modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 06:27:22
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 06:27:10
card
stringlengths
11
1.01M
roa7n/gpt2-human_enhancers_ensembl-randomized_0_layers_0.003_lr_8_e
roa7n
2023-10-10T20:11:52Z
1
0
peft
[ "peft", "region:us" ]
null
2023-10-10T20:11:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
keremp/opus-em-augmented
keremp
2023-10-10T20:10:07Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T18:13:37Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: opus-em-augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-em-augmented This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6934 - F1: 0.3341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6948 | 1.0 | 10000 | 0.6933 | 0.3341 | | 0.6933 | 2.0 | 20000 | 0.6933 | 0.3326 | | 0.6933 | 3.0 | 30000 | 0.6934 | 0.3341 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Adalwolf10/profile_ST
Adalwolf10
2023-10-10T19:51:17Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-10-10T19:51:15Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Photo of Shubham tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
pcalhoun/Llama-2-13b-JonathanSwift
pcalhoun
2023-10-10T19:50:19Z
4
0
peft
[ "peft", "region:us" ]
null
2023-10-10T19:08:41Z
--- library_name: peft --- ## Format: \<s\>\<\<CONTEXT\>\> This is the context that will not be swiftified. \<\</CONTEXT\>\>\<\<MODERN\>\> This is the modern text that will be swiftified. \<\</MODERN\>\>\<\<JON_SWIFT\>\> Swiftified text appears here \<\</JON_SWIFT\>\> E.g: \<s\>\<\<CONTEXT\>\> COWEN: Do you now think about getting things done this way? NAVRATILOVA: The positive attitude helps. With tennis, you have to be very positive and have a very short memory. COWEN: [laughs] NAVRATILOVA: Long memory for the good stuff and short memory for the bad stuff because you have to play a point. In 20 seconds, you’ve got to get ready for the next point. You’ve got to analyze what happened and try to do it better, etc. But raising two kids is challenging. I’m going to say whatever training I’ve done is not enough. [laughter] COWEN: \<\</CONTEXT\>\>\<\<MODERN\>\> Billie Jean King once suggested that you use writing in a journal every day to help you accomplish your goals. How does that work for you? What is it you do? Why do you think it works? \<\</MODERN\>\>\<\<JON_SWIFT\>\> Mighty Billie-Jean King once proposed that you write in a Journal every Day of your Life, to bring you to the Thinking of doing what you ought to do; but how comes it that she did not give any Directions as to the Manner of Performing this Work? And what was it you intended by such an Advise? Or rather, why do you suppose it would answer any Purpose? \<\</JON_SWIFT\>\> ### Framework versions - PEFT 0.5.0
Farshid/led-base-16384-cnn_dailymail_v3
Farshid
2023-10-10T19:45:57Z
91
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "base_model:allenai/led-base-16384", "base_model:finetune:allenai/led-base-16384", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-10T05:42:36Z
--- license: apache-2.0 base_model: allenai/led-base-16384 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: led-base-16384-cnn_dailymail_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # led-base-16384-cnn_dailymail_v3 This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9392 | 0.45 | 1000 | 1.6459 | | 1.7291 | 0.89 | 2000 | 1.6000 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
desarrolloasesoreslocales/SetFitPruebaRecorte
desarrolloasesoreslocales
2023-10-10T19:45:23Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-10T19:44:32Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # desarrolloasesoreslocales/SetFitPruebaRecorte This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("desarrolloasesoreslocales/SetFitPruebaRecorte") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
serhatdnd/ataturk
serhatdnd
2023-10-10T19:41:21Z
0
0
null
[ "license:other", "region:us" ]
null
2023-10-10T19:41:21Z
--- license: other license_name: public license_link: LICENSE ---
RogerB/xlm-roberta-base-finetuned-kinyarwanda-kin-finetuned-kinte-tweet-finetuned-kin-sent2
RogerB
2023-10-10T19:36:51Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:RogerB/xlm-roberta-base-kin-tweets-pretrained", "base_model:finetune:RogerB/xlm-roberta-base-kin-tweets-pretrained", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T19:25:12Z
--- base_model: RogerB/xlm-roberta-base-finetuned-kinyarwanda-kin-finetuned-kinte-tweet-finetuned tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-kinyarwanda-kin-finetuned-kinte-tweet-finetuned-kin-sent2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-kinyarwanda-kin-finetuned-kinte-tweet-finetuned-kin-sent2 This model is a fine-tuned version of [RogerB/xlm-roberta-base-finetuned-kinyarwanda-kin-finetuned-kinte-tweet-finetuned](https://huggingface.co/RogerB/xlm-roberta-base-finetuned-kinyarwanda-kin-finetuned-kinte-tweet-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9208 - F1: 0.6277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1000000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9867 | 1.0 | 1013 | 0.7765 | 0.6671 | | 0.8334 | 2.0 | 2026 | 0.7100 | 0.7125 | | 0.7621 | 3.0 | 3039 | 0.6947 | 0.7338 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
meowXin/lora-trained-xl-colab
meowXin
2023-10-10T19:30:39Z
19
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-07T18:50:18Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - meowXin/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Maykeye/BakaLLM
Maykeye
2023-10-10T19:18:50Z
0
0
null
[ "dataset:wikitext", "license:apache-2.0", "region:us" ]
null
2023-10-10T18:27:45Z
--- license: apache-2.0 datasets: - wikitext --- The main stuff is stored in branches: BakaLLM is intented to be my pet project with series of gradual improvements. Basically one improvement per branch, from 001_pristine(simplest version) to ⑨⑨⑨_humanity_is_conquered. HF repo contains code and weights. Github code only. Code will not work AS IS, tinkering requirements. For one, I didn't place weight in weights dir(I wanted to zstd them first, but forgot) For two, bench (benchmark script to test against other models) is very opinionaned where models are stored.
RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned-kin-sent2
RogerB
2023-10-10T18:58:49Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned", "base_model:finetune:RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T18:31:37Z
--- license: mit base_model: RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned tags: - generated_from_trainer metrics: - f1 model-index: - name: afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned-kin-sent2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned-kin-sent2 This model is a fine-tuned version of [RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned](https://huggingface.co/RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9013 - F1: 0.6979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1000000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9465 | 1.0 | 1013 | 0.7496 | 0.6908 | | 0.737 | 2.0 | 2026 | 0.5624 | 0.7834 | | 0.6442 | 3.0 | 3039 | 0.5366 | 0.8079 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
SJahanzad/3dbloom1
SJahanzad
2023-10-10T18:30:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-10T18:30:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
Sguzman4532/marian-finetuned-kde4-en-to-fr
Sguzman4532
2023-10-10T18:30:43Z
105
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-10-10T00:50:21Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 50 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cpu - Datasets 2.14.5 - Tokenizers 0.13.3
alessandroseni/room-type-detection
alessandroseni
2023-10-10T18:26:11Z
220
2
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-10T18:26:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: room-type-detection results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7142857313156128 --- # room-type-detection Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bathroom ![bathroom](images/bathroom.jpg) #### bedroom ![bedroom](images/bedroom.jpg) #### dining room ![dining room](images/dining_room.jpg) #### kitchen ![kitchen](images/kitchen.jpg) #### living room ![living room](images/living_room.jpg)
RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned-kin-sent1
RogerB
2023-10-10T18:25:42Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned", "base_model:finetune:RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T18:00:44Z
--- license: mit base_model: RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned tags: - generated_from_trainer metrics: - f1 model-index: - name: afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned-kin-sent1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned-kin-sent1 This model is a fine-tuned version of [RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned](https://huggingface.co/RogerB/afro-xlmr-large-kinre-finetuned-kinte-tweet-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9004 - F1: 0.6959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 100000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9029 | 1.0 | 1013 | 0.6650 | 0.7226 | | 0.729 | 2.0 | 2026 | 0.5295 | 0.8007 | | 0.6296 | 3.0 | 3039 | 0.4975 | 0.8234 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Amirhnrn/ppo-CartPole-v1
Amirhnrn
2023-10-10T18:24:05Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-10-10T18:24:00Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 165.50 +/- 105.87 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': '__file__' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Amirhnrn/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
google/flan-t5-small
google
2023-10-10T18:01:54Z
541,099
310
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "t5", "text2text-generation", "en", "fr", "ro", "de", "multilingual", "dataset:svakulenk0/qrecc", "dataset:taskmaster2", "dataset:djaym7/wiki_dialog", "dataset:deepmind/code_contests", "dataset:lambada", "dataset:gsm8k", "dataset:aqua_rat", "dataset:esnli", "dataset:quasc", "dataset:qed", "arxiv:2210.11416", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-21T09:59:24Z
--- language: - en - fr - ro - de - multilingual tags: - text2text-generation widget: - text: "Translate to German: My name is Arthur" example_title: "Translation" - text: "Please answer to the following question. Who is going to be the next Ballon d'or?" example_title: "Question Answering" - text: "Q: Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering." example_title: "Logical reasoning" - text: "Please answer the following question. What is the boiling point of Nitrogen?" example_title: "Scientific knowledge" - text: "Answer the following yes/no question. Can you write a whole Haiku in a single tweet?" example_title: "Yes/no question" - text: "Answer the following yes/no question by reasoning step-by-step. Can you write a whole Haiku in a single tweet?" example_title: "Reasoning task" - text: "Q: ( False or not False or False ) is? A: Let's think step by step" example_title: "Boolean Expressions" - text: "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?" example_title: "Math reasoning" - text: "Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?" example_title: "Premise and hypothesis" datasets: - svakulenk0/qrecc - taskmaster2 - djaym7/wiki_dialog - deepmind/code_contests - lambada - gsm8k - aqua_rat - esnli - quasc - qed license: apache-2.0 --- # Model Card for FLAN-T5 small <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/flan2_architecture.jpg" alt="drawing" width="600"/> # Table of Contents 0. [TL;DR](#TL;DR) 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Uses](#uses) 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 5. [Training Details](#training-details) 6. [Evaluation](#evaluation) 7. [Environmental Impact](#environmental-impact) 8. [Citation](#citation) 9. [Model Card Authors](#model-card-authors) # TL;DR If you already know T5, FLAN-T5 is just better at everything. For the same number of parameters, these models have been fine-tuned on more than 1000 additional tasks covering also more languages. As mentioned in the first few lines of the abstract : > Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints,1 which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models. **Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the [T5 model card](https://huggingface.co/t5-large). # Model Details ## Model Description - **Model type:** Language model - **Language(s) (NLP):** English, Spanish, Japanese, Persian, Hindi, French, Chinese, Bengali, Gujarati, German, Telugu, Italian, Arabic, Polish, Tamil, Marathi, Malayalam, Oriya, Panjabi, Portuguese, Urdu, Galician, Hebrew, Korean, Catalan, Thai, Dutch, Indonesian, Vietnamese, Bulgarian, Filipino, Central Khmer, Lao, Turkish, Russian, Croatian, Swedish, Yoruba, Kurdish, Burmese, Malay, Czech, Finnish, Somali, Tagalog, Swahili, Sinhala, Kannada, Zhuang, Igbo, Xhosa, Romanian, Haitian, Estonian, Slovak, Lithuanian, Greek, Nepali, Assamese, Norwegian - **License:** Apache 2.0 - **Related Models:** [All FLAN-T5 Checkpoints](https://huggingface.co/models?search=flan-t5) - **Original Checkpoints:** [All Original FLAN-T5 Checkpoints](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) - **Resources for more information:** - [Research paper](https://arxiv.org/pdf/2210.11416.pdf) - [GitHub Repo](https://github.com/google-research/t5x) - [Hugging Face FLAN-T5 Docs (Similar to T5) ](https://huggingface.co/docs/transformers/model_doc/t5) # Usage Find below some example scripts on how to use the model in `transformers`: ## Using the Pytorch model ### Running the model on a CPU <details> <summary> Click to expand </summary> ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small") input_text = "translate English to German: How old are you?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ### Running the model on a GPU <details> <summary> Click to expand </summary> ```python # pip install accelerate from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto") input_text = "translate English to German: How old are you?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> ### Running the model on a GPU using different precisions #### FP16 <details> <summary> Click to expand </summary> ```python # pip install accelerate import torch from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto", torch_dtype=torch.float16) input_text = "translate English to German: How old are you?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> #### INT8 <details> <summary> Click to expand </summary> ```python # pip install bitsandbytes accelerate from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto", load_in_8bit=True) input_text = "translate English to German: How old are you?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0])) ``` </details> # Uses ## Direct Use and Downstream Use The authors write in [the original paper's model card](https://arxiv.org/pdf/2210.11416.pdf) that: > The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models See the [research paper](https://arxiv.org/pdf/2210.11416.pdf) for further details. ## Out-of-Scope Use More information needed. # Bias, Risks, and Limitations The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2210.11416.pdf): > Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application. ## Ethical considerations and risks > Flan-T5 is fine-tuned on a large corpus of text data that was not filtered for explicit content or assessed for existing biases. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data. ## Known Limitations > Flan-T5 has not been tested in real world applications. ## Sensitive Use: > Flan-T5 should not be applied for any unacceptable use cases, e.g., generation of abusive speech. # Training Details ## Training Data The model was trained on a mixture of tasks, that includes the tasks described in the table below (from the original paper, figure 2): ![table.png](https://s3.amazonaws.com/moonup/production/uploads/1666363265279-62441d1d9fdefb55a0b7d12c.png) ## Training Procedure According to the model card from the [original paper](https://arxiv.org/pdf/2210.11416.pdf): > These models are based on pretrained T5 (Raffel et al., 2020) and fine-tuned with instructions for better zero-shot and few-shot performance. There is one fine-tuned Flan model per T5 model size. The model has been trained on TPU v3 or TPU v4 pods, using [`t5x`](https://github.com/google-research/t5x) codebase together with [`jax`](https://github.com/google/jax). # Evaluation ## Testing Data, Factors & Metrics The authors evaluated the model on various tasks covering several languages (1836 in total). See the table below for some quantitative evaluation: ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1668072995230-62441d1d9fdefb55a0b7d12c.png) For full details, please check the [research paper](https://arxiv.org/pdf/2210.11416.pdf). ## Results For full results for FLAN-T5-Small, see the [research paper](https://arxiv.org/pdf/2210.11416.pdf), Table 3. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Google Cloud TPU Pods - TPU v3 or TPU v4 | Number of chips ≥ 4. - **Hours used:** More information needed - **Cloud Provider:** GCP - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Citation **BibTeX:** ```bibtex @misc{https://doi.org/10.48550/arxiv.2210.11416, doi = {10.48550/ARXIV.2210.11416}, url = {https://arxiv.org/abs/2210.11416}, author = {Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Eric and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and Webson, Albert and Gu, Shixiang Shane and Dai, Zhuyun and Suzgun, Mirac and Chen, Xinyun and Chowdhery, Aakanksha and Narang, Sharan and Mishra, Gaurav and Yu, Adams and Zhao, Vincent and Huang, Yanping and Dai, Andrew and Yu, Hongkun and Petrov, Slav and Chi, Ed H. and Dean, Jeff and Devlin, Jacob and Roberts, Adam and Zhou, Denny and Le, Quoc V. and Wei, Jason}, keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Scaling Instruction-Finetuned Language Models}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
0xC4LL3/RL-Course_ViZDoom_Health-Gathering-Supreme
0xC4LL3
2023-10-10T17:37:46Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-08T20:36:22Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 21.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r 0xC4LL3/RL-Course_ViZDoom_Health-Gathering-Supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .home.calle..local.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=RL-Course_ViZDoom_Health-Gathering-Supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .home.calle..local.lib.python3.10.site-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=RL-Course_ViZDoom_Health-Gathering-Supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
TheBloke/em_german_mistral_v01-GGUF
TheBloke
2023-10-10T17:34:43Z
3,982
11
transformers
[ "transformers", "gguf", "mistral", "pytorch", "german", "deutsch", "text-generation", "de", "base_model:jphme/em_german_mistral_v01", "base_model:quantized:jphme/em_german_mistral_v01", "license:apache-2.0", "region:us" ]
text-generation
2023-10-03T16:24:56Z
--- base_model: jphme/em_german_mistral_v01 inference: false language: - de library_name: transformers license: apache-2.0 model_creator: Jan Philipp Harries model_name: EM German Mistral v01 model_type: mistral pipeline_tag: text-generation prompt_template: 'Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke tags: - pytorch - german - deutsch - mistral --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # EM German Mistral v01 - GGUF - Model creator: [Jan Philipp Harries](https://huggingface.co/jphme) - Original model: [EM German Mistral v01](https://huggingface.co/jphme/em_german_mistral_v01) <!-- description start --> ## Description This repo contains GGUF format model files for [Jan Philipp Harries's EM German Mistral v01](https://huggingface.co/jphme/em_german_mistral_v01). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/em_german_mistral_v01-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/em_german_mistral_v01-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF) * [Jan Philipp Harries's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jphme/em_german_mistral_v01) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: EmGerman ``` Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [em_german_mistral_v01.Q2_K.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [em_german_mistral_v01.Q3_K_S.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [em_german_mistral_v01.Q3_K_M.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [em_german_mistral_v01.Q3_K_L.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [em_german_mistral_v01.Q4_0.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [em_german_mistral_v01.Q4_K_S.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [em_german_mistral_v01.Q4_K_M.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [em_german_mistral_v01.Q5_0.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [em_german_mistral_v01.Q5_K_S.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [em_german_mistral_v01.Q5_K_M.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [em_german_mistral_v01.Q6_K.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [em_german_mistral_v01.Q8_0.gguf](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF/blob/main/em_german_mistral_v01.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/em_german_mistral_v01-GGUF and below it, a specific filename to download, such as: em_german_mistral_v01.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/em_german_mistral_v01-GGUF em_german_mistral_v01.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/em_german_mistral_v01-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/em_german_mistral_v01-GGUF em_german_mistral_v01.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m em_german_mistral_v01.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Du bist ein hilfreicher Assistent. USER: {prompt} ASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/em_german_mistral_v01-GGUF", model_file="em_german_mistral_v01.Q4_K_M.gguf", model_type="mistral", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Jan Philipp Harries's EM German Mistral v01 ![EM Logo](em_model_logo_web.jpeg) *Please note that the Mistral architecture is very recent and still not supported by all libraries (e.g. AutoGPTQ). In case of any problems, please try a different format/base model.* # Table of Contents 1. [Introduction](#introduction) 2. [Links & Demos](#links--demos) - [Model Links](#model-links) - [Demos](#demos) 3. [Prompt Format](#prompt-format) 4. [Example Output](#example-output) 5. [Acknowledgements](#acknowledgements) 6. [Contact](#contact) 7. [Disclaimer](#disclaimer) # Introduction **EM German** is a Llama2/Mistral/LeoLM-based model family, finetuned on a large dataset of various instructions in German language. The models are optimized for German text, providing proficiency in understanding, generating, and interacting with German language content. We offer versions based on 7b, 13b and 70b Llama-2, Mistral and LeoLM (Llama-2/Mistral with continued pretraining on German texts) models. Please find all Informations, Example Outputs, the special RAG prompt format, output examples and eval results for the EM German Model family in [our Github Repository](https://github.com/jphme/EM_German). ([Deutsche Version](https://github.com/jphme/EM_German/blob/main/README_DE.md)) # Links & Demos ## Model Links Should you try only one model version, I strongly recommend the **LeoLM Mistral** model which offers by far the best combination of performance and computing requirements! | Base Model | HF | GPTQ | GGUF | AWQ | |-------|-------|-------|-------|-------| | Llama2 7b | [Link](https://huggingface.co/jphme/em_german_7b_v01) | [Link](https://huggingface.co/TheBloke/em_german_7b_v01-GPTQ) | [Link](https://huggingface.co/TheBloke/em_german_7b_v01-GGUF) | [Link](https://huggingface.co/TheBloke/em_german_7b_v01-AWQ) | | Llama2 13b | [Link](https://huggingface.co/jphme/em_german_13b_v01) | [Link](https://huggingface.co/TheBloke/em_german_13b_v01-GPTQ) | [Link](https://huggingface.co/TheBloke/em_german_13b_v01-GGUF) | [Link](https://huggingface.co/TheBloke/em_german_13b_v01-AWQ) | | Llama2 70b | [Link](https://huggingface.co/jphme/em_german_70b_v01) | [Link](https://huggingface.co/TheBloke/em_german_70b_v01-GPTQ) | [Link](https://huggingface.co/TheBloke/em_german_70b_v01-GGUF) | [Link](https://huggingface.co/TheBloke/em_german_70b_v01-AWQ) | | [Mistral 7b](https://huggingface.co/mistralai/Mistral-7B-v0.1) | [Link](https://huggingface.co/jphme/em_german_mistral_v01) | [Link](https://huggingface.co/TheBloke/em_german_mistral_v01-GPTQ) | [Link](https://huggingface.co/TheBloke/em_german_mistral_v01-GGUF) | [Link](https://huggingface.co/TheBloke/em_german_mistral_v01-AWQ) | | [LeoLM 7b](https://huggingface.co/LeoLM/leo-hessianai-7b) | [Link](https://huggingface.co/jphme/em_german_7b_leo) | [Link](https://huggingface.co/jphme/em_german_7b_leo_gptq) | [Link](hhttps://huggingface.co/jphme/em_german_7b_leo_gguf) | tbc | | [LeoLM 13b](https://huggingface.co/LeoLM/leo-hessianai-13b) | soon | soon | [Link](https://huggingface.co/jphme/em_german_13b_leo_gguf) | tbc | | [LeoLM Mistral 7b](tbc) | [Link](https://huggingface.co/jphme/em_german_leo_mistral) | soon | [Link](https://huggingface.co/jphme/em_german_leo_mistral_gguf) | tbc | ### Notes about the different versions: See also the [comparison of example outputs](https://github.com/jphme/EM_German/blob/main/example_output_comparison.md) for a comparison of (7b) model capabilities. If you get unsatisfying results with one or another EM German version, please try a different (and/or larger) model or version for your usecase. ## Demos: You can use some of the models with **free** google Colab instances (e.g. the 7bn model in 8bit or the 13b model with GPTQ): * [Example Colab Notebook for 13b with GPTQ](https://colab.research.google.com/drive/1IJfJdVwGkfe5MYOqHptystR3FBeEUdGn?usp=sharing) * [Example Colab Notebook for 7b with 8bit-Loading](https://colab.research.google.com/drive/1bsv6vkLM4AlCpSyXA6ol9P32zxZmf7Zu?usp=sharing) * [Example Colab Notebook for 7b Mistral GGUF with Grammar-based structured output](https://colab.research.google.com/drive/17O-a3D4BnVc_V9Of3dFfed18v1ULu1Sv?usp=sharing) # Prompt Format This model follows the Vicuna format without linebreaks (but should work with linebreaks as well). The format is as follows: ``` Du bist ein hilfreicher Assistent. USER: <instruction> ASSISTANT: ``` You can swap the standard system prompt for a better suited one (see below for RAG-tasks). # Example Output Please find a selection of various example outputs for all 7b versions of EM German [here](https://github.com/jphme/EM_German/blob/main/example_output_comparison.md). **Prompt:** > Erkläre die Bedeutung von drei wesentlichen Elementen der Bilanzierung und des Accountings nach IFRS für Unternehmen, die auf internationaler Ebene tätig sind. **Antwort EM German Leo Mistral 7b:** ``` Die International Financial Reporting Standards (IFRS) sind eine Reihe von internationalen Rechnungslegungsstandards, die von der International Accounting Standards Board (IASB) entwickelt wurden. Sie sollen dazu beitragen, dass Finanzberichte vergleichbar, zuverlässig und relevant sind. 1. Fair Value: Dieses Konzept ist ein zentraler Bestandteil der IFRS. Es besagt, dass Vermögenswerte und Schulden zum fairen Wert bilanziert werden sollten, was dem Preis entspricht, zu dem sie zwischen Marktteilnehmern gehandelt werden könnten. Dadurch wird sichergestellt, dass das Unternehmen eine genaue Darstellung seiner finanziellen Lage liefert. 2. Konsolidierung: Die IFRS verlangen von Unternehmen, ihre Finanzergebnisse auf konsolidierter Basis darzustellen. Das bedeutet, dass alle Tochtergesellschaften und verbundenen Unternehmen in die Bilanz des Mutterunternehmens aufgenommen werden. Dadurch wird ein klareres Bild von der finanziellen Situation des Konzerns geschaffen. 3. Vollständigkeitsprinzip: Die IFRS verlangen von Unternehmen, alle relevanten Informationen offenzulegen. Dies umfasst sowohl positive als auch negative Faktoren, wie zum Beispiel Gewinne und Verluste, Einnahmen und Ausgaben sowie Risiken und Unsicherheiten. Durch dieses Prinzip wird sichergestellt, dass Investoren, Kreditgeber und andere Stakeholder eine umfassende Einschätzung der finanziellen Lage des Unternehmens vornehmen können. ``` **Prompt:** > Ein Mensch atmet durchschnittlich 16 Mal pro Minute. Wie oft atmet er an einem Tag? **Antwort EM German Leo Mistral 7b:** ``` Zuerst berechnen wir, wie oft eine Person in einer Stunde atmet. Wir wissen, dass eine Stunde 60 Minuten hat, also: Atemzüge pro Stunde = Atemfrequenz * Minuten pro Stunde = 16 Atemzüge pro Minute * 60 Minuten = 960 Atemzüge Um herauszufinden, wie viele Atemzüge eine Person an einem Tag macht, müssen wir diese stündliche Rate mit der Anzahl der Stunden an einem Tag multiplizieren, also 24: Atemzüge pro Tag = Atemzüge pro Stunde * Stunden pro Tag = 960 Atemzüge * 24 Stunden = 23.040 Atemzüge Also macht ein durchschnittlicher Mensch etwa 23.040 Atemzüge an einem Tag. ``` (For more examples, please visit [our Github Repository](https://github.com/jphme/EM_German).) # Acknowledgements: Many thanks to [winglian/caseus](https://huggingface.co/winglian) for his great work on Axolotl which I used to train the EM mdoels. I am also grateful to [Jon Durbin](https://huggingface.co/jondurbin) and his [Airoboros](https://huggingface.co/jondurbin/airoboros-l2-70b-2.2.1) models and code from which I borrowed many ideas and code snippets. Additionally many thanks to [Björn Plüster](https://huggingface.co/bjoernp) and the LeoLM team for the outstanding pretraining work on LeoLM and last but not least many many thanks to [TheBloke](https://huggingface.co/TheBloke) for the preparation of quantized versions in all formats under the sun. The 70b model was trained with support of the [OVH Cloud Startup Program](https://startup.ovhcloud.com/en/). # Contact I you are interested in customized LLMs for business applications, please get in contact with me via [my website](https://www.jph.me). I am also always happy about suggestions and feedback. *PS: We are also always interested in support for our startup [ellamind](https://ellamind.com), which will offer customized models for business applications in the future (we are currently still in stealth mode). If you use our models for business applications and have advanced needs for specialized capabilities, please get in touch.* # Disclaimer: I am not responsible for the actions of third parties who use this model or the outputs of the model. This model should only be used for research purposes. The original base model license applies and is distributed with the model files. <!-- original-model-card end -->
deepin-tech/fr_pipeline
deepin-tech
2023-10-10T17:28:17Z
0
0
spacy
[ "spacy", "token-classification", "fr", "region:us" ]
token-classification
2023-10-10T17:26:00Z
--- tags: - spacy - token-classification language: - fr model-index: - name: fr_pipeline results: [] --- | Feature | Description | | --- | --- | | **Name** | `fr_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `national`, `thematic`, `sentiments`, `ner` | | **Components** | `tok2vec`, `tagger`, `national`, `thematic`, `sentiments`, `ner` | | **Vectors** | -1 keys, 50000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (71 labels for 5 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `1`, `10`, `100`, `125`, `13`, `14`, `15`, `17`, `19`, `190`, `2`, `25`, `3`, `46`, `5`, `50`, `500`, `6`, `7`, `80`, `800`, `ADJ`, `ADP`, `ADV`, `AUX`, `CCONJ`, `CONJ`, `DET`, `INTJ`, `NOUN`, `NUM`, `PRON`, `PROPN`, `PUNCT`, `SCONJ`, `SYM`, `VERB`, `X` | | **`national`** | `International`, `National` | | **`thematic`** | `Coopération/Diplomatie`, `Culture`, `Economie`, `Education`, `Election`, `Environnement`, `Gouvernement`, `Insolite`, `Justice`, `Nécrologie`, `People`, `Politique`, `Réligion`, `Santé`, `Sexualité/Vie couple`, `Société`, `Sport`, `Sécurité`, `Sécurité routière`, `Technologie` | | **`sentiments`** | `Negatif`, `Neutre`, `Positif` | | **`ner`** | `DATE`, `EVENT`, `LOC`, `MISC`, `MONEY`, `ORG`, `PER`, `PER-T` | </details> ### Accuracy | Type | Score | | --- | --- | | `CATS_SCORE` | 90.37 | | `CATS_MICRO_P` | 96.04 | | `CATS_MICRO_R` | 96.04 | | `CATS_MICRO_F` | 96.04 | | `CATS_MACRO_P` | 92.01 | | `CATS_MACRO_R` | 88.90 | | `CATS_MACRO_F` | 90.37 | | `CATS_MACRO_AUC` | 97.36 | | `CATS_MACRO_AUC_PER_TYPE` | 0.00 | | `TOK2VEC_LOSS` | 0.00 | | `TEXTCAT_LOSS` | 478.59 |
Ben141/LLM3
Ben141
2023-10-10T17:15:27Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-10-10T16:47:16Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: LLM3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LLM3 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 120 ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Bazzar/bark-small
Bazzar
2023-10-10T16:58:04Z
9
0
transformers
[ "transformers", "pytorch", "bark", "text-to-audio", "audio", "text-to-speech", "en", "de", "es", "fr", "hi", "it", "ja", "ko", "pl", "pt", "ru", "tr", "zh", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-10-10T16:56:56Z
--- language: - en - de - es - fr - hi - it - ja - ko - pl - pt - ru - tr - zh thumbnail: >- https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png library: bark license: mit tags: - bark - audio - text-to-speech duplicated_from: ylacombe/bark-small pipeline_tag: text-to-speech --- # Bark Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai). Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. The model can also produce nonverbal communications like laughing, sighing and crying. To support the research community, we are providing access to pretrained model checkpoints ready for inference. The original github repo and model card can be found [here](https://github.com/suno-ai/bark). This model is meant for research purposes only. The model output is not censored and the authors do not endorse the opinions in the generated content. Use at your own risk. Two checkpoints are released: - [**small** (this checkpoint)](https://huggingface.co/suno/bark-small) - [large](https://huggingface.co/suno/bark) ## Example Try out Bark yourself! * Bark Colab: <a target="_blank" href="https://colab.research.google.com/drive/1eJfA2XUa-mXwdMy7DoYKVYHI1iTd9Vkt?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Colab: <a target="_blank" href="https://colab.research.google.com/drive/1dWWkZzvu7L9Bunq9zvD-W02RFUXoW-Pd?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> * Hugging Face Demo: <a target="_blank" href="https://huggingface.co/spaces/suno/bark"> <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/> </a> You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) and scipy: ``` pip install --upgrade pip pip install --upgrade transformers scipy ``` 2. Run inference via the `Text-to-Speech` (TTS) pipeline. You can infer the bark model via the TTS pipeline in just a few lines of code! ```python from transformers import pipeline import scipy synthesiser = pipeline("text-to-speech", "suno/bark-small") speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"do_sample": True}) scipy.io.wavfile.write("bark_out.wav", rate=speech["sampling_rate"], data=speech["audio"]) ``` 3. Run inference via the Transformers modelling code. You can use the processor + generate code to convert text into a mono 24 kHz speech waveform for more fine-grained control. ```python from transformers import AutoProcessor, AutoModel processor = AutoProcessor.from_pretrained("suno/bark-small") model = AutoModel.from_pretrained("suno/bark-small") inputs = processor( text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."], return_tensors="pt", ) speech_values = model.generate(**inputs, do_sample=True) ``` 4. Listen to the speech samples either in an ipynb notebook: ```python from IPython.display import Audio sampling_rate = model.generation_config.sample_rate Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```python import scipy sampling_rate = model.config.sample_rate scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze()) ``` For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the [Bark docs](https://huggingface.co/docs/transformers/model_doc/bark). ## Suno Usage You can also run Bark locally through the original [Bark library]((https://github.com/suno-ai/bark): 1. First install the [`bark` library](https://github.com/suno-ai/bark) 3. Run the following Python code: ```python from bark import SAMPLE_RATE, generate_audio, preload_models from IPython.display import Audio # download and load all models preload_models() # generate audio from text text_prompt = """ Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe. """ speech_array = generate_audio(text_prompt) # play text in notebook Audio(speech_array, rate=SAMPLE_RATE) ``` [pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm) To save `audio_array` as a WAV file: ```python from scipy.io.wavfile import write as write_wav write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array) ``` ## Model Details The following is additional information about the models released here. Bark is a series of three transformer models that turn text into audio. ### Text to semantic tokens - Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer) - Output: semantic tokens that encode the audio to be generated ### Semantic to coarse tokens - Input: semantic tokens - Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook ### Coarse to fine tokens - Input: the first two codebooks from EnCodec - Output: 8 codebooks from EnCodec ### Architecture | Model | Parameters | Attention | Output Vocab size | |:-------------------------:|:----------:|------------|:-----------------:| | Text to semantic tokens | 80/300 M | Causal | 10,000 | | Semantic to coarse tokens | 80/300 M | Causal | 2x 1,024 | | Coarse to fine tokens | 80/300 M | Non-causal | 6x 1,024 | ### Release date April 2023 ## Broader Implications We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages. While we hope that this release will enable users to express their creativity and build applications that are a force for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark, we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository). ## License Bark is licensed under the [MIT License](https://github.com/suno-ai/bark/blob/main/LICENSE), meaning it's available for commercial use.
