite=MutationExportTests) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/9284454926). Over the past 3 hours, it has been determined flaky in 5 workflow(s) with 8 failures and 5 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT BE ALARMED IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_module_attribute_mutation_violation_negative_3` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. cc @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
12
4,287
88,464
MaxPool1D output shapes can be negative when ceil_mode=True
module: nn, triaged, module: pooling
### πŸ› Describe the bug When ceil_mode=True, output shape can potentially be negative, which is nonsensical. I think the calcuation of output shape for that case is wrong. This seems related to issue https://github.com/pytorch/pytorch/issues/88144 ```python import torch m = torch.nn.MaxPool1d(kernel_size=4, stride=1, padding=0, dilation=1, ceil_mode=True) input = torch.randn(20, 16, 1) output = m(input) ``` ``` Traceback (most recent call last): File "/Users/mitch/***/avgpool.py", line 6, in <module> output = m(input) File "/opt/homebrew/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) File "/opt/homebrew/lib/python3.10/site-packages/torch/nn/modules/pooling.py", line 92, in forward return F.max_pool1d(input, self.kernel_size, self.stride, File "/opt/homebrew/lib/python3.10/site-packages/torch/_jit_internal.py", line 485, in fn return if_false(*args, **kwargs) File "/opt/homebrew/lib/python3.10/site-packages/torch/nn/functional.py", line 696, in _max_pool1d return torch.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode) RuntimeError: max_pool1d() Invalid computed output size: -2 ``` My experiments suggest that output shape for ceil_mode = True should be `ceiling((inputsize + padleft) / stride)`. ### Versions ``` Collecting environment information... PyTorch version: 1.13.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.5 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.102) CMake version: version 3.24.2 Libc version: N/A Python version: 3.10.6 (main, Aug 30 2022, 04:58:14) [Clang 13.1.6 (clang-1316.0.21.2.5)] (64-bit runtime) Python platform: macOS-12.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.3 [pip3] torch==1.13.0 [pip3] torchaudio==0.13.0 [pip3] torchvision==0.14.0 [conda] Could not collect ``` cc @albanD @mruberry @jbschlosser @walterddr @kshitij12345 @saketh-are @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
6
4,288
88,448
linear mm weight and bias dtypes mismatch bypasses
oncall: jit
### πŸ› Describe the bug Should linear weight and bias must be of the same dtypes? For linear, I see for {2,3}d rank tensor, weight and bias dtype mismatch is checked in [addmm](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/LinearAlgebra.cpp#L155-L169). However, for higher rank tensor, weight and bias dtype mismatch is not checked in [mm](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/LinearAlgebra.cpp#L175). I wonder if - this is unexpected, and we should add a similar check for dtype mismatch in addmm to mm - this is expected (weight and bias can have different dtypes) ========================================= Original Context: Similar to conv-bn folding #76578, lin-bn folding #86706 with autocast freeze on gpu casts the [inputs to linear to half](https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/passes/autocast.cpp#L363), while inputs to batchnorm are not casted, remaining as float. So if the optional linear bias is set to false, bias will remain as float while weight is casted to half during autocast jit freeze, causing inconsistency in linear and bias dtype (half, float respectively). However, this inconsistency is not checked in linear admm (is checked in mm). I wonder if - this is unexpected, and linear weight and bias must be of the same dtypes for {2,3}d tensors, dtype mistmatch is checked in [addmm](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/LinearAlgebra.cpp#L155-L169); for higher rank tensors, dtype mismatch is not checked in [mm](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/LinearAlgebra.cpp#L175). If this is unexpected, we can add a similar check as in addmm to mm. - this is expected, bias can be kept in fp32 for accuracy reason. ```python import torch import torch.nn as nn class LinearBN(torch.nn.Module): def __init__(self, in_features, out_features): super(LinearBN, self).