modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 06:27:22
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 525
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 06:27:10
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Helsinki-NLP/opus-mt-tc-big-itc-itc
|
Helsinki-NLP
| 2023-10-10T10:56:12Z | 141 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"ast",
"ca",
"es",
"fr",
"gl",
"it",
"lad",
"oc",
"pms",
"pt",
"ro",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-08-12T10:02:43Z |
---
language:
- ast
- ca
- es
- fr
- gl
- it
- lad
- oc
- pms
- pt
- ro
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-itc-itc
results:
- task:
name: Translation ast-cat
type: translation
args: ast-cat
dataset:
name: flores101-devtest
type: flores_101
args: ast cat devtest
metrics:
- name: BLEU
type: bleu
value: 31.8
- name: chr-F
type: chrf
value: 0.57870
- task:
name: Translation ast-fra
type: translation
args: ast-fra
dataset:
name: flores101-devtest
type: flores_101
args: ast fra devtest
metrics:
- name: BLEU
type: bleu
value: 31.1
- name: chr-F
type: chrf
value: 0.56761
- task:
name: Translation ast-glg
type: translation
args: ast-glg
dataset:
name: flores101-devtest
type: flores_101
args: ast glg devtest
metrics:
- name: BLEU
type: bleu
value: 27.9
- name: chr-F
type: chrf
value: 0.55161
- task:
name: Translation ast-ita
type: translation
args: ast-ita
dataset:
name: flores101-devtest
type: flores_101
args: ast ita devtest
metrics:
- name: BLEU
type: bleu
value: 22.1
- name: chr-F
type: chrf
value: 0.51764
- task:
name: Translation ast-oci
type: translation
args: ast-oci
dataset:
name: flores101-devtest
type: flores_101
args: ast oci devtest
metrics:
- name: BLEU
type: bleu
value: 20.6
- name: chr-F
type: chrf
value: 0.49545
- task:
name: Translation ast-por
type: translation
args: ast-por
dataset:
name: flores101-devtest
type: flores_101
args: ast por devtest
metrics:
- name: BLEU
type: bleu
value: 31.5
- name: chr-F
type: chrf
value: 0.57347
- task:
name: Translation ast-ron
type: translation
args: ast-ron
dataset:
name: flores101-devtest
type: flores_101
args: ast ron devtest
metrics:
- name: BLEU
type: bleu
value: 24.8
- name: chr-F
type: chrf
value: 0.52317
- task:
name: Translation ast-spa
type: translation
args: ast-spa
dataset:
name: flores101-devtest
type: flores_101
args: ast spa devtest
metrics:
- name: BLEU
type: bleu
value: 21.2
- name: chr-F
type: chrf
value: 0.49741
- task:
name: Translation cat-ast
type: translation
args: cat-ast
dataset:
name: flores101-devtest
type: flores_101
args: cat ast devtest
metrics:
- name: BLEU
type: bleu
value: 24.7
- name: chr-F
type: chrf
value: 0.56754
- task:
name: Translation cat-fra
type: translation
args: cat-fra
dataset:
name: flores101-devtest
type: flores_101
args: cat fra devtest
metrics:
- name: BLEU
type: bleu
value: 38.4
- name: chr-F
type: chrf
value: 0.63368
- task:
name: Translation cat-glg
type: translation
args: cat-glg
dataset:
name: flores101-devtest
type: flores_101
args: cat glg devtest
metrics:
- name: BLEU
type: bleu
value: 32.2
- name: chr-F
type: chrf
value: 0.59596
- task:
name: Translation cat-ita
type: translation
args: cat-ita
dataset:
name: flores101-devtest
type: flores_101
args: cat ita devtest
metrics:
- name: BLEU
type: bleu
value: 26.3
- name: chr-F
type: chrf
value: 0.55886
- task:
name: Translation cat-oci
type: translation
args: cat-oci
dataset:
name: flores101-devtest
type: flores_101
args: cat oci devtest
metrics:
- name: BLEU
type: bleu
value: 24.6
- name: chr-F
type: chrf
value: 0.54285
- task:
name: Translation cat-por
type: translation
args: cat-por
dataset:
name: flores101-devtest
type: flores_101
args: cat por devtest
metrics:
- name: BLEU
type: bleu
value: 37.7
- name: chr-F
type: chrf
value: 0.62913
- task:
name: Translation cat-ron
type: translation
args: cat-ron
dataset:
name: flores101-devtest
type: flores_101
args: cat ron devtest
metrics:
- name: BLEU
type: bleu
value: 29.5
- name: chr-F
type: chrf
value: 0.56885
- task:
name: Translation cat-spa
type: translation
args: cat-spa
dataset:
name: flores101-devtest
type: flores_101
args: cat spa devtest
metrics:
- name: BLEU
type: bleu
value: 24.6
- name: chr-F
type: chrf
value: 0.53372
- task:
name: Translation fra-ast
type: translation
args: fra-ast
dataset:
name: flores101-devtest
type: flores_101
args: fra ast devtest
metrics:
- name: BLEU
type: bleu
value: 20.7
- name: chr-F
type: chrf
value: 0.52696
- task:
name: Translation fra-cat
type: translation
args: fra-cat
dataset:
name: flores101-devtest
type: flores_101
args: fra cat devtest
metrics:
- name: BLEU
type: bleu
value: 34.6
- name: chr-F
type: chrf
value: 0.60492
- task:
name: Translation fra-glg
type: translation
args: fra-glg
dataset:
name: flores101-devtest
type: flores_101
args: fra glg devtest
metrics:
- name: BLEU
type: bleu
value: 30.3
- name: chr-F
type: chrf
value: 0.57485
- task:
name: Translation fra-ita
type: translation
args: fra-ita
dataset:
name: flores101-devtest
type: flores_101
args: fra ita devtest
metrics:
- name: BLEU
type: bleu
value: 27.3
- name: chr-F
type: chrf
value: 0.56493
- task:
name: Translation fra-oci
type: translation
args: fra-oci
dataset:
name: flores101-devtest
type: flores_101
args: fra oci devtest
metrics:
- name: BLEU
type: bleu
value: 28.2
- name: chr-F
type: chrf
value: 0.57449
- task:
name: Translation fra-por
type: translation
args: fra-por
dataset:
name: flores101-devtest
type: flores_101
args: fra por devtest
metrics:
- name: BLEU
type: bleu