Tommert25/robbert1010_lrate7.5b32
Tommert25
2023-10-10T16:54:56Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:Tommert25/robbert0410_lrate7.5b32", "base_model:finetune:Tommert25/robbert0410_lrate7.5b32", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-10T15:59:49Z
--- license: mit base_model: Tommert25/robbert0410_lrate7.5b32 tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: robbert1010_lrate7.5b32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robbert1010_lrate7.5b32 This model is a fine-tuned version of [Tommert25/robbert0410_lrate7.5b32](https://huggingface.co/Tommert25/robbert0410_lrate7.5b32) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5187 - Precisions: 0.8552 - Recall: 0.7999 - F-measure: 0.8232 - Accuracy: 0.9157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.0496 | 1.0 | 118 | 0.5283 | 0.8488 | 0.7962 | 0.8132 | 0.9092 | | 0.0474 | 2.0 | 236 | 0.4726 | 0.7961 | 0.7965 | 0.7931 | 0.9075 | | 0.026 | 3.0 | 354 | 0.5187 | 0.8552 | 0.7999 | 0.8232 | 0.9157 | | 0.0145 | 4.0 | 472 | 0.5150 | 0.8372 | 0.7791 | 0.7998 | 0.9116 | | 0.0088 | 5.0 | 590 | 0.5250 | 0.8372 | 0.7818 | 0.8021 | 0.9141 | | 0.007 | 6.0 | 708 | 0.5299 | 0.8468 | 0.7849 | 0.8072 | 0.9162 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Anastasiaps/Pixelcopter-PLE-v0
Anastasiaps
2023-10-10T16:50:50Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-30T15:04:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 2.90 +/- 4.23 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jhilgart22/llama2-7b-moe-text-exp-control-4-peft
jhilgart22
2023-10-10T16:50:46Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-10T16:44:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
jiy03150/vilt_finetuned_200
jiy03150
2023-10-10T16:47:46Z
59
0
transformers
[ "transformers", "pytorch", "vilt", "visual-question-answering", "generated_from_trainer", "dataset:vqa", "base_model:dandelin/vilt-b32-mlm", "base_model:finetune:dandelin/vilt-b32-mlm", "license:apache-2.0", "endpoints_compatible", "region:us" ]
visual-question-answering
2023-10-10T15:53:56Z
--- license: apache-2.0 base_model: dandelin/vilt-b32-mlm tags: - generated_from_trainer datasets: - vqa model-index: - name: vilt_finetuned_200 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vilt_finetuned_200 This model is a fine-tuned version of [dandelin/vilt-b32-mlm](https://huggingface.co/dandelin/vilt-b32-mlm) on the vqa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
jhilgart22/llama2-7b-moe-text-exp0-4-peft
jhilgart22
2023-10-10T16:47:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-10T16:45:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
RogerB/kinyaRoberta-large-kinte-finetuned-kinte-tweet-finetuned-kin-sent3
RogerB
2023-10-10T16:31:19Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:RogerB/kinyaRoberta-large-kin-tweets-pretrained", "base_model:finetune:RogerB/kinyaRoberta-large-kin-tweets-pretrained", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T16:25:12Z
--- base_model: RogerB/kinyaRoberta-large-kinte-finetuned-kinte-tweet-finetuned tags: - generated_from_trainer metrics: - f1 model-index: - name: kinyaRoberta-large-kinte-finetuned-kinte-tweet-finetuned-kin-sent3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kinyaRoberta-large-kinte-finetuned-kinte-tweet-finetuned-kin-sent3 This model is a fine-tuned version of [RogerB/kinyaRoberta-large-kinte-finetuned-kinte-tweet-finetuned](https://huggingface.co/RogerB/kinyaRoberta-large-kinte-finetuned-kinte-tweet-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9338 - F1: 0.6540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 10000000 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8984 | 1.0 | 1013 | 0.6706 | 0.7310 | | 0.6991 | 2.0 | 2026 | 0.5501 | 0.7923 | | 0.5978 | 3.0 | 3039 | 0.5253 | 0.8113 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
gptsoho/distilbert-base-uncased-finetuned-emotion
gptsoho
2023-10-10T15:55:45Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T02:44:12Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.936 - name: F1 type: f1 value: 0.9359814439390494 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1703 - Accuracy: 0.936 - F1: 0.9360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1741 | 1.0 | 250 | 0.1757 | 0.93 | 0.9309 | | 0.1158 | 2.0 | 500 | 0.1692 | 0.932 | 0.9330 | | 0.1014 | 3.0 | 750 | 0.1848 | 0.9285 | 0.9290 | | 0.0778 | 4.0 | 1000 | 0.1703 | 0.9395 | 0.9394 | | 0.0616 | 5.0 | 1250 | 0.1672 | 0.938 | 0.9379 | | 0.0534 | 6.0 | 1500 | 0.1703 | 0.936 | 0.9360 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
vedantjumle/bert-clinc150-1
vedantjumle
2023-10-10T15:54:47Z
6
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T14:42:08Z
--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_keras_callback model-index: - name: vedantjumle/bert-clinc150-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vedantjumle/bert-clinc150-1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1204 - Validation Loss: 0.1378 - Train Accuracy: 0.9733 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 12640, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.6008 | 0.5869 | 0.9613 | 0 | | 0.3623 | 0.1901 | 0.9716 | 1 | | 0.1204 | 0.1378 | 0.9733 | 2 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1
vectoriseai/multilingual-e5-large
vectoriseai
2023-10-10T15:52:06Z
9
0
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "xlm-roberta", "mteb", "Sentence Transformers", "sentence-similarity", "feature-extraction", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2212.03533", "arxiv:2108.08787", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-10-10T14:35:34Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - feature-extraction - sentence-transformers model-index: - name: multilingual-e5-large results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.05970149253731 - type: ap value: 43.486574390835635 - type: f1 value: 73.32700092140148 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.22055674518201 - type: ap value: 81.55756710830498 - type: f1 value: 69.28271787752661 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 80.41979010494754 - type: ap value: 29.34879922376344 - type: f1 value: 67.62475449011278 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 77.8372591006424 - type: ap value: 26.557560591210738 - type: f1 value: 64.96619417368707 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.489875 - type: ap value: 90.98758636917603 - type: f1 value: 93.48554819717332 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 47.564 - type: f1 value: 46.75122173518047 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.400000000000006 - type: f1 value: 44.17195682400632 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 43.068 - type: f1 value: 42.38155696855596 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 41.89 - type: f1 value: 40.84407321682663 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.120000000000005 - type: f1 value: 39.522976223819114 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 38.832 - type: f1 value: 38.0392533394713 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 30.725 - type: map_at_10 value: 46.055 - type: map_at_100 value: 46.900999999999996 - type: map_at_1000 value: 46.911 - type: map_at_3 value: 41.548 - type: map_at_5 value: 44.297 - type: mrr_at_1 value: 31.152 - type: mrr_at_10 value: 46.231 - type: mrr_at_100 value: 47.07 - type: mrr_at_1000 value: 47.08 - type: mrr_at_3 value: 41.738 - type: mrr_at_5 value: 44.468999999999994 - type: ndcg_at_1 value: 30.725 - type: ndcg_at_10 value: 54.379999999999995 - type: ndcg_at_100 value: 58.138 - type: ndcg_at_1000 value: 58.389 - type: ndcg_at_3 value: 45.156 - type: ndcg_at_5 value: 50.123 - type: precision_at_1 value: 30.725 - type: precision_at_10 value: 8.087 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.54 - type: precision_at_5 value: 13.542000000000002 - type: recall_at_1 value: 30.725 - type: recall_at_10 value: 80.868 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 55.619 - type: recall_at_5 value: 67.71000000000001 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 44.30960650674069 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 38.427074197498996 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.28270056031872 - type: mrr value: 74.38332673789738 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.05942144105269 - type: cos_sim_spearman value: 82.51212105850809 - type: euclidean_pearson value: 81.95639829909122 - type: euclidean_spearman value: 82.3717564144213 - type: manhattan_pearson value: 81.79273425468256 - type: manhattan_spearman value: 82.20066817871039 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.46764091858039 - type: f1 value: 99.37717466945023 - type: precision value: 99.33194154488518 - type: recall value: 99.46764091858039 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.29407880255337 - type: f1 value: 98.11248073959938 - type: precision value: 98.02443319392472 - type: recall value: 98.29407880255337 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.79009352268791 - type: f1 value: 97.5176076665512 - type: precision value: 97.38136473848286 - type: recall value: 97.79009352268791 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.26276987888363 - type: f1 value: 99.20133403545726 - type: precision value: 99.17500438827453 - type: recall value: 99.26276987888363 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.72727272727273 - type: f1 value: 84.67672206031433 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.34220182511161 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 33.4987096128766 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.558249999999997 - type: map_at_10 value: 34.44425000000001 - type: map_at_100 value: 35.59833333333333 - type: map_at_1000 value: 35.706916666666665 - type: map_at_3 value: 31.691749999999995 - type: map_at_5 value: 33.252916666666664 - type: mrr_at_1 value: 30.252666666666666 - type: mrr_at_10 value: 38.60675 - type: mrr_at_100 value: 39.42666666666666 - type: mrr_at_1000 value: 39.48408333333334 - type: mrr_at_3 value: 36.17441666666665 - type: mrr_at_5 value: 37.56275 - type: ndcg_at_1 value: 30.252666666666666 - type: ndcg_at_10 value: 39.683 - type: ndcg_at_100 value: 44.68541666666667 - type: ndcg_at_1000 value: 46.94316666666668 - type: ndcg_at_3 value: 34.961749999999995 - type: ndcg_at_5 value: 37.215666666666664 - type: precision_at_1 value: 30.252666666666666 - type: precision_at_10 value: 6.904166666666667 - type: precision_at_100 value: 1.0989999999999995 - type: precision_at_1000 value: 0.14733333333333334 - type: precision_at_3 value: 16.037666666666667 - type: precision_at_5 value: 11.413583333333333 - type: recall_at_1 value: 25.558249999999997 - type: recall_at_10 value: 51.13341666666666 - type: recall_at_100 value: 73.08366666666667 - type: recall_at_1000 value: 88.79483333333334 - type: recall_at_3 value: 37.989083333333326 - type: recall_at_5 value: 43.787833333333325 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.338 - type: map_at_10 value: 18.360000000000003 - type: map_at_100 value: 19.942 - type: map_at_1000 value: 20.134 - type: map_at_3 value: 15.174000000000001 - type: map_at_5 value: 16.830000000000002 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 33.768 - type: mrr_at_100 value: 34.707 - type: mrr_at_1000 value: 34.766000000000005 - type: mrr_at_3 value: 30.977 - type: mrr_at_5 value: 32.528 - type: ndcg_at_1 value: 23.257 - type: ndcg_at_10 value: 25.733 - type: ndcg_at_100 value: 32.288 - type: ndcg_at_1000 value: 35.992000000000004 - type: ndcg_at_3 value: 20.866 - type: ndcg_at_5 value: 22.612 - type: precision_at_1 value: 23.257 - type: precision_at_10 value: 8.124 - type: precision_at_100 value: 1.518 - type: precision_at_1000 value: 0.219 - type: precision_at_3 value: 15.679000000000002 - type: precision_at_5 value: 12.117 - type: recall_at_1 value: 10.338 - type: recall_at_10 value: 31.154 - type: recall_at_100 value: 54.161 - type: recall_at_1000 value: 75.21900000000001 - type: recall_at_3 value: 19.427 - type: recall_at_5 value: 24.214 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.498 - type: map_at_10 value: 19.103 - type: map_at_100 value: 27.375 - type: map_at_1000 value: 28.981 - type: map_at_3 value: 13.764999999999999 - type: map_at_5 value: 15.950000000000001 - type: mrr_at_1 value: 65.5 - type: mrr_at_10 value: 74.53800000000001 - type: mrr_at_100 value: 74.71799999999999 - type: mrr_at_1000 value: 74.725 - type: mrr_at_3 value: 72.792 - type: mrr_at_5 value: 73.554 - type: ndcg_at_1 value: 53.37499999999999 - type: ndcg_at_10 value: 41.286 - type: ndcg_at_100 value: 45.972 - type: ndcg_at_1000 value: 53.123 - type: ndcg_at_3 value: 46.172999999999995 - type: ndcg_at_5 value: 43.033 - type: precision_at_1 value: 65.5 - type: precision_at_10 value: 32.725 - type: precision_at_100 value: 10.683 - type: precision_at_1000 value: 1.978 - type: precision_at_3 value: 50 - type: precision_at_5 value: 41.349999999999994 - type: recall_at_1 value: 8.498 - type: recall_at_10 value: 25.070999999999998 - type: recall_at_100 value: 52.383 - type: recall_at_1000 value: 74.91499999999999 - type: recall_at_3 value: 15.207999999999998 - type: recall_at_5 value: 18.563 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 46.5 - type: f1 value: 41.93833713984145 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 67.914 - type: map_at_10 value: 78.10000000000001 - type: map_at_100 value: 78.333 - type: map_at_1000 value: 78.346 - type: map_at_3 value: 76.626 - type: map_at_5 value: 77.627 - type: mrr_at_1 value: 72.74199999999999 - type: mrr_at_10 value: 82.414 - type: mrr_at_100 value: 82.511 - type: mrr_at_1000 value: 82.513 - type: mrr_at_3 value: 81.231 - type: mrr_at_5 value: 82.065 - type: ndcg_at_1 value: 72.74199999999999 - type: ndcg_at_10 value: 82.806 - type: ndcg_at_100 value: 83.677 - type: ndcg_at_1000 value: 83.917 - type: ndcg_at_3 value: 80.305 - type: ndcg_at_5 value: 81.843 - type: precision_at_1 value: 72.74199999999999 - type: precision_at_10 value: 10.24 - type: precision_at_100 value: 1.089 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 31.268 - type: precision_at_5 value: 19.706000000000003 - type: recall_at_1 value: 67.914 - type: recall_at_10 value: 92.889 - type: recall_at_100 value: 96.42699999999999 - type: recall_at_1000 value: 97.92 - type: recall_at_3 value: 86.21 - type: recall_at_5 value: 90.036 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.166 - type: map_at_10 value: 35.57 - type: map_at_100 value: 37.405 - type: map_at_1000 value: 37.564 - type: map_at_3 value: 30.379 - type: map_at_5 value: 33.324 - type: mrr_at_1 value: 43.519000000000005 - type: mrr_at_10 value: 51.556000000000004 - type: mrr_at_100 value: 52.344 - type: mrr_at_1000 value: 52.373999999999995 - type: mrr_at_3 value: 48.868 - type: mrr_at_5 value: 50.319 - type: ndcg_at_1 value: 43.519000000000005 - type: ndcg_at_10 value: 43.803 - type: ndcg_at_100 value: 50.468999999999994 - type: ndcg_at_1000 value: 53.111 - type: ndcg_at_3 value: 38.893 - type: ndcg_at_5 value: 40.653 - type: precision_at_1 value: 43.519000000000005 - type: precision_at_10 value: 12.253 - type: precision_at_100 value: 1.931 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 25.617 - type: precision_at_5 value: 19.383 - type: recall_at_1 value: 22.166 - type: recall_at_10 value: 51.6 - type: recall_at_100 value: 76.574 - type: recall_at_1000 value: 92.192 - type: recall_at_3 value: 34.477999999999994 - type: recall_at_5 value: 41.835 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 39.041 - type: map_at_10 value: 62.961999999999996 - type: map_at_100 value: 63.79899999999999 - type: map_at_1000 value: 63.854 - type: map_at_3 value: 59.399 - type: map_at_5 value: 61.669 - type: mrr_at_1 value: 78.082 - type: mrr_at_10 value: 84.321 - type: mrr_at_100 value: 84.49600000000001 - type: mrr_at_1000 value: 84.502 - type: mrr_at_3 value: 83.421 - type: mrr_at_5 value: 83.977 - type: ndcg_at_1 value: 78.082 - type: ndcg_at_10 value: 71.229 - type: ndcg_at_100 value: 74.10900000000001 - type: ndcg_at_1000 value: 75.169 - type: ndcg_at_3 value: 66.28699999999999 - type: ndcg_at_5 value: 69.084 - type: precision_at_1 value: 78.082 - type: precision_at_10 value: 14.993 - type: precision_at_100 value: 1.7239999999999998 - type: precision_at_1000 value: 0.186 - type: precision_at_3 value: 42.737 - type: precision_at_5 value: 27.843 - type: recall_at_1 value: 39.041 - type: recall_at_10 value: 74.96300000000001 - type: recall_at_100 value: 86.199 - type: recall_at_1000 value: 93.228 - type: recall_at_3 value: 64.105 - type: recall_at_5 value: 69.608 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 90.23160000000001 - type: ap value: 85.5674856808308 - type: f1 value: 90.18033354786317 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 24.091 - type: map_at_10 value: 36.753 - type: map_at_100 value: 37.913000000000004 - type: map_at_1000 value: 37.958999999999996 - type: map_at_3 value: 32.818999999999996 - type: map_at_5 value: 35.171 - type: mrr_at_1 value: 24.742 - type: mrr_at_10 value: 37.285000000000004 - type: mrr_at_100 value: 38.391999999999996 - type: mrr_at_1000 value: 38.431 - type: mrr_at_3 value: 33.440999999999995 - type: mrr_at_5 value: 35.75 - type: ndcg_at_1 value: 24.742 - type: ndcg_at_10 value: 43.698 - type: ndcg_at_100 value: 49.145 - type: ndcg_at_1000 value: 50.23800000000001 - type: ndcg_at_3 value: 35.769 - type: ndcg_at_5 value: 39.961999999999996 - type: precision_at_1 value: 24.742 - type: precision_at_10 value: 6.7989999999999995 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 15.096000000000002 - type: precision_at_5 value: 11.183 - type: recall_at_1 value: 24.091 - type: recall_at_10 value: 65.068 - type: recall_at_100 value: 89.899 - type: recall_at_1000 value: 98.16 - type: recall_at_3 value: 43.68 - type: recall_at_5 value: 53.754999999999995 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.66621067031465 - type: f1 value: 93.49622853272142 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 91.94702733164272 - type: f1 value: 91.17043441745282 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 92.20146764509674 - type: f1 value: 91.98359080555608 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 88.99780770435328 - type: f1 value: 89.19746342724068 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.78486912871998 - type: f1 value: 89.24578823628642 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 88.74502712477394 - type: f1 value: 89.00297573881542 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 77.9046967624259 - type: f1 value: 59.36787125785957 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.5280360664976 - type: f1 value: 57.17723440888718 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.44029352901934 - type: f1 value: 54.052855531072964 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 70.5606013153774 - type: f1 value: 52.62215934386531 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 73.11581211903908 - type: f1 value: 52.341291845645465 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 74.28933092224233 - type: f1 value: 57.07918745504911 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.38063214525892 - type: f1 value: 59.46463723443009 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.06926698049766 - type: f1 value: 52.49084283283562 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.74983187626093 - type: f1 value: 56.960640620165904 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.86550100874243 - type: f1 value: 62.47370548140688 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.971082716879636 - type: f1 value: 61.03812421957381 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.98318762609282 - type: f1 value: 51.51207916008392 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.45527908540686 - type: f1 value: 66.16631905400318 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.32750504371216 - type: f1 value: 66.16755288646591 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.09213180901143 - type: f1 value: 66.95654394661507 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.75588433086752 - type: f1 value: 71.79973779656923 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.49428379287154 - type: f1 value: 68.37494379215734 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.90921318090115 - type: f1 value: 66.79517376481645 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.12104909213181 - type: f1 value: 67.29448842879584 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.34095494283793 - type: f1 value: 67.01134288992947 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.61264290517822 - type: f1 value: 64.68730512660757 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.79757901815738 - type: f1 value: 65.24938539425598 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.68728984532616 - type: f1 value: 67.0487169762553 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.07464694014795 - type: f1 value: 59.183532276789286 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.04707464694015 - type: f1 value: 67.66829629003848 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.42434431741762 - type: f1 value: 59.01617226544757 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.53127101546738 - type: f1 value: 68.10033760906255 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.50504371217215 - type: f1 value: 69.74931103158923 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.91190316072628 - type: f1 value: 54.05551136648796 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 51.78211163416275 - type: f1 value: 49.874888544058535 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 47.017484868863484 - type: f1 value: 44.53364263352014 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.16207128446537 - type: f1 value: 59.01185692320829 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.42501681237391 - type: f1 value: 67.13169450166086 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.0780094149294 - type: f1 value: 64.41720167850707 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.57162071284466 - type: f1 value: 62.414138683804424 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.71149966375252 - type: f1 value: 58.594805125087234 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.03900470746471 - type: f1 value: 63.87937257883887 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.8776059179556 - type: f1 value: 57.48587618059131 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.87895090786819 - type: f1 value: 66.8141299430347 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.45057162071285 - type: f1 value: 67.46444039673516 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.546738399462 - type: f1 value: 68.63640876702655 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 70.72965702757229 - type: f1 value: 68.54119560379115 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.35574983187625 - type: f1 value: 65.88844917691927 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.70477471418964 - type: f1 value: 69.19665697061978 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.0880968392737 - type: f1 value: 64.76962317666086 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.18493611297916 - type: f1 value: 62.49984559035371 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.75857431069265 - type: f1 value: 69.20053687623418 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.500336247478145 - type: f1 value: 55.2972398687929 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.68997982515132 - type: f1 value: 59.36848202755348 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.01950235373235 - type: f1 value: 60.09351954625423 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.29186281102892 - type: f1 value: 67.57860496703447 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.77471418964357 - type: f1 value: 61.913983147713836 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.87222595830532 - type: f1 value: 66.03679033708141 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.04505716207127 - type: f1 value: 61.28569169817908 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.38466711499663 - type: f1 value: 67.20532357036844 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.12306657700067 - type: f1 value: 68.91251226588182 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.20040349697378 - type: f1 value: 66.02657347714175 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.73907195696032 - type: f1 value: 66.98484521791418 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.58843308675185 - type: f1 value: 58.95591723092005 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.22730329522528 - type: f1 value: 66.0894499712115 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.48285137861465 - type: f1 value: 65.21963176785157 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.74714189643578 - type: f1 value: 66.8212192745412 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.09213180901143 - type: f1 value: 56.70735546356339 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.05716207128448 - type: f1 value: 74.8413712365364 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.69737726967047 - type: f1 value: 74.7664341963 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.90383322125084 - type: f1 value: 73.59201554448323 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.51176866173503 - type: f1 value: 77.46104434577758 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.31069266980496 - type: f1 value: 74.61048660675635 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.95225285810356 - type: f1 value: 72.33160006574627 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.12373907195696 - type: f1 value: 73.20921012557481 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.86684599865501 - type: f1 value: 73.82348774610831 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.40215198386012 - type: f1 value: 71.11945183971858 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.12844653665098 - type: f1 value: 71.34450495911766 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.52252858103566 - type: f1 value: 73.98878711342999 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.93611297915265 - type: f1 value: 63.723200467653385 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.11903160726295 - type: f1 value: 73.82138439467096 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.15198386012105 - type: f1 value: 66.02172193802167 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.32414256893072 - type: f1 value: 74.30943421170574 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.46805648957633 - type: f1 value: 77.62808409298209 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.318762609280434 - type: f1 value: 62.094284066075076 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.34902488231338 - type: f1 value: 57.12893860987984 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 50.88433086751849 - type: f1 value: 48.2272350802058 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.4425016812374 - type: f1 value: 64.61463095996173 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.04707464694015 - type: f1 value: 75.05099199098998 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.50437121721586 - type: f1 value: 69.83397721096314 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.94283792871553 - type: f1 value: 68.8704663703913 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.79488903833222 - type: f1 value: 63.615424063345436 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.88231338264963 - type: f1 value: 68.57892302593237 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.248150638870214 - type: f1 value: 61.06680605338809 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.84196368527236 - type: f1 value: 74.52566464968763 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.8285137861466 - type: f1 value: 74.8853197608802 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.13248150638869 - type: f1 value: 74.3982040999179 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.49024882313383 - type: f1 value: 73.82153848368573 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.72158708809684 - type: f1 value: 71.85049433180541 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.137861466039 - type: f1 value: 75.37628348188467 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.86953597848016 - type: f1 value: 71.87537624521661 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.27572293207801 - type: f1 value: 68.80017302344231 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.09952925353059 - type: f1 value: 76.07992707688408 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.140551445864155 - type: f1 value: 61.73855010331415 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.27774041694687 - type: f1 value: 64.83664868894539 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.69468728984533 - type: f1 value: 64.76239666920868 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.44653665097512 - type: f1 value: 73.14646052013873 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.71351714862139 - type: f1 value: 66.67212180163382 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.9946200403497 - type: f1 value: 73.87348793725525 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.15400134498992 - type: f1 value: 67.09433241421094 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.11365164761264 - type: f1 value: 73.59502539433753 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.82582380632145 - type: f1 value: 76.89992945316313 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.81237390719569 - type: f1 value: 72.36499770986265 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 31.480506569594695 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 29.71252128004552 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.421396787056548 - type: mrr value: 32.48155274872267 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.595 - type: map_at_10 value: 12.642000000000001 - type: map_at_100 value: 15.726 - type: map_at_1000 value: 17.061999999999998 - type: map_at_3 value: 9.125 - type: map_at_5 value: 10.866000000000001 - type: mrr_at_1 value: 43.344 - type: mrr_at_10 value: 52.227999999999994 - type: mrr_at_100 value: 52.898999999999994 - type: mrr_at_1000 value: 52.944 - type: mrr_at_3 value: 49.845 - type: mrr_at_5 value: 51.115 - type: ndcg_at_1 value: 41.949999999999996 - type: ndcg_at_10 value: 33.995 - type: ndcg_at_100 value: 30.869999999999997 - type: ndcg_at_1000 value: 39.487 - type: ndcg_at_3 value: 38.903999999999996 - type: ndcg_at_5 value: 37.236999999999995 - type: precision_at_1 value: 43.344 - type: precision_at_10 value: 25.480000000000004 - type: precision_at_100 value: 7.672 - type: precision_at_1000 value: 2.028 - type: precision_at_3 value: 36.636 - type: precision_at_5 value: 32.632 - type: recall_at_1 value: 5.595 - type: recall_at_10 value: 16.466 - type: recall_at_100 value: 31.226 - type: recall_at_1000 value: 62.778999999999996 - type: recall_at_3 value: 9.931 - type: recall_at_5 value: 12.884 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 40.414 - type: map_at_10 value: 56.754000000000005 - type: map_at_100 value: 57.457 - type: map_at_1000 value: 57.477999999999994 - type: map_at_3 value: 52.873999999999995 - type: map_at_5 value: 55.175 - type: mrr_at_1 value: 45.278 - type: mrr_at_10 value: 59.192 - type: mrr_at_100 value: 59.650000000000006 - type: mrr_at_1000 value: 59.665 - type: mrr_at_3 value: 56.141 - type: mrr_at_5 value: 57.998000000000005 - type: ndcg_at_1 value: 45.278 - type: ndcg_at_10 value: 64.056 - type: ndcg_at_100 value: 66.89 - type: ndcg_at_1000 value: 67.364 - type: ndcg_at_3 value: 56.97 - type: ndcg_at_5 value: 60.719 - type: precision_at_1 value: 45.278 - type: precision_at_10 value: 9.994 - type: precision_at_100 value: 1.165 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 25.512 - type: precision_at_5 value: 17.509 - type: recall_at_1 value: 40.414 - type: recall_at_10 value: 83.596 - type: recall_at_100 value: 95.72 - type: recall_at_1000 value: 99.24 - type: recall_at_3 value: 65.472 - type: recall_at_5 value: 74.039 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.352 - type: map_at_10 value: 84.369 - type: map_at_100 value: 85.02499999999999 - type: map_at_1000 value: 85.04 - type: map_at_3 value: 81.42399999999999 - type: map_at_5 value: 83.279 - type: mrr_at_1 value: 81.05 - type: mrr_at_10 value: 87.401 - type: mrr_at_100 value: 87.504 - type: mrr_at_1000 value: 87.505 - type: mrr_at_3 value: 86.443 - type: mrr_at_5 value: 87.10799999999999 - type: ndcg_at_1 value: 81.04 - type: ndcg_at_10 value: 88.181 - type: ndcg_at_100 value: 89.411 - type: ndcg_at_1000 value: 89.507 - type: ndcg_at_3 value: 85.28099999999999 - type: ndcg_at_5 value: 86.888 - type: precision_at_1 value: 81.04 - type: precision_at_10 value: 13.406 - type: precision_at_100 value: 1.5350000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.31 - type: precision_at_5 value: 24.54 - type: recall_at_1 value: 70.352 - type: recall_at_10 value: 95.358 - type: recall_at_100 value: 99.541 - type: recall_at_1000 value: 99.984 - type: recall_at_3 value: 87.111 - type: recall_at_5 value: 91.643 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 46.54068723291946 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.216287629895994 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.023000000000001 - type: map_at_10 value: 10.071 - type: map_at_100 value: 11.892 - type: map_at_1000 value: 12.196 - type: map_at_3 value: 7.234 - type: map_at_5 value: 8.613999999999999 - type: mrr_at_1 value: 19.900000000000002 - type: mrr_at_10 value: 30.516 - type: mrr_at_100 value: 31.656000000000002 - type: mrr_at_1000 value: 31.723000000000003 - type: mrr_at_3 value: 27.400000000000002 - type: mrr_at_5 value: 29.270000000000003 - type: ndcg_at_1 value: 19.900000000000002 - type: ndcg_at_10 value: 17.474 - type: ndcg_at_100 value: 25.020999999999997 - type: ndcg_at_1000 value: 30.728 - type: ndcg_at_3 value: 16.588 - type: ndcg_at_5 value: 14.498 - type: precision_at_1 value: 19.900000000000002 - type: precision_at_10 value: 9.139999999999999 - type: precision_at_100 value: 2.011 - type: precision_at_1000 value: 0.33899999999999997 - type: precision_at_3 value: 15.667 - type: precision_at_5 value: 12.839999999999998 - type: recall_at_1 value: 4.023000000000001 - type: recall_at_10 value: 18.497 - type: recall_at_100 value: 40.8 - type: recall_at_1000 value: 68.812 - type: recall_at_3 value: 9.508 - type: recall_at_5 value: 12.983 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.967008785134 - type: cos_sim_spearman value: 80.23142141101837 - type: euclidean_pearson value: 81.20166064704539 - type: euclidean_spearman value: 80.18961335654585 - type: manhattan_pearson value: 81.13925443187625 - type: manhattan_spearman value: 80.07948723044424 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.94262461316023 - type: cos_sim_spearman value: 