__init__() self.linear = nn.Linear(in_features, out_features, bias=False) self.bn = nn.BatchNorm2d(out_features) def forward(self, x): x = self.linear(x) return self.bn(x) net = LinearBN(32, 32).cuda().eval() print("weight: ", net.linear.weight.dtype) #torch.float32 img = torch.rand((1, 32, 32, 32)).cuda() with torch.cuda.amp.autocast(True): net = torch.jit.script(net) net = torch.jit.freeze(net) lin_node = net.graph.findNode("aten::linear", True) print("weight: ", lin_node.namedInput("weight").type().dtype()) #torch.float16 print("bias: ", lin_node.namedInput("bias").type().dtype()) #torch.float32 net(img) #passes without catching weight, bias dtype inconsistency, expected? ``` For 2/3d tensors, the dtypes mismatch is catched in [addmm](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/LinearAlgebra.cpp#L155-L169). ```python class LinearBN(torch.nn.Module): def __init__(self, in_features, out_features): super(LinearBN, self).__init__() self.linear = nn.Linear(in_features, out_features, bias=False) self.bn = nn.BatchNorm1d(out_features) def forward(self, x): x = self.linear(x) return self.bn(x) net = LinearBN(32, 32).cuda().eval() print("weight: ", net.linear.weight.dtype) #torch.float32 img = torch.rand((1, 32)).cuda() #could also replace with 3d tensor, torch.rand((1, 32, 32)) with torch.cuda.amp.autocast(True): net = torch.jit.script(net) net = torch.jit.freeze(net) lin_node = net.graph.findNode("aten::linear", True) print("weight: ", lin_node.namedInput("weight").type().dtype()) #torch.float16 print("bias: ", lin_node.namedInput("bias").type().dtype()) #torch.float32 net(img) #weight, bias dtype inconsistency catched ``` ### Versions master `2bda2baad787923b064c747e619e62a6af969940` + #86706 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
2
4,289
88,447
`unique` will reverse the input when `sort=False` on cpu (not sorting)
module: cpu, triaged, intel
### πŸ› Describe the bug `unique` will reverse the input when sort=False on cpu (not sorting). By contrast, the cuda will keep the order. ```py import torch input = torch.FloatTensor([1, 3]) torch.unique(input, sorted=False) # tensor([3., 1.]) torch.unique(input.cuda(), sorted=False) # tensor([1., 3.], device='cuda:0') ``` You can see the input is in the ascending order. Even `sort=True` it should return the `[1, 3]`. But cpu will reverse the input to a descending order ### Versions torch: 1.13.0 cuda: 11.6 cc @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
5
4,290
93,607
torch._dynamo.exc.Unsupported: call_function UserDefinedClassVariable() [] {} ([Feature request] Allow custom classes with custom __setattr__ method in torchdynamo)
high priority, triage review, triaged, enhancement, oncall: pt2
### πŸ› Describe the bug Currently following doesn't work: ``` class Instances: def __init__(self, image_size: Tuple[int, int]): self._image_size = image_size def __setattr__(self, name: str, val) -> None: super().__setattr__(name, val) def f(x): a = Instances((4, 5)) return x gm, _ = torchdynamo.export(f, torch.ones((4, 5))) # Error torch._dynamo.exc.Unsupported: call_function UserDefinedClassVariable() [ConstantVariable(tuple)] {} ``` This is because torchdynamo doesn't allow custom setattr in user provided class. @jansel mentioned it might be doable if the custom setattr doesn't have graph breaks. ### Error logs _No response_ ### Minified repro _No response_ cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @wconstab @bdhirsh @anijain2305 @soumith @ngimel
4
4,291
88,443
Hang: sampling VonMises distribution gets stuck in rejection sampling for small kappa
high priority, module: distributions, module: cpu, triaged, module: numpy, module: deadlock