value: 36.9
- name: chr-F
type: chrf
value: 0.62211
- task:
name: Translation fra-ron
type: translation
args: fra-ron
dataset:
name: flores101-devtest
type: flores_101
args: fra ron devtest
metrics:
- name: BLEU
type: bleu
value: 29.4
- name: chr-F
type: chrf
value: 0.56998
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: flores101-devtest
type: flores_101
args: fra spa devtest
metrics:
- name: BLEU
type: bleu
value: 24.2
- name: chr-F
type: chrf
value: 0.52880
- task:
name: Translation glg-ast
type: translation
args: glg-ast
dataset:
name: flores101-devtest
type: flores_101
args: glg ast devtest
metrics:
- name: BLEU
type: bleu
value: 22.4
- name: chr-F
type: chrf
value: 0.55090
- task:
name: Translation glg-cat
type: translation
args: glg-cat
dataset:
name: flores101-devtest
type: flores_101
args: glg cat devtest
metrics:
- name: BLEU
type: bleu
value: 32.6
- name: chr-F
type: chrf
value: 0.60550
- task:
name: Translation glg-fra
type: translation
args: glg-fra
dataset:
name: flores101-devtest
type: flores_101
args: glg fra devtest
metrics:
- name: BLEU
type: bleu
value: 36.0
- name: chr-F
type: chrf
value: 0.62026
- task:
name: Translation glg-ita
type: translation
args: glg-ita
dataset:
name: flores101-devtest
type: flores_101
args: glg ita devtest
metrics:
- name: BLEU
type: bleu
value: 25.9
- name: chr-F
type: chrf
value: 0.55834
- task:
name: Translation glg-oci
type: translation
args: glg-oci
dataset:
name: flores101-devtest
type: flores_101
args: glg oci devtest
metrics:
- name: BLEU
type: bleu
value: 21.9
- name: chr-F
type: chrf
value: 0.52520
- task:
name: Translation glg-por
type: translation
args: glg-por
dataset:
name: flores101-devtest
type: flores_101
args: glg por devtest
metrics:
- name: BLEU
type: bleu
value: 32.7
- name: chr-F
type: chrf
value: 0.60027
- task:
name: Translation glg-ron
type: translation
args: glg-ron
dataset:
name: flores101-devtest
type: flores_101
args: glg ron devtest
metrics:
- name: BLEU
type: bleu
value: 27.8
- name: chr-F
type: chrf
value: 0.55621
- task:
name: Translation glg-spa
type: translation
args: glg-spa
dataset:
name: flores101-devtest
type: flores_101
args: glg spa devtest
metrics:
- name: BLEU
type: bleu
value: 24.4
- name: chr-F
type: chrf
value: 0.53219
- task:
name: Translation ita-ast
type: translation
args: ita-ast
dataset:
name: flores101-devtest
type: flores_101
args: ita ast devtest
metrics:
- name: BLEU
type: bleu
value: 17.1
- name: chr-F
type: chrf
value: 0.50741
- task:
name: Translation ita-cat
type: translation
args: ita-cat
dataset:
name: flores101-devtest
type: flores_101
args: ita cat devtest
metrics:
- name: BLEU
type: bleu
value: 27.9
- name: chr-F
type: chrf
value: 0.57061
- task:
name: Translation ita-fra
type: translation
args: ita-fra
dataset:
name: flores101-devtest
type: flores_101
args: ita fra devtest
metrics:
- name: BLEU
type: bleu
value: 32.0
- name: chr-F
type: chrf
value: 0.60199
- task:
name: Translation ita-glg
type: translation
args: ita-glg
dataset:
name: flores101-devtest
type: flores_101
args: ita glg devtest
metrics:
- name: BLEU
type: bleu
value: 25.9
- name: chr-F
type: chrf
value: 0.55312
- task:
name: Translation ita-oci
type: translation
args: ita-oci
dataset:
name: flores101-devtest
type: flores_101
args: ita oci devtest
metrics:
- name: BLEU
type: bleu
value: 18.1
- name: chr-F
type: chrf
value: 0.48447
- task:
name: Translation ita-por
type: translation
args: ita-por
dataset:
name: flores101-devtest
type: flores_101
args: ita por devtest
metrics:
- name: BLEU
type: bleu
value: 29.0
- name: chr-F
type: chrf
value: 0.58162
- task:
name: Translation ita-ron
type: translation
args: ita-ron
dataset:
name: flores101-devtest
type: flores_101
args: ita ron devtest
metrics:
- name: BLEU
type: bleu
value: 24.2
- name: chr-F
type: chrf
value: 0.53703
- task:
name: Translation ita-spa
type: translation
args: ita-spa
dataset:
name: flores101-devtest
type: flores_101
args: ita spa devtest
metrics:
- name: BLEU
type: bleu
value: 23.1
- name: chr-F
type: chrf
value: 0.52238
- task:
name: Translation oci-ast
type: translation
args: oci-ast
dataset:
name: flores101-devtest
type: flores_101
args: oci ast devtest
metrics:
- name: BLEU
type: bleu
value: 20.2
- name: chr-F
type: chrf
value: 0.53010
- task:
name: Translation oci-cat
type: translation
args: oci-cat
dataset:
name: flores101-devtest
type: flores_101
args: oci cat devtest
metrics:
- name: BLEU
type: bleu
value: 32.2
- name: chr-F
type: chrf
value: 0.59946
- task:
name: Translation oci-fra
type: translation
args: oci-fra
dataset:
name: flores101-devtest
type: flores_101
args: oci fra devtest
metrics:
- name: BLEU
type: bleu
value: 39.0
- name: chr-F
type: chrf
value: 0.64290
- task:
name: Translation oci-glg
type: translation
args: oci-glg
dataset:
name: flores101-devtest
type: flores_101
args: oci glg devtest
metrics:
- name: BLEU
type: bleu
value: 28.0
- name: chr-F
type: chrf
value: 0.56737
- task:
name: Translation oci-ita
type: translation
args: oci-ita
dataset:
name: flores101-devtest
type: flores_101
args: oci ita devtest
metrics:
- name: BLEU
type: bleu
value: 24.2
- name: chr-F
type: chrf
value: 0.54220
- task:
name: Translation oci-por
type: translation
args: oci-por
dataset:
name: flores101-devtest
type: flores_101
args: oci por devtest
metrics:
- name: BLEU
type: bleu
value: 35.7
- name: chr-F
type: chrf
value: 0.62127
- task:
name: Translation oci-ron
type: translation
args: oci-ron
dataset:
name: flores101-devtest
type: flores_101