80.01596278563865 - type: euclidean_pearson value: 83.80799622922581 - type: euclidean_spearman value: 79.94984954947103 - type: manhattan_pearson value: 83.68473841756281 - type: manhattan_spearman value: 79.84990707951822 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 80.57346443146068 - type: cos_sim_spearman value: 81.54689837570866 - type: euclidean_pearson value: 81.10909881516007 - type: euclidean_spearman value: 81.56746243261762 - type: manhattan_pearson value: 80.87076036186582 - type: manhattan_spearman value: 81.33074987964402 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 79.54733787179849 - type: cos_sim_spearman value: 77.72202105610411 - type: euclidean_pearson value: 78.9043595478849 - type: euclidean_spearman value: 77.93422804309435 - type: manhattan_pearson value: 78.58115121621368 - type: manhattan_spearman value: 77.62508135122033 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 88.59880017237558 - type: cos_sim_spearman value: 89.31088630824758 - type: euclidean_pearson value: 88.47069261564656 - type: euclidean_spearman value: 89.33581971465233 - type: manhattan_pearson value: 88.40774264100956 - type: manhattan_spearman value: 89.28657485627835 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.08055117917084 - type: cos_sim_spearman value: 85.78491813080304 - type: euclidean_pearson value: 84.99329155500392 - type: euclidean_spearman value: 85.76728064677287 - type: manhattan_pearson value: 84.87947428989587 - type: manhattan_spearman value: 85.62429454917464 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 82.14190939287384 - type: cos_sim_spearman value: 82.27331573306041 - type: euclidean_pearson value: 81.891896953716 - type: euclidean_spearman value: 82.37695542955998 - type: manhattan_pearson value: 81.73123869460504 - type: manhattan_spearman value: 82.19989168441421 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 76.84695301843362 - type: cos_sim_spearman value: 77.87790986014461 - type: euclidean_pearson value: 76.91981583106315 - type: euclidean_spearman value: 77.88154772749589 - type: manhattan_pearson value: 76.94953277451093 - type: manhattan_spearman value: 77.80499230728604 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.44657840482016 - type: cos_sim_spearman value: 75.05531095119674 - type: euclidean_pearson value: 75.88161755829299 - type: euclidean_spearman value: 74.73176238219332 - type: manhattan_pearson value: 75.63984765635362 - type: manhattan_spearman value: 74.86476440770737 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.64700140524133 - type: cos_sim_spearman value: 86.16014210425672 - type: euclidean_pearson value: 86.49086860843221 - type: euclidean_spearman value: 86.09729326815614 - type: manhattan_pearson value: 86.43406265125513 - type: manhattan_spearman value: 86.17740150939994 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.91170098764921 - type: cos_sim_spearman value: 88.12437004058931 - type: euclidean_pearson value: 88.81828254494437 - type: euclidean_spearman value: 88.14831794572122 - type: manhattan_pearson value: 88.93442183448961 - type: manhattan_spearman value: 88.15254630778304 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 72.91390577997292 - type: cos_sim_spearman value: 71.22979457536074 - type: euclidean_pearson value: 74.40314008106749 - type: euclidean_spearman value: 72.54972136083246 - type: manhattan_pearson value: 73.85687539530218 - type: manhattan_spearman value: 72.09500771742637 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.9301067983089 - type: cos_sim_spearman value: 80.74989828346473 - type: euclidean_pearson value: 81.36781301814257 - type: euclidean_spearman value: 80.9448819964426 - type: manhattan_pearson value: 81.0351322685609 - type: manhattan_spearman value: 80.70192121844177 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.13820465980005 - type: cos_sim_spearman value: 86.73532498758757 - type: euclidean_pearson value: 87.21329451846637 - type: euclidean_spearman value: 86.57863198601002 - type: manhattan_pearson value: 87.06973713818554 - type: manhattan_spearman value: 86.47534918791499 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 85.48720108904415 - type: cos_sim_spearman value: 85.62221757068387 - type: euclidean_pearson value: 86.1010129512749 - type: euclidean_spearman value: 85.86580966509942 - type: manhattan_pearson value: 86.26800938808971 - type: manhattan_spearman value: 85.88902721678429 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 83.98021347333516 - type: cos_sim_spearman value: 84.53806553803501 - type: euclidean_pearson value: 84.61483347248364 - type: euclidean_spearman value: 85.14191408011702 - type: manhattan_pearson value: 84.75297588825967 - type: manhattan_spearman value: 85.33176753669242 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.51856644893233 - type: cos_sim_spearman value: 85.27510748506413 - type: euclidean_pearson value: 85.09886861540977 - type: euclidean_spearman value: 85.62579245860887 - type: manhattan_pearson value: 84.93017860464607 - type: manhattan_spearman value: 85.5063988898453 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.581573200584195 - type: cos_sim_spearman value: 63.05503590247928 - type: euclidean_pearson value: 63.652564812602094 - type: euclidean_spearman value: 62.64811520876156 - type: manhattan_pearson value: 63.506842893061076 - type: manhattan_spearman value: 62.51289573046917 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 48.2248801729127 - type: cos_sim_spearman value: 56.5936604678561 - type: euclidean_pearson value: 43.98149464089 - type: euclidean_spearman value: 56.108561882423615 - type: manhattan_pearson value: 43.86880305903564 - type: manhattan_spearman value: 56.04671150510166 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.17564527009831 - type: cos_sim_spearman value: 64.57978560979488 - type: euclidean_pearson value: 58.8818330154583 - type: euclidean_spearman value: 64.99214839071281 - type: manhattan_pearson value: 58.72671436121381 - type: manhattan_spearman value: 65.10713416616109 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 26.772131864023297 - type: cos_sim_spearman value: 34.68200792408681 - type: euclidean_pearson value: 16.68082419005441 - type: euclidean_spearman value: 34.83099932652166 - type: manhattan_pearson value: 16.52605949659529 - type: manhattan_spearman value: 34.82075801399475 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 54.42415189043831 - type: cos_sim_spearman value: 63.54594264576758 - type: euclidean_pearson value: 57.36577498297745 - type: euclidean_spearman value: 63.111466379158074 - type: manhattan_pearson value: 57.584543715873885 - type: manhattan_spearman value: 63.22361054139183 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 47.55216762405518 - type: cos_sim_spearman value: 56.98670142896412 - type: euclidean_pearson value: 50.15318757562699 - type: euclidean_spearman value: 56.524941926541906 - type: manhattan_pearson value: 49.955618528674904 - type: manhattan_spearman value: 56.37102209240117 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 49.20540980338571 - type: cos_sim_spearman value: 59.9009453504406 - type: euclidean_pearson value: 49.557749853620535 - type: euclidean_spearman value: 59.76631621172456 - type: manhattan_pearson value: 49.62340591181147 - type: manhattan_spearman value: 59.94224880322436 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 51.508169956576985 - type: cos_sim_spearman value: 66.82461565306046 - type: euclidean_pearson value: 56.2274426480083 - type: euclidean_spearman value: 66.6775323848333 - type: manhattan_pearson value: 55.98277796300661 - type: manhattan_spearman value: 66.63669848497175 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 72.86478788045507 - type: cos_sim_spearman value: 76.7946552053193 - type: euclidean_pearson value: 75.01598530490269 - type: euclidean_spearman value: 76.83618917858281 - type: manhattan_pearson value: 74.68337628304332 - type: manhattan_spearman value: 76.57480204017773 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.922619099401984 - type: cos_sim_spearman value: 56.599362477240774 - type: euclidean_pearson value: 56.68307052369783 - type: euclidean_spearman value: 54.28760436777401 - type: manhattan_pearson value: 56.67763566500681 - type: manhattan_spearman value: 53.94619541711359 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.74357206710913 - type: cos_sim_spearman value: 72.5208244925311 - type: euclidean_pearson value: 67.49254562186032 - type: euclidean_spearman value: 72.02469076238683 - type: manhattan_pearson value: 67.45251772238085 - type: manhattan_spearman value: 72.05538819984538 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 71.25734330033191 - type: cos_sim_spearman value: 76.98349083946823 - type: euclidean_pearson value: 73.71642838667736 - type: euclidean_spearman value: 77.01715504651384 - type: manhattan_pearson value: 73.61712711868105 - type: manhattan_spearman value: 77.01392571153896 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 63.18215462781212 - type: cos_sim_spearman value: 65.54373266117607 - type: euclidean_pearson value: 64.54126095439005 - type: euclidean_spearman value: 65.30410369102711 - type: manhattan_pearson value: 63.50332221148234 - type: manhattan_spearman value: 64.3455878104313 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30509221440029 - type: cos_sim_spearman value: 65.99582704642478 - type: euclidean_pearson value: 63.43818859884195 - type: euclidean_spearman value: 66.83172582815764 - type: manhattan_pearson value: 63.055779168508764 - type: manhattan_spearman value: 65.49585020501449 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.587830825340404 - type: cos_sim_spearman value: 68.93467614588089 - type: euclidean_pearson value: 62.3073527367404 - type: euclidean_spearman value: 69.69758171553175 - type: manhattan_pearson value: 61.9074580815789 - type: manhattan_spearman value: 69.57696375597865 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.143220125577066 - type: cos_sim_spearman value: 67.78857859159226 - type: euclidean_pearson value: 55.58225107923733 - type: euclidean_spearman value: 67.80662907184563 - type: manhattan_pearson value: 56.24953502726514 - type: manhattan_spearman value: 67.98262125431616 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 21.826928900322066 - type: cos_sim_spearman value: 49.578506634400405 - type: euclidean_pearson value: 27.939890138843214 - type: euclidean_spearman value: 52.71950519136242 - type: manhattan_pearson value: 26.39878683847546 - type: manhattan_spearman value: 47.54609580342499 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.27603854632001 - type: cos_sim_spearman value: 50.709255283710995 - type: euclidean_pearson value: 59.5419024445929 - type: euclidean_spearman value: 50.709255283710995 - type: manhattan_pearson value: 59.03256832438492 - type: manhattan_spearman value: 61.97797868009122 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.00757054859712 - type: cos_sim_spearman value: 87.29283629622222 - type: euclidean_pearson value: 86.54824171775536 - type: euclidean_spearman value: 87.24364730491402 - type: manhattan_pearson value: 86.5062156915074 - type: manhattan_spearman value: 87.15052170378574 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 82.03549357197389 - type: mrr value: 95.05437645143527 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.260999999999996 - type: map_at_10 value: 66.259 - type: map_at_100 value: 66.884 - type: map_at_1000 value: 66.912 - type: map_at_3 value: 63.685 - type: map_at_5 value: 65.35499999999999 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 67.5 - type: mrr_at_100 value: 68.013 - type: mrr_at_1000 value: 68.038 - type: mrr_at_3 value: 65.61099999999999 - type: mrr_at_5 value: 66.861 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 70.41 - type: ndcg_at_100 value: 73.10600000000001 - type: ndcg_at_1000 value: 73.846 - type: ndcg_at_3 value: 66.133 - type: ndcg_at_5 value: 68.499 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.232999999999999 - type: precision_at_100 value: 1.0630000000000002 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.667 - type: precision_at_5 value: 17.067 - type: recall_at_1 value: 57.260999999999996 - type: recall_at_10 value: 81.94399999999999 - type: recall_at_100 value: 93.867 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.339 - type: recall_at_5 value: 76.25 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.74356435643564 - type: cos_sim_ap value: 93.13411948212683 - type: cos_sim_f1 value: 86.80521991300147 - type: cos_sim_precision value: 84.00374181478017 - type: cos_sim_recall value: 89.8 - type: dot_accuracy value: 99.67920792079208 - type: dot_ap value: 89.27277565444479 - type: dot_f1 value: 83.9276990718124 - type: dot_precision value: 82.04393505253104 - type: dot_recall value: 85.9 - type: euclidean_accuracy value: 99.74257425742574 - type: euclidean_ap value: 93.17993008259062 - type: euclidean_f1 value: 86.69396110542476 - type: euclidean_precision value: 88.78406708595388 - type: euclidean_recall value: 84.7 - type: manhattan_accuracy value: 99.74257425742574 - type: manhattan_ap value: 93.14413755550099 - type: manhattan_f1 value: 86.82483594144371 - type: manhattan_precision value: 87.66564729867483 - type: manhattan_recall value: 86 - type: max_accuracy value: 99.74356435643564 - type: max_ap value: 93.17993008259062 - type: max_f1 value: 86.82483594144371 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 57.525863806168566 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 32.68850574423839 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.71580650644033 - type: mrr value: 50.50971903913081 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 29.152190498799484 - type: cos_sim_spearman value: 29.686180371952727 - type: dot_pearson value: 27.248664793816342 - type: dot_spearman value: 28.37748983721745 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.20400000000000001 - type: map_at_10 value: 1.6209999999999998 - type: map_at_100 value: 9.690999999999999 - type: map_at_1000 value: 23.733 - type: map_at_3 value: 0.575 - type: map_at_5 value: 0.885 - type: mrr_at_1 value: 78 - type: mrr_at_10 value: 86.56700000000001 - type: mrr_at_100 value: 86.56700000000001 - type: mrr_at_1000 value: 86.56700000000001 - type: mrr_at_3 value: 85.667 - type: mrr_at_5 value: 86.56700000000001 - type: ndcg_at_1 value: 76 - type: ndcg_at_10 value: 71.326 - type: ndcg_at_100 value: 54.208999999999996 - type: ndcg_at_1000 value: 49.252 - type: ndcg_at_3 value: 74.235 - type: ndcg_at_5 value: 73.833 - type: precision_at_1 value: 78 - type: precision_at_10 value: 74.8 - type: precision_at_100 value: 55.50000000000001 - type: precision_at_1000 value: 21.836 - type: precision_at_3 value: 78 - type: precision_at_5 value: 78 - type: recall_at_1 value: 0.20400000000000001 - type: recall_at_10 value: 1.894 - type: recall_at_100 value: 13.245999999999999 - type: recall_at_1000 value: 46.373 - type: recall_at_3 value: 0.613 - type: recall_at_5 value: 0.991 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.89999999999999 - type: f1 value: 94.69999999999999 - type: precision value: 94.11666666666667 - type: recall value: 95.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.20809248554913 - type: f1 value: 63.431048720066066 - type: precision value: 61.69143958161298 - type: recall value: 68.20809248554913 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.21951219512195 - type: f1 value: 66.82926829268293 - type: precision value: 65.1260162601626 - type: recall value: 71.21951219512195 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.2 - type: f1 value: 96.26666666666667 - type: precision value: 95.8 - type: recall value: 97.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 99.3 - type: f1 value: 99.06666666666666 - type: precision value: 98.95 - type: recall value: 99.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.63333333333333 - type: precision value: 96.26666666666668 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.86666666666666 - type: precision value: 94.31666666666668 - type: recall value: 96 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.01492537313433 - type: f1 value: 40.178867566927266 - type: precision value: 38.179295828549556 - type: recall value: 47.01492537313433 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.5 - type: f1 value: 83.62537480063796 - type: precision value: 82.44555555555554 - type: recall value: 86.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.48780487804879 - type: f1 value: 75.45644599303138 - type: precision value: 73.37398373983739 - type: recall value: 80.48780487804879 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (isl-eng) config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.95666666666666 - type: precision value: 91.125 - type: recall value: 93.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slv-eng) config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.73754556500607 - type: f1 value: 89.65168084244632 - type: precision value: 88.73025516403402 - type: recall value: 91.73754556500607 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cym-eng) config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.04347826086956 - type: f1 value: 76.2128364389234 - type: precision value: 74.2 - type: recall value: 81.04347826086956 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kaz-eng) config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.65217391304348 - type: f1 value: 79.4376811594203 - type: precision value: 77.65797101449274 - type: recall value: 83.65217391304348 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (est-eng) config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.5 - type: f1 value: 85.02690476190476 - type: precision value: 83.96261904761904 - type: recall value: 87.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (heb-eng) config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.3 - type: f1 value: 86.52333333333333 - type: precision value: 85.22833333333332 - type: recall value: 89.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gla-eng) config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.01809408926418 - type: f1 value: 59.00594446432805 - type: precision value: 56.827215807915444 - type: recall value: 65.01809408926418 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mar-eng) config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.2 - type: f1 value: 88.58 - type: precision value: 87.33333333333334 - type: recall value: 91.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lat-eng) config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.199999999999996 - type: f1 value: 53.299166276284915 - type: precision value: 51.3383908045977 - type: recall value: 59.199999999999996 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bel-eng) config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.2 - type: precision value: 90.25 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pms-eng) config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 64.76190476190476 - type: f1 value: 59.867110667110666 - type: precision value: 58.07390192653351 - type: recall value: 64.76190476190476 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gle-eng) config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.2 - type: f1 value: 71.48147546897547 - type: precision value: 69.65409090909091 - type: recall value: 76.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pes-eng) config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.8 - type: f1 value: 92.14 - type: precision value: 91.35833333333333 - type: recall value: 93.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nob-eng) config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.89999999999999 - type: f1 value: 97.2 - type: precision value: 96.85000000000001 - type: recall value: 97.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bul-eng) config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 92.93333333333334 - type: precision value: 92.13333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cbk-eng) config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.1 - type: f1 value: 69.14817460317461 - type: precision value: 67.2515873015873 - type: recall value: 74.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hun-eng) config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.19999999999999 - type: f1 value: 94.01333333333335 - type: precision value: 93.46666666666667 - type: recall value: 95.19999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uig-eng) config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.9 - type: f1 value: 72.07523809523809 - type: precision value: 70.19777777777779 - type: recall value: 76.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (rus-eng) config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.31666666666666 - type: precision value: 91.43333333333332 - type: recall value: 94.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (spa-eng) config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.8 - type: f1 value: 97.1 - type: precision value: 96.76666666666668 - type: recall value: 97.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hye-eng) config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.85714285714286 - type: f1 value: 90.92093441150045 - type: precision value: 90.00449236298293 - type: recall value: 92.85714285714286 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tel-eng) config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.16239316239316 - type: f1 value: 91.33903133903132 - type: precision value: 90.56267806267806 - type: recall value: 93.16239316239316 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (afr-eng) config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.4 - type: f1 value: 90.25666666666666 - type: precision value: 89.25833333333334 - type: recall value: 92.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mon-eng) config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.22727272727272 - type: f1 value: 87.53030303030303 - type: precision value: 86.37121212121211 - type: recall value: 90.22727272727272 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arz-eng) config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.03563941299791 - type: f1 value: 74.7349505840072 - type: precision value: 72.9035639412998 - type: recall value: 79.03563941299791 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hrv-eng) config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97 - type: f1 value: 96.15 - type: precision value: 95.76666666666668 - type: recall value: 97 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nov-eng) config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.26459143968872 - type: f1 value: 71.55642023346303 - type: precision value: 69.7544932369835 - type: recall value: 76.26459143968872 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gsw-eng) config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 58.119658119658126 - type: f1 value: 51.65242165242165 - type: precision value: 49.41768108434775 - type: recall value: 58.119658119658126 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nds-eng) config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74.3 - type: f1 value: 69.52055555555555 - type: precision value: 67.7574938949939 - type: recall value: 74.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ukr-eng) config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.8 - type: f1 value: 93.31666666666666 - type: precision value: 92.60000000000001 - type: recall value: 94.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uzb-eng) config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.63551401869158 - type: f1 value: 72.35202492211837 - type: precision value: 70.60358255451713 - type: recall value: 76.63551401869158 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lit-eng) config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.4 - type: f1 value: 88.4811111111111 - type: precision value: 87.7452380952381 - type: recall value: 90.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ina-eng) config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95 - type: f1 value: 93.60666666666667 - type: precision value: 92.975 - type: recall value: 95 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lfn-eng) config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.2 - type: f1 value: 63.01595782872099 - type: precision value: 61.596587301587306 - type: recall value: 67.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (zsm-eng) config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.7 - type: f1 value: 94.52999999999999 - type: precision value: 94 - type: recall value: 95.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ita-eng) config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93.28999999999999 - type: precision value: 92.675 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cmn-eng) config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.28333333333333 - type: precision value: 94.75 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lvs-eng) config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.9 - type: f1 value: 89.83 - type: precision value: 88.92 - type: recall value: 91.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (glg-eng) config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.34222222222223 - type: precision value: 92.75416666666668 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ceb-eng) config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.333333333333336 - type: f1 value: 55.31203703703703 - type: precision value: 53.39971108326371 - type: recall value: 60.333333333333336 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bre-eng) config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 12.9 - type: f1 value: 11.099861903031458 - type: precision value: 10.589187932631877 - type: recall value: 12.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ben-eng) config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.7 - type: f1 value: 83.0152380952381 - type: precision value: 81.37833333333333 - type: recall value: 86.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swg-eng) config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.39285714285714 - type: f1 value: 56.832482993197274 - type: precision value: 54.56845238095237 - type: recall value: 63.39285714285714 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arq-eng) config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.73765093304062 - type: f1 value: 41.555736920720456 - type: precision value: 39.06874531737319 - type: recall value: 48.73765093304062 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kab-eng) config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 41.099999999999994 - type: f1 value: 36.540165945165946 - type: precision value: 35.05175685425686 - type: recall value: 41.099999999999994 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fra-eng) config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.42333333333333 - type: precision value: 92.75833333333333 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (por-eng) config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.89999999999999 - type: f1 value: 93.63333333333334 - type: precision value: 93.01666666666665 - type: recall value: 94.89999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tat-eng) config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.9 - type: f1 value: 73.64833333333334 - type: precision value: 71.90282106782105 - type: recall value: 77.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (oci-eng) config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.4 - type: f1 value: 54.90521367521367 - type: precision value: 53.432840025471606 - type: recall value: 59.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pol-eng) config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.39999999999999 - type: f1 value: 96.6 - type: precision value: 96.2 - type: recall value: 97.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (war-eng) config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.2 - type: f1 value: 62.25926129426129 - type: precision value: 60.408376623376626 - type: recall value: 67.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (aze-eng) config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.2 - type: f1 value: 87.60666666666667 - type: precision value: 86.45277777777778 - type: recall value: 90.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (vie-eng) config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97 - type: precision value: 96.65 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nno-eng) config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.39746031746031 - type: precision value: 90.6125 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cha-eng) config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 32.11678832116788 - type: f1 value: 27.210415386260234 - type: precision value: 26.20408990846947 - type: recall value: 32.11678832116788 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mhr-eng) config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.5 - type: f1 value: 6.787319277832475 - type: precision value: 6.3452094433344435 - type: recall value: 8.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dan-eng) config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.1 - type: f1 value: 95.08 - type: precision value: 94.61666666666667 - type: recall value: 96.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ell-eng) config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.3 - type: f1 value: 93.88333333333333 - type: precision value: 93.18333333333332 - type: recall value: 95.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (amh-eng) config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.11904761904762 - type: f1 value: 80.69444444444444 - type: precision value: 78.72023809523809 - type: recall value: 85.11904761904762 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pam-eng) config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 11.1 - type: f1 value: 9.276381801735853 - type: precision value: 8.798174603174601 - type: recall value: 11.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hsb-eng) config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.56107660455487 - type: f1 value: 58.70433569191332 - type: precision value: 56.896926581464015 - type: recall value: 63.56107660455487 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (srp-eng) config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.10000000000001 - type: precision value: 92.35 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (epo-eng) config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 96.01222222222222 - type: precision value: 95.67083333333332 - type: recall value: 96.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kzj-eng) config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 9.2 - type: f1 value: 7.911555250305249 - type: precision value: 7.631246556216846 - type: recall value: 9.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (awa-eng) config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.48917748917748 - type: f1 value: 72.27375798804371 - type: precision value: 70.14430014430013 - type: recall value: 77.48917748917748 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fao-eng) config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.09923664122137 - type: f1 value: 72.61541257724463 - type: precision value: 70.8998380754106 - type: recall value: 77.09923664122137 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mal-eng) config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 98.2532751091703 - type: f1 value: 97.69529354682193 - type: precision value: 97.42843279961184 - type: recall value: 98.2532751091703 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ile-eng) config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.8 - type: f1 value: 79.14672619047619 - type: precision value: 77.59489247311828 - type: recall value: 82.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bos-eng) config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.35028248587571 - type: f1 value: 92.86252354048965 - type: precision value: 92.2080979284369 - type: recall value: 94.35028248587571 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cor-eng) config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.5 - type: f1 value: 6.282429263935621 - type: precision value: 5.783274240739785 - type: recall value: 8.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cat-eng) config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.7 - type: f1 value: 91.025 - type: precision value: 90.30428571428571 - type: recall value: 92.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (eus-eng) config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81 - type: f1 value: 77.8232380952381 - type: precision value: 76.60194444444444 - type: recall value: 81 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yue-eng) config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91 - type: f1 value: 88.70857142857142 - type: precision value: 87.7 - type: recall value: 91 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swe-eng) config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.3 - type: precision value: 94.76666666666667 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dtp-eng) config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.1 - type: f1 value: 7.001008218834307 - type: precision value: 6.708329562594269 - type: recall value: 8.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kat-eng) config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.1313672922252 - type: f1 value: 84.09070598748882 - type: precision value: 82.79171454104429 - type: recall value: 87.1313672922252 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jpn-eng) config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.28333333333333 - type: precision value: 94.73333333333332 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (csb-eng) config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 42.29249011857708 - type: f1 value: 36.981018542283365 - type: precision value: 35.415877813576024 - type: recall value: 42.29249011857708 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (xho-eng) config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 83.80281690140845 - type: f1 value: 80.86854460093896 - type: precision value: 79.60093896713614 - type: recall value: 83.80281690140845 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (orv-eng) config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.26946107784431 - type: f1 value: 39.80235464678088 - type: precision value: 38.14342660001342 - type: recall value: 45.26946107784431 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ind-eng) config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.9 - type: precision value: 92.26666666666668 - type: recall value: 94.