### πŸ› Describe the bug Sampling the VonMises distribution gets stuck in rejection sampling for small values of the concentration parameter. With the location parameter set to 1, the problem starts around ~1e-4 for single and ~1e-8 for double precision. ```torch.distributions.von_mises.VonMises(torch.Tensor([1]), torch.Tensor([1e-4])).sample()``` Numpy doesn't have this problem, likely because small values of the concentration are caught and handled explicitly, see [here](https://github.com/numpy/numpy/blob/623bc1fae1d47df24e7f1e29321d0c0ba2771ce0/numpy/random/src/legacy/legacy-distributions.c#L421). Implementing this might solve the issue. ### Versions Collecting environment information... PyTorch version: 1.12.1 Is debug build: False CUDA used to build PyTorch: 10.2 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (conda-forge gcc 12.1.0-17) 12.1.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.8.13 (default, Oct 21 2022, 23:50:54) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-52-generic-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: NVIDIA T600 Laptop GPU Nvidia driver version: 515.76 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.21.5 [pip3] torch==1.12.1 [pip3] torchaudio==0.12.1 [pip3] torchvision==0.13.1 [conda] blas 1.0 mkl [conda] cudatoolkit 10.2.89 hfd86e86_1 [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py38h7f8727e_0 [conda] mkl_fft 1.3.1 py38hd3c417c_0 [conda] mkl_random 1.2.2 py38h51133e4_0 [conda] numpy 1.21.5 py38h6c91a56_3 [conda] numpy-base 1.21.5 py38ha15fc14_3 [conda] pytorch 1.12.1 py3.8_cuda10.2_cudnn7.6.5_0 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchaudio 0.12.1 py38_cu102 pytorch [conda] torchvision 0.13.1 py38_cu102 pytorch cc @ezyang @gchanan @zou3519 @fritzo @neerajprad @alicanb @nikitaved @VitalyFedyunin @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @mruberry @rgommers
9
4,292
88,423
view_as_real and split_with_sizes links in Tensor Views docs are broken
module: docs, triaged
### πŸ› Describe the bug https://pytorch.org/docs/master/tensor_view.html ### Versions master and 1.13 cc @svekars @carljparker
1
4,293
88,415
Enable AMP for MPS devices
feature, triaged, module: amp (automated mixed precision), module: mps
### πŸš€ The feature, motivation and pitch https://github.com/pytorch/pytorch/issues/78168 States that fp16 support for mps devices in general should be possible, but autocas only works with `cpu` and `cuda` device types. When enabling it manually, on mps it does not show any additional conversions: ```python >>> torch.set_autocast_enabled(True) >>> with capture_logs(is_mode=True) as logs, LoggingTensorMode(): ... a = torch.rand(10, 10, dtype=torch.float, device='mps') ... b = torch.rand(10, 10, dtype=torch.float, device='mps') ... c = torch.addmm(a, a, b) >>> for l in logs: ... print(l) ``` prints the following: ``` $0 = torch._ops.aten.rand.default([10, 10], dtype=torch.float32, device=device(type='mps'), pin_memory=False) $1 = torch._ops.aten.rand.default([10, 10], dtype=torch.float32, device=device(type='mps'), pin_memory=False) $2 = torch._ops.aten.addmm.default($0, $0, $1) ``` given the fp16 support, it would be nice to have autocast and amp in general working on MPS devices as well ### Alternatives _No response_ ### Additional context cc @mcarilli @ptrblck @leslie-fang-intel @jgong5 @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev as per our discussion on slack.
4
4,294
88,413
Flaky dynamo test_indexing flaky with SIGKILL
module: ci, triaged, module: dynamo
### πŸ› Describe the bug This job starts to be flaky with SIGKILL recently: * https://hud.pytorch.org/hud/pytorch/pytorch/master/1?per_page=50&name_filter=dynamo * https://hud.pytorch.org/pytorch/pytorch/commit/b013825c7d104dca2c6c11cd985453d8520577f7 ### Versions Dynamo, linux-bionic-py3.7-clang9 cc @seemethere @malfet @pytorch/pytorch-dev-infra @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @desertfire @ezyang @gchanan @zou3519
1
4,295
88,410
benchmark cache persist
module: cudnn, module: cuda, triaged
## πŸš€ The feature, motivation and pitch ### Background We've been working on a detection model's training and when setting torch.backends.cudnn.benchmark = True with some padding , the training speed can improve a lot . However if we skip the padding, since the params of convolution vary frequently(e.g. input shapes), it becomes even slower. ### Requests We are wondering if we can persist the benchmark cache, so that the first person can store some cache and later others will no longer have to suffer from the algorithms choosing overhead. Will this feature be possible in the future or is already ongoing ? **Or there are limits that this