args: oci ron devtest
metrics:
- name: BLEU
type: bleu
value: 28.0
- name: chr-F
type: chrf
value: 0.55906
- task:
name: Translation oci-spa
type: translation
args: oci-spa
dataset:
name: flores101-devtest
type: flores_101
args: oci spa devtest
metrics:
- name: BLEU
type: bleu
value: 22.8
- name: chr-F
type: chrf
value: 0.52110
- task:
name: Translation por-ast
type: translation
args: por-ast
dataset:
name: flores101-devtest
type: flores_101
args: por ast devtest
metrics:
- name: BLEU
type: bleu
value: 22.5
- name: chr-F
type: chrf
value: 0.54539
- task:
name: Translation por-cat
type: translation
args: por-cat
dataset:
name: flores101-devtest
type: flores_101
args: por cat devtest
metrics:
- name: BLEU
type: bleu
value: 36.4
- name: chr-F
type: chrf
value: 0.61809
- task:
name: Translation por-fra
type: translation
args: por-fra
dataset:
name: flores101-devtest
type: flores_101
args: por fra devtest
metrics:
- name: BLEU
type: bleu
value: 39.7
- name: chr-F
type: chrf
value: 0.64343
- task:
name: Translation por-glg
type: translation
args: por-glg
dataset:
name: flores101-devtest
type: flores_101
args: por glg devtest
metrics:
- name: BLEU
type: bleu
value: 30.4
- name: chr-F
type: chrf
value: 0.57965
- task:
name: Translation por-ita
type: translation
args: por-ita
dataset:
name: flores101-devtest
type: flores_101
args: por ita devtest
metrics:
- name: BLEU
type: bleu
value: 26.3
- name: chr-F
type: chrf
value: 0.55841
- task:
name: Translation por-oci
type: translation
args: por-oci
dataset:
name: flores101-devtest
type: flores_101
args: por oci devtest
metrics:
- name: BLEU
type: bleu
value: 25.3
- name: chr-F
type: chrf
value: 0.54829
- task:
name: Translation por-ron
type: translation
args: por-ron
dataset:
name: flores101-devtest
type: flores_101
args: por ron devtest
metrics:
- name: BLEU
type: bleu
value: 29.8
- name: chr-F
type: chrf
value: 0.57283
- task:
name: Translation por-spa
type: translation
args: por-spa
dataset:
name: flores101-devtest
type: flores_101
args: por spa devtest
metrics:
- name: BLEU
type: bleu
value: 25.2
- name: chr-F
type: chrf
value: 0.53513
- task:
name: Translation ron-ast
type: translation
args: ron-ast
dataset:
name: flores101-devtest
type: flores_101
args: ron ast devtest
metrics:
- name: BLEU
type: bleu
value: 20.1
- name: chr-F
type: chrf
value: 0.52265
- task:
name: Translation ron-cat
type: translation
args: ron-cat
dataset:
name: flores101-devtest
type: flores_101
args: ron cat devtest
metrics:
- name: BLEU
type: bleu
value: 32.6
- name: chr-F
type: chrf
value: 0.59689
- task:
name: Translation ron-fra
type: translation
args: ron-fra
dataset:
name: flores101-devtest
type: flores_101
args: ron fra devtest
metrics:
- name: BLEU
type: bleu
value: 37.4
- name: chr-F
type: chrf
value: 0.63060
- task:
name: Translation ron-glg
type: translation
args: ron-glg
dataset:
name: flores101-devtest
type: flores_101
args: ron glg devtest
metrics:
- name: BLEU
type: bleu
value: 29.3
- name: chr-F
type: chrf
value: 0.56677
- task:
name: Translation ron-ita
type: translation
args: ron-ita
dataset:
name: flores101-devtest
type: flores_101
args: ron ita devtest
metrics:
- name: BLEU
type: bleu
value: 25.6
- name: chr-F
type: chrf
value: 0.55485
- task:
name: Translation ron-oci
type: translation
args: ron-oci
dataset:
name: flores101-devtest
type: flores_101
args: ron oci devtest
metrics:
- name: BLEU
type: bleu
value: 21.8
- name: chr-F
type: chrf
value: 0.52433
- task:
name: Translation ron-por
type: translation
args: ron-por
dataset:
name: flores101-devtest
type: flores_101
args: ron por devtest
metrics:
- name: BLEU
type: bleu
value: 36.1
- name: chr-F
type: chrf
value: 0.61831
- task:
name: Translation ron-spa
type: translation
args: ron-spa
dataset:
name: flores101-devtest
type: flores_101
args: ron spa devtest
metrics:
- name: BLEU
type: bleu
value: 24.1
- name: chr-F
type: chrf
value: 0.52712
- task:
name: Translation spa-ast
type: translation
args: spa-ast
dataset:
name: flores101-devtest
type: flores_101
args: spa ast devtest
metrics:
- name: BLEU
type: bleu
value: 15.7
- name: chr-F
type: chrf
value: 0.49008
- task:
name: Translation spa-cat
type: translation
args: spa-cat
dataset:
name: flores101-devtest
type: flores_101
args: spa cat devtest
metrics:
- name: BLEU
type: bleu
value: 23.2
- name: chr-F
type: chrf
value: 0.53905
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: flores101-devtest
type: flores_101
args: spa fra devtest
metrics:
- name: BLEU
type: bleu
value: 27.4
- name: chr-F
type: chrf
value: 0.57078
- task:
name: Translation spa-glg
type: translation
args: spa-glg
dataset:
name: flores101-devtest
type: flores_101
args: spa glg devtest
metrics:
- name: BLEU
type: bleu
value: 22.0
- name: chr-F
type: chrf
value: 0.52563
- task:
name: Translation spa-ita
type: translation
args: spa-ita
dataset:
name: flores101-devtest
type: flores_101
args: spa ita devtest
metrics:
- name: BLEU
type: bleu
value: 22.3
- name: chr-F
type: chrf
value: 0.52783
- task:
name: Translation spa-oci
type: translation
args: spa-oci
dataset:
name: flores101-devtest
type: flores_101
args: spa oci devtest
metrics:
- name: BLEU
type: bleu
value: 16.3
- name: chr-F
type: chrf
value: 0.48064
- task:
name: Translation spa-por
type: translation
args: spa-por
dataset:
name: flores101-devtest
type: flores_101
args: spa por devtest
metrics:
- name: BLEU
type: bleu
value: 25.8
- name: chr-F
type: chrf
value: 0.55736
- task:
name: Translation spa-ron
type: translation
args: spa-ron
dataset:
name: flores101-devtest
type: flores_101
args: spa ron devtest
metrics:
- name: BLEU
type: bleu
value: 21.4
- name: chr-F
type: chrf
value: 0.51623
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: news-test2008
type: news-test2008
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 33.9
- name: chr-F
type: chrf
value: 0.58939
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: news-test2008
type: news-test2008
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 32.4
- name: chr-F
type: chrf
value: 0.58695
- task:
name: Translation cat-fra
type: translation
args: cat-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: cat-fra
metrics:
- name: BLEU
type: bleu
value: 54.6
- name: chr-F
type: chrf
value: 0.71201
- task:
name: Translation cat-ita
type: translation
args: cat-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: cat-ita
metrics:
- name: BLEU
type: bleu
value: 58.4
- name: chr-F
type: chrf
value: 0.74198
- task:
name: Translation cat-por
type: translation
args: cat-por
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: cat-por
metrics:
- name: BLEU
type: bleu
value: 57.4
- name: chr-F
type: chrf
value: 0.74930
- task:
name: Translation cat-spa
type: translation
args: cat-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: cat-spa
metrics:
- name: BLEU
type: bleu
value: 78.1
- name: chr-F
type: chrf
value: 0.87844
- task:
name: Translation fra-cat
type: translation
args: fra-cat
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-cat
metrics:
- name: BLEU
type: bleu
value: 46.2
- name: chr-F
type: chrf
value: 0.66525
- task:
name: Translation fra-ita
type: translation
args: fra-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-ita
metrics:
- name: BLEU
type: bleu
value: 53.8
- name: chr-F
type: chrf
value: 0.72742
- task:
name: Translation fra-por
type: translation
args: fra-por
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-por
metrics:
- name: BLEU
type: bleu
value: 48.6
- name: chr-F
type: chrf
value: 0.68413
- task:
name: Translation fra-ron
type: translation
args: fra-ron
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-ron
metrics:
- name: BLEU
type: bleu
value: 44.0
- name: chr-F
type: chrf
value: 0.65009
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 54.8
- name: chr-F
type: chrf
value: 0.72080
- task:
name: Translation glg-por
type: translation
args: glg-por
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: glg-por
metrics:
- name: BLEU
type: bleu
value: 61.1
- name: chr-F
type: chrf
value: 0.76720
- task:
name: Translation glg-spa
type: translation
args: glg-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: glg-spa
metrics:
- name: BLEU
type: bleu
value: 71.7
- name: chr-F
type: chrf
value: 0.82362
- task:
name: Translation ita-cat
type: translation
args: ita-cat
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ita-cat
metrics:
- name: BLEU
type: bleu
value: 56.4
- name: chr-F
type: chrf
value: 0.72529
- task:
name: Translation ita-fra
type: translation
args: ita-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ita-fra
metrics:
- name: BLEU
type: bleu
value: 65.2
- name: chr-F
type: chrf
value: 0.77932
- task:
name: Translation ita-por
type: translation
args: ita-por
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ita-por
metrics:
- name: BLEU
type: bleu
value: 54.0
- name: chr-F
type: chrf
value: 0.72798
- task:
name: Translation ita-ron
type: translation
args: ita-ron
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ita-ron
metrics:
- name: BLEU
type: bleu
value: 51.1
- name: chr-F
type: chrf
value: 0.70814
- task:
name: Translation ita-spa
type: translation
args: ita-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ita-spa
metrics:
- name: BLEU
type: bleu
value: 62.9
- name: chr-F
type: chrf
value: 0.77455
- task:
name: Translation lad-spa
type: translation
args: lad-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: lad-spa
metrics:
- name: BLEU
type: bleu
value: 34.7
- name: chr-F
type: chrf
value: 0.52243
- task:
name: Translation lad_Latn-spa
type: translation
args: lad_Latn-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: lad_Latn-spa
metrics:
- name: BLEU
type: bleu
value: 42.6
- name: chr-F
type: chrf
value: 0.59363
- task:
name: Translation oci-fra
type: translation
args: oci-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: oci-fra
metrics:
- name: BLEU
type: bleu
value: 29.6
- name: chr-F
type: chrf
value: 0.49660
- task:
name: Translation pms-ita
type: translation
args: pms-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: pms-ita
metrics:
- name: BLEU
type: bleu
value: 20.0
- name: chr-F
type: chrf
value: 0.40221
- task:
name: Translation por-cat
type: translation
args: por-cat
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-cat
metrics:
- name: BLEU
type: bleu
value: 52.2
- name: chr-F
type: chrf
value: 0.71146
- task:
name: Translation por-fra
type: translation
args: por-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-fra
metrics:
- name: BLEU
type: bleu
value: 60.9
- name: chr-F
type: chrf
value: 0.75565
- task:
name: Translation por-glg
type: translation
args: por-glg
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-glg
metrics:
- name: BLEU
type: bleu
value: 59.0
- name: chr-F
type: chrf
value: 0.75348
- task:
name: Translation por-ita
type: translation
args: por-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-ita
metrics:
- name: BLEU
type: bleu
value: 58.8
- name: chr-F
type: chrf
value: 0.76883
- task:
name: Translation por-ron
type: translation