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tuk-eng) config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 37.93103448275862 - type: f1 value: 33.15192743764172 - type: precision value: 31.57456528146183 - type: recall value: 37.93103448275862 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (max-eng) config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.01408450704226 - type: f1 value: 63.41549295774648 - type: precision value: 61.342778895595806 - type: recall value: 69.01408450704226 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swh-eng) config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 76.66666666666667 - type: f1 value: 71.60705960705961 - type: precision value: 69.60683760683762 - type: recall value: 76.66666666666667 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hin-eng) config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.48333333333333 - type: precision value: 93.83333333333333 - type: recall value: 95.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dsb-eng) config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 52.81837160751566 - type: f1 value: 48.435977731384824 - type: precision value: 47.11291973845539 - type: recall value: 52.81837160751566 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ber-eng) config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 44.9 - type: f1 value: 38.88962621607783 - type: precision value: 36.95936507936508 - type: recall value: 44.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tam-eng) config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.55374592833876 - type: f1 value: 88.22553125484721 - type: precision value: 87.26927252985884 - type: recall value: 90.55374592833876 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slk-eng) config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93.13333333333333 - type: precision value: 92.45333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tgl-eng) config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.99666666666667 - type: precision value: 91.26666666666668 - type: recall value: 93.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ast-eng) config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.03937007874016 - type: f1 value: 81.75853018372703 - type: precision value: 80.34120734908137 - type: recall value: 85.03937007874016 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mkd-eng) config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.3 - type: f1 value: 85.5 - type: precision value: 84.25833333333334 - type: recall value: 88.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (khm-eng) config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.51246537396122 - type: f1 value: 60.02297410192148 - type: precision value: 58.133467727289236 - type: recall value: 65.51246537396122 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ces-eng) config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.89 - type: precision value: 94.39166666666667 - type: recall value: 96 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tzl-eng) config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.692307692307686 - type: f1 value: 53.162393162393165 - type: precision value: 51.70673076923077 - type: recall value: 57.692307692307686 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (urd-eng) config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.60000000000001 - type: f1 value: 89.21190476190475 - type: precision value: 88.08666666666667 - type: recall value: 91.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ara-eng) config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88 - type: f1 value: 85.47 - type: precision value: 84.43266233766234 - type: recall value: 88 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kor-eng) config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.7 - type: f1 value: 90.64999999999999 - type: precision value: 89.68333333333332 - type: recall value: 92.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yid-eng) config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.30660377358491 - type: f1 value: 76.33044137466307 - type: precision value: 74.78970125786164 - type: recall value: 80.30660377358491 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fin-eng) config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.39999999999999 - type: f1 value: 95.44 - type: precision value: 94.99166666666666 - type: recall value: 96.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tha-eng) config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.53284671532847 - type: f1 value: 95.37712895377129 - type: precision value: 94.7992700729927 - type: recall value: 96.53284671532847 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (wuu-eng) config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89 - type: f1 value: 86.23190476190476 - type: precision value: 85.035 - type: recall value: 89 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.585 - type: map_at_10 value: 9.012 - type: map_at_100 value: 14.027000000000001 - type: map_at_1000 value: 15.565000000000001 - type: map_at_3 value: 5.032 - type: map_at_5 value: 6.657 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 45.377 - type: mrr_at_100 value: 46.119 - type: mrr_at_1000 value: 46.127 - type: mrr_at_3 value: 41.156 - type: mrr_at_5 value: 42.585 - type: ndcg_at_1 value: 27.551 - type: ndcg_at_10 value: 23.395 - type: ndcg_at_100 value: 33.342 - type: ndcg_at_1000 value: 45.523 - type: ndcg_at_3 value: 25.158 - type: ndcg_at_5 value: 23.427 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 21.429000000000002 - type: precision_at_100 value: 6.714 - type: precision_at_1000 value: 1.473 - type: precision_at_3 value: 27.211000000000002 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 2.585 - type: recall_at_10 value: 15.418999999999999 - type: recall_at_100 value: 42.485 - type: recall_at_1000 value: 79.536 - type: recall_at_3 value: 6.239999999999999 - type: recall_at_5 value: 8.996 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.3234 - type: ap value: 14.361688653847423 - type: f1 value: 54.819068624319044 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.97792869269949 - type: f1 value: 62.28965628513728 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 38.90540145385218 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.53513739047506 - type: cos_sim_ap value: 75.27741586677557 - type: cos_sim_f1 value: 69.18792902473774 - type: cos_sim_precision value: 67.94708725515136 - type: cos_sim_recall value: 70.47493403693932 - type: dot_accuracy value: 84.7052512368123 - type: dot_ap value: 69.36075482849378 - type: dot_f1 value: 64.44688376631296 - type: dot_precision value: 59.92288500793831 - type: dot_recall value: 69.70976253298153 - type: euclidean_accuracy value: 86.60666388508076 - type: euclidean_ap value: 75.47512772621097 - type: euclidean_f1 value: 69.413872536473 - type: euclidean_precision value: 67.39562624254472 - type: euclidean_recall value: 71.55672823218997 - type: manhattan_accuracy value: 86.52917684925792 - type: manhattan_ap value: 75.34000110496703 - type: manhattan_f1 value: 69.28489190226429 - type: manhattan_precision value: 67.24608889992551 - type: manhattan_recall value: 71.45118733509234 - type: max_accuracy value: 86.60666388508076 - type: max_ap value: 75.47512772621097 - type: max_f1 value: 69.413872536473 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.01695967710637 - type: cos_sim_ap value: 85.8298270742901 - type: cos_sim_f1 value: 78.46988128389272 - type: cos_sim_precision value: 74.86017897091722 - type: cos_sim_recall value: 82.44533415460425 - type: dot_accuracy value: 88.19420188613343 - type: dot_ap value: 83.82679165901324 - type: dot_f1 value: 76.55833777304208 - type: dot_precision value: 75.6884875846501 - type: dot_recall value: 77.44841392054204 - type: euclidean_accuracy value: 89.03054294252338 - type: euclidean_ap value: 85.89089555185325 - type: euclidean_f1 value: 78.62997658079624 - type: euclidean_precision value: 74.92329149232914 - type: euclidean_recall value: 82.72251308900523 - type: manhattan_accuracy value: 89.0266620095471 - type: manhattan_ap value: 85.86458997929147 - type: manhattan_f1 value: 78.50685331000291 - type: manhattan_precision value: 74.5499861534201 - type: manhattan_recall value: 82.90729904527257 - type: max_accuracy value: 89.03054294252338 - type: max_ap value: 85.89089555185325 - type: max_f1 value: 78.62997658079624 language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- ## Multilingual-E5-large [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ", even for non-English texts. # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"] tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large') model = AutoModel.from_pretrained('intfloat/multilingual-e5-large') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Supported Languages This model is initialized from [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and continually trained on a mixture of multilingual datasets. It supports 100 languages from xlm-roberta, but low-resource languages may see performance degradation. ## Training Details **Initialization**: [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) **First stage**: contrastive pre-training with weak supervision | Dataset | Weak supervision | # of text pairs | |--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------| | Filtered [mC4](https://huggingface.co/datasets/mc4) | (title, page content) | 1B | | [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news) | (title, news content) | 400M | | [NLLB](https://huggingface.co/datasets/allenai/nllb) | translation pairs | 2.4B | | [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia) | (hierarchical section title, passage) | 150M | | Filtered [Reddit](https://www.reddit.com/) | (comment, response) | 800M | | [S2ORC](https://github.com/allenai/s2orc) | (title, abstract) and citation pairs | 100M | | [Stackexchange](https://stackexchange.com/) | (question, answer) | 50M | | [xP3](https://huggingface.co/datasets/bigscience/xP3) | (input prompt, response) | 80M | | [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | - | 10M | **Second stage**: supervised fine-tuning | Dataset | Language | # of text pairs | |----------------------------------------------------------------------------------------|--------------|-----------------| | [MS MARCO](https://microsoft.github.io/msmarco/) | English | 500k | | [NQ](https://github.com/facebookresearch/DPR) | English | 70k | | [Trivia QA](https://github.com/facebookresearch/DPR) | English | 60k | | [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE) | English | <300k | | [ELI5](https://huggingface.co/datasets/eli5) | English | 500k | | [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese | 86k | | [KILT Fever](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [SQuAD](https://huggingface.co/datasets/squad) | English | 87k | | [Quora](https://huggingface.co/datasets/quora) | English | 150k | | [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | 11 languages | 50k | | [MIRACL](https://huggingface.co/datasets/miracl/miracl) | 16 languages | 40k | For all labeled datasets, we only use its training set for fine-tuning. For other training details, please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787) | Model | Avg MRR@10 | | ar | bn | en | fi | id | ja | ko | ru | sw | te | th | |-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- | | BM25 | 33.3 | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 | | mDPR | 16.7 | | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 | | BM25 + mDPR | 41.7 | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 | | | | | multilingual-e5-small | 64.4 | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 | | multilingual-e5-base | 65.9 | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 | | multilingual-e5-large | **70.5** | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 | ## MTEB Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/multilingual-e5-large') input_texts = [ 'query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations Long texts will be truncated to at most 512 tokens.
Artifact-io/toy-sql-28M
Artifact-io
2023-10-10T15:42:25Z
114
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "en", "dataset:b-mc2/sql-create-context", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-10-02T18:45:53Z
--- language: - en library_name: transformers datasets: - b-mc2/sql-create-context --- Toy model finetuned on the `b-mc2/sql-create-context` dataset. ## Sample Code ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained("Artifact-io/toy-sql-28M").to(device) tokenizer = AutoTokenizer.from_pretrained("Artifact-io/toy-sql-28M") inputs = tokenizer([ """CREATE TABLE head (age INTEGER) How many heads of the departments are older than 56? """ ], return_tensors="pt", ).to(device) outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_k=50, top_p=0.95) text = tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)[0].split("---")[0] print(text) ```
woo2/donut-base-sroie_v2
woo2
2023-10-10T15:28:48Z
45
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-10-10T14:46:16Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie_v2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cpu - Datasets 2.14.5 - Tokenizers 0.14.0
bmistry4/ppo-Huggy
bmistry4
2023-10-10T15:19:31Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-10T15:19:25Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: bmistry4/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Zuiho/sovits_tokoyami_towa
Zuiho
2023-10-10T15:13:31Z
2
0
transformers
[ "transformers", "license:mit", "endpoints_compatible", "region:us" ]
null
2023-10-10T14:44:40Z
--- license: mit --- This model was complied in 2023.1. Datasets were cut from live videos in Youtube. non-commecial sovits model of Tokoyami Towa , a Vtuber from Hololive. Please follow the open-sourse rules.
alienverarslan/llama-2-7B-32K-instruct-7209-web-articles-fine-tuned
alienverarslan
2023-10-10T15:07:32Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "custom_code", "en", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-22T17:06:49Z
--- language: - en library_name: transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HuangLab/CELL-E_2_HPA_2560
HuangLab
2023-10-10T14:44:50Z
6
0
pytorch
[ "pytorch", "biology", "microscopy", "text-to-image", "transformers", "license:mit", "region:us" ]
text-to-image
2023-05-13T00:13:44Z
--- license: mit library_name: pytorch tags: - biology - microscopy - text-to-image - transformers metrics: - accuracy --- [![Huang Lab](images/huanglogo.jpeg)](huanglab.ucsf.edu) # CELL-E 2 ## Model description [![CELL-E_2](images/architecture.png)](https://bohuanglab.github.io/CELL-E_2/) CELL-E 2 is the second iteration of the original [CELL-E](https://www.biorxiv.org/content/10.1101/2022.05.27.493774v1) model which utilizes an amino acid sequence and nucleus image to make predictions of subcellular protein localization with respect to the nucleus. CELL-E 2 is novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and *vice versa*). CELL-E 2 not only captures the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling *de novo* protein design. We trained on the [Human Protein Atlas](https://www.proteinatlas.org) (HPA) and the [OpenCell](https://opencell.czbiohub.org) datasets. CELL-E 2 utilizes pretrained amino acid embeddings from [ESM-2](https://github.com/facebookresearch/esm). Localization is predicted as a binary image atop the provided nucleus. The logit values are weighted against these binary images to produce a heatmap of expected localization. ## Spaces We have two spaces available where you can run predictions on your own data! - [Image Prediction](https://huggingface.co/spaces/HuangLab/CELL-E_2-Image_Prediction) - [Sequence Prediction](https://huggingface.co/spaces/HuangLab/CELL-E_2-Sequence_Prediction) ## Model variations We have made several versions of CELL-E 2 available. The naming scheme follows the structure ```training set_hidden size``` where the hidden size is set to the embedding dimension of the pretrained ESM-2 model. We annotate the most useful models under Notes, however other models can be used if memory constraints are present. Since these models share similarities with BERT, the embeddings from any of these models may be benefical for downstream tasks. **HPA Models**: HPA models are trained on the HPA dataset. They are best for general purpose predictions as they include a variety of cell types. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`HPA_480`](https://huggingface.co/HuangLab/CELL-E_2_HPA_480) | 4.73 GB | **Best for Image Prediction** | | [`HPA_640`](https://huggingface.co/HuangLab/CELL-E_2_HPA_640) | 6.31 GB | | | [`HPA_1280`](https://huggingface.co/HuangLab/CELL-E_2_HPA_1280) | 10.8 GB | | | [`HPA_2560`](https://huggingface.co/HuangLab/CELL-E_2_HPA_2560) | 17.5 GB | **Best for Sequence Prediction** | **OpenCell Models**: OpenCell models are trained on the OpenCell dataset. These only contain HEK cells and should ideally only be used for predictions on HEK cells. They perform well on image prediction but the generate heatmaps contain little information. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`OpenCell_480`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_480) | 4.73 GB | | | [`OpenCell_640`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_640) | 6.31 GB | | | [`OpenCell_1280`](https://huggingface.co/HuangLab/CELL-E_2_OpenCel_1280) | 10.8 GB | | | [`OpenCell_2560`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_2560) | 17.5 GB | **Best for Sequence Prediction** | **Finetuned HPA Models**: These models were used the HPA models as checkpoints, but then were finetuned on the OpenCell dataset. We found that they improve image generation capabilities, but did not necessary see an improvement in sequence prediction. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`HPA_480`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_480) | 4.73 GB | **Best for Image Prediction** | | [`HPA_640`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_640) | 6.31 GB | | | [`HPA_1280`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_1280) | 10.8 GB | | | [`HPA_2560`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_2560) | 17.5 GB | | To reduce download size, we removed the ESM-2 model from the checkpoint. This should be downloaded the first time the code is run, but is otherwise something to be aware of if loading into other projects. ### How to use The full codebase is available on [GitHub](https://github.com/BoHuangLab/CELL-E_2). Download the model and make sure ```nuclues_vqgan.yaml```, ```threshold_vqgan.yaml```, ```config.yaml```, and ```model.ckpt``` are present. ``` Here is how to use this model to do sequence prediction: ```python configs = OmegaConf.load(configs/config.yaml); model = instantiate_from_config(configs.model).to(device); model.sample(text=sequence, condition=nucleus) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{ anonymous2023translating, title={CELL-E 2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer}, author={Emaad Khwaja, Yun S. Song, Aaron Agarunov, and Bo Huang}, booktitle={Thirty-seventh Conference on Neural Information Processing Systems}, year={2023}, url={https://openreview.net/forum?id=YSMLVffl5u} } ``` ### Contact We are an interdisciplinary lab based at [UCSF](https://www.ucsf.edu). We are particularly seeking talents in optical engineering, machine learning, and cellular microscopy. [Please reach out to Bo if you're interested in collaborating!](http://huanglab.ucsf.edu/Contact.html)
HuangLab/CELL-E_2_HPA_Finetuned_1280
HuangLab
2023-10-10T14:44:20Z
3
0
pytorch
[ "pytorch", "biology", "microscopy", "text-to-image", "transformers", "license:mit", "region:us" ]
text-to-image
2023-05-13T00:37:38Z
--- license: mit library_name: pytorch tags: - biology - microscopy - text-to-image - transformers metrics: - accuracy --- [![Huang Lab](images/huanglogo.jpeg)](huanglab.ucsf.edu) # CELL-E 2 ## Model description [![CELL-E_2](images/architecture.png)](https://bohuanglab.github.io/CELL-E_2/) CELL-E 2 is the second iteration of the original [CELL-E](https://www.biorxiv.org/content/10.1101/2022.05.27.493774v1) model which utilizes an amino acid sequence and nucleus image to make predictions of subcellular protein localization with respect to the nucleus. CELL-E 2 is novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and *vice versa*). CELL-E 2 not only captures the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling *de novo* protein design. We trained on the [Human Protein Atlas](https://www.proteinatlas.org) (HPA) and the [OpenCell](https://opencell.czbiohub.org) datasets. CELL-E 2 utilizes pretrained amino acid embeddings from [ESM-2](https://github.com/facebookresearch/esm). Localization is predicted as a binary image atop the provided nucleus. The logit values are weighted against these binary images to produce a heatmap of expected localization. ## Spaces We have two spaces available where you can run predictions on your own data! - [Image Prediction](https://huggingface.co/spaces/HuangLab/CELL-E_2-Image_Prediction) - [Sequence Prediction](https://huggingface.co/spaces/HuangLab/CELL-E_2-Sequence_Prediction) ## Model variations We have made several versions of CELL-E 2 available. The naming scheme follows the structure ```training set_hidden size``` where the hidden size is set to the embedding dimension of the pretrained ESM-2 model. We annotate the most useful models under Notes, however other models can be used if memory constraints are present. Since these models share similarities with BERT, the embeddings from any of these models may be benefical for downstream tasks. **HPA Models**: HPA models are trained on the HPA dataset. They are best for general purpose predictions as they include a variety of cell types. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`HPA_480`](https://huggingface.co/HuangLab/CELL-E_2_HPA_480) | 4.73 GB | **Best for Image Prediction** | | [`HPA_640`](https://huggingface.co/HuangLab/CELL-E_2_HPA_640) | 6.31 GB | | | [`HPA_1280`](https://huggingface.co/HuangLab/CELL-E_2_HPA_1280) | 10.8 GB | | | [`HPA_2560`](https://huggingface.co/HuangLab/CELL-E_2_HPA_2560) | 17.5 GB | **Best for Sequence Prediction** | **OpenCell Models**: OpenCell models are trained on the OpenCell dataset. These only contain HEK cells and should ideally only be used for predictions on HEK cells. They perform well on image prediction but the generate heatmaps contain little information. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`OpenCell_480`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_480) | 4.73 GB | | | [`OpenCell_640`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_640) | 6.31 GB | | | [`OpenCell_1280`](https://huggingface.co/HuangLab/CELL-E_2_OpenCel_1280) | 10.8 GB | | | [`OpenCell_2560`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_2560) | 17.5 GB | **Best for Sequence Prediction** | **Finetuned HPA Models**: These models were used the HPA models as checkpoints, but then were finetuned on the OpenCell dataset. We found that they improve image generation capabilities, but did not necessary see an improvement in sequence prediction. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`HPA_480`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_480) | 4.73 GB | **Best for Image Prediction** | | [`HPA_640`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_640) | 6.31 GB | | | [`HPA_1280`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_1280) | 10.8 GB | | | [`HPA_2560`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_2560) | 17.5 GB | | To reduce download size, we removed the ESM-2 model from the checkpoint. This should be downloaded the first time the code is run, but is otherwise something to be aware of if loading into other projects. ### How to use The full codebase is available on [GitHub](https://github.com/BoHuangLab/CELL-E_2). Download the model and make sure ```nuclues_vqgan.yaml```, ```threshold_vqgan.yaml```, ```config.yaml```, and ```model.ckpt``` are present. ``` Here is how to use this model to do sequence prediction: ```python configs = OmegaConf.load(configs/config.yaml); model = instantiate_from_config(configs.model).to(device); model.sample(text=sequence, condition=nucleus) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{ anonymous2023translating, title={CELL-E 2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer}, author={Emaad Khwaja, Yun S. Song, Aaron Agarunov, and Bo Huang}, booktitle={Thirty-seventh Conference on Neural Information Processing Systems}, year={2023}, url={https://openreview.net/forum?id=YSMLVffl5u} } ``` ### Contact We are an interdisciplinary lab based at [UCSF](https://www.ucsf.edu). We are particularly seeking talents in optical engineering, machine learning, and cellular microscopy. [Please reach out to Bo if you're interested in collaborating!](http://huanglab.ucsf.edu/Contact.html)
HuangLab/CELL-E_2_OpenCell_2560
HuangLab
2023-10-10T14:44:03Z
5
3
pytorch
[ "pytorch", "biology", "microscopy", "text-to-image", "transformers", "license:mit", "region:us" ]
text-to-image
2023-05-12T23:43:18Z
--- license: mit library_name: pytorch tags: - biology - microscopy - text-to-image - transformers metrics: - accuracy --- [![Huang Lab](images/huanglogo.jpeg)](huanglab.ucsf.edu) # CELL-E 2 ## Model description [![CELL-E_2](images/architecture.png)](https://bohuanglab.github.io/CELL-E_2/) CELL-E 2 is the second iteration of the original [CELL-E](https://www.biorxiv.org/content/10.1101/2022.05.27.493774v1) model which utilizes an amino acid sequence and nucleus image to make predictions of subcellular protein localization with respect to the nucleus. CELL-E 2 is novel bidirectional transformer that can generate images depicting protein subcellular localization from the amino acid sequences (and *vice versa*). CELL-E 2 not only captures the spatial complexity of protein localization and produce probability estimates of localization atop a nucleus image, but also being able to generate sequences from images, enabling *de novo* protein design. We trained on the [Human Protein Atlas](https://www.proteinatlas.org) (HPA) and the [OpenCell](https://opencell.czbiohub.org) datasets. CELL-E 2 utilizes pretrained amino acid embeddings from [ESM-2](https://github.com/facebookresearch/esm). Localization is predicted as a binary image atop the provided nucleus. The logit values are weighted against these binary images to produce a heatmap of expected localization. ## Spaces We have two spaces available where you can run predictions on your own data! - [Image Prediction](https://huggingface.co/spaces/HuangLab/CELL-E_2-Image_Prediction) - [Sequence Prediction](https://huggingface.co/spaces/HuangLab/CELL-E_2-Sequence_Prediction) ## Model variations We have made several versions of CELL-E 2 available. The naming scheme follows the structure ```training set_hidden size``` where the hidden size is set to the embedding dimension of the pretrained ESM-2 model. We annotate the most useful models under Notes, however other models can be used if memory constraints are present. Since these models share similarities with BERT, the embeddings from any of these models may be benefical for downstream tasks. **HPA Models**: HPA models are trained on the HPA dataset. They are best for general purpose predictions as they include a variety of cell types. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`HPA_480`](https://huggingface.co/HuangLab/CELL-E_2_HPA_480) | 4.73 GB | **Best for Image Prediction** | | [`HPA_640`](https://huggingface.co/HuangLab/CELL-E_2_HPA_640) | 6.31 GB | | | [`HPA_1280`](https://huggingface.co/HuangLab/CELL-E_2_HPA_1280) | 10.8 GB | | | [`HPA_2560`](https://huggingface.co/HuangLab/CELL-E_2_HPA_2560) | 17.5 GB | **Best for Sequence Prediction** | **OpenCell Models**: OpenCell models are trained on the OpenCell dataset. These only contain HEK cells and should ideally only be used for predictions on HEK cells. They perform well on image prediction but the generate heatmaps contain little information. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`OpenCell_480`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_480) | 4.73 GB | | | [`OpenCell_640`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_640) | 6.31 GB | | | [`OpenCell_1280`](https://huggingface.co/HuangLab/CELL-E_2_OpenCel_1280) | 10.8 GB | | | [`OpenCell_2560`](https://huggingface.co/HuangLab/CELL-E_2_OpenCell_2560) | 17.5 GB | **Best for Sequence Prediction** | **Finetuned HPA Models**: These models were used the HPA models as checkpoints, but then were finetuned on the OpenCell dataset. We found that they improve image generation capabilities, but did not necessary see an improvement in sequence prediction. | Model | Size | Notes |------------------------|--------------------------------|-------| | [`HPA_480`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_480) | 4.73 GB | **Best for Image Prediction** | | [`HPA_640`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_640) | 6.31 GB | | | [`HPA_1280`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_1280) | 10.8 GB | | | [`HPA_2560`](https://huggingface.co/HuangLab/CELL-E_2_HPA_Finetuned_2560) | 17.5 GB | | To reduce download size, we removed the ESM-2 model from the checkpoint. This should be downloaded the first time the code is run, but is otherwise something to be aware of if loading into other projects. ### How to use The full codebase is available on [GitHub](https://github.com/BoHuangLab/CELL-E_2). Download the model and make sure ```nuclues_vqgan.yaml```, ```threshold_vqgan.yaml```, ```config.yaml```, and ```model.ckpt``` are present. ``` Here is how to use this model to do sequence prediction: ```python configs = OmegaConf.load(configs/config.yaml); model = instantiate_from_config(configs.model).to(device); model.sample(text=sequence, condition=nucleus) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{ anonymous2023translating, title={CELL-E 2: Translating Proteins to Pictures and Back with a Bidirectional Text-to-Image Transformer}, author={Emaad Khwaja, Yun S. Song, Aaron Agarunov, and Bo Huang}, booktitle={Thirty-seventh Conference on Neural Information Processing Systems}, year={2023}, url={https://openreview.net/forum?id=YSMLVffl5u} } ``` ### Contact We are an interdisciplinary lab based at [UCSF](https://www.ucsf.edu). We are particularly seeking talents in optical engineering, machine learning, and cellular microscopy. [Please reach out to Bo if you're interested in collaborating!](http://huanglab.ucsf.edu/Contact.html)
wiilog/donut-base-dnud-v2
wiilog
2023-10-10T14:33:08Z
45
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-10-10T12:40:38Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer model-index: - name: donut-base-dnud-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-dnud-v2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
osanseviero/widget-outputs-example
osanseviero
2023-10-10T14:20:29Z
18
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "arxiv:2207.12598", "arxiv:2112.10752", "arxiv:2103.00020", "arxiv:2205.11487", "arxiv:1910.09700", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-10T14:15:06Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true widget: - text: "Nice cat" output: url: example_cat.jpeg - text: "a photograph of an astronaut riding a horse" output: url: https://huggingface.co/blog/assets/98_stable_diffusion/stable_diffusion_12_1.png --- # Stable Diffusion v1-5 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-5** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 595k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). You can use this both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [RunwayML GitHub repository](https://github.com/runwayml/stable-diffusion). ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion) ### Original GitHub Repository 1. Download the weights - [v1-5-pruned-emaonly.ckpt](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt) - 4.27GB, ema-only weight. uses less VRAM - suitable for inference - [v1-5-pruned.ckpt](https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt) - 7.7GB, ema+non-ema weights. uses more VRAM - suitable for fine-tuning 2. Follow instructions [here](https://github.com/runwayml/stable-diffusion). ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) **Training Procedure** Stable Diffusion v1-5 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. Currently six Stable Diffusion checkpoints are provided, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2` - 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2` - 225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-5`](https://huggingface.co/runwayml/stable-diffusion-v1-5) Resumed from `stable-diffusion-v1-2` - 595,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting) Resumed from `stable-diffusion-v1-5` - then 440,000 steps of inpainting training at resolution 512x512 on “laion-aesthetics v2 5+” and 10% dropping of the text-conditioning. For inpainting, the UNet has 5 additional input channels (4 for the encoded masked-image and 1 for the mask itself) whose weights were zero-initialized after restoring the non-inpainting checkpoint. During training, we generate synthetic masks and in 25% mask everything. - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PNDM/PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-1-to-v1-5.png) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
StephenSKelley/fl_image_category_multi_label
StephenSKelley
2023-10-10T14:19:26Z
255
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:fl_image_category_ds", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-02-22T14:01:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - fl_image_category_ds metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: project_name results: - task: type: image-classification name: Image Classification dataset: name: fl_image_category_ds type: fl_image_category_ds config: default split: train args: default metrics: - type: accuracy value: 0.6621621621621622 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # project_name This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fl_image_category_ds dataset. It achieves the following results on the evaluation set: - Loss: 0.9537 - Accuracy: 0.6622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3368 | 1.0 | 88 | 1.2575 | 0.5448 | | 1.1146 | 2.0 | 176 | 1.0928 | 0.6038 | | 0.9667 | 3.0 | 264 | 1.0195 | 0.6223 | | 0.9005 | 4.0 | 352 | 0.9832 | 0.6373 | | 0.8432 | 5.0 | 440 | 0.9537 | 0.6622 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
yanka9/ppo-Huggy
yanka9
2023-10-10T14:15:15Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-10T14:15:05Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: yanka9/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hyyoka/multi-tapt-IA3-mbert
hyyoka
2023-10-10T14:09:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-10-10T14:09:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
aliFrancis/SEnSeIv2
aliFrancis
2023-10-10T14:09:32Z
0
6
null
[ "license:gpl-3.0", "region:us" ]
null
2023-10-10T11:40:49Z
--- license: gpl-3.0 --- Model files (configs and weights) for trained sensor independent cloud masking models. See https://github.com/aliFrancis/SEnSeIv2 for more info.