whole persisting thing is not a good idea**. ## Alternatives For example, maybe we can define load() and save() functions inside the global variables: ``` BenchmarkCache<cudnnConvolutionFwdAlgoPerf_t> fwd_algos; BenchmarkCache<cudnnConvolutionBwdDataAlgoPerf_t> bwd_data_algos; BenchmarkCache<cudnnConvolutionBwdFilterAlgoPerf_t> bwd_filter_algos; ``` then we have to determine the time of load and save are executed, a draft would be like this: ``` template <typename T> struct BenchmarkCache { std::mutex mutex; std::unordered_map<ConvolutionParams, T, ParamsHash<ConvolutionParams>, ParamsEqual<ConvolutionParams>> map; std::string CACHE_STORED_PATH; BenchmarkCache(std::string cache_stored_path): CACHE_STORED_PATH(cache_stored_path){} bool find(const ConvolutionParams& params, T* results) { std::lock_guard<std::mutex> guard(mutex); auto it = map.find(params); if (it == map.end()) { return false; } *results = it->second; return true; } void insert(const ConvolutionParams& params, const T& results) { std::lock_guard<std::mutex> guard(mutex); map[params] = results; } int load(const &std::string CACHE_STORE_PATH){ std::lock_guard<std::mutex> guard(mutex); //load the cache; } int save(const &std::string CACHE_STORE_PATH){ std::lock_guard<std::mutex> guard(mutex); //save the cache; } }; ``` ### Additional context _No response_ cc @csarofeen @ptrblck @xwang233 @ngimel
8
4,296
88,408
Unit test with `--subprocess` command doesn't respect the `-k` filter flag and runs all available sub tests
module: ci, module: tests, triaged, module: testing
### πŸ› Describe the bug Unit test with `--subprocess` command doesn't respect the `-k` filter flag and runs all available sub tests Example ```python root@e85f1ff8919d:/opt/pytorch/pytorch# python test/test_nn.py -v -k test_add_relu test_add_relu (__main__.TestAddRelu) ... ok test_add_relu_broadcasting (__main__.TestAddRelu) ... ok ---------------------------------------------------------------------- Ran 2 tests in 0.002s OK ``` However ``` root@e85f1ff8919d:/opt/pytorch/pytorch# python test/test_nn.py -v -k test_add_relu --subprocess # thousands of lines of output are printed # all tests in test_nn are executed ``` Distributed tests are executed by default with `--subprocess`, which makes it hard to only test a specific sub test. https://github.com/pytorch/pytorch/blob/a8f40b39ce4f9fa9ffd90400b7d10ea4051d623a/test/run_test.py#L634-L635 Something here might need to be changed? https://github.com/pytorch/pytorch/blob/a8f40b39ce4f9fa9ffd90400b7d10ea4051d623a/torch/testing/_internal/common_utils.py#L691-L693 ### Versions pytorch: https://github.com/pytorch/pytorch/commit/ccf6b558a4c58d1ae92689b2a5064916b42eff05 cc @seemethere @malfet @pytorch/pytorch-dev-infra @mruberry @ptrblck @ngimel
0
4,297
88,389
Whether to support libtorch source code compilation of C++11 ?
module: build, triaged
### πŸ› Describe the bug Hello! I want to use libtorch's c++ api for algorithm inference, but currently the c++ version in my project only supports c++11, corresponding to gcc 4.8.5 and g++ 4.8.5, can I compile it by downloading the source code to support c++ Algorithm running under 11 environment? ### Versions gcc 4.8.5 g++ 4.8.5 CUDA 11.3 CUDNN 8.2.1 cc @malfet @seemethere
2
4,298
88,388
Summary of inductor issues observed on master
high priority, module: ci, triaged, module: inductor
### πŸ› Describe the bug As we have had inductor tests running in master for a while, here are the list of flaky issues that we have observed on master. The CUDA GPU flakiness https://github.com/pytorch/pytorch/issues/88352 is not included here because it's related to AWS G5 runner in general, not inductor workflow. * Fail to build triton wheel * https://hud.pytorch.org/pytorch/pytorch/commit/bc03aa6013e101222c9652d04a2b08e48f626dfb * benchmarks/dynamo/timm_models.py failure with KeyError: 'cubin' * https://hud.pytorch.org/pytorch/pytorch/commit/8ef9bda1bf7df84483c593f55e704657887120d6 * benchmarks/dynamo/timm_models.py timeout * https://hud.pytorch.org/pytorch/pytorch/commit/0fc7de398636f4b53e6c3fde38b4e48a5ff5b37d * https://hud.pytorch.org/pytorch/pytorch/commit/f132c171ac542c8abe8f6bf54befd9f2e14ad9b6 * https://hud.pytorch.org/pytorch/pytorch/commit/1e2c4a6e0e60dda763b53f00f25ee5c1f1e5233d * fbnetc_100 model fails * https://hud.pytorch.org/pytorch/pytorch/commit/5b75b19f51837e162cc0e5e5757dfd9bef437c67 * Internal Triton PTX codegen error * https://hud.pytorch.org/pytorch/pytorch/commit/7354368fd5a8dec5c9fc26dddf5f7da37f1d2499 * https://hud.pytorch.org/pytorch/pytorch/commit/12dd877395a47d4de382b06fda9623da37782226 Let's try to address them to keep master green ### Versions Inductor, A10G G5 runner, sm86 cc @ezyang @gchanan @zou3519 @seemethere @malfet @pytorch/pytorch-dev-infra @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @desertfire
6