args: por-ron
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-ron
metrics:
- name: BLEU
type: bleu
value: 46.6
- name: chr-F
type: chrf
value: 0.67838
- task:
name: Translation por-spa
type: translation
args: por-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: por-spa
metrics:
- name: BLEU
type: bleu
value: 64.8
- name: chr-F
type: chrf
value: 0.79336
- task:
name: Translation ron-fra
type: translation
args: ron-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ron-fra
metrics:
- name: BLEU
type: bleu
value: 55.0
- name: chr-F
type: chrf
value: 0.70307
- task:
name: Translation ron-ita
type: translation
args: ron-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ron-ita
metrics:
- name: BLEU
type: bleu
value: 53.7
- name: chr-F
type: chrf
value: 0.73862
- task:
name: Translation ron-por
type: translation
args: ron-por
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ron-por
metrics:
- name: BLEU
type: bleu
value: 50.7
- name: chr-F
type: chrf
value: 0.70889
- task:
name: Translation ron-spa
type: translation
args: ron-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: ron-spa
metrics:
- name: BLEU
type: bleu
value: 57.2
- name: chr-F
type: chrf
value: 0.73529
- task:
name: Translation spa-cat
type: translation
args: spa-cat
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-cat
metrics:
- name: BLEU
type: bleu
value: 67.9
- name: chr-F
type: chrf
value: 0.82758
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 57.3
- name: chr-F
type: chrf
value: 0.73113
- task:
name: Translation spa-glg
type: translation
args: spa-glg
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-glg
metrics:
- name: BLEU
type: bleu
value: 63.0
- name: chr-F
type: chrf
value: 0.77332
- task:
name: Translation spa-ita
type: translation
args: spa-ita
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-ita
metrics:
- name: BLEU
type: bleu
value: 60.3
- name: chr-F
type: chrf
value: 0.77046
- task:
name: Translation spa-por
type: translation
args: spa-por
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-por
metrics:
- name: BLEU
type: bleu
value: 59.1
- name: chr-F
type: chrf
value: 0.75854
- task:
name: Translation spa-ron
type: translation
args: spa-ron
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: spa-ron
metrics:
- name: BLEU
type: bleu
value: 45.5
- name: chr-F
type: chrf
value: 0.66679
- task:
name: Translation fra-ita
type: translation
args: fra-ita
dataset:
name: newstest2009
type: wmt-2009-news
args: fra-ita
metrics:
- name: BLEU
type: bleu
value: 31.2
- name: chr-F
type: chrf
value: 0.59764
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: newstest2009
type: wmt-2009-news
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 32.5
- name: chr-F
type: chrf
value: 0.58829
- task:
name: Translation ita-fra
type: translation
args: ita-fra
dataset:
name: newstest2009
type: wmt-2009-news
args: ita-fra
metrics:
- name: BLEU
type: bleu
value: 31.6
- name: chr-F
type: chrf
value: 0.59084
- task:
name: Translation ita-spa
type: translation
args: ita-spa
dataset:
name: newstest2009
type: wmt-2009-news
args: ita-spa
metrics:
- name: BLEU
type: bleu
value: 33.5
- name: chr-F
type: chrf
value: 0.59669
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: newstest2009
type: wmt-2009-news
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 32.3
- name: chr-F
type: chrf
value: 0.59096
- task:
name: Translation spa-ita
type: translation
args: spa-ita
dataset:
name: newstest2009
type: wmt-2009-news
args: spa-ita
metrics:
- name: BLEU
type: bleu
value: 33.2
- name: chr-F
type: chrf
value: 0.60783
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: newstest2010
type: wmt-2010-news
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 37.8
- name: chr-F
type: chrf
value: 0.62250
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: newstest2010
type: wmt-2010-news
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 36.2
- name: chr-F
type: chrf
value: 0.61953
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: newstest2011
type: wmt-2011-news
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 39.8
- name: chr-F
type: chrf
value: 0.62953
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: newstest2011
type: wmt-2011-news
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 34.9
- name: chr-F
type: chrf
value: 0.61130
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: newstest2012
type: wmt-2012-news
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 39.0
- name: chr-F
type: chrf
value: 0.62397
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: newstest2012
type: wmt-2012-news
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 34.3
- name: chr-F
type: chrf
value: 0.60927
- task:
name: Translation fra-spa
type: translation
args: fra-spa
dataset:
name: newstest2013
type: wmt-2013-news
args: fra-spa
metrics:
- name: BLEU
type: bleu
value: 34.9
- name: chr-F
type: chrf
value: 0.59312
- task:
name: Translation spa-fra
type: translation
args: spa-fra
dataset:
name: newstest2013
type: wmt-2013-news
args: spa-fra
metrics:
- name: BLEU
type: bleu
value: 33.6
- name: chr-F
type: chrf
value: 0.59468
- task:
name: Translation cat-ita
type: translation
args: cat-ita
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: cat-ita
metrics:
- name: BLEU
type: bleu
value: 47.8
- name: chr-F
type: chrf
value: 0.69968
- task:
name: Translation cat-oci
type: translation
args: cat-oci
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: cat-oci
metrics:
- name: BLEU
type: bleu