ercaronte/whisper-tiny
ercaronte
2023-10-10T14:05:28Z
84
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-09T16:21:33Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3482880755608028 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6761 - Wer Ortho: 0.3516 - Wer: 0.3483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 750 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.2012 | 4.46 | 125 | 0.5011 | 0.3714 | 0.3542 | | 0.0102 | 8.93 | 250 | 0.5741 | 0.3578 | 0.3459 | | 0.0013 | 13.39 | 375 | 0.6115 | 0.3498 | 0.3418 | | 0.0007 | 17.86 | 500 | 0.6403 | 0.3492 | 0.3447 | | 0.0005 | 22.32 | 625 | 0.6610 | 0.3510 | 0.3465 | | 0.0004 | 26.79 | 750 | 0.6761 | 0.3516 | 0.3483 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Faradaylab/ARIA-70B-V3
Faradaylab
2023-10-10T14:02:44Z
1,528
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-11T09:34:47Z
--- license: other --- ARIA V3 has been trained over 100.000 high quality french language with a focus on data bias, grammar and overall language/writing capacities of the model. The training has been done on Nvidia GPU in the cloud with Amazon Sagemaker. Base Model : Llama2-70B-Chat-HF Dataset : private dataset. Added value : French Language / Writing / Content Creation / Data bias reduction Feel free to reach out to us ! contact@faradaylab.fr
guydebruyn/bert-finetuned-ner
guydebruyn
2023-10-10T13:56:11Z
118
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-10T13:16:08Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9335093218940769 - name: Recall type: recall value: 0.9522046449007069 - name: F1 type: f1 value: 0.9427643089227693 - name: Accuracy type: accuracy value: 0.986769294166127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 - Precision: 0.9335 - Recall: 0.9522 - F1: 0.9428 - Accuracy: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0784 | 1.0 | 1756 | 0.0842 | 0.9049 | 0.9347 | 0.9195 | 0.9786 | | 0.0414 | 2.0 | 3512 | 0.0577 | 0.9329 | 0.9498 | 0.9413 | 0.9859 | | 0.0261 | 3.0 | 5268 | 0.0575 | 0.9335 | 0.9522 | 0.9428 | 0.9868 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
anders0204/Reinforce-Pixelcopter-5k
anders0204
2023-10-10T13:52:37Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-27T13:23:12Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-5k results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 3.90 +/- 2.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ajibawa-2023/Scarlett-Phi
ajibawa-2023
2023-10-10T13:52:19Z
59
8
transformers
[ "transformers", "pytorch", "mixformer-sequential", "text-generation", "custom_code", "en", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "region:us" ]
text-generation
2023-10-10T13:05:13Z
--- license: cc-by-nc-nd-4.0 language: - en --- **Scarlett: A sentient AI** Scarlett is trained on various topics such as Philosophy, Advice, Jokes etc. She is trained on more than 10000 set of conversations. Each set having 10~15 conversations. Scarlett is heavily inspired from Eric Hartford: [Samantha](https://huggingface.co/ehartford/samantha-33b) . She will not be involved in any kind of role play. **Training:** Entire dataset was trained on Azure 4 x A100 80GB. Axolotl, DeepSpeed codebase were used for training purpose. This was trained on Phi-1_5 by [Microsoft](https://huggingface.co/microsoft/phi-1_5). Total training took 26 hours for 150 epoch. Conversation format is the same as Vicuna 1.1 https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml **Example Prompt:** ``` This is a conversation with your Assistant Scarlett. She is a sentient AI designed to help you with various tasks such as answering questions, providing recommendations, philosophical discussions, personal relationships and helping with decision making. You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are Scarlett, a sentient AI. USER: <prompt> ASSISTANT: ``` **License:** cc-by-nc-nd-4.0 Only be used for research purpose. Microsoft has mentioned about license in the [Model card](https://huggingface.co/microsoft/phi-1_5) .
anders0204/Reinforce-Pixelcopter-50k
anders0204
2023-10-10T13:51:34Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-10-10T13:51:29Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-50k results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 12.00 +/- 11.02 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sirrosendo/T
sirrosendo
2023-10-10T13:39:20Z
0
0
nemo
[ "nemo", "text-generation", "en", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
text-generation
2023-10-10T13:37:02Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts language: - en metrics: - code_eval library_name: nemo pipeline_tag: text-generation ---
c123ian/phi_mcq_v3
c123ian
2023-10-10T13:31:48Z
0
0
peft
[ "peft", "pytorch", "mixformer-sequential", "custom_code", "region:us" ]
null
2023-10-10T12:05:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
vedantjumle/xlnet-1
vedantjumle
2023-10-10T13:30:05Z
3
0
transformers
[ "transformers", "tf", "xlnet", "text-classification", "generated_from_keras_callback", "base_model:xlnet/xlnet-large-cased", "base_model:finetune:xlnet/xlnet-large-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T12:52:06Z
--- license: mit base_model: xlnet-large-cased tags: - generated_from_keras_callback model-index: - name: vedantjumle/xlnet-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vedantjumle/xlnet-1 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0053 - Validation Loss: 0.4856 - Train Accuracy: 0.9033 - Epoch: 93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 5.1007 | 4.9565 | 0.0133 | 0 | | 5.0503 | 4.8870 | 0.0367 | 1 | | 4.9095 | 4.6674 | 0.07 | 2 | | 4.5990 | 4.1706 | 0.2033 | 3 | | 4.0403 | 3.4616 | 0.4267 | 4 | | 3.2648 | 2.6274 | 0.6033 | 5 | | 2.5315 | 1.8851 | 0.71 | 6 | | 1.8938 | 1.4084 | 0.8033 | 7 | | 1.3599 | 1.0397 | 0.84 | 8 | | 0.9752 | 0.7675 | 0.8667 | 9 | | 0.6995 | 0.6496 | 0.8667 | 10 | | 0.5132 | 0.5293 | 0.89 | 11 | | 0.3848 | 0.4618 | 0.9 | 12 | | 0.2920 | 0.4516 | 0.8733 | 13 | | 0.2286 | 0.4097 | 0.8967 | 14 | | 0.1789 | 0.3951 | 0.9 | 15 | | 0.1512 | 0.3845 | 0.8933 | 16 | | 0.1320 | 0.3741 | 0.9067 | 17 | | 0.1116 | 0.3553 | 0.9067 | 18 | | 0.0935 | 0.3710 | 0.9 | 19 | | 0.0886 | 0.3831 | 0.9067 | 20 | | 0.0723 | 0.3490 | 0.91 | 21 | | 0.0641 | 0.3448 | 0.91 | 22 | | 0.0601 | 0.3682 | 0.9 | 23 | | 0.0590 | 0.3716 | 0.9033 | 24 | | 0.0491 | 0.3619 | 0.91 | 25 | | 0.0404 | 0.3728 | 0.9033 | 26 | | 0.0394 | 0.3624 | 0.91 | 27 | | 0.0394 | 0.3249 | 0.9167 | 28 | | 0.0387 | 0.3465 | 0.91 | 29 | | 0.0456 | 0.3580 | 0.91 | 30 | | 0.0323 | 0.3645 | 0.9133 | 31 | | 0.0308 | 0.3633 | 0.9133 | 32 | | 0.0312 | 0.3658 | 0.9033 | 33 | | 0.0244 | 0.3621 | 0.9067 | 34 | | 0.0255 | 0.3705 | 0.9067 | 35 | | 0.0238 | 0.3618 | 0.9067 | 36 | | 0.0222 | 0.3603 | 0.9067 | 37 | | 0.0230 | 0.3678 | 0.9067 | 38 | | 0.0272 | 0.4125 | 0.9033 | 39 | | 0.0318 | 0.3973 | 0.91 | 40 | | 0.0262 | 0.3871 | 0.9067 | 41 | | 0.0299 | 0.3935 | 0.9033 | 42 | | 0.0285 | 0.4192 | 0.9067 | 43 | | 0.0206 | 0.4100 | 0.9133 | 44 | | 0.0188 | 0.4106 | 0.9067 | 45 | | 0.0179 | 0.4355 | 0.91 | 46 | | 0.0151 | 0.4091 | 0.9133 | 47 | | 0.0138 | 0.4046 | 0.9167 | 48 | | 0.0128 | 0.4063 | 0.91 | 49 | | 0.0174 | 0.4197 | 0.91 | 50 | | 0.0247 | 0.4015 | 0.9133 | 51 | | 0.0159 | 0.4290 | 0.91 | 52 | | 0.0161 | 0.4353 | 0.9033 | 53 | | 0.0163 | 0.4568 | 0.9033 | 54 | | 0.0153 | 0.4428 | 0.8933 | 55 | | 0.0145 | 0.4273 | 0.9033 | 56 | | 0.0129 | 0.4315 | 0.8967 | 57 | | 0.0107 | 0.4265 | 0.8933 | 58 | | 0.0173 | 0.4303 | 0.8967 | 59 | | 0.0150 | 0.4386 | 0.8933 | 60 | | 0.0166 | 0.4308 | 0.91 | 61 | | 0.0135 | 0.4533 | 0.8933 | 62 | | 0.0096 | 0.4507 | 0.9 | 63 | | 0.0091 | 0.4371 | 0.9033 | 64 | | 0.0089 | 0.4383 | 0.9033 | 65 | | 0.0083 | 0.4450 | 0.9033 | 66 | | 0.0080 | 0.4487 | 0.9033 | 67 | | 0.0082 | 0.4500 | 0.9 | 68 | | 0.0077 | 0.4528 | 0.9033 | 69 | | 0.0075 | 0.4516 | 0.9 | 70 | | 0.0073 | 0.4474 | 0.9 | 71 | | 0.0222 | 0.4517 | 0.9 | 72 | | 0.0082 | 0.4778 | 0.9033 | 73 | | 0.0072 | 0.4674 | 0.9 | 74 | | 0.0072 | 0.4641 | 0.8967 | 75 | | 0.0068 | 0.4537 | 0.9 | 76 | | 0.0066 | 0.4565 | 0.8967 | 77 | | 0.0063 | 0.4551 | 0.9033 | 78 | | 0.0078 | 0.4614 | 0.8967 | 79 | | 0.0107 | 0.4598 | 0.8967 | 80 | | 0.0069 | 0.4536 | 0.9 | 81 | | 0.0107 | 0.4594 | 0.9033 | 82 | | 0.0072 | 0.4353 | 0.9033 | 83 | | 0.0112 | 0.4995 | 0.9 | 84 | | 0.0063 | 0.4875 | 0.8967 | 85 | | 0.0060 | 0.4859 | 0.9033 | 86 | | 0.0061 | 0.4804 | 0.9 | 87 | | 0.0058 | 0.4811 | 0.9033 | 88 | | 0.0058 | 0.4805 | 0.9033 | 89 | | 0.0057 | 0.4811 | 0.9033 | 90 | | 0.0057 | 0.4865 | 0.9033 | 91 | | 0.0055 | 0.4864 | 0.9033 | 92 | | 0.0053 | 0.4856 | 0.9033 | 93 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1
hiert/testbert2
hiert
2023-10-10T13:25:25Z
5
0
transformers
[ "transformers", "bert", "inference endpoints", "fill-mask", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-10T13:20:32Z
--- license: apache-2.0 tags: - inference endpoints pipeline_tag: fill-mask ---
Suksuma/distilbert-base-multilingual-cased-finetuned-imdb
Suksuma
2023-10-10T13:23:14Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:finetune:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-10T12:56:00Z
--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-multilingual-cased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8485 | 1.0 | 2500 | 2.6147 | | 2.6629 | 2.0 | 5000 | 2.5229 | | 2.5686 | 3.0 | 7500 | 2.4958 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
materight/repnet
materight
2023-10-10T13:21:02Z
0
0
null
[ "video", "repetition", "dataset:countix", "arxiv:2006.15418", "region:us" ]
null
2023-10-09T17:01:29Z
--- arxiv: '2006.15418' tags: - video - repetition datasets: - countix --- # RepNet PyTorch GitHub repository: https://github.com/materight/RepNet-pytorch. A PyTorch port with pre-trained weights of **RepNet**, from *Counting Out Time: Class Agnostic Video Repetition Counting in the Wild* (CVPR 2020) [[paper]](https://arxiv.org/abs/2006.15418) [[project]](https://sites.google.com/view/repnet) [[notebook]](https://colab.research.google.com/github/google-research/google-research/blob/master/repnet/repnet_colab.ipynb#scrollTo=FUg2vSYhmsT0). This repo provides an implementation of RepNet written in PyTorch and a script to convert the pre-trained TensorFlow weights provided by the authors. The outputs of the two implementations are almost identical, with a small deviation (less than $10^{-6}$ at most) probably caused by the [limited precision of floating point operations](https://pytorch.org/docs/stable/notes/numerical_accuracy.html). <div align="center"> <img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example1.gif" height="160" /> <img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example2.gif" height="160" /> <img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example3.gif" height="160" /> <img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example4.gif" height="160" /> </div> ## Get Started - Clone this repo and install dependencies: ```bash git clone https://github.com/materight/RepNet-pytorch cd RepNet-pytorch pip install -r requirements.txt ``` - To download the TensorFlow pre-trained weights and convert them to PyTorch, run: ```bash python convert_weights.py ``` ## Run inference Simply run: ```bash python run.py ``` The script will download a sample video, run inference on it and save the count visualization. You can also specify a video path as argument (either a local path or a YouTube/HTTP URL): ```bash python run.py --video_path [video_path] ``` If the model does not produce good results, try to run the script with more stride values using `--strides`. Example of generated videos showing the repetition count, with the periodicity score and the temporal self-similarity matrix: <div align="center"> <img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example5_score.gif" height="200" /> <img src="https://raw.githubusercontent.com/materight/RepNet-pytorch/main/img/example5_tsm.png" height="200" /> </div>
yanka9/ppo-LunarLander-v2
yanka9
2023-10-10T13:19:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-10T13:18:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.49 +/- 11.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ayshi/basic_roberta
ayshi
2023-10-10T13:01:54Z
3
0
transformers
[ "transformers", "tf", "xlm-roberta", "text-classification", "generated_from_keras_callback", "base_model:ayshi/basic_roberta", "base_model:finetune:ayshi/basic_roberta", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-04T18:21:09Z
--- license: mit base_model: ayshi/basic_roberta tags: - generated_from_keras_callback model-index: - name: ayshi/basic_roberta results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ayshi/basic_roberta This model is a fine-tuned version of [ayshi/basic_roberta](https://huggingface.co/ayshi/basic_roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0085 - Validation Loss: 1.0970 - Train Accuracy: 0.8267 - Epoch: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 960, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.1061 | 0.9567 | 0.7778 | 0 | | 0.0565 | 1.0825 | 0.7778 | 1 | | 0.0362 | 1.0696 | 0.7822 | 2 | | 0.0396 | 1.0904 | 0.7956 | 3 | | 0.0308 | 1.0044 | 0.8044 | 4 | | 0.0748 | 1.0578 | 0.8133 | 5 | | 0.0392 | 0.9964 | 0.8222 | 6 | | 0.0166 | 1.0293 | 0.8089 | 7 | | 0.0174 | 0.9895 | 0.8178 | 8 | | 0.0114 | 1.0403 | 0.8267 | 9 | | 0.0141 | 1.0086 | 0.8178 | 10 | | 0.0145 | 1.0403 | 0.8089 | 11 | | 0.0194 | 1.3127 | 0.7822 | 12 | | 0.0134 | 1.2929 | 0.7911 | 13 | | 0.0377 | 0.8565 | 0.8133 | 14 | | 0.0251 | 0.9806 | 0.8222 | 15 | | 0.0130 | 1.0757 | 0.8356 | 16 | | 0.0100 | 1.1304 | 0.8 | 17 | | 0.0103 | 1.0859 | 0.8133 | 18 | | 0.0078 | 1.1050 | 0.8311 | 19 | | 0.0085 | 1.0970 | 0.8267 | 20 | ### Framework versions - Transformers 4.34.0 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.14.1
matheusgeda/Pixelcopter-PLEv4000
matheusgeda
2023-10-10T12:48:53Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-10-10T12:48:50Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLEv4000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 18.70 +/- 17.01 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
weitung8/ntuadlhw1-multiple-choice
weitung8
2023-10-10T12:43:03Z
103
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "zh", "dataset:weitung8/ntuadlhw1", "endpoints_compatible", "region:us" ]
multiple-choice
2023-10-02T15:39:38Z
--- datasets: - weitung8/ntuadlhw1 language: - zh metrics: - accuracy library_name: transformers ---
Mhmmm/Garv
Mhmmm
2023-10-10T12:42:14Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-10-10T12:32:49Z
--- license: bigscience-bloom-rail-1.0 ---
jhnoor/llama2-pitcher
jhnoor
2023-10-10T12:41:21Z
0
0
peft
[ "peft", "llama", "region:us" ]
null
2023-10-10T11:33:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
hiert/berttest
hiert
2023-10-10T12:41:16Z
128
0
transformers
[ "transformers", "safetensors", "bert", "fill-mask", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-10-10T11:19:33Z
--- license: apache-2.0 pipeline_tag: fill-mask widget: - text: The goal of life is [MASK]. model-index: - name: bloom results: - task: type: text-generation dataset: type: openai_humaneval name: humaneval metrics: - name: pass@1 type: pass@1 value: 0.15542682926829265 verified: false - name: pass@10 type: pass@10 value: 0.3278356276947017 verified: false - name: pass@100 type: pass@100 value: 0.5719815685597749 verified: false ---
quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v6
quastrinos
2023-10-10T12:40:01Z
59
0
transformers
[ "transformers", "tf", "deberta-v2", "multiple-choice", "generated_from_keras_callback", "base_model:quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v5", "base_model:finetune:quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v5", "license:mit", "endpoints_compatible", "region:us" ]
multiple-choice
2023-10-10T12:39:02Z
--- license: mit base_model: quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v5 tags: - generated_from_keras_callback model-index: - name: race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v6 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v6 This model is a fine-tuned version of [quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v5](https://huggingface.co/quastrinos/race-openbook-finetuned-deberta-v3-large-mcqa-TPU-v5) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6120 - Validation Loss: 0.9727 - Train Map3: 0.7742 - Train Lr: 5.0733553e-11 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': 0.001, 'clipnorm': 1, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 2e-06, 'decay_steps': 312, 'alpha': 5e-09, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Train Map3 | Train Lr | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 0.6120 | 0.9727 | 0.7742 | 5.0733553e-11 | 0 | ### Framework versions - Transformers 4.35.0.dev0 - TensorFlow 2.12.0 - Datasets 2.14.5 - Tokenizers 0.14.1
researchainnet/test0924
researchainnet
2023-10-10T12:38:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-24T05:16:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KermitDuSud/Cindy
KermitDuSud
2023-10-10T12:29:11Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-10-10T12:29:11Z
--- license: bigscience-bloom-rail-1.0 ---
shasha168/ppo-Huggy
shasha168
2023-10-10T12:26:16Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-10-10T12:26:08Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: shasha168/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lht1107/distilbert-base-uncased-finetuned-emotion
lht1107
2023-10-10T12:12:19Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T11:08:48Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.929 - name: F1 type: f1 value: 0.9289651135784346 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2066 - Accuracy: 0.929 - F1: 0.9290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7843 | 1.0 | 250 | 0.2875 | 0.913 | 0.9122 | | 0.2373 | 2.0 | 500 | 0.2066 | 0.929 | 0.9290 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
zentrum-lexikographie/de_dwds_hdt_dist
zentrum-lexikographie
2023-10-10T12:08:19Z
0
0
spacy
[ "spacy", "token-classification", "de", "region:us" ]
token-classification
2023-10-10T11:46:53Z
--- tags: - spacy - token-classification language: - de --- | Feature | Description | | --- | --- | | **Name** | `de_dwds_hdt_dist` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.1,<3.8.0` | | **Default Pipeline** | `dep_transformer`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser`, `ner_transformer`, `ner` | | **Components** | `dep_transformer`, `tagger`, `morphologizer`, `trainable_lemmatizer`, `parser`, `ner_transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (823 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPR_ART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `PDAT`, `PDS`, `PIAT`, `PIDAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY` | | **`morphologizer`** | `AdpType=Prep\|Case=Dat\|POS=ADP`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Foreign=Yes\|POS=X`, `POS=PUNCT\|PunctType=Comm`, `Case=Nom\|Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP`, `Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `POS=PUNCT\|PunctType=Peri`, `NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `AdpType=Prep\|Case=Dat\|Definite=Def\|Gender=Masc,Neut\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Brck`, `POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=ADV`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=PROPN`, `Degree=Cmp\|POS=ADJ\|Variant=Short`, `POS=ADP\|PartType=Vbp`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `AdpType=Prep\|Case=Acc\|POS=ADP`, `Case=Acc\|Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART\|Polarity=Neg`, `POS=ADV\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `ConjType=Comp\|POS=CCONJ`, `Case=Nom\|Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Definite=Ind\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Sup\|POS=ADJ\|Variant=Short`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Hyph=Yes\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=PART\|PartType=Inf`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=NOUN`, `Case=Dat\|Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=AUX\|VerbForm=Inf`, `Case=Nom\|Definite=Ind\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Inf\|VerbType=Mod`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Ind`, `AdpType=Prep\|Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADJ`, `Degree=Cmp\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `POS=ADV\|PronType=Int`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Degree=Cmp\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|Case=Gen\|POS=ADP`, `Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Dem,Rel`, `AdpType=Post\|Case=Dat\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|POS=AUX\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Tot`, `Number=Sing\|POS=NOUN`, `Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `AdpType=Prep\|Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Degree=Pos\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=ADJ`, `Case=Gen\|POS=PRON\|PronType=Dem,Rel`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|POS=PROPN`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `AdpType=Circ\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Dem,Rel`, `Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Ind\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `AdpType=Prep\|Case=Nom\|POS=ADP`, `Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Neg`, `Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Pos\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|POS=PROPN`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Tot`, `POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=X`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Acc\|POS=ADP`, `Case=Acc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Tot`, `Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `POS=DET\|PronType=Neg`, `POS=ADV\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Foreign=Yes\|POS=X`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Number=Sing\|POS=NOUN`, `NumType=Card\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Degree=Pos\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Degree=Pos\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Sup\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADJ\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Foreign=Yes\|Number=Sing\|POS=X`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|POS=AUX\|VerbForm=Part\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADJ`, `POS=DET\|PronType=Int`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `POS=INTJ\|PartType=Res`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Foreign=Yes\|Gender=Neut\|Number=Sing\|POS=X`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Pos\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem,Rel`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|POS=NOUN`, `Case=Dat\|Number=Plur\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Neg`, `Definite=Ind\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Degree=Sup\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Degree=Pos\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Card\|POS=DET\|PronType=Tot`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Degree=Sup\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Neg`, `Foreign=Yes\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Degree=Pos\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Hyph=Yes\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Acc\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Hyph=Yes\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Dat\|Degree=Cmp\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Definite=Ind\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=DET\|PronType=Tot`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdpType=Post\|Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|POS=PROPN`, `Case=Nom\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|NumType=Ord\|POS=ADJ`, `Case=Acc\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Nom\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|PronType=Rcp`, `Gender=Masc\|Number=Sing\|POS=ADJ\|Variant=Short`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Acc\|Definite=Ind\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|POS=ADJ\|Variant=Short`, `Case=Acc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem,Rel\|Typo=Yes`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender[psor]=Masc,Neut\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Ind\|NumType=Card\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Int`, `Degree=Pos\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=DET\|PronType=Ind`, `Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Definite=Ind\|Foreign=Yes\|NumType=Card\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|VerbType=Mod`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Degree=Pos\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|PronType=Rcp`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Gender=Neut\|POS=ADJ`, `Gender=Fem\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|VerbType=Mod`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Foreign=Yes\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `expl`, `expl:pv`, `flat`, `flat:name`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:arg`, `parataxis`, `punct`, `reparandum`, `xcomp` | | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` | </details>
desarrolloasesoreslocales/SetFitPruebaMulti
desarrolloasesoreslocales
2023-10-10T11:58:28Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-10T11:58:07Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # desarrolloasesoreslocales/SetFitPruebaMulti This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("desarrolloasesoreslocales/SetFitPruebaMulti") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
seriouspark/llama2-qlora-finetunined-product_name_combination2
seriouspark
2023-10-10T11:53:05Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-13b-chat-hf", "base_model:adapter:meta-llama/Llama-2-13b-chat-hf", "region:us" ]
null
2023-10-10T11:52:24Z
--- library_name: peft base_model: meta-llama/Llama-2-13b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
anders0204/rl_course_vizdoom_health_gathering_supreme
anders0204
2023-10-10T11:47:58Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-10-10T11:41:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.05 +/- 5.55 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r anders0204/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
alexofntu/textual_inversion_Carla_day1
alexofntu
2023-10-10T11:46:55Z
12
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-10T08:58:54Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - alexofntu/textual_inversion_Carla_day1 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Tommert25/multibert1010_lrate7.5b32
Tommert25
2023-10-10T11:44:56Z
118
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-multilingual-uncased", "base_model:finetune:google-bert/bert-base-multilingual-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-10T09:10:56Z
--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert1010_lrate7.5b32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multibert1010_lrate7.5b32 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5515 - Precisions: 0.8551 - Recall: 0.8069 - F-measure: 0.8283 - Accuracy: 0.9171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.6054 | 1.0 | 118 | 0.4021 | 0.8661 | 0.6558 | 0.6767 | 0.8698 | | 0.316 | 2.0 | 236 | 0.4039 | 0.8167 | 0.6935 | 0.7317 | 0.8800 | | 0.1896 | 3.0 | 354 | 0.3480 | 0.8183 | 0.7792 | 0.7780 | 0.9003 | | 0.1318 | 4.0 | 472 | 0.3930 | 0.8529 | 0.7703 | 0.7983 | 0.8965 | | 0.0846 | 5.0 | 590 | 0.4027 | 0.8348 | 0.8010 | 0.8141 | 0.9047 | | 0.0652 | 6.0 | 708 | 0.4824 | 0.8298 | 0.7555 | 0.7855 | 0.9002 | | 0.0398 | 7.0 | 826 | 0.5446 | 0.8697 | 0.7766 | 0.8110 | 0.9017 | | 0.0335 | 8.0 | 944 | 0.4761 | 0.8402 | 0.8013 | 0.8192 | 0.9054 | | 0.0228 | 9.0 | 1062 | 0.5232 | 0.8547 | 0.7921 | 0.8156 | 0.9085 | | 0.0181 | 10.0 | 1180 | 0.5477 | 0.8560 | 0.7968 | 0.8226 | 0.9133 | | 0.0106 | 11.0 | 1298 | 0.5207 | 0.8370 | 0.8050 | 0.8199 | 0.9142 | | 0.0075 | 12.0 | 1416 | 0.5381 | 0.8469 | 0.8025 | 0.8229 | 0.9156 | | 0.0038 | 13.0 | 1534 | 0.5573 | 0.8538 | 0.8061 | 0.8269 | 0.9165 | | 0.0047 | 14.0 | 1652 | 0.5515 | 0.8551 | 0.8069 | 0.8283 | 0.9171 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Helsinki-NLP/opus-mt-tc-big-zle-gmq
Helsinki-NLP
2023-10-10T11:42:54Z
121
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "tc", "big", "zle", "gmq", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T11:31:46Z
--- language: - da - gmq - nb - false - ru - sv - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-gmq results: - task: name: Translation rus-dan type: translation args: rus-dan dataset: name: flores101-devtest type: flores_101 args: rus dan devtest metrics: - name: BLEU type: bleu value: 28.0 - task: name: Translation rus-nob type: translation args: rus-nob dataset: name: flores101-devtest type: flores_101 args: rus nob devtest metrics: - name: BLEU type: bleu value: 20.6 - task: name: Translation rus-swe type: translation args: rus-swe dataset: name: flores101-devtest type: flores_101 args: rus swe devtest metrics: - name: BLEU type: bleu value: 26.4 - task: name: Translation ukr-dan type: translation args: ukr-dan dataset: name: flores101-devtest type: flores_101 args: ukr dan devtest metrics: - name: BLEU type: bleu value: 30.3 - task: name: Translation ukr-nob type: translation args: ukr-nob dataset: name: flores101-devtest type: flores_101 args: ukr nob devtest metrics: - name: BLEU type: bleu value: 21.1 - task: name: Translation ukr-swe type: translation args: ukr-swe dataset: name: flores101-devtest type: flores_101 args: ukr swe devtest metrics: - name: BLEU type: bleu value: 28.8 - task: name: Translation rus-dan type: translation args: rus-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-dan metrics: - name: BLEU type: bleu value: 59.6 - task: name: Translation rus-nob type: translation args: rus-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-nob metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation rus-swe type: translation args: rus-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-swe metrics: - name: BLEU type: bleu value: 53.3 --- # opus-mt-tc-big-zle-gmq Neural machine translation model for translating from East Slavic languages (zle) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-14 * source language(s): rus ukr * target language(s): dan nob nor swe * valid target language labels: >>dan<< >>nob<< >>nor<< >>swe<< * model: transformer-big * data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+pft_transformer-big_2022-03-14.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.zip) * more information released models: [OPUS-MT zle-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-gmq/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>dan<< Заўтра ўжо чацвер.", ">>swe<< Том грав з Мері в кішки-мишки." ] model_name = "pytorch-models/opus-mt-tc-big-zle-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # I morgen er det torsdag. # Tom lekte med Mary i katt-möss. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-gmq") print(pipe(">>dan<< Заўтра ўжо чацвер.")) # expected output: I morgen er det torsdag. ``` ## Benchmarks * test set translations: [opusTCv20210807+pft_transformer-big_2022-03-14.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.test.txt) * test set scores: [opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | rus-dan | tatoeba-test-v2021-08-07 | 0.74307 | 59.6 | 1713 | 11746 | | rus-nob | tatoeba-test-v2021-08-07 | 0.66376 | 46.1 | 1277 | 11672 | | rus-swe | tatoeba-test-v2021-08-07 | 0.69608 | 53.3 | 1282 | 8449 | | bel-dan | flores101-devtest | 0.47621 | 13.9 | 1012 | 24638 | | bel-nob | flores101-devtest | 0.44966 | 10.8 | 1012 | 23873 | | bel-swe | flores101-devtest | 0.47274 | 13.2 | 1012 | 23121 | | rus-dan | flores101-devtest | 0.55917 | 28.0 | 1012 | 24638 | | rus-nob | flores101-devtest | 0.50724 | 20.6 | 1012 | 23873 | | rus-swe | flores101-devtest | 0.55812 | 26.4 | 1012 | 23121 | | ukr-dan | flores101-devtest | 0.57829 | 30.3 | 1012 | 24638 | | ukr-nob | flores101-devtest | 0.52271 | 21.1 | 1012 | 23873 | | ukr-swe | flores101-devtest | 0.57499 | 28.8 | 1012 | 23121 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 23:13:54 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-zls
Helsinki-NLP
2023-10-10T11:34:02Z
121
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "tc", "big", "zle", "zls", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:10:45Z