4,299
88,380
cuDNN error (CUDNN_STATUS_NOT_SUPPORTED) for torch.nn.functional.grid_sample()
module: cudnn, module: cuda, triaged
### πŸ› Describe the bug A cuDNN error (`CUDNN_STATUS_NOT_SUPPORTED`) occurs when using the `grid_sample()` method on a GPU (and it appears that the exact shape of the `grid` is relevant here). Possibly related to #7435 (although that one was marked as completed). ### Minimal example Running this: ```python import torch B, C, W, H = 65_536, 1, 16, 16 device = torch.device('cuda') grid = torch.zeros(B, W, H, 2).to(device) data = torch.randn(B, C, W, H).to(device) sampled = torch.nn.functional.grid_sample(data, grid, align_corners=True) ``` results in the following `RuntimeError`: ``` Traceback (most recent call last): File "/lustre/home/tgebhard/test.py", line 9, in <module> sampled = torch.nn.functional.grid_sample(data, grid, align_corners=True) File "/lustre/home/tgebhard/.virtualenvs/ml4ptp/lib/python3.9/site-packages/torch/nn/functional.py", line 4223, in grid_sample return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners) RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-contiguous input. ``` Adding `.contiguous()` calls to the inputs of `grid_sample()` does not resolve the problem. ### Additional information It seems that the problem depends on the exact shape of the `grid`, in particular the batch size. Here are some observations from a lot of trial-and-error: * If `B < 65_536`, it never seems to fail. * For `B >= 65_536`, the spatial size (or the total number of elements in the `grid`?) seems to play a role. * The smallest example that crashes for me is `B, C, W, H = 65_536, 1, 11, 12`. * `B, C, H, W = 4_194_240, 1, 2, 2` works, but `B, C, H, W = 4_194_241, 1, 2, 2` crashes. This is the smallest difference in total number of elements between a working and a non-working example that I found. I did not check if the number of channels `C` has an impact (for my particular use case, it's always 1). ### Possible workarounds If you've found this issue because you are encountering the same problem, and you are only interested in a quick fix, I found that locally disabling cuDNN can do the trick: ```python # Works even for B, C, W, H = 65_536, 1, 16, 16 with torch.backends.cudnn.flags(enabled=False): sampled = torch.nn.functional.grid_sample(data, grid, align_corners=True) ``` Of course, disabling cuDNN globally via `torch.backends.cudnn.enabled = False` also works, but that slows down _everything_ (i.e., also parts that are not affected by this issue). ### Versions ``` PyTorch version: 1.12.1+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.2 LTS (x86_64) GCC version: (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.9.7 (default, Sep 9 2021, 23:20:13) [GCC 9.3.0] (64-bit runtime) Python platform: Linux-5.4.0-80-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: GPU models and configuration: GPU 0: Tesla V100-PCIE-16GB Nvidia driver version: 470.42.01 cuDNN version: Could not collect [see below] HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.23.2 [pip3] torch==1.12.1+cu116 [conda] Could not collect ``` When I manually run `python -c "import torch; print(torch.backends.cudnn.version())"`, I get `8302`. cc @csarofeen @ptrblck @xwang233 @ngimel
1
4,300
88,375
[PrimTorch] Functionalization pass removes Instance Norm / Batch Norm running stats transformations
high priority, triaged, module: primTorch