value: 51.6
- name: chr-F
type: chrf
value: 0.73808
- task:
name: Translation cat-ron
type: translation
args: cat-ron
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: cat-ron
metrics:
- name: BLEU
type: bleu
value: 29.0
- name: chr-F
type: chrf
value: 0.51178
- task:
name: Translation ita-cat
type: translation
args: ita-cat
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: ita-cat
metrics:
- name: BLEU
type: bleu
value: 48.9
- name: chr-F
type: chrf
value: 0.70538
- task:
name: Translation ita-oci
type: translation
args: ita-oci
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: ita-oci
metrics:
- name: BLEU
type: bleu
value: 32.0
- name: chr-F
type: chrf
value: 0.59025
- task:
name: Translation ita-ron
type: translation
args: ita-ron
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: ita-ron
metrics:
- name: BLEU
type: bleu
value: 28.9
- name: chr-F
type: chrf
value: 0.51261
- task:
name: Translation oci-cat
type: translation
args: oci-cat
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: oci-cat
metrics:
- name: BLEU
type: bleu
value: 66.1
- name: chr-F
type: chrf
value: 0.80908
- task:
name: Translation oci-ita
type: translation
args: oci-ita
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: oci-ita
metrics:
- name: BLEU
type: bleu
value: 39.6
- name: chr-F
type: chrf
value: 0.63584
- task:
name: Translation oci-ron
type: translation
args: oci-ron
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: oci-ron
metrics:
- name: BLEU
type: bleu
value: 24.6
- name: chr-F
type: chrf
value: 0.47384
- task:
name: Translation ron-cat
type: translation
args: ron-cat
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: ron-cat
metrics:
- name: BLEU
type: bleu
value: 31.1
- name: chr-F
type: chrf
value: 0.52994
- task:
name: Translation ron-ita
type: translation
args: ron-ita
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: ron-ita
metrics:
- name: BLEU
type: bleu
value: 29.6
- name: chr-F
type: chrf
value: 0.52714
- task:
name: Translation ron-oci
type: translation
args: ron-oci
dataset:
name: wmt21-ml-wp
type: wmt21-ml-wp
args: ron-oci
metrics:
- name: BLEU
type: bleu
value: 21.3
- name: chr-F
type: chrf
value: 0.45932
---
# opus-mt-tc-big-itc-itc
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from Italic languages (itc) to Italic languages (itc).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2022-08-10
- **License:** CC-BY-4.0
- **Language(s):**
- Source Language(s): ast cat cbk fra fro glg hat ita lad lad_Latn lat lat_Latn lij lld oci pms por ron spa
- Target Language(s): ast cat fra gcf glg hat ita lad lad_Latn lat lat_Latn oci por ron spa
- Language Pair(s): ast-cat ast-fra ast-glg ast-ita ast-oci ast-por ast-ron ast-spa cat-ast cat-fra cat-glg cat-ita cat-oci cat-por cat-ron cat-spa fra-ast fra-cat fra-glg fra-ita fra-oci fra-por fra-ron fra-spa glg-ast glg-cat glg-fra glg-ita glg-oci glg-por glg-ron glg-spa ita-ast ita-cat ita-fra ita-glg ita-oci ita-por ita-ron ita-spa lad-spa lad_Latn-spa oci-ast oci-cat oci-fra oci-glg oci-ita oci-por oci-ron oci-spa pms-ita por-ast por-cat por-fra por-glg por-ita por-oci por-ron por-spa ron-ast ron-cat ron-fra ron-glg ron-ita ron-oci ron-por ron-spa spa-cat spa-fra spa-glg spa-ita spa-por spa-ron
- Valid Target Language Labels: >>acf<< >>aoa<< >>arg<< >>ast<< >>cat<< >>cbk<< >>cbk_Latn<< >>ccd<< >>cks<< >>cos<< >>cri<< >>crs<< >>dlm<< >>drc<< >>egl<< >>ext<< >>fab<< >>fax<< >>fra<< >>frc<< >>frm<< >>frm_Latn<< >>fro<< >>fro_Latn<< >>frp<< >>fur<< >>fur_Latn<< >>gcf<< >>gcf_Latn<< >>gcr<< >>glg<< >>hat<< >>idb<< >>ist<< >>ita<< >>itk<< >>kea<< >>kmv<< >>lad<< >>lad_Latn<< >>lat<< >>lat_Grek<< >>lat_Latn<< >>lij<< >>lld<< >>lld_Latn<< >>lmo<< >>lou<< >>mcm<< >>mfe<< >>mol<< >>mwl<< >>mxi<< >>mzs<< >>nap<< >>nrf<< >>oci<< >>osc<< >>osp<< >>osp_Latn<< >>pap<< >>pcd<< >>pln<< >>pms<< >>pob<< >>por<< >>pov<< >>pre<< >>pro<< >>qbb<< >>qhr<< >>rcf<< >>rgn<< >>roh<< >>ron<< >>ruo<< >>rup<< >>ruq<< >>scf<< >>scn<< >>sdc<< >>sdn<< >>spa<< >>spq<< >>spx<< >>src<< >>srd<< >>sro<< >>tmg<< >>tvy<< >>vec<< >>vkp<< >>wln<< >>xfa<< >>xum<<
- **Original Model**: [opusTCv20210807_transformer-big_2022-08-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-itc/opusTCv20210807_transformer-big_2022-08-10.zip)
- **Resources for more information:**
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- More information about released models for this language pair: [OPUS-MT itc-itc README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/itc-itc/README.md)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>ast<<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>fra<< Charras anglés?",
">>fra<< Vull veure't."
]
model_name = "pytorch-models/opus-mt-tc-big-itc-itc"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Conversations anglaises ?
# Je veux te voir.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-itc-itc")
print(pipe(">>fra<< Charras anglés?"))
# expected output: Conversations anglaises ?
```
## Training
- **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-08-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-itc/opusTCv20210807_transformer-big_2022-08-10.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* test set translations: [opusTCv20210807_transformer-big_2022-08-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-itc/opusTCv20210807_transformer-big_2022-08-10.test.txt)