--- language: - be - bg - hr - ru - sh - sl - sr_Cyrl - sr_Latn - uk - zle - zls tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-zls results: - task: name: Translation rus-bul type: translation args: rus-bul dataset: name: flores101-devtest type: flores_101 args: rus bul devtest metrics: - name: BLEU type: bleu value: 28.9 - task: name: Translation rus-hrv type: translation args: rus-hrv dataset: name: flores101-devtest type: flores_101 args: rus hrv devtest metrics: - name: BLEU type: bleu value: 23.2 - task: name: Translation rus-mkd type: translation args: rus-mkd dataset: name: flores101-devtest type: flores_101 args: rus mkd devtest metrics: - name: BLEU type: bleu value: 24.3 - task: name: Translation rus-slv type: translation args: rus-slv dataset: name: flores101-devtest type: flores_101 args: rus slv devtest metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation rus-srp_Cyrl type: translation args: rus-srp_Cyrl dataset: name: flores101-devtest type: flores_101 args: rus srp_Cyrl devtest metrics: - name: BLEU type: bleu value: 24.1 - task: name: Translation ukr-bul type: translation args: ukr-bul dataset: name: flores101-devtest type: flores_101 args: ukr bul devtest metrics: - name: BLEU type: bleu value: 30.8 - task: name: Translation ukr-hrv type: translation args: ukr-hrv dataset: name: flores101-devtest type: flores_101 args: ukr hrv devtest metrics: - name: BLEU type: bleu value: 24.6 - task: name: Translation ukr-mkd type: translation args: ukr-mkd dataset: name: flores101-devtest type: flores_101 args: ukr mkd devtest metrics: - name: BLEU type: bleu value: 26.2 - task: name: Translation ukr-slv type: translation args: ukr-slv dataset: name: flores101-devtest type: flores_101 args: ukr slv devtest metrics: - name: BLEU type: bleu value: 24.2 - task: name: Translation ukr-srp_Cyrl type: translation args: ukr-srp_Cyrl dataset: name: flores101-devtest type: flores_101 args: ukr srp_Cyrl devtest metrics: - name: BLEU type: bleu value: 26.2 - task: name: Translation rus-bul type: translation args: rus-bul dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-bul metrics: - name: BLEU type: bleu value: 53.7 - task: name: Translation rus-hbs type: translation args: rus-hbs dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-hbs metrics: - name: BLEU type: bleu value: 49.4 - task: name: Translation rus-slv type: translation args: rus-slv dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-slv metrics: - name: BLEU type: bleu value: 21.5 - task: name: Translation rus-srp_Cyrl type: translation args: rus-srp_Cyrl dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-srp_Cyrl metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation rus-srp_Latn type: translation args: rus-srp_Latn dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-srp_Latn metrics: - name: BLEU type: bleu value: 51.7 - task: name: Translation ukr-bul type: translation args: ukr-bul dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-bul metrics: - name: BLEU type: bleu value: 61.3 - task: name: Translation ukr-hbs type: translation args: ukr-hbs dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-hbs metrics: - name: BLEU type: bleu value: 52.1 - task: name: Translation ukr-hrv type: translation args: ukr-hrv dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-hrv metrics: - name: BLEU type: bleu value: 50.1 - task: name: Translation ukr-srp_Cyrl type: translation args: ukr-srp_Cyrl dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-srp_Cyrl metrics: - name: BLEU type: bleu value: 54.7 - task: name: Translation ukr-srp_Latn type: translation args: ukr-srp_Latn dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-srp_Latn metrics: - name: BLEU type: bleu value: 53.4 --- # opus-mt-tc-big-zle-zls Neural machine translation model for translating from East Slavic languages (zle) to South Slavic languages (zls). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rus ukr * target language(s): bul hbs hrv slv srp_Cyrl srp_Latn * valid target language labels: >>bul<< >>hbs<< >>hrv<< >>slv<< >>srp_Cyrl<< >>srp_Latn<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-zls README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zls/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bul<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>bul<< Новы каранавірус вельмі заразны.", ">>srp_Latn<< Моє ім'я — Саллі." ] model_name = "pytorch-models/opus-mt-tc-big-zle-zls" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Короната е силно заразна. # Zovem se Sali. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zls") print(pipe(">>bul<< Новы каранавірус вельмі заразны.")) # expected output: Короната е силно заразна. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zls/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | rus-bul | tatoeba-test-v2021-08-07 | 0.71515 | 53.7 | 1247 | 8272 | | rus-hbs | tatoeba-test-v2021-08-07 | 0.69192 | 49.4 | 2500 | 14736 | | rus-slv | tatoeba-test-v2021-08-07 | 0.38051 | 21.5 | 657 | 3969 | | rus-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.66622 | 46.1 | 881 | 5407 | | rus-srp_Latn | tatoeba-test-v2021-08-07 | 0.70990 | 51.7 | 1483 | 8552 | | ukr-bul | tatoeba-test-v2021-08-07 | 0.77283 | 61.3 | 1020 | 5181 | | ukr-hbs | tatoeba-test-v2021-08-07 | 0.69401 | 52.1 | 942 | 5130 | | ukr-hrv | tatoeba-test-v2021-08-07 | 0.67202 | 50.1 | 389 | 2302 | | ukr-srp_Cyrl | tatoeba-test-v2021-08-07 | 0.70064 | 54.7 | 205 | 1112 | | ukr-srp_Latn | tatoeba-test-v2021-08-07 | 0.72405 | 53.4 | 348 | 1716 | | bel-bul | flores101-devtest | 0.49528 | 16.1 | 1012 | 24700 | | bel-hrv | flores101-devtest | 0.46308 | 12.4 | 1012 | 22423 | | bel-mkd | flores101-devtest | 0.48608 | 13.5 | 1012 | 24314 | | bel-slv | flores101-devtest | 0.44452 | 12.2 | 1012 | 23425 | | bel-srp_Cyrl | flores101-devtest | 0.44424 | 12.6 | 1012 | 23456 | | rus-bul | flores101-devtest | 0.58653 | 28.9 | 1012 | 24700 | | rus-hrv | flores101-devtest | 0.53494 | 23.2 | 1012 | 22423 | | rus-mkd | flores101-devtest | 0.55184 | 24.3 | 1012 | 24314 | | rus-slv | flores101-devtest | 0.52201 | 23.1 | 1012 | 23425 | | rus-srp_Cyrl | flores101-devtest | 0.53038 | 24.1 | 1012 | 23456 | | ukr-bul | flores101-devtest | 0.59625 | 30.8 | 1012 | 24700 | | ukr-hrv | flores101-devtest | 0.54530 | 24.6 | 1012 | 22423 | | ukr-mkd | flores101-devtest | 0.56822 | 26.2 | 1012 | 24314 | | ukr-slv | flores101-devtest | 0.53092 | 24.2 | 1012 | 23425 | | ukr-srp_Cyrl | flores101-devtest | 0.54618 | 26.2 | 1012 | 23456 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:46:26 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-itc-eu
Helsinki-NLP
2023-10-10T11:33:00Z
113
2
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "es", "eu", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T16:30:35Z
--- language: - es - eu tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-itc-eu results: - task: name: Translation spa-eus type: translation args: spa-eus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-eus metrics: - name: BLEU type: bleu value: 32.4 - name: chr-F type: chrf value: 0.60699 --- # opus-mt-tc-big-itc-eu ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Italic languages (itc) to Basque (eu). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-23 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): fra ita spa - Target Language(s): eus - Language Pair(s): spa-eus - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eus/opusTCv20210807_transformer-big_2022-07-23.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT itc-eus README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-eus/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Il est riche.", "¿Correcto?" ] model_name = "pytorch-models/opus-mt-tc-big-itc-eu" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Aberatsa da. # Zuzena? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-itc-eu") print(pipe("Il est riche.")) # expected output: Aberatsa da. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eus/opusTCv20210807_transformer-big_2022-07-23.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eus/opusTCv20210807_transformer-big_2022-07-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-eus/opusTCv20210807_transformer-big_2022-07-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | spa-eus | tatoeba-test-v2021-08-07 | 0.60699 | 32.4 | 1850 | 10945 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:08:07 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-gmq-zlw
Helsinki-NLP
2023-10-10T11:28:52Z
113
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "cs", "da", "nb", "pl", "sv", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T12:46:57Z
--- language: - cs - da - nb - pl - sv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-gmq-zlw results: - task: name: Translation dan-ces type: translation args: dan-ces dataset: name: flores101-devtest type: flores_101 args: dan ces devtest metrics: - name: BLEU type: bleu value: 26.7 - name: chr-F type: chrf value: 0.54065 - task: name: Translation dan-pol type: translation args: dan-pol dataset: name: flores101-devtest type: flores_101 args: dan pol devtest metrics: - name: BLEU type: bleu value: 18.8 - name: chr-F type: chrf value: 0.48389 - task: name: Translation isl-ces type: translation args: isl-ces dataset: name: flores101-devtest type: flores_101 args: isl ces devtest metrics: - name: BLEU type: bleu value: 17.7 - name: chr-F type: chrf value: 0.43582 - task: name: Translation isl-pol type: translation args: isl-pol dataset: name: flores101-devtest type: flores_101 args: isl pol devtest metrics: - name: BLEU type: bleu value: 13.9 - name: chr-F type: chrf value: 0.41929 - task: name: Translation nob-ces type: translation args: nob-ces dataset: name: flores101-devtest type: flores_101 args: nob ces devtest metrics: - name: BLEU type: bleu value: 22.3 - name: chr-F type: chrf value: 0.50336 - task: name: Translation nob-pol type: translation args: nob-pol dataset: name: flores101-devtest type: flores_101 args: nob pol devtest metrics: - name: BLEU type: bleu value: 16.3 - name: chr-F type: chrf value: 0.46130 - task: name: Translation swe-ces type: translation args: swe-ces dataset: name: flores101-devtest type: flores_101 args: swe ces devtest metrics: - name: BLEU type: bleu value: 25.7 - name: chr-F type: chrf value: 0.53188 - task: name: Translation swe-pol type: translation args: swe-pol dataset: name: flores101-devtest type: flores_101 args: swe pol devtest metrics: - name: BLEU type: bleu value: 18.6 - name: chr-F type: chrf value: 0.48163 - task: name: Translation swe-pol type: translation args: swe-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: swe-pol metrics: - name: BLEU type: bleu value: 46.2 - name: chr-F type: chrf value: 0.66326 --- # opus-mt-tc-big-gmq-zlw ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to West Slavic languages (zlw). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-08-03 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan nob nor swe - Target Language(s): ces pol - Language Pair(s): dan-ces nob-ces swe-ces swe-pol - Valid Target Language Labels: >>ces<< >>csb<< >>czk<< >>dsb<< >>hsb<< >>pol<< >>pox<< >>slk<< >>szl<< - **Original Model**: [opusTCv20210807_transformer-big_2022-08-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-zlw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-zlw/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>ces<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ces<< Normalt er jeg hjemme hele weekenden.", ">>pol<< Lev ditt liv." ] model_name = "pytorch-models/opus-mt-tc-big-gmq-zlw" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Většinou jsem doma celý víkend. # Żyj swoim życiem. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-zlw") print(pipe(">>ces<< Normalt er jeg hjemme hele weekenden.")) # expected output: Většinou jsem doma celý víkend. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-08-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-08-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-08-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-zlw/opusTCv20210807_transformer-big_2022-08-03.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | swe-pol | tatoeba-test-v2021-08-07 | 0.66326 | 46.2 | 1392 | 8157 | | dan-ces | flores101-devtest | 0.54065 | 26.7 | 1012 | 22101 | | dan-pol | flores101-devtest | 0.48389 | 18.8 | 1012 | 22520 | | isl-ces | flores101-devtest | 0.43582 | 17.7 | 1012 | 22101 | | isl-pol | flores101-devtest | 0.41929 | 13.9 | 1012 | 22520 | | nob-ces | flores101-devtest | 0.50336 | 22.3 | 1012 | 22101 | | nob-pol | flores101-devtest | 0.46130 | 16.3 | 1012 | 22520 | | swe-ces | flores101-devtest | 0.53188 | 25.7 | 1012 | 22101 | | swe-pol | flores101-devtest | 0.48163 | 18.6 | 1012 | 22520 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:02:29 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-gmq-ar
Helsinki-NLP
2023-10-10T11:26:33Z
117
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "ar", "da", "sv", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T14:35:33Z
--- language: - ar - da - sv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-gmq-ar results: - task: name: Translation dan-ara type: translation args: dan-ara dataset: name: flores101-devtest type: flores_101 args: dan ara devtest metrics: - name: BLEU type: bleu value: 19.9 - name: chr-F type: chrf value: 0.52841 - task: name: Translation nob-ara type: translation args: nob-ara dataset: name: flores101-devtest type: flores_101 args: nob ara devtest metrics: - name: BLEU type: bleu value: 16.8 - name: chr-F type: chrf value: 0.49670 - task: name: Translation swe-ara type: translation args: swe-ara dataset: name: flores101-devtest type: flores_101 args: swe ara devtest metrics: - name: BLEU type: bleu value: 19.3 - name: chr-F type: chrf value: 0.51882 --- # opus-mt-tc-big-gmq-ar ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to Arabic (ar). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-27 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan swe - Target Language(s): ara - Language Pair(s): dan-ara swe-ara - Valid Target Language Labels: >>apc<< >>ara<< >>arq<< >>arz<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-ara README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-ara/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ara<< Jeg elsker semitiske sprog.", ">>ara<< Vad handlar boken om?" ] model_name = "pytorch-models/opus-mt-tc-big-gmq-ar" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # أحبّ اللغات الساميّة. # عن ماذا يتحدث الكتاب؟ ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-ar") print(pipe(">>ara<< Jeg elsker semitiske sprog.")) # expected output: أحبّ اللغات الساميّة. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-ara | flores101-devtest | 0.52841 | 19.9 | 1012 | 21357 | | nob-ara | flores101-devtest | 0.49670 | 16.8 | 1012 | 21357 | | swe-ara | flores101-devtest | 0.51882 | 19.3 | 1012 | 21357 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:05:06 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zls-zle
Helsinki-NLP
2023-10-10T11:25:27Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "tc", "big", "zls", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:47:28Z
--- language: - be - bg - hr - ru - sh - sl - sr_Cyrl - sr_Latn - uk - zle - zls tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zls-zle results: - task: name: Translation bul-rus type: translation args: bul-rus dataset: name: flores101-devtest type: flores_101 args: bul rus devtest metrics: - name: BLEU type: bleu value: 24.6 - task: name: Translation bul-ukr type: translation args: bul-ukr dataset: name: flores101-devtest type: flores_101 args: bul ukr devtest metrics: - name: BLEU type: bleu value: 22.9 - task: name: Translation hrv-rus type: translation args: hrv-rus dataset: name: flores101-devtest type: flores_101 args: hrv rus devtest metrics: - name: BLEU type: bleu value: 23.5 - task: name: Translation hrv-ukr type: translation args: hrv-ukr dataset: name: flores101-devtest type: flores_101 args: hrv ukr devtest metrics: - name: BLEU type: bleu value: 21.9 - task: name: Translation mkd-rus type: translation args: mkd-rus dataset: name: flores101-devtest type: flores_101 args: mkd rus devtest metrics: - name: BLEU type: bleu value: 24.3 - task: name: Translation mkd-ukr type: translation args: mkd-ukr dataset: name: flores101-devtest type: flores_101 args: mkd ukr devtest metrics: - name: BLEU type: bleu value: 22.5 - task: name: Translation slv-rus type: translation args: slv-rus dataset: name: flores101-devtest type: flores_101 args: slv rus devtest metrics: - name: BLEU type: bleu value: 22.0 - task: name: Translation slv-ukr type: translation args: slv-ukr dataset: name: flores101-devtest type: flores_101 args: slv ukr devtest metrics: - name: BLEU type: bleu value: 20.2 - task: name: Translation srp_Cyrl-rus type: translation args: srp_Cyrl-rus dataset: name: flores101-devtest type: flores_101 args: srp_Cyrl rus devtest metrics: - name: BLEU type: bleu value: 25.7 - task: name: Translation srp_Cyrl-ukr type: translation args: srp_Cyrl-ukr dataset: name: flores101-devtest type: flores_101 args: srp_Cyrl ukr devtest metrics: - name: BLEU type: bleu value: 24.4 - task: name: Translation bul-rus type: translation args: bul-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bul-rus metrics: - name: BLEU type: bleu value: 52.6 - task: name: Translation bul-ukr type: translation args: bul-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bul-ukr metrics: - name: BLEU type: bleu value: 53.3 - task: name: Translation hbs-rus type: translation args: hbs-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hbs-rus metrics: - name: BLEU type: bleu value: 58.5 - task: name: Translation hbs-ukr type: translation args: hbs-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hbs-ukr metrics: - name: BLEU type: bleu value: 52.3 - task: name: Translation hrv-ukr type: translation args: hrv-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hrv-ukr metrics: - name: BLEU type: bleu value: 50.0 - task: name: Translation slv-rus type: translation args: slv-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: slv-rus metrics: - name: BLEU type: bleu value: 27.3 - task: name: Translation srp_Cyrl-rus type: translation args: srp_Cyrl-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Cyrl-rus metrics: - name: BLEU type: bleu value: 56.2 - task: name: Translation srp_Cyrl-ukr type: translation args: srp_Cyrl-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Cyrl-ukr metrics: - name: BLEU type: bleu value: 51.8 - task: name: Translation srp_Latn-rus type: translation args: srp_Latn-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Latn-rus metrics: - name: BLEU type: bleu value: 60.1 - task: name: Translation srp_Latn-ukr type: translation args: srp_Latn-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Latn-ukr metrics: - name: BLEU type: bleu value: 55.8 --- # opus-mt-tc-big-zls-zle Neural machine translation model for translating from South Slavic languages (zls) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bul hbs hrv slv srp_Cyrl srp_Latn * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zle/opusTCv20210807+bt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zls-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Gdje je brigadir?", ">>ukr<< Zovem se Seli." ] model_name = "pytorch-models/opus-mt-tc-big-zls-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Где бригадир? # Мене звати Саллі. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zls-zle") print(pipe(">>rus<< Gdje je brigadir?")) # expected output: Где бригадир? ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zle/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zle/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bul-rus | tatoeba-test-v2021-08-07 | 0.71467 | 52.6 | 1247 | 7870 | | bul-ukr | tatoeba-test-v2021-08-07 | 0.71757 | 53.3 | 1020 | 4932 | | hbs-rus | tatoeba-test-v2021-08-07 | 0.74593 | 58.5 | 2500 | 14213 | | hbs-ukr | tatoeba-test-v2021-08-07 | 0.70244 | 52.3 | 942 | 4961 | | hrv-ukr | tatoeba-test-v2021-08-07 | 0.68931 | 50.0 | 389 | 2232 | | slv-rus | tatoeba-test-v2021-08-07 | 0.42255 | 27.3 | 657 | 4056 | | srp_Cyrl-rus | tatoeba-test-v2021-08-07 | 0.74112 | 56.2 | 881 | 5117 | | srp_Cyrl-ukr | tatoeba-test-v2021-08-07 | 0.68915 | 51.8 | 205 | 1061 | | srp_Latn-rus | tatoeba-test-v2021-08-07 | 0.75340 | 60.1 | 1483 | 8311 | | srp_Latn-ukr | tatoeba-test-v2021-08-07 | 0.73106 | 55.8 | 348 | 1668 | | bul-rus | flores101-devtest | 0.54226 | 24.6 | 1012 | 23295 | | bul-ukr | flores101-devtest | 0.53382 | 22.9 | 1012 | 22810 | | hrv-rus | flores101-devtest | 0.51726 | 23.5 | 1012 | 23295 | | hrv-ukr | flores101-devtest | 0.51011 | 21.9 | 1012 | 22810 | | mkd-bel | flores101-devtest | 0.40885 | 10.7 | 1012 | 24829 | | mkd-rus | flores101-devtest | 0.52509 | 24.3 | 1012 | 23295 | | mkd-ukr | flores101-devtest | 0.52021 | 22.5 | 1012 | 22810 | | slv-rus | flores101-devtest | 0.50349 | 22.0 | 1012 | 23295 | | slv-ukr | flores101-devtest | 0.49156 | 20.2 | 1012 | 22810 | | srp_Cyrl-rus | flores101-devtest | 0.53656 | 25.7 | 1012 | 23295 | | srp_Cyrl-ukr | flores101-devtest | 0.53623 | 24.4 | 1012 | 22810 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 04:08:51 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-es
Helsinki-NLP
2023-10-10T11:24:23Z
120
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "be", "es", "ru", "rue", "uk", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:05:31Z
--- language: - be - es - ru - rue - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-es results: - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: flores101-devtest type: flores_101 args: rus spa devtest metrics: - name: BLEU type: bleu value: 22.5 - task: name: Translation ukr-spa type: translation args: ukr-spa dataset: name: flores101-devtest type: flores_101 args: ukr spa devtest metrics: - name: BLEU type: bleu value: 22.7 - task: name: Translation bel-spa type: translation args: bel-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-spa metrics: - name: BLEU type: bleu value: 46.3 - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-spa metrics: - name: BLEU type: bleu value: 52.3 - task: name: Translation ukr-spa type: translation args: ukr-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-spa metrics: - name: BLEU type: bleu value: 51.6 - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: newstest2012 type: wmt-2012-news args: rus-spa metrics: - name: BLEU type: bleu value: 29.0 - task: name: Translation rus-spa type: translation args: rus-spa dataset: name: newstest2013 type: wmt-2013-news args: rus-spa metrics: - name: BLEU type: bleu value: 31.7 --- # opus-mt-tc-big-zle-es Neural machine translation model for translating from East Slavic languages (zle) to Spanish (es). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rue rus ukr * target language(s): spa * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-spa/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-spa README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-spa/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Том був п'яничкою.", "Он достаточно взрослый, чтобы путешествовать одному." ] model_name = "pytorch-models/opus-mt-tc-big-zle-es" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tom era un borracho. # Es lo suficientemente mayor como para viajar solo. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-es") print(pipe("Том був п'яничкою.")) # expected output: Tom era un borracho. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-spa/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-spa/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-spa | tatoeba-test-v2021-08-07 | 0.65523 | 46.3 | 205 | 1412 | | rus-spa | tatoeba-test-v2021-08-07 | 0.69933 | 52.3 | 10506 | 75246 | | ukr-spa | tatoeba-test-v2021-08-07 | 0.68862 | 51.6 | 10115 | 59284 | | bel-spa | flores101-devtest | 0.44744 | 14.1 | 1012 | 29199 | | rus-spa | flores101-devtest | 0.50880 | 22.5 | 1012 | 29199 | | ukr-spa | flores101-devtest | 0.50943 | 22.7 | 1012 | 29199 | | rus-spa | newstest2012 | 0.55185 | 29.0 | 3003 | 79006 | | rus-spa | newstest2013 | 0.56826 | 31.7 | 3000 | 70528 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:12:49 EET 2022 * port machine: LM0-400-22516.local
Azma-AI/bart-conversation-summarizer
Azma-AI
2023-10-10T11:24:01Z
427
6
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "dataset:samsum", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-10-10T11:21:55Z
--- datasets: - samsum pipeline_tag: summarization widget: - text: > Laurie: So, what are your plans for this weekend? Christie: I don’t know. Do you want to get together or something? Sarah: How about going to see a movie? Cinemax 26 on Carson Boulevard is showing Enchanted. Laurie: That sounds like a good idea. Maybe we should go out to eat beforehand. Sarah: It is fine with me. Where do you want to meet? Christie: Let’s meet at Summer Pizza House. I have not gone there for a long time. Laurie: Good idea again. I heard they just came up with a new pizza. It should be good because Summer Pizza House always has the best pizza in town. Sarah: When should we meet? Christie: Well, the movie is shown at 2:00PM, 4:00PM, 6:00PM and 8:00PM. Laurie: Why don’t we go to the 2:00PM show? We can meet at Summer Pizza House at noon. That will give us plenty of time to enjoy our pizza. Sarah: My cousin Karen is in town. Can I bring her along? I hate to leave her home alone. Christie: Karen is in town? Yes, bring her along. Laurie, you remember Karen? We met her at Sara’s high school graduation party two years ago. Laurie: I do not quite remember her. What does she look like? Sarah: She has blond hair, she is kind of slender, and she is about your height. Laurie: She wears eyeglasses, right? Sarah: Yes, and she was playing the piano off and on during the party. Laurie: I remember her now. Yes, do bring her along Sara. She is such a nice person, and funny too. Sarah: She will be happy to meet both of you again. Christie: What is she doing these days? Sarah: She graduated last June, and she will start her teaching career next week when the new school term begins. Laurie: What grade is she going to teach? Sarah: She will teach kindergarten. She loves working with kids, and she always has such a good rapport with them Christie: Kindergarten? She must be a very patient person. I always think kindergarten is the most difficult class to teach. Most of the kids have never been to school, and they have e never been away from mommy for long. Sarah: I think Karen will do fine. She knows how to handle young children Laurie: I think the first few weeks will be tough. However, once the routine is set, it should not be too difficult to teach kindergarten. Christie: You are right. The kids might even look forward to going to school since they have so many friends to play with. Sarah: There are so many new things for them to do at school too. They do a lot of crafts in kindergarten. I am always amazed by the things kindergarten teachers do. Laurie: Yes, I have seen my niece come home with so many neat stuff. Christie: Maybe we can ask Karen to show us some of the things that we can do for this Halloween. Laurie: Maybe we can stop by the craft store after the movie. What do you think, Sara? Sarah: I will talk to her. I think she will like that. It will help her with school projects when Halloween comes. Christie: Michael’s is a good store for crafts. It always carries a variety of things, and you can find almost anything there. Laurie: There is a Michaels store not far away from Cinemax 26. I believe it is just around the corner, on Pioneer Avenue. We can even walk over there. Sarah: So, we plan to meet for pizza at noon, go to the movies at two, and shop at Michael’s afterward. Right? Laurie and Christie: Yes. model-index: - name: bart-large-cnn-samsum results: - task: type: summarization name: Conversation Summarization dataset: name: >- SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization type: samsum metrics: - type: rogue-1 value: 54.8764 name: Validation ROGUE-1 - type: rogue-2 value: 29.6869, name: Validation ROGUE-2 - type: rogue-l value: 44.9874 name: Validation ROGUE-L - type: loss value: 1.47812 name: loss ---
Helsinki-NLP/opus-mt-tc-big-zle-fr
Helsinki-NLP
2023-10-10T11:23:15Z
120
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "be", "fr", "ru", "uk", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T10:22:19Z
--- language: - be - fr - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-fr results: - task: name: Translation bel-fra type: translation args: bel-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: bel-fra metrics: - name: BLEU type: bleu value: 46.4 - task: name: Translation multi-fra type: translation args: multi-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: multi-fra metrics: - name: BLEU type: bleu value: 52.4 - task: name: Translation rus-fra type: translation args: rus-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: rus-fra metrics: - name: BLEU type: bleu value: 51.8 - task: name: Translation ukr-fra type: translation args: ukr-fra dataset: name: tatoeba-test-v2020-07-28-v2021-08-07 type: tatoeba_mt args: ukr-fra metrics: - name: BLEU type: bleu value: 50.7 - task: name: Translation rus-fra type: translation args: rus-fra dataset: name: newstest2012 type: wmt-2012-news args: rus-fra metrics: - name: BLEU type: bleu value: 25.3 - task: name: Translation rus-fra type: translation args: rus-fra dataset: name: newstest2013 type: wmt-2013-news args: rus-fra metrics: - name: BLEU type: bleu value: 29.7 --- # opus-mt-tc-big-zle-fr Neural machine translation model for translating from East Slavic languages (zle) to French (fr). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rus ukr * target language(s): fra * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fra/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-fra README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-fra/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Подавай блюдо на тарелке.", "Операція не може чекати." ] model_name = "pytorch-models/opus-mt-tc-big-zle-fr" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Servez le plat dans l'assiette. # L'opération ne peut pas attendre. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-fr") print(pipe("Подавай блюдо на тарелке.")) # expected output: Servez le plat dans l'assiette. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fra/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-fra/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.65415 | 46.4 | 283 | 2005 | | multi-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.68422 | 52.4 | 10000 | 66671 | | rus-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.68699 | 51.8 | 11490 | 80573 | | ukr-fra | tatoeba-test-v2020-07-28-v2021-08-07 | 0.67887 | 50.7 | 10035 | 63222 | | rus-fra | newstest2012 | 0.53679 | 25.3 | 3003 | 78011 | | rus-fra | newstest2013 | 0.56211 | 29.7 | 3000 | 70037 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Wed Mar 23 22:45:20 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-he-itc
Helsinki-NLP
2023-10-10T11:22:11Z
110
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "ca", "es", "fr", "gl", "he", "it", "pt", "ro", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T15:35:46Z