### πŸ› Describe the bug The alias ops on running stats for Instance Norm are removed after functionalization pass. NvFuser uses the alias ops to map the running stats back to the fusion input's original shape, stride, and dtype. References: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/Normalization.cpp#L664-L670 https://github.com/pytorch/pytorch/blob/master/functorch/_src/aot_autograd.py#L393-L413 ```python ====== Input graph ====== class joint_forward_backward(torch.nn.Module): def forward(self, primals, tangents): primals_1: f32[32, 32, 1, 1], primals_2: f32[32], primals_3: f32[32], primals_4: i64[], primals_5: f32[2, 32, 8, 8], tangents_1: f32[2, 32, 8, 8], = fx_pytree.tree_flatten_spec([primals, tangents], self._in_spec) # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:20, code: out = self.conv(inp) convolution: f32[2, 32, 8, 8] = torch.ops.aten.convolution.default(primals_5, primals_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1) # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:21, code: out = out.relu() relu: f32[2, 32, 8, 8] = torch.ops.aten.relu.default(convolution); convolution = None detach: f32[2, 32, 8, 8] = torch.ops.aten.detach.default(relu) # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:22, code: out = self.bn(out) repeat: f32[64] = torch.ops.aten.repeat.default(primals_2, [2]) repeat_1: f32[64] = torch.ops.aten.repeat.default(primals_3, [2]) view: f32[1, 64, 8, 8] = torch.ops.aten.view.default(relu, [1, 64, 8, 8]); relu = None empty: u8[0] = torch.ops.aten.empty.memory_format([0], dtype = torch.uint8, layout = torch.strided, device = device(type='cuda', index=0)) native_batch_norm = torch.ops.aten.native_batch_norm.default(view, None, None, repeat, repeat_1, True, 0.1, 1e-05) getitem: f32[1, 64, 8, 8] = native_batch_norm[0] getitem_1: f32[64] = native_batch_norm[1] getitem_2: f32[64] = native_batch_norm[2]; native_batch_norm = None # =========================================== # running mean for instance_norm alias: f32[32] = torch.ops.aten.alias.default(primals_2); primals_2 = None view_1: f32[2, 32] = torch.ops.aten.view.default(repeat, [2, 32]) mean: f32[32] = torch.ops.aten.mean.dim(view_1, [0]); view_1 = None copy_: f32[32] = torch.ops.aten.copy_.default(alias, mean); alias = mean = None # =========================================== # =========================================== # running var for instance_norm alias_1: f32[32] = torch.ops.aten.alias.default(primals_3); primals_3 = None view_2: f32[2, 32] = torch.ops.aten.view.default(repeat_1, [2, 32]) mean_1: f32[32] = torch.ops.aten.mean.dim(view_2, [0]); view_2 = None copy__1: f32[32] = torch.ops.aten.copy_.default(alias_1, mean_1); alias_1 = mean_1 = None # =========================================== view_3: f32[2, 32, 8, 8] = torch.ops.aten.view.default(getitem, [2, 32, 8, 8]); getitem = None # No stacktrace found for following nodes is_same_size = torch.ops.aten.is_same_size.default(view_3, tangents_1) # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:22, code: out = self.bn(out) view_4: f32[1, 64, 8, 8] = torch.ops.aten.view.default(tangents_1, [1, 64, 8, 8]); tangents_1 = None native_batch_norm_backward = torch.ops.aten.native_batch_norm_backward.default(view_4, view, None, repeat, repeat_1, getitem_1, getitem_2, True, 1e-05, [True, False, False]); view_4 = view = repeat = repeat_1 = getitem_1 = getitem_2 = None getitem_3: f32[1, 64, 8, 8] = native_batch_norm_backward[0] getitem_4 = native_batch_norm_backward[1] getitem_5 = native_batch_norm_backward[2]; native_batch_norm_backward = None view_5: f32[2, 32, 8, 8] = torch.ops.aten.view.default(getitem_3, [2, 32, 8, 8]); getitem_3 = None # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:21, code: out = out.relu() detach_1: f32[2, 32, 8, 8] = torch.ops.aten.detach.default(detach); detach = None threshold_backward: f32[2, 32, 8, 8] = torch.ops.aten.threshold_backward.default(view_5, detach_1, 0); view_5 = detach_1 = None # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:20, code: out = self.conv(inp) convolution_backward = torch.ops.aten.convolution_backward.default(threshold_backward, primals_5, primals_1, [0], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [False, True, False]); threshold_backward = primals_5 = primals_1 = None getitem_6 = convolution_backward[0] getitem_7: f32[32, 32, 1, 1] = convolution_backward[1] getitem_8 = convolution_backward[2]; convolution_backward = None return pytree.tree_unflatten([view_3, getitem_7, None, None, None, None], self._out_spec) ``` Joint