* test set scores: [opusTCv20210807_transformer-big_2022-08-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/itc-itc/opusTCv20210807_transformer-big_2022-08-10.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| cat-fra | tatoeba-test-v2021-08-07 | 0.71201 | 54.6 | 700 | 5664 |
| cat-ita | tatoeba-test-v2021-08-07 | 0.74198 | 58.4 | 298 | 2028 |
| cat-por | tatoeba-test-v2021-08-07 | 0.74930 | 57.4 | 747 | 6119 |
| cat-spa | tatoeba-test-v2021-08-07 | 0.87844 | 78.1 | 1534 | 12094 |
| fra-cat | tatoeba-test-v2021-08-07 | 0.66525 | 46.2 | 700 | 5342 |
| fra-ita | tatoeba-test-v2021-08-07 | 0.72742 | 53.8 | 10091 | 62060 |
| fra-por | tatoeba-test-v2021-08-07 | 0.68413 | 48.6 | 10518 | 77650 |
| fra-ron | tatoeba-test-v2021-08-07 | 0.65009 | 44.0 | 1925 | 12252 |
| fra-spa | tatoeba-test-v2021-08-07 | 0.72080 | 54.8 | 10294 | 78406 |
| glg-por | tatoeba-test-v2021-08-07 | 0.76720 | 61.1 | 433 | 3105 |
| glg-spa | tatoeba-test-v2021-08-07 | 0.82362 | 71.7 | 2121 | 17443 |
| ita-cat | tatoeba-test-v2021-08-07 | 0.72529 | 56.4 | 298 | 2109 |
| ita-fra | tatoeba-test-v2021-08-07 | 0.77932 | 65.2 | 10091 | 66377 |
| ita-por | tatoeba-test-v2021-08-07 | 0.72798 | 54.0 | 3066 | 25668 |
| ita-ron | tatoeba-test-v2021-08-07 | 0.70814 | 51.1 | 1005 | 6209 |
| ita-spa | tatoeba-test-v2021-08-07 | 0.77455 | 62.9 | 5000 | 34937 |
| lad_Latn-spa | tatoeba-test-v2021-08-07 | 0.59363 | 42.6 | 239 | 1239 |
| lad-spa | tatoeba-test-v2021-08-07 | 0.52243 | 34.7 | 276 | 1448 |
| oci-fra | tatoeba-test-v2021-08-07 | 0.49660 | 29.6 | 806 | 6302 |
| pms-ita | tatoeba-test-v2021-08-07 | 0.40221 | 20.0 | 232 | 1721 |
| por-cat | tatoeba-test-v2021-08-07 | 0.71146 | 52.2 | 747 | 6149 |
| por-fra | tatoeba-test-v2021-08-07 | 0.75565 | 60.9 | 10518 | 80459 |
| por-glg | tatoeba-test-v2021-08-07 | 0.75348 | 59.0 | 433 | 3016 |
| por-ita | tatoeba-test-v2021-08-07 | 0.76883 | 58.8 | 3066 | 24897 |
| por-ron | tatoeba-test-v2021-08-07 | 0.67838 | 46.6 | 681 | 4521 |
| por-spa | tatoeba-test-v2021-08-07 | 0.79336 | 64.8 | 10947 | 87335 |
| ron-fra | tatoeba-test-v2021-08-07 | 0.70307 | 55.0 | 1925 | 13347 |
| ron-ita | tatoeba-test-v2021-08-07 | 0.73862 | 53.7 | 1005 | 6352 |
| ron-por | tatoeba-test-v2021-08-07 | 0.70889 | 50.7 | 681 | 4593 |
| ron-spa | tatoeba-test-v2021-08-07 | 0.73529 | 57.2 | 1959 | 12679 |
| spa-cat | tatoeba-test-v2021-08-07 | 0.82758 | 67.9 | 1534 | 12343 |
| spa-fra | tatoeba-test-v2021-08-07 | 0.73113 | 57.3 | 10294 | 83501 |
| spa-glg | tatoeba-test-v2021-08-07 | 0.77332 | 63.0 | 2121 | 16581 |
| spa-ita | tatoeba-test-v2021-08-07 | 0.77046 | 60.3 | 5000 | 34515 |
| spa-lad_Latn | tatoeba-test-v2021-08-07 | 0.40084 | 14.7 | 239 | 1254 |
| spa-por | tatoeba-test-v2021-08-07 | 0.75854 | 59.1 | 10947 | 87610 |
| spa-ron | tatoeba-test-v2021-08-07 | 0.66679 | 45.5 | 1959 | 12503 |
| ast-cat | flores101-devtest | 0.57870 | 31.8 | 1012 | 27304 |
| ast-fra | flores101-devtest | 0.56761 | 31.1 | 1012 | 28343 |
| ast-glg | flores101-devtest | 0.55161 | 27.9 | 1012 | 26582 |
| ast-ita | flores101-devtest | 0.51764 | 22.1 | 1012 | 27306 |
| ast-oci | flores101-devtest | 0.49545 | 20.6 | 1012 | 27305 |
| ast-por | flores101-devtest | 0.57347 | 31.5 | 1012 | 26519 |
| ast-ron | flores101-devtest | 0.52317 | 24.8 | 1012 | 26799 |
| ast-spa | flores101-devtest | 0.49741 | 21.2 | 1012 | 29199 |
| cat-ast | flores101-devtest | 0.56754 | 24.7 | 1012 | 24572 |
| cat-fra | flores101-devtest | 0.63368 | 38.4 | 1012 | 28343 |
| cat-glg | flores101-devtest | 0.59596 | 32.2 | 1012 | 26582 |
| cat-ita | flores101-devtest | 0.55886 | 26.3 | 1012 | 27306 |
| cat-oci | flores101-devtest | 0.54285 | 24.6 | 1012 | 27305 |
| cat-por | flores101-devtest | 0.62913 | 37.7 | 1012 | 26519 |
| cat-ron | flores101-devtest | 0.56885 | 29.5 | 1012 | 26799 |
| cat-spa | flores101-devtest | 0.53372 | 24.6 | 1012 | 29199 |
| fra-ast | flores101-devtest | 0.52696 | 20.7 | 1012 | 24572 |
| fra-cat | flores101-devtest | 0.60492 | 34.6 | 1012 | 27304 |
| fra-glg | flores101-devtest | 0.57485 | 30.3 | 1012 | 26582 |
| fra-ita | flores101-devtest | 0.56493 | 27.3 | 1012 | 27306 |
| fra-oci | flores101-devtest | 0.57449 | 28.2 | 1012 | 27305 |
| fra-por | flores101-devtest | 0.62211 | 36.9 | 1012 | 26519 |
| fra-ron | flores101-devtest | 0.56998 | 29.4 | 1012 | 26799 |
| fra-spa | flores101-devtest | 0.52880 | 24.2 | 1012 | 29199 |
| glg-ast | flores101-devtest | 0.55090 | 22.4 | 1012 | 24572 |
| glg-cat | flores101-devtest | 0.60550 | 32.6 | 1012 | 27304 |
| glg-fra | flores101-devtest | 0.62026 | 36.0 | 1012 | 28343 |
| glg-ita | flores101-devtest | 0.55834 | 25.9 | 1012 | 27306 |
| glg-oci | flores101-devtest | 0.52520 | 21.9 | 1012 | 27305 |
| glg-por | flores101-devtest | 0.60027 | 32.7 | 1012 | 26519 |
| glg-ron | flores101-devtest | 0.55621 | 27.8 | 1012 | 26799 |
| glg-spa | flores101-devtest | 0.53219 | 24.4 | 1012 | 29199 |
| ita-ast | flores101-devtest | 0.50741 | 17.1 | 1012 | 24572 |
| ita-cat | flores101-devtest | 0.57061 | 27.9 | 1012 | 27304 |
| ita-fra | flores101-devtest | 0.60199 | 32.0 | 1012 | 28343 |
| ita-glg | flores101-devtest | 0.55312 | 25.9 | 1012 | 26582 |
| ita-oci | flores101-devtest | 0.48447 | 18.1 | 1012 | 27305 |
| ita-por | flores101-devtest | 0.58162 | 29.0 | 1012 | 26519 |
| ita-ron | flores101-devtest | 0.53703 | 24.2 | 1012 | 26799 |
| ita-spa | flores101-devtest | 0.52238 | 23.1 | 1012 | 29199 |
| oci-ast | flores101-devtest | 0.53010 | 20.2 | 1012 | 24572 |
| oci-cat | flores101-devtest | 0.59946 | 32.2 | 1012 | 27304 |
| oci-fra | flores101-devtest | 0.64290 | 39.0 | 1012 | 28343 |
| oci-glg | flores101-devtest | 0.56737 | 28.0 | 1012 | 26582 |