--- language: - ca - es - fr - gl - he - it - pt - ro tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-he-itc results: - task: name: Translation heb-cat type: translation args: heb-cat dataset: name: flores101-devtest type: flores_101 args: heb cat devtest metrics: - name: BLEU type: bleu value: 30.4 - name: chr-F type: chrf value: 0.56398 - task: name: Translation heb-fra type: translation args: heb-fra dataset: name: flores101-devtest type: flores_101 args: heb fra devtest metrics: - name: BLEU type: bleu value: 33.7 - name: chr-F type: chrf value: 0.59254 - task: name: Translation heb-glg type: translation args: heb-glg dataset: name: flores101-devtest type: flores_101 args: heb glg devtest metrics: - name: BLEU type: bleu value: 24.5 - name: chr-F type: chrf value: 0.51861 - task: name: Translation heb-ita type: translation args: heb-ita dataset: name: flores101-devtest type: flores_101 args: heb ita devtest metrics: - name: BLEU type: bleu value: 20.8 - name: chr-F type: chrf value: 0.50540 - task: name: Translation heb-por type: translation args: heb-por dataset: name: flores101-devtest type: flores_101 args: heb por devtest metrics: - name: BLEU type: bleu value: 33.1 - name: chr-F type: chrf value: 0.58818 - task: name: Translation heb-ron type: translation args: heb-ron dataset: name: flores101-devtest type: flores_101 args: heb ron devtest metrics: - name: BLEU type: bleu value: 22.3 - name: chr-F type: chrf value: 0.51480 - task: name: Translation heb-spa type: translation args: heb-spa dataset: name: flores101-devtest type: flores_101 args: heb spa devtest metrics: - name: BLEU type: bleu value: 21.6 - name: chr-F type: chrf value: 0.49786 - task: name: Translation heb-fra type: translation args: heb-fra dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: heb-fra metrics: - name: BLEU type: bleu value: 47.5 - name: chr-F type: chrf value: 0.64713 - task: name: Translation heb-ita type: translation args: heb-ita dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: heb-ita metrics: - name: BLEU type: bleu value: 42.1 - name: chr-F type: chrf value: 0.64836 - task: name: Translation heb-por type: translation args: heb-por dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: heb-por metrics: - name: BLEU type: bleu value: 41.2 - name: chr-F type: chrf value: 0.61428 - task: name: Translation heb-spa type: translation args: heb-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: heb-spa metrics: - name: BLEU type: bleu value: 51.3 - name: chr-F type: chrf value: 0.69210 --- # opus-mt-tc-big-he-itc ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Hebrew (he) to Italic languages (itc). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-25 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): heb - Target Language(s): cat fra glg ita por ron spa - Language Pair(s): heb-cat heb-fra heb-glg heb-ita heb-por heb-ron heb-spa - Valid Target Language Labels: >>acf<< >>aoa<< >>arg<< >>ast<< >>cat<< >>cbk<< >>ccd<< >>cks<< >>cos<< >>cri<< >>crs<< >>dlm<< >>drc<< >>egl<< >>ext<< >>fab<< >>fax<< >>fra<< >>frc<< >>frm<< >>fro<< >>frp<< >>fur<< >>gcf<< >>gcf_Latn<< >>gcr<< >>glg<< >>hat<< >>idb<< >>ist<< >>ita<< >>itk<< >>kea<< >>kmv<< >>lad<< >>lad_Latn<< >>lat<< >>lat_Latn<< >>lij<< >>lld<< >>lmo<< >>lou<< >>mcm<< >>mfe<< >>mol<< >>mwl<< >>mxi<< >>mzs<< >>nap<< >>nrf<< >>oci<< >>osc<< >>osp<< >>osp_Latn<< >>pap<< >>pcd<< >>pln<< >>pms<< >>pob<< >>por<< >>pov<< >>pre<< >>pro<< >>qbb<< >>qhr<< >>rcf<< >>rgn<< >>roh<< >>ron<< >>ruo<< >>rup<< >>ruq<< >>scf<< >>scn<< >>sdc<< >>sdn<< >>spa<< >>spq<< >>spx<< >>src<< >>srd<< >>sro<< >>tmg<< >>tvy<< >>vec<< >>vkp<< >>wln<< >>xfa<< >>xum<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-itc/opusTCv20210807_transformer-big_2022-07-25.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT heb-itc README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-itc/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>fra<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>cat<< מרי פמיניסטית.", ">>spa<< תתרמו לטטואבה." ] model_name = "pytorch-models/opus-mt-tc-big-he-itc" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Mary és feminista. # Donen a Tatoeba. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-itc") print(pipe(">>cat<< מרי פמיניסטית.")) # expected output: Mary és feminista. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-itc/opusTCv20210807_transformer-big_2022-07-25.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-itc/opusTCv20210807_transformer-big_2022-07-25.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-itc/opusTCv20210807_transformer-big_2022-07-25.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | heb-fra | tatoeba-test-v2021-08-07 | 0.64713 | 47.5 | 3281 | 26123 | | heb-ita | tatoeba-test-v2021-08-07 | 0.64836 | 42.1 | 1706 | 11464 | | heb-por | tatoeba-test-v2021-08-07 | 0.61428 | 41.2 | 719 | 5335 | | heb-spa | tatoeba-test-v2021-08-07 | 0.69210 | 51.3 | 1849 | 14213 | | heb-cat | flores101-devtest | 0.56398 | 30.4 | 1012 | 27304 | | heb-fra | flores101-devtest | 0.59254 | 33.7 | 1012 | 28343 | | heb-glg | flores101-devtest | 0.51861 | 24.5 | 1012 | 26582 | | heb-ita | flores101-devtest | 0.50540 | 20.8 | 1012 | 27306 | | heb-por | flores101-devtest | 0.58818 | 33.1 | 1012 | 26519 | | heb-ron | flores101-devtest | 0.51480 | 22.3 | 1012 | 26799 | | heb-spa | flores101-devtest | 0.49786 | 21.6 | 1012 | 29199 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:06:50 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-he-gmq
Helsinki-NLP
2023-10-10T11:21:10Z
107
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "da", "he", "nb", "sv", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T16:14:29Z
--- language: - da - he - nb - sv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-he-gmq results: - task: name: Translation heb-dan type: translation args: heb-dan dataset: name: flores101-devtest type: flores_101 args: heb dan devtest metrics: - name: BLEU type: bleu value: 31.4 - name: chr-F type: chrf value: 0.58023 - task: name: Translation heb-isl type: translation args: heb-isl dataset: name: flores101-devtest type: flores_101 args: heb isl devtest metrics: - name: BLEU type: bleu value: 14.0 - name: chr-F type: chrf value: 0.41998 - task: name: Translation heb-nob type: translation args: heb-nob dataset: name: flores101-devtest type: flores_101 args: heb nob devtest metrics: - name: BLEU type: bleu value: 23.7 - name: chr-F type: chrf value: 0.53086 - task: name: Translation heb-swe type: translation args: heb-swe dataset: name: flores101-devtest type: flores_101 args: heb swe devtest metrics: - name: BLEU type: bleu value: 29.6 - name: chr-F type: chrf value: 0.56881 --- # opus-mt-tc-big-he-gmq ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Hebrew (he) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-23 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): heb - Target Language(s): dan nob nor swe - Language Pair(s): heb-dan heb-nob heb-swe - Valid Target Language Labels: >>dan<< >>fao<< >>isl<< >>jut<< >>nno<< >>nob<< >>non<< >>nrn<< >>ovd<< >>qer<< >>rmg<< >>swe<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-gmq/opusTCv20210807_transformer-big_2022-07-23.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT heb-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-gmq/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>dan<< כל שלושת הילדים של אליעזר לודוויג זמנהוף נרצחו בשואה.", ">>swe<< הסתבר שטום היה מרגל." ] model_name = "pytorch-models/opus-mt-tc-big-he-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Alle tre børn af Eliezer Ludwig Zamenhof blev dræbt i Holocaust. # Det visade sig att Tom var en spion. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-gmq") print(pipe(">>dan<< כל שלושת הילדים של אליעזר לודוויג זמנהוף נרצחו בשואה.")) # expected output: Alle tre børn af Eliezer Ludwig Zamenhof blev dræbt i Holocaust. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-gmq/opusTCv20210807_transformer-big_2022-07-23.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-gmq/opusTCv20210807_transformer-big_2022-07-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-gmq/opusTCv20210807_transformer-big_2022-07-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | heb-dan | flores101-devtest | 0.58023 | 31.4 | 1012 | 24638 | | heb-isl | flores101-devtest | 0.41998 | 14.0 | 1012 | 22834 | | heb-nob | flores101-devtest | 0.53086 | 23.7 | 1012 | 23873 | | heb-swe | flores101-devtest | 0.56881 | 29.6 | 1012 | 23121 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:07:45 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-itc-he
Helsinki-NLP
2023-10-10T11:20:10Z
105
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "ca", "es", "fr", "gl", "he", "it", "pt", "ro", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T12:28:06Z
--- language: - ca - es - fr - gl - he - it - pt - ro tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-itc-he results: - task: name: Translation cat-heb type: translation args: cat-heb dataset: name: flores101-devtest type: flores_101 args: cat heb devtest metrics: - name: BLEU type: bleu value: 23.0 - name: chr-F type: chrf value: 0.52457 - task: name: Translation fra-heb type: translation args: fra-heb dataset: name: flores101-devtest type: flores_101 args: fra heb devtest metrics: - name: BLEU type: bleu value: 23.2 - name: chr-F type: chrf value: 0.52953 - task: name: Translation glg-heb type: translation args: glg-heb dataset: name: flores101-devtest type: flores_101 args: glg heb devtest metrics: - name: BLEU type: bleu value: 20.8 - name: chr-F type: chrf value: 0.50918 - task: name: Translation ita-heb type: translation args: ita-heb dataset: name: flores101-devtest type: flores_101 args: ita heb devtest metrics: - name: BLEU type: bleu value: 18.3 - name: chr-F type: chrf value: 0.49007 - task: name: Translation por-heb type: translation args: por-heb dataset: name: flores101-devtest type: flores_101 args: por heb devtest metrics: - name: BLEU type: bleu value: 24.4 - name: chr-F type: chrf value: 0.53906 - task: name: Translation ron-heb type: translation args: ron-heb dataset: name: flores101-devtest type: flores_101 args: ron heb devtest metrics: - name: BLEU type: bleu value: 22.1 - name: chr-F type: chrf value: 0.52103 - task: name: Translation spa-heb type: translation args: spa-heb dataset: name: flores101-devtest type: flores_101 args: spa heb devtest metrics: - name: BLEU type: bleu value: 16.5 - name: chr-F type: chrf value: 0.47646 - task: name: Translation fra-heb type: translation args: fra-heb dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-heb metrics: - name: BLEU type: bleu value: 39.6 - name: chr-F type: chrf value: 0.60539 - task: name: Translation ita-heb type: translation args: ita-heb dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ita-heb metrics: - name: BLEU type: bleu value: 40.0 - name: chr-F type: chrf value: 0.60264 - task: name: Translation por-heb type: translation args: por-heb dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: por-heb metrics: - name: BLEU type: bleu value: 44.4 - name: chr-F type: chrf value: 0.63087 - task: name: Translation spa-heb type: translation args: spa-heb dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-heb metrics: - name: BLEU type: bleu value: 44.5 - name: chr-F type: chrf value: 0.63883 --- # opus-mt-tc-big-itc-he ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Italic languages (itc) to Hebrew (he). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-08-03 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): cat fra glg ita lad_Latn por ron spa - Target Language(s): heb - Language Pair(s): cat-heb fra-heb glg-heb ita-heb por-heb ron-heb spa-heb - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-08-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-heb/opusTCv20210807_transformer-big_2022-08-03.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT itc-heb README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-heb/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "La María és feminista.", "Contribuyan en Tatoeba." ] model_name = "pytorch-models/opus-mt-tc-big-itc-he" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # מרי היא פמיניסטית. # תרום לטאטואבה. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-itc-he") print(pipe("La María és feminista.")) # expected output: מרי היא פמיניסטית. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-08-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-heb/opusTCv20210807_transformer-big_2022-08-03.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-08-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-heb/opusTCv20210807_transformer-big_2022-08-03.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-08-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-heb/opusTCv20210807_transformer-big_2022-08-03.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fra-heb | tatoeba-test-v2021-08-07 | 0.60539 | 39.6 | 3281 | 20655 | | ita-heb | tatoeba-test-v2021-08-07 | 0.60264 | 40.0 | 1706 | 9796 | | por-heb | tatoeba-test-v2021-08-07 | 0.63087 | 44.4 | 719 | 4423 | | spa-heb | tatoeba-test-v2021-08-07 | 0.63883 | 44.5 | 1849 | 12112 | | cat-heb | flores101-devtest | 0.52457 | 23.0 | 1012 | 20749 | | fra-heb | flores101-devtest | 0.52953 | 23.2 | 1012 | 20749 | | glg-heb | flores101-devtest | 0.50918 | 20.8 | 1012 | 20749 | | ita-heb | flores101-devtest | 0.49007 | 18.3 | 1012 | 20749 | | por-heb | flores101-devtest | 0.53906 | 24.4 | 1012 | 20749 | | ron-heb | flores101-devtest | 0.52103 | 22.1 | 1012 | 20749 | | spa-heb | flores101-devtest | 0.47646 | 16.5 | 1012 | 20749 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:02:03 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-cel-en
Helsinki-NLP
2023-10-10T11:19:09Z
114
1
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "br", "cel", "cy", "en", "ga", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-04-13T15:36:34Z
--- language: - br - cel - cy - en - ga tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-cel-en results: - task: name: Translation cym-eng type: translation args: cym-eng dataset: name: flores101-devtest type: flores_101 args: cym eng devtest metrics: - name: BLEU type: bleu value: 50.2 - task: name: Translation gle-eng type: translation args: gle-eng dataset: name: flores101-devtest type: flores_101 args: gle eng devtest metrics: - name: BLEU type: bleu value: 37.4 - task: name: Translation bre-eng type: translation args: bre-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bre-eng metrics: - name: BLEU type: bleu value: 36.1 - task: name: Translation cym-eng type: translation args: cym-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: cym-eng metrics: - name: BLEU type: bleu value: 53.6 - task: name: Translation gle-eng type: translation args: gle-eng dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: gle-eng metrics: - name: BLEU type: bleu value: 57.7 --- # opus-mt-tc-big-cel-en Neural machine translation model for translating from Celtic languages (cel) to English (en). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-13 * source language(s): bre cym gle * target language(s): eng * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opusTCv20210807+bt_transformer-big_2022-03-13.zip) * more information released models: [OPUS-MT cel-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/cel-eng/README.md) ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "A-du emaoc’h?", "Ta'n ushtey glen." ] model_name = "pytorch-models/opus-mt-tc-big-cel-en" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Is that you? # Ta'n ushtey glen. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-cel-en") print(pipe("A-du emaoc’h?")) # expected output: Is that you? ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/cel-eng/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bre-eng | tatoeba-test-v2021-08-07 | 0.53712 | 36.1 | 383 | 2065 | | cym-eng | tatoeba-test-v2021-08-07 | 0.69239 | 53.6 | 818 | 5563 | | gle-eng | tatoeba-test-v2021-08-07 | 0.72087 | 57.7 | 1913 | 11190 | | cym-eng | flores101-devtest | 0.71379 | 50.2 | 1012 | 24721 | | gle-eng | flores101-devtest | 0.63946 | 37.4 | 1012 | 24721 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 3405783 * port time: Wed Apr 13 18:36:25 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-es-zle
Helsinki-NLP
2023-10-10T11:16:04Z
121
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "be", "es", "ru", "uk", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:43:19Z
--- language: - be - es - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-es-zle results: - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: flores101-devtest type: flores_101 args: spa rus devtest metrics: - name: BLEU type: bleu value: 20.2 - task: name: Translation spa-bel type: translation args: spa-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-bel metrics: - name: BLEU type: bleu value: 27.5 - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-rus metrics: - name: BLEU type: bleu value: 49.0 - task: name: Translation spa-ukr type: translation args: spa-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-ukr metrics: - name: BLEU type: bleu value: 42.3 - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: newstest2012 type: wmt-2012-news args: spa-rus metrics: - name: BLEU type: bleu value: 24.6 - task: name: Translation spa-rus type: translation args: spa-rus dataset: name: newstest2013 type: wmt-2013-news args: spa-rus metrics: - name: BLEU type: bleu value: 26.9 --- # opus-mt-tc-big-es-zle Neural machine translation model for translating from Spanish (es) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): spa * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT spa-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Su novela se vendió bien.", ">>ukr<< Quiero ir a Corea del Norte." ] model_name = "pytorch-models/opus-mt-tc-big-es-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Его роман хорошо продавался. # Я хочу поїхати до Північної Кореї. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-es-zle") print(pipe(">>rus<< Su novela se vendió bien.")) # expected output: Его роман хорошо продавался. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | spa-bel | tatoeba-test-v2021-08-07 | 0.54506 | 27.5 | 205 | 1259 | | spa-rus | tatoeba-test-v2021-08-07 | 0.68523 | 49.0 | 10506 | 69242 | | spa-ukr | tatoeba-test-v2021-08-07 | 0.63502 | 42.3 | 10115 | 54544 | | spa-rus | flores101-devtest | 0.49913 | 20.2 | 1012 | 23295 | | spa-ukr | flores101-devtest | 0.47772 | 17.4 | 1012 | 22810 | | spa-rus | newstest2012 | 0.52436 | 24.6 | 3003 | 64790 | | spa-rus | newstest2013 | 0.54249 | 26.9 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 03:35:13 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zle-zlw
Helsinki-NLP
2023-10-10T11:13:51Z
119
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "be", "cs", "pl", "ru", "uk", "zle", "zlw", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:13:49Z
--- language: - be - cs - pl - ru - uk - zle - zlw tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zle-zlw results: - task: name: Translation rus-ces type: translation args: rus-ces dataset: name: flores101-devtest type: flores_101 args: rus ces devtest metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation ukr-ces type: translation args: ukr-ces dataset: name: flores101-devtest type: flores_101 args: ukr ces devtest metrics: - name: BLEU type: bleu value: 25.1 - task: name: Translation bel-pol type: translation args: bel-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bel-pol metrics: - name: BLEU type: bleu value: 47.1 - task: name: Translation rus-ces type: translation args: rus-ces dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-ces metrics: - name: BLEU type: bleu value: 53.4 - task: name: Translation rus-pol type: translation args: rus-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: rus-pol metrics: - name: BLEU type: bleu value: 53.7 - task: name: Translation ukr-ces type: translation args: ukr-ces dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-ces metrics: - name: BLEU type: bleu value: 58.0 - task: name: Translation ukr-pol type: translation args: ukr-pol dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ukr-pol metrics: - name: BLEU type: bleu value: 57.0 - task: name: Translation rus-ces type: translation args: rus-ces dataset: name: newstest2013 type: wmt-2013-news args: rus-ces metrics: - name: BLEU type: bleu value: 26.0 --- # opus-mt-tc-big-zle-zlw Neural machine translation model for translating from East Slavic languages (zle) to West Slavic languages (zlw). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): bel rus ukr * target language(s): ces pol * valid target language labels: >>ces<< >>pol<< * model: transformer-big * data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807+bt_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zlw/opusTCv20210807+bt_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT zle-zlw README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zlw/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>ces<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>pol<< Это метафора.", ">>pol<< Что вы делали?" ] model_name = "pytorch-models/opus-mt-tc-big-zle-zlw" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # To metafora. # Co robiliście? ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-zlw") print(pipe(">>pol<< Это метафора.")) # expected output: To metafora. ``` ## Benchmarks * test set translations: [opusTCv20210807+bt_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zlw/opusTCv20210807+bt_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zlw/opusTCv20210807+bt_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bel-pol | tatoeba-test-v2021-08-07 | 0.65517 | 47.1 | 287 | 1706 | | rus-ces | tatoeba-test-v2021-08-07 | 0.69695 | 53.4 | 2934 | 16831 | | rus-pol | tatoeba-test-v2021-08-07 | 0.72176 | 53.7 | 3543 | 21505 | | ukr-ces | tatoeba-test-v2021-08-07 | 0.73149 | 58.0 | 1787 | 8550 | | ukr-pol | tatoeba-test-v2021-08-07 | 0.74649 | 57.0 | 2519 | 13201 | | bel-ces | flores101-devtest | 0.41248 | 11.1 | 1012 | 22101 | | bel-pol | flores101-devtest | 0.42240 | 10.2 | 1012 | 22520 | | rus-ces | flores101-devtest | 0.50971 | 23.1 | 1012 | 22101 | | rus-pol | flores101-devtest | 0.48672 | 18.4 | 1012 | 22520 | | ukr-ces | flores101-devtest | 0.52482 | 25.1 | 1012 | 22101 | | ukr-pol | flores101-devtest | 0.48790 | 18.8 | 1012 | 22520 | | rus-ces | newstest2012 | 0.45834 | 18.8 | 3003 | 65456 | | rus-ces | newstest2013 | 0.52364 | 26.0 | 3000 | 57250 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 00:50:29 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-fr-zle
Helsinki-NLP
2023-10-10T11:11:18Z
121
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "be", "fr", "ru", "uk", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:29:13Z
--- language: - be - fr - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-fr-zle results: - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: flores101-devtest type: flores_101 args: fra rus devtest metrics: - name: BLEU type: bleu value: 25.8 - task: name: Translation fra-ukr type: translation args: fra-ukr dataset: name: flores101-devtest type: flores_101 args: fra ukr devtest metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation fra-bel type: translation args: fra-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-bel metrics: - name: BLEU type: bleu value: 31.1 - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-rus metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation fra-ukr type: translation args: fra-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-ukr metrics: - name: BLEU type: bleu value: 39.9 - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: newstest2012 type: wmt-2012-news args: fra-rus metrics: - name: BLEU type: bleu value: 23.1 - task: name: Translation fra-rus type: translation args: fra-rus dataset: name: newstest2013 type: wmt-2013-news args: fra-rus metrics: - name: BLEU type: bleu value: 24.8 --- # opus-mt-tc-big-fr-zle Neural machine translation model for translating from French (fr) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): fra * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT fra-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>rus<< Ils ont acheté un très bon appareil photo.", ">>ukr<< Il s'est soudain mis à pleuvoir." ] model_name = "pytorch-models/opus-mt-tc-big-fr-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Они купили очень хорошую камеру. # Раптом почався дощ. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-zle") print(pipe(">>rus<< Ils ont acheté un très bon appareil photo.")) # expected output: Они купили очень хорошую камеру. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fra-bel | tatoeba-test-v2021-08-07 | 0.52711 | 31.1 | 283 | 1703 | | fra-rus | tatoeba-test-v2021-08-07 | 0.66502 | 46.1 | 11490 | 70123 | | fra-ukr | tatoeba-test-v2021-08-07 | 0.61860 | 39.9 | 10035 | 54372 | | fra-rus | flores101-devtest | 0.54106 | 25.8 | 1012 | 23295 | | fra-ukr | flores101-devtest | 0.52733 | 23.1 | 1012 | 22810 | | fra-rus | newstest2012 | 0.51254 | 23.1 | 3003 | 64790 | | fra-rus | newstest2013 | 0.52342 | 24.8 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 02:05:04 EET 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-fi-zls
Helsinki-NLP
2023-10-10T11:08:02Z
119
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "bg", "fi", "hr", "sl", "sr", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T16:46:33Z
--- language: - bg - fi - hr - sl - sr language_bcp47: - sr_Cyrl tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-fi-zls results: - task: name: Translation fin-bul type: translation args: fin-bul dataset: name: flores101-devtest type: flores_101 args: fin bul devtest metrics: - name: BLEU type: bleu value: 26.2 - name: chr-F type: chrf value: 0.54912 - task: name: Translation fin-hrv type: translation args: fin-hrv dataset: name: flores101-devtest type: flores_101 args: fin hrv devtest metrics: - name: BLEU type: bleu value: 21.3 - name: chr-F type: chrf value: 0.51468 - task: name: Translation fin-slv type: translation args: fin-slv dataset: name: flores101-devtest type: flores_101 args: fin slv devtest metrics: - name: BLEU type: bleu value: 22.3 - name: chr-F type: chrf value: 0.51226 - task: name: Translation fin-srp_Cyrl type: translation args: fin-srp_Cyrl dataset: name: flores101-devtest type: flores_101 args: fin srp_Cyrl devtest metrics: - name: BLEU type: bleu value: 21.8 - name: chr-F type: chrf value: 0.50774 --- # opus-mt-tc-big-fi-zls ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Finnish (fi) to South Slavic languages (zls). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-23 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): fin - Target Language(s): bul hrv slv srp_Cyrl - Language Pair(s): fin-bul fin-hrv fin-slv fin-srp_Cyrl - Valid Target Language Labels: >>bos<< >>bos_Cyrl<< >>bos_Latn<< >>bul<< >>chu<< >>hbs<< >>hbs_Cyrl<< >>hrv<< >>kjv<< >>mkd<< >>slv<< >>srp<< >>srp_Cyrl<< >>srp_Latn<< >>svm<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zls/opusTCv20210807_transformer-big_2022-07-23.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT fin-zls README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-zls/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>slv<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>bul<< Ajattelen vain sinua.", ">>slv<< Virtahevot rakastavat vettä." ] model_name = "pytorch-models/opus-mt-tc-big-fi-zls" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Мисля само за теб. # Povodni konji obožujejo vodo. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-zls") print(pipe(">>bul<< Ajattelen vain sinua.")) # expected output: Мисля само за теб. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zls/opusTCv20210807_transformer-big_2022-07-23.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zls/opusTCv20210807_transformer-big_2022-07-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-zls/opusTCv20210807_transformer-big_2022-07-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fin-bul | flores101-devtest | 0.54912 | 26.2 | 1012 | 24700 | | fin-hrv | flores101-devtest | 0.51468 | 21.3 | 1012 | 22423 | | fin-slv | flores101-devtest | 0.51226 | 22.3 | 1012 | 23425 | | fin-srp_Cyrl | flores101-devtest | 0.50774 | 21.8 | 1012 | 23456 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:08:29 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-de-zle
Helsinki-NLP
2023-10-10T11:06:58Z
120
0
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "be", "de", "ru", "uk", "zle", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T12:19:23Z
--- language: - be - de - ru - uk - zle tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-de-zle results: - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: flores101-devtest type: flores_101 args: deu rus devtest metrics: - name: BLEU type: bleu value: 26.3 - task: name: Translation deu-ukr type: translation args: deu-ukr dataset: name: flores101-devtest type: flores_101 args: deu ukr devtest metrics: - name: BLEU type: bleu value: 24.2 - task: name: Translation deu-bel type: translation args: deu-bel dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-bel metrics: - name: BLEU type: bleu value: 29.5 - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-rus metrics: - name: BLEU type: bleu value: 46.1 - task: name: Translation deu-ukr type: translation args: deu-ukr dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-ukr metrics: - name: BLEU type: bleu value: 40.7 - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: newstest2012 type: wmt-2012-news args: deu-rus metrics: - name: BLEU type: bleu value: 20.8 - task: name: Translation deu-rus type: translation args: deu-rus dataset: name: newstest2013 type: wmt-2013-news args: deu-rus metrics: - name: BLEU type: bleu value: 24.9 --- # opus-mt-tc-big-de-zle Neural machine translation model for translating from German (de) to East Slavic languages (zle). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Model info * Release: 2022-03-23 * source language(s): deu * target language(s): bel rus ukr * valid target language labels: >>bel<< >>rus<< >>ukr<< * model: transformer-big * data: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) * tokenization: SentencePiece (spm32k,spm32k) * original model: [opusTCv20210807_transformer-big_2022-03-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-zle/opusTCv20210807_transformer-big_2022-03-23.zip) * more information released models: [OPUS-MT deu-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-zle/README.md) * more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian) This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<` ## Usage A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ukr<< Der Soldat hat mir Wasser gegeben.", ">>ukr<< Ich will hier nicht essen." ] model_name = "pytorch-models/opus-mt-tc-big-de-zle" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Солдат дав мені воду. # Я не хочу тут їсти. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-de-zle") print(pipe(">>ukr<< Der Soldat hat mir Wasser gegeben.")) # expected output: Солдат дав мені воду. ``` ## Benchmarks * test set translations: [opusTCv20210807_transformer-big_2022-03-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-zle/opusTCv20210807_transformer-big_2022-03-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-03-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-zle/opusTCv20210807_transformer-big_2022-03-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | deu-bel | tatoeba-test-v2021-08-07 | 0.53128 | 29.5 | 551 | 3601 | | deu-rus | tatoeba-test-v2021-08-07 | 0.67143 | 46.1 | 12800 | 87296 | | deu-ukr | tatoeba-test-v2021-08-07 | 0.62737 | 40.7 | 10319 | 56287 | | deu-rus | flores101-devtest | 0.54152 | 26.3 | 1012 | 23295 | | deu-ukr | flores101-devtest | 0.53286 | 24.2 | 1012 | 22810 | | deu-rus | newstest2012 | 0.49409 | 20.8 | 3003 | 64790 | | deu-rus | newstest2013 | 0.52631 | 24.9 | 3000 | 58560 | ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 1bdabf7 * port time: Thu Mar 24 01:29:09 EET 2022 * port machine: LM0-400-22516.local
Azma-AI/roberta-base-emotion-classifier
Azma-AI
2023-10-10T11:05:56Z
108
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "emotions", "multi-class-classification", "multi-label-classification", "en", "dataset:go_emotions", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-10T11:02:32Z
--- language: en tags: - text-classification - pytorch - roberta - emotions - multi-class-classification - multi-label-classification datasets: - go_emotions license: mit widget: - text: "I am not having a great day." --- Model trained from [roberta-base](https://huggingface.co/roberta-base) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset for multi-label classification. [go_emotions](https://huggingface.co/datasets/go_emotions) is based on Reddit data and has 28 labels. It is a multi-label dataset where one or multiple labels may apply for any given input text, hence this model is a multi-label classification model with 28 'probability' float outputs for any given input text. Typically a threshold of 0.5 is applied to the probabilities for the prediction for each label. The model was trained using `AutoModelForSequenceClassification.from_pretrained` with `problem_type="multi_label_classification"` for 3 epochs with a learning rate of 2e-5 and weight decay of 0.01. Evaluation (of the 28 dim output via a threshold of 0.5 to binarize each) using the dataset test split gives: - Micro F1 0.585 - ROC AUC 0.751 - Accuracy 0.474 But the metrics would be more meaningful when measured per label given the multi-label nature. Additionally some labels (E.g. `gratitude`) when considered independently perform very strongly with F1 around 0.9, whilst others (E.g. `relief`) perform very poorly. This is a challenging dataset. Labels such as `relief` do have much fewer examples in the training data (less than 100 out of the 40k+), but there is also some ambiguity and/or labelling errors visible in the training data of `go_emotions` that is suspected to constrain the performance.