graph after functionalization pass: https://github.com/pytorch/pytorch/blob/master/functorch/_src/aot_autograd.py#L419 ```python ====== Joint graph ====== class fake_fn(torch.nn.Module): def forward(self, primals, tangents): primals_1: f32[32, 32, 1, 1], primals_2: f32[32], primals_3: f32[32], primals_4: i64[], primals_5: f32[2, 32, 8, 8], tangents_1: f32[2, 32, 8, 8], = fx_pytree.tree_flatten_spec([primals, tangents], self._in_spec) # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:20, code: out = self.conv(inp) convolution: f32[2, 32, 8, 8] = torch.ops.aten.convolution.default(primals_5, primals_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1) # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:21, code: out = out.relu() relu: f32[2, 32, 8, 8] = torch.ops.aten.relu.default(convolution); convolution = None detach_1: f32[2, 32, 8, 8] = torch.ops.aten.detach.default(relu) detach_2: f32[2, 32, 8, 8] = torch.ops.aten.detach.default(detach_1); detach_1 = None # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:22, code: out = self.bn(out) repeat: f32[64] = torch.ops.aten.repeat.default(primals_2, [2]); primals_2 = None repeat_1: f32[64] = torch.ops.aten.repeat.default(primals_3, [2]); primals_3 = None view: f32[1, 64, 8, 8] = torch.ops.aten.view.default(relu, [1, 64, 8, 8]); relu = None native_batch_norm = torch.ops.aten.native_batch_norm.default(view, None, None, repeat, repeat_1, True, 0.1, 1e-05) getitem: f32[1, 64, 8, 8] = native_batch_norm[0] getitem_1: f32[64] = native_batch_norm[1] getitem_2: f32[64] = native_batch_norm[2]; native_batch_norm = None # =========================================== # view_1 and view_2 are dropped after functionalization pass. view_3: f32[2, 32, 8, 8] = torch.ops.aten.view.default(getitem, [2, 32, 8, 8]); getitem = None # =========================================== view_4: f32[1, 64, 8, 8] = torch.ops.aten.view.default(tangents_1, [1, 64, 8, 8]); tangents_1 = None native_batch_norm_backward = torch.ops.aten.native_batch_norm_backward.default(view_4, view, None, repeat, repeat_1, getitem_1, getitem_2, True, 1e-05, [True, False, False]); view_4 = view = repeat = repeat_1 = getitem_1 = getitem_2 = None getitem_3: f32[1, 64, 8, 8] = native_batch_norm_backward[0]; native_batch_norm_backward = None view_5: f32[2, 32, 8, 8] = torch.ops.aten.view.default(getitem_3, [2, 32, 8, 8]); getitem_3 = None # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:21, code: out = out.relu() detach_3: f32[2, 32, 8, 8] = torch.ops.aten.detach.default(detach_2); detach_2 = None detach_4: f32[2, 32, 8, 8] = torch.ops.aten.detach.default(detach_3); detach_3 = None threshold_backward: f32[2, 32, 8, 8] = torch.ops.aten.threshold_backward.default(view_5, detach_4, 0); view_5 = detach_4 = None # File: /home/rspring/workspace/debug_repro/dynamo_instance_norm.py:20, code: out = self.conv(inp) convolution_backward = torch.ops.aten.convolution_backward.default(threshold_backward, primals_5, primals_1, [0], [1, 1], [0, 0], [1, 1], False, [0, 0], 1, [False, True, False]); threshold_backward = primals_5 = primals_1 = None getitem_7: f32[32, 32, 1, 1] = convolution_backward[1]; convolution_backward = None return pytree.tree_unflatten([view_3, getitem_7, None, None, None, None], self._out_spec) ``` Debug repro: ```python import torch import functorch from torch._dynamo.optimizations.training import aot_nvprims_nvfuser, aot_nvprims_aten from torch._prims.context import TorchRefsNvfuserCapabilityMode optimize = torch._dynamo.optimize(aot_nvprims_aten) torch.cuda.cudart().cudaProfilerStart() class Fusion(torch.nn.Module): def __init__(self) : super(Fusion, self).__init__() self.conv = torch.nn.Conv2d(32, 32, (1, 1), bias=False) self.norm = torch.nn.InstanceNorm2d(32, track_running_stats=True) def forward(self, inp) : out = self.conv(inp) out = out.relu() out = self.norm(out) return out model = Fusion().cuda() input1 = torch.randn(2, 32, 8, 8, device="cuda") optimized_model = optimize(model) with torch.cuda.amp.autocast(False): for _ in range(5): out = optimized_model(input1) out.sum().backward() torch.cuda.synchronize() torch.cuda.cudart().cudaProfilerStop() ``` ### Versions upstream: a6acbad5 cc @ezyang @gchanan @zou3519 @mruberry @ngimel @Lezcano @fdrocha @peterbell10
8