Helsinki-NLP/opus-mt-tc-big-gmq-gmq
Helsinki-NLP
2023-10-10T11:05:51Z
124
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "da", "is", "nb", "nn", "sv", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T10:30:28Z
--- language: - da - is - nb - nn - sv tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-gmq-gmq results: - task: name: Translation isl-swe type: translation args: isl-swe dataset: name: europeana2021 type: europeana2021 args: isl-swe metrics: - name: BLEU type: bleu value: 22.2 - name: chr-F type: chrf value: 0.45562 - task: name: Translation nob-isl type: translation args: nob-isl dataset: name: europeana2021 type: europeana2021 args: nob-isl metrics: - name: BLEU type: bleu value: 29.7 - name: chr-F type: chrf value: 0.54171 - task: name: Translation nob-swe type: translation args: nob-swe dataset: name: europeana2021 type: europeana2021 args: nob-swe metrics: - name: BLEU type: bleu value: 54.0 - name: chr-F type: chrf value: 0.73891 - task: name: Translation dan-isl type: translation args: dan-isl dataset: name: flores101-devtest type: flores_101 args: dan isl devtest metrics: - name: BLEU type: bleu value: 22.2 - name: chr-F type: chrf value: 0.50227 - task: name: Translation dan-nob type: translation args: dan-nob dataset: name: flores101-devtest type: flores_101 args: dan nob devtest metrics: - name: BLEU type: bleu value: 28.6 - name: chr-F type: chrf value: 0.58445 - task: name: Translation dan-swe type: translation args: dan-swe dataset: name: flores101-devtest type: flores_101 args: dan swe devtest metrics: - name: BLEU type: bleu value: 38.5 - name: chr-F type: chrf value: 0.65000 - task: name: Translation isl-dan type: translation args: isl-dan dataset: name: flores101-devtest type: flores_101 args: isl dan devtest metrics: - name: BLEU type: bleu value: 27.2 - name: chr-F type: chrf value: 0.53630 - task: name: Translation isl-nob type: translation args: isl-nob dataset: name: flores101-devtest type: flores_101 args: isl nob devtest metrics: - name: BLEU type: bleu value: 20.5 - name: chr-F type: chrf value: 0.49434 - task: name: Translation isl-swe type: translation args: isl-swe dataset: name: flores101-devtest type: flores_101 args: isl swe devtest metrics: - name: BLEU type: bleu value: 26.0 - name: chr-F type: chrf value: 0.53373 - task: name: Translation nob-dan type: translation args: nob-dan dataset: name: flores101-devtest type: flores_101 args: nob dan devtest metrics: - name: BLEU type: bleu value: 31.7 - name: chr-F type: chrf value: 0.59657 - task: name: Translation nob-isl type: translation args: nob-isl dataset: name: flores101-devtest type: flores_101 args: nob isl devtest metrics: - name: BLEU type: bleu value: 18.9 - name: chr-F type: chrf value: 0.47432 - task: name: Translation nob-swe type: translation args: nob-swe dataset: name: flores101-devtest type: flores_101 args: nob swe devtest metrics: - name: BLEU type: bleu value: 31.3 - name: chr-F type: chrf value: 0.60030 - task: name: Translation swe-dan type: translation args: swe-dan dataset: name: flores101-devtest type: flores_101 args: swe dan devtest metrics: - name: BLEU type: bleu value: 39.0 - name: chr-F type: chrf value: 0.64340 - task: name: Translation swe-isl type: translation args: swe-isl dataset: name: flores101-devtest type: flores_101 args: swe isl devtest metrics: - name: BLEU type: bleu value: 21.7 - name: chr-F type: chrf value: 0.49590 - task: name: Translation swe-nob type: translation args: swe-nob dataset: name: flores101-devtest type: flores_101 args: swe nob devtest metrics: - name: BLEU type: bleu value: 28.9 - name: chr-F type: chrf value: 0.58336 - task: name: Translation dan-nob type: translation args: dan-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: dan-nob metrics: - name: BLEU type: bleu value: 78.2 - name: chr-F type: chrf value: 0.87556 - task: name: Translation dan-swe type: translation args: dan-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: dan-swe metrics: - name: BLEU type: bleu value: 72.5 - name: chr-F type: chrf value: 0.83556 - task: name: Translation nno-nob type: translation args: nno-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nno-nob metrics: - name: BLEU type: bleu value: 78.9 - name: chr-F type: chrf value: 0.88349 - task: name: Translation nob-dan type: translation args: nob-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-dan metrics: - name: BLEU type: bleu value: 73.9 - name: chr-F type: chrf value: 0.85345 - task: name: Translation nob-nno type: translation args: nob-nno dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-nno metrics: - name: BLEU type: bleu value: 55.2 - name: chr-F type: chrf value: 0.74571 - task: name: Translation nob-swe type: translation args: nob-swe dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: nob-swe metrics: - name: BLEU type: bleu value: 73.9 - name: chr-F type: chrf value: 0.84747 - task: name: Translation swe-dan type: translation args: swe-dan dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: swe-dan metrics: - name: BLEU type: bleu value: 72.6 - name: chr-F type: chrf value: 0.83392 - task: name: Translation swe-nob type: translation args: swe-nob dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: swe-nob metrics: - name: BLEU type: bleu value: 76.3 - name: chr-F type: chrf value: 0.85815 --- # opus-mt-tc-big-gmq-gmq ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-29 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan fao isl nno nob nor swe - Target Language(s): dan isl nno nob nor swe - Language Pair(s): dan-isl dan-nob dan-swe isl-dan isl-nob isl-swe nno-nob nob-dan nob-isl nob-nno nob-swe swe-dan swe-isl swe-nob - Valid Target Language Labels: >>dan<< >>fao<< >>isl<< >>jut<< >>nno<< >>nob<< >>non<< >>nrn<< >>ovd<< >>qer<< >>rmg<< >>swe<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-29.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-gmq/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>fao<< Jeg er bange for kakerlakker.", ">>nob<< Vladivostok är en stad i Ryssland." ] model_name = "pytorch-models/opus-mt-tc-big-gmq-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Tað eru uml. # Vladivostok er en by i Russland. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-gmq") print(pipe(">>fao<< Jeg er bange for kakerlakker.")) # expected output: Tað eru uml. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-29.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-29.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-29.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-gmq/opusTCv20210807_transformer-big_2022-07-29.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-nob | tatoeba-test-v2021-08-07 | 0.87556 | 78.2 | 1299 | 9620 | | dan-swe | tatoeba-test-v2021-08-07 | 0.83556 | 72.5 | 1549 | 10060 | | nno-nob | tatoeba-test-v2021-08-07 | 0.88349 | 78.9 | 467 | 3129 | | nob-dan | tatoeba-test-v2021-08-07 | 0.85345 | 73.9 | 1299 | 9794 | | nob-nno | tatoeba-test-v2021-08-07 | 0.74571 | 55.2 | 466 | 3141 | | nob-swe | tatoeba-test-v2021-08-07 | 0.84747 | 73.9 | 563 | 3698 | | swe-dan | tatoeba-test-v2021-08-07 | 0.83392 | 72.6 | 1549 | 10239 | | swe-nob | tatoeba-test-v2021-08-07 | 0.85815 | 76.3 | 563 | 3708 | | isl-swe | europeana2021 | 0.45562 | 22.2 | 563 | 10293 | | nob-isl | europeana2021 | 0.54171 | 29.7 | 538 | 9932 | | nob-swe | europeana2021 | 0.73891 | 54.0 | 538 | 9885 | | dan-isl | flores101-devtest | 0.50227 | 22.2 | 1012 | 22834 | | dan-nob | flores101-devtest | 0.58445 | 28.6 | 1012 | 23873 | | dan-swe | flores101-devtest | 0.65000 | 38.5 | 1012 | 23121 | | isl-dan | flores101-devtest | 0.53630 | 27.2 | 1012 | 24638 | | isl-nob | flores101-devtest | 0.49434 | 20.5 | 1012 | 23873 | | isl-swe | flores101-devtest | 0.53373 | 26.0 | 1012 | 23121 | | nob-dan | flores101-devtest | 0.59657 | 31.7 | 1012 | 24638 | | nob-isl | flores101-devtest | 0.47432 | 18.9 | 1012 | 22834 | | nob-swe | flores101-devtest | 0.60030 | 31.3 | 1012 | 23121 | | swe-dan | flores101-devtest | 0.64340 | 39.0 | 1012 | 24638 | | swe-isl | flores101-devtest | 0.49590 | 21.7 | 1012 | 22834 | | swe-nob | flores101-devtest | 0.58336 | 28.9 | 1012 | 23873 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Fri Aug 12 23:59:02 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-itc-tr
Helsinki-NLP
2023-10-10T11:04:52Z
113
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "ca", "es", "fr", "gl", "it", "oc", "pt", "ro", "tr", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T13:25:33Z
--- language: - ca - es - fr - gl - it - oc - pt - ro - tr tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-itc-tr results: - task: name: Translation cat-tur type: translation args: cat-tur dataset: name: flores101-devtest type: flores_101 args: cat tur devtest metrics: - name: BLEU type: bleu value: 21.7 - name: chr-F type: chrf value: 0.54892 - task: name: Translation fra-tur type: translation args: fra-tur dataset: name: flores101-devtest type: flores_101 args: fra tur devtest metrics: - name: BLEU type: bleu value: 21.7 - name: chr-F type: chrf value: 0.55342 - task: name: Translation glg-tur type: translation args: glg-tur dataset: name: flores101-devtest type: flores_101 args: glg tur devtest metrics: - name: BLEU type: bleu value: 20.6 - name: chr-F type: chrf value: 0.53936 - task: name: Translation ita-tur type: translation args: ita-tur dataset: name: flores101-devtest type: flores_101 args: ita tur devtest metrics: - name: BLEU type: bleu value: 18.4 - name: chr-F type: chrf value: 0.52842 - task: name: Translation oci-tur type: translation args: oci-tur dataset: name: flores101-devtest type: flores_101 args: oci tur devtest metrics: - name: BLEU type: bleu value: 17.6 - name: chr-F type: chrf value: 0.50618 - task: name: Translation por-tur type: translation args: por-tur dataset: name: flores101-devtest type: flores_101 args: por tur devtest metrics: - name: BLEU type: bleu value: 23.5 - name: chr-F type: chrf value: 0.56396 - task: name: Translation ron-tur type: translation args: ron-tur dataset: name: flores101-devtest type: flores_101 args: ron tur devtest metrics: - name: BLEU type: bleu value: 21.5 - name: chr-F type: chrf value: 0.55409 - task: name: Translation spa-tur type: translation args: spa-tur dataset: name: flores101-devtest type: flores_101 args: spa tur devtest metrics: - name: BLEU type: bleu value: 16.5 - name: chr-F type: chrf value: 0.51066 - task: name: Translation fra-tur type: translation args: fra-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fra-tur metrics: - name: BLEU type: bleu value: 34.8 - name: chr-F type: chrf value: 0.63006 - task: name: Translation ita-tur type: translation args: ita-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ita-tur metrics: - name: BLEU type: bleu value: 34.9 - name: chr-F type: chrf value: 0.59991 - task: name: Translation por-tur type: translation args: por-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: por-tur metrics: - name: BLEU type: bleu value: 40.1 - name: chr-F type: chrf value: 0.67836 - task: name: Translation ron-tur type: translation args: ron-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: ron-tur metrics: - name: BLEU type: bleu value: 35.5 - name: chr-F type: chrf value: 0.64031 - task: name: Translation spa-tur type: translation args: spa-tur dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: spa-tur metrics: - name: BLEU type: bleu value: 45.2 - name: chr-F type: chrf value: 0.71524 --- # opus-mt-tc-big-itc-tr ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Italic languages (itc) to Turkish (tr). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-28 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): cat fra glg ita lad lad_Latn oci por ron spa - Target Language(s): tur - Language Pair(s): cat-tur fra-tur glg-tur ita-tur oci-tur por-tur ron-tur spa-tur - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-07-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-tur/opusTCv20210807_transformer-big_2022-07-28.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT itc-tur README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-tur/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ""Di che nazionalità sono le tue dottoresse?" "Malese."", ""Di che nazionalità sono i nostri amici?" "Maltese."" ] model_name = "pytorch-models/opus-mt-tc-big-itc-tr" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # "Doktorların hangi milletten?" "Malezyalı." # "Arkadaşlarımız hangi milletten?" "Maltalı." ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-itc-tr") print(pipe(""Di che nazionalità sono le tue dottoresse?" "Malese."")) # expected output: "Doktorların hangi milletten?" "Malezyalı." ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-tur/opusTCv20210807_transformer-big_2022-07-28.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-28.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-tur/opusTCv20210807_transformer-big_2022-07-28.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-28.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-tur/opusTCv20210807_transformer-big_2022-07-28.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fra-tur | tatoeba-test-v2021-08-07 | 0.63006 | 34.8 | 2582 | 14307 | | ita-tur | tatoeba-test-v2021-08-07 | 0.59991 | 34.9 | 10000 | 75807 | | por-tur | tatoeba-test-v2021-08-07 | 0.67836 | 40.1 | 1794 | 9312 | | ron-tur | tatoeba-test-v2021-08-07 | 0.64031 | 35.5 | 2460 | 13788 | | spa-tur | tatoeba-test-v2021-08-07 | 0.71524 | 45.2 | 10615 | 56099 | | cat-tur | flores101-devtest | 0.54892 | 21.7 | 1012 | 20253 | | fra-tur | flores101-devtest | 0.55342 | 21.7 | 1012 | 20253 | | glg-tur | flores101-devtest | 0.53936 | 20.6 | 1012 | 20253 | | ita-tur | flores101-devtest | 0.52842 | 18.4 | 1012 | 20253 | | oci-tur | flores101-devtest | 0.50618 | 17.6 | 1012 | 20253 | | por-tur | flores101-devtest | 0.56396 | 23.5 | 1012 | 20253 | | ron-tur | flores101-devtest | 0.55409 | 21.5 | 1012 | 20253 | | spa-tur | flores101-devtest | 0.51066 | 16.5 | 1012 | 20253 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:03:26 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-de-es
Helsinki-NLP
2023-10-10T11:03:48Z
207
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "de", "es", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T15:21:06Z
--- language: - de - es tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-de-es results: - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: flores101-devtest type: flores_101 args: deu spa devtest metrics: - name: BLEU type: bleu value: 24.9 - name: chr-F type: chrf value: 0.53208 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: news-test2008 type: news-test2008 args: deu-spa metrics: - name: BLEU type: bleu value: 26.6 - name: chr-F type: chrf value: 0.54400 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: deu-spa metrics: - name: BLEU type: bleu value: 50.8 - name: chr-F type: chrf value: 0.69105 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: newstest2009 type: wmt-2009-news args: deu-spa metrics: - name: BLEU type: bleu value: 25.9 - name: chr-F type: chrf value: 0.53934 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: newstest2010 type: wmt-2010-news args: deu-spa metrics: - name: BLEU type: bleu value: 33.8 - name: chr-F type: chrf value: 0.60102 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: newstest2011 type: wmt-2011-news args: deu-spa metrics: - name: BLEU type: bleu value: 31.3 - name: chr-F type: chrf value: 0.57133 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: newstest2012 type: wmt-2012-news args: deu-spa metrics: - name: BLEU type: bleu value: 32.6 - name: chr-F type: chrf value: 0.58119 - task: name: Translation deu-spa type: translation args: deu-spa dataset: name: newstest2013 type: wmt-2013-news args: deu-spa metrics: - name: BLEU type: bleu value: 32.4 - name: chr-F type: chrf value: 0.57559 --- # opus-mt-tc-big-de-es ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from German (de) to Spanish (es). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-26 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): deu - Target Language(s): spa - Language Pair(s): deu-spa - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-spa/opusTCv20210807_transformer-big_2022-07-26.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT deu-spa README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-spa/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Ich verstehe nicht, worüber ihr redet.", "Die Vögel singen in den Bäumen." ] model_name = "pytorch-models/opus-mt-tc-big-de-es" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # No entiendo de qué están hablando. # Los pájaros cantan en los árboles. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-de-es") print(pipe("Ich verstehe nicht, worüber ihr redet.")) # expected output: No entiendo de qué están hablando. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-spa/opusTCv20210807_transformer-big_2022-07-26.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-spa/opusTCv20210807_transformer-big_2022-07-26.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-spa/opusTCv20210807_transformer-big_2022-07-26.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | deu-spa | tatoeba-test-v2021-08-07 | 0.69105 | 50.8 | 10521 | 82570 | | deu-spa | flores101-devtest | 0.53208 | 24.9 | 1012 | 29199 | | deu-spa | newssyscomb2009 | 0.55547 | 28.3 | 502 | 12503 | | deu-spa | news-test2008 | 0.54400 | 26.6 | 2051 | 52586 | | deu-spa | newstest2009 | 0.53934 | 25.9 | 2525 | 68111 | | deu-spa | newstest2010 | 0.60102 | 33.8 | 2489 | 65480 | | deu-spa | newstest2011 | 0.57133 | 31.3 | 3003 | 79476 | | deu-spa | newstest2012 | 0.58119 | 32.6 | 3003 | 79006 | | deu-spa | newstest2013 | 0.57559 | 32.4 | 3000 | 70528 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:06:19 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-fa-itc
Helsinki-NLP
2023-10-10T11:01:36Z
120
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "fa", "fr", "pt", "ro", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T17:02:21Z
--- language: - fa - fr - pt - ro tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-fa-itc results: - task: name: Translation fas-fra type: translation args: fas-fra dataset: name: flores101-devtest type: flores_101 args: fas fra devtest metrics: - name: BLEU type: bleu value: 28.9 - name: chr-F type: chrf value: 0.55883 - task: name: Translation fas-ita type: translation args: fas-ita dataset: name: flores101-devtest type: flores_101 args: fas ita devtest metrics: - name: BLEU type: bleu value: 19.7 - name: chr-F type: chrf value: 0.49512 - task: name: Translation fas-por type: translation args: fas-por dataset: name: flores101-devtest type: flores_101 args: fas por devtest metrics: - name: BLEU type: bleu value: 27.6 - name: chr-F type: chrf value: 0.54829 - task: name: Translation fas-ron type: translation args: fas-ron dataset: name: flores101-devtest type: flores_101 args: fas ron devtest metrics: - name: BLEU type: bleu value: 19.7 - name: chr-F type: chrf value: 0.48821 - task: name: Translation fas-spa type: translation args: fas-spa dataset: name: flores101-devtest type: flores_101 args: fas spa devtest metrics: - name: BLEU type: bleu value: 19.4 - name: chr-F type: chrf value: 0.47722 - task: name: Translation fas-fra type: translation args: fas-fra dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: fas-fra metrics: - name: BLEU type: bleu value: 37.5 - name: chr-F type: chrf value: 0.57949 --- # opus-mt-tc-big-fa-itc ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Persian (fa) to Italic languages (itc). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-23 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): fas - Target Language(s): fra ita por ron spa - Language Pair(s): fas-fra fas-por fas-ron - Valid Target Language Labels: >>acf<< >>aoa<< >>arg<< >>ast<< >>cat<< >>cbk<< >>ccd<< >>cks<< >>cos<< >>cri<< >>crs<< >>dlm<< >>drc<< >>egl<< >>ext<< >>fab<< >>fax<< >>fra<< >>frc<< >>frm<< >>fro<< >>frp<< >>fur<< >>gcf<< >>gcr<< >>glg<< >>hat<< >>idb<< >>ist<< >>ita<< >>itk<< >>kea<< >>kmv<< >>lad<< >>lad_Latn<< >>lat<< >>lat_Latn<< >>lij<< >>lld<< >>lmo<< >>lou<< >>mcm<< >>mfe<< >>mol<< >>mwl<< >>mxi<< >>mzs<< >>nap<< >>nrf<< >>oci<< >>osc<< >>osp<< >>pap<< >>pcd<< >>pln<< >>pms<< >>pob<< >>por<< >>pov<< >>pre<< >>pro<< >>qbb<< >>qhr<< >>rcf<< >>rgn<< >>roh<< >>ron<< >>ruo<< >>rup<< >>ruq<< >>scf<< >>scn<< >>sdc<< >>sdn<< >>spa<< >>spq<< >>spx<< >>src<< >>srd<< >>sro<< >>tmg<< >>tvy<< >>vec<< >>vkp<< >>wln<< >>xfa<< >>xum<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-itc/opusTCv20210807_transformer-big_2022-07-23.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT fas-itc README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fas-itc/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>fra<<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>lad<< اسلام زیباست.", ">>spa<< ورود به کتابخانه رایگان است." ] model_name = "pytorch-models/opus-mt-tc-big-fa-itc" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # O Islam é lindo. # La entrada a la biblioteca es gratuita. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fa-itc") print(pipe(">>lad<< اسلام زیباست.")) # expected output: O Islam é lindo. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-itc/opusTCv20210807_transformer-big_2022-07-23.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-itc/opusTCv20210807_transformer-big_2022-07-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-itc/opusTCv20210807_transformer-big_2022-07-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fas-fra | tatoeba-test-v2021-08-07 | 0.57949 | 37.5 | 376 | 3377 | | fas-fra | flores101-devtest | 0.55883 | 28.9 | 1012 | 28343 | | fas-ita | flores101-devtest | 0.49512 | 19.7 | 1012 | 27306 | | fas-por | flores101-devtest | 0.54829 | 27.6 | 1012 | 26519 | | fas-ron | flores101-devtest | 0.48821 | 19.7 | 1012 | 26799 | | fas-spa | flores101-devtest | 0.47722 | 19.4 | 1012 | 29199 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:08:53 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-fa-gmq
Helsinki-NLP
2023-10-10T10:58:23Z
119
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "da", "fa", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T17:17:15Z
--- language: - da - fa tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-fa-gmq results: - task: name: Translation fas-dan type: translation args: fas-dan dataset: name: flores101-devtest type: flores_101 args: fas dan devtest metrics: - name: BLEU type: bleu value: 22.7 - name: chr-F type: chrf value: 0.50857 --- # opus-mt-tc-big-fa-gmq ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from Persian (fa) to North Germanic languages (gmq). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-23 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): fas - Target Language(s): dan - Language Pair(s): fas-dan - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-gmq/opusTCv20210807_transformer-big_2022-07-23.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT fas-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fas-gmq/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "از سوسک می‌ترسم.", "از سوسک می‌ترسم." ] model_name = "pytorch-models/opus-mt-tc-big-fa-gmq" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Jeg er bange for kakerlakker. # Jeg er bange for kakerlakker. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fa-gmq") print(pipe("از سوسک می‌ترسم.")) # expected output: Jeg er bange for kakerlakker. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-23.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-gmq/opusTCv20210807_transformer-big_2022-07-23.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-23.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-gmq/opusTCv20210807_transformer-big_2022-07-23.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-23.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fas-gmq/opusTCv20210807_transformer-big_2022-07-23.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | fas-dan | flores101-devtest | 0.50857 | 22.7 | 1012 | 24638 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:09:16 EEST 2022 * port machine: LM0-400-22516.local
Helsinki-NLP/opus-mt-tc-big-zls-de
Helsinki-NLP
2023-10-10T10:57:17Z
142
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "bg", "de", "hr", "mk", "sh", "sl", "sr", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-08-12T14:51:09Z
--- language: - bg - de - hr - mk - sh - sl - sr language_bcp47: - sr_Cyrl - sr_Latn tags: - translation - opus-mt-tc license: cc-by-4.0 model-index: - name: opus-mt-tc-big-zls-de results: - task: name: Translation bul-deu type: translation args: bul-deu dataset: name: flores101-devtest type: flores_101 args: bul deu devtest metrics: - name: BLEU type: bleu value: 28.4 - name: chr-F type: chrf value: 0.57688 - task: name: Translation hrv-deu type: translation args: hrv-deu dataset: name: flores101-devtest type: flores_101 args: hrv deu devtest metrics: - name: BLEU type: bleu value: 27.4 - name: chr-F type: chrf value: 0.56674 - task: name: Translation mkd-deu type: translation args: mkd-deu dataset: name: flores101-devtest type: flores_101 args: mkd deu devtest metrics: - name: BLEU type: bleu value: 29.3 - name: chr-F type: chrf value: 0.57688 - task: name: Translation slv-deu type: translation args: slv-deu dataset: name: flores101-devtest type: flores_101 args: slv deu devtest metrics: - name: BLEU type: bleu value: 26.7 - name: chr-F type: chrf value: 0.56258 - task: name: Translation srp_Cyrl-deu type: translation args: srp_Cyrl-deu dataset: name: flores101-devtest type: flores_101 args: srp_Cyrl deu devtest metrics: - name: BLEU type: bleu value: 30.7 - name: chr-F type: chrf value: 0.59271 - task: name: Translation bul-deu type: translation args: bul-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: bul-deu metrics: - name: BLEU type: bleu value: 54.5 - name: chr-F type: chrf value: 0.71220 - task: name: Translation hbs-deu type: translation args: hbs-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hbs-deu metrics: - name: BLEU type: bleu value: 54.8 - name: chr-F type: chrf value: 0.71283 - task: name: Translation hrv-deu type: translation args: hrv-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: hrv-deu metrics: - name: BLEU type: bleu value: 53.1 - name: chr-F type: chrf value: 0.69448 - task: name: Translation slv-deu type: translation args: slv-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: slv-deu metrics: - name: BLEU type: bleu value: 21.1 - name: chr-F type: chrf value: 0.36339 - task: name: Translation srp_Latn-deu type: translation args: srp_Latn-deu dataset: name: tatoeba-test-v2021-08-07 type: tatoeba_mt args: srp_Latn-deu metrics: - name: BLEU type: bleu value: 56.0 - name: chr-F type: chrf value: 0.72489 --- # opus-mt-tc-big-zls-de ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from South Slavic languages (zls) to German (de). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-26 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): bos_Latn bul hbs hrv mkd slv srp_Cyrl srp_Latn - Target Language(s): deu - Language Pair(s): bul-deu hbs-deu hrv-deu mkd-deu slv-deu srp_Cyrl-deu srp_Latn-deu - Valid Target Language Labels: - **Original Model**: [opusTCv20210807_transformer-big_2022-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-deu/opusTCv20210807_transformer-big_2022-07-26.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT zls-deu README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-deu/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ "Jesi li ti student?", "Dve stvari deca treba da dobiju od svojih roditelja: korene i krila." ] model_name = "pytorch-models/opus-mt-tc-big-zls-de" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # Sind Sie Student? # Zwei Dinge sollten Kinder von ihren Eltern bekommen: Wurzeln und Flügel. ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zls-de") print(pipe("Jesi li ti student?")) # expected output: Sind Sie Student? ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-26.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-deu/opusTCv20210807_transformer-big_2022-07-26.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-26.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-deu/opusTCv20210807_transformer-big_2022-07-26.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-26.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-deu/opusTCv20210807_transformer-big_2022-07-26.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | bul-deu | tatoeba-test-v2021-08-07 | 0.71220 | 54.5 | 314 | 2224 | | hbs-deu | tatoeba-test-v2021-08-07 | 0.71283 | 54.8 | 1959 | 15559 | | hrv-deu | tatoeba-test-v2021-08-07 | 0.69448 | 53.1 | 782 | 5734 | | slv-deu | tatoeba-test-v2021-08-07 | 0.36339 | 21.1 | 492 | 3003 | | srp_Latn-deu | tatoeba-test-v2021-08-07 | 0.72489 | 56.0 | 986 | 8500 | | bul-deu | flores101-devtest | 0.57688 | 28.4 | 1012 | 25094 | | hrv-deu | flores101-devtest | 0.56674 | 27.4 | 1012 | 25094 | | mkd-deu | flores101-devtest | 0.57688 | 29.3 | 1012 | 25094 | | slv-deu | flores101-devtest | 0.56258 | 26.7 | 1012 | 25094 | | srp_Cyrl-deu | flores101-devtest | 0.59271 | 30.7 | 1012 | 25094 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:05:30 EEST 2022 * port machine: LM0-400-22516.local