| oci-ita | flores101-devtest | 0.54220 | 24.2 | 1012 | 27306 |
| oci-por | flores101-devtest | 0.62127 | 35.7 | 1012 | 26519 |
| oci-ron | flores101-devtest | 0.55906 | 28.0 | 1012 | 26799 |
| oci-spa | flores101-devtest | 0.52110 | 22.8 | 1012 | 29199 |
| por-ast | flores101-devtest | 0.54539 | 22.5 | 1012 | 24572 |
| por-cat | flores101-devtest | 0.61809 | 36.4 | 1012 | 27304 |
| por-fra | flores101-devtest | 0.64343 | 39.7 | 1012 | 28343 |
| por-glg | flores101-devtest | 0.57965 | 30.4 | 1012 | 26582 |
| por-ita | flores101-devtest | 0.55841 | 26.3 | 1012 | 27306 |
| por-oci | flores101-devtest | 0.54829 | 25.3 | 1012 | 27305 |
| por-ron | flores101-devtest | 0.57283 | 29.8 | 1012 | 26799 |
| por-spa | flores101-devtest | 0.53513 | 25.2 | 1012 | 29199 |
| ron-ast | flores101-devtest | 0.52265 | 20.1 | 1012 | 24572 |
| ron-cat | flores101-devtest | 0.59689 | 32.6 | 1012 | 27304 |
| ron-fra | flores101-devtest | 0.63060 | 37.4 | 1012 | 28343 |
| ron-glg | flores101-devtest | 0.56677 | 29.3 | 1012 | 26582 |
| ron-ita | flores101-devtest | 0.55485 | 25.6 | 1012 | 27306 |
| ron-oci | flores101-devtest | 0.52433 | 21.8 | 1012 | 27305 |
| ron-por | flores101-devtest | 0.61831 | 36.1 | 1012 | 26519 |
| ron-spa | flores101-devtest | 0.52712 | 24.1 | 1012 | 29199 |
| spa-ast | flores101-devtest | 0.49008 | 15.7 | 1012 | 24572 |
| spa-cat | flores101-devtest | 0.53905 | 23.2 | 1012 | 27304 |
| spa-fra | flores101-devtest | 0.57078 | 27.4 | 1012 | 28343 |
| spa-glg | flores101-devtest | 0.52563 | 22.0 | 1012 | 26582 |
| spa-ita | flores101-devtest | 0.52783 | 22.3 | 1012 | 27306 |
| spa-oci | flores101-devtest | 0.48064 | 16.3 | 1012 | 27305 |
| spa-por | flores101-devtest | 0.55736 | 25.8 | 1012 | 26519 |
| spa-ron | flores101-devtest | 0.51623 | 21.4 | 1012 | 26799 |
| fra-ita | newssyscomb2009 | 0.60995 | 32.1 | 502 | 11551 |
| fra-spa | newssyscomb2009 | 0.60224 | 34.2 | 502 | 12503 |
| ita-fra | newssyscomb2009 | 0.61237 | 33.7 | 502 | 12331 |
| ita-spa | newssyscomb2009 | 0.60706 | 35.4 | 502 | 12503 |
| spa-fra | newssyscomb2009 | 0.61290 | 34.6 | 502 | 12331 |
| spa-ita | newssyscomb2009 | 0.61632 | 33.3 | 502 | 11551 |
| fra-spa | news-test2008 | 0.58939 | 33.9 | 2051 | 52586 |
| spa-fra | news-test2008 | 0.58695 | 32.4 | 2051 | 52685 |
| fra-ita | newstest2009 | 0.59764 | 31.2 | 2525 | 63466 |
| fra-spa | newstest2009 | 0.58829 | 32.5 | 2525 | 68111 |
| ita-fra | newstest2009 | 0.59084 | 31.6 | 2525 | 69263 |
| ita-spa | newstest2009 | 0.59669 | 33.5 | 2525 | 68111 |
| spa-fra | newstest2009 | 0.59096 | 32.3 | 2525 | 69263 |
| spa-ita | newstest2009 | 0.60783 | 33.2 | 2525 | 63466 |
| fra-spa | newstest2010 | 0.62250 | 37.8 | 2489 | 65480 |
| spa-fra | newstest2010 | 0.61953 | 36.2 | 2489 | 66022 |
| fra-spa | newstest2011 | 0.62953 | 39.8 | 3003 | 79476 |
| spa-fra | newstest2011 | 0.61130 | 34.9 | 3003 | 80626 |
| fra-spa | newstest2012 | 0.62397 | 39.0 | 3003 | 79006 |
| spa-fra | newstest2012 | 0.60927 | 34.3 | 3003 | 78011 |
| fra-spa | newstest2013 | 0.59312 | 34.9 | 3000 | 70528 |
| spa-fra | newstest2013 | 0.59468 | 33.6 | 3000 | 70037 |
| cat-ita | wmt21-ml-wp | 0.69968 | 47.8 | 1743 | 42735 |
| cat-oci | wmt21-ml-wp | 0.73808 | 51.6 | 1743 | 43736 |
| cat-ron | wmt21-ml-wp | 0.51178 | 29.0 | 1743 | 42895 |
| ita-cat | wmt21-ml-wp | 0.70538 | 48.9 | 1743 | 43833 |
| ita-oci | wmt21-ml-wp | 0.59025 | 32.0 | 1743 | 43736 |
| ita-ron | wmt21-ml-wp | 0.51261 | 28.9 | 1743 | 42895 |
| oci-cat | wmt21-ml-wp | 0.80908 | 66.1 | 1743 | 43833 |
| oci-ita | wmt21-ml-wp | 0.63584 | 39.6 | 1743 | 42735 |
| oci-ron | wmt21-ml-wp | 0.47384 | 24.6 | 1743 | 42895 |
| ron-cat | wmt21-ml-wp | 0.52994 | 31.1 | 1743 | 43833 |
| ron-ita | wmt21-ml-wp | 0.52714 | 29.6 | 1743 | 42735 |
| ron-oci | wmt21-ml-wp | 0.45932 | 21.3 | 1743 | 43736 |
## Citation Information
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 8b9f0b0
* port time: Fri Aug 12 23:57:49 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-lv-en
|
Helsinki-NLP
| 2023-10-10T10:55:14Z | 175 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"lv",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T16:46:59Z |
---
language:
- en
- lv
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-lv-en
results:
- task:
name: Translation lav-eng
type: translation
args: lav-eng
dataset:
name: flores101-devtest
type: flores_101
args: lav eng devtest
metrics:
- name: BLEU
type: bleu
value: 37.2
- task:
name: Translation lav-eng
type: translation
args: lav-eng
dataset:
name: newsdev2017
type: newsdev2017
args: lav-eng
metrics:
- name: BLEU
type: bleu
value: 30.8
- task:
name: Translation lav-eng
type: translation
args: lav-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: lav-eng
metrics:
- name: BLEU
type: bleu
value: 59.2
- task:
name: Translation lav-eng
type: translation
args: lav-eng
dataset:
name: newstest2017
type: wmt-2017-news
args: lav-eng
metrics:
- name: BLEU
type: bleu
value: 21.8
---
# opus-mt-tc-big-lv-en
Neural machine translation model for translating from Latvian (lv) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): lav
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/lav-eng/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT lav-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/lav-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Dienai ir divdesmit četras stundas.",
"Jys lobs advokats."
]
model_name = "pytorch-models/opus-mt-tc-big-lv-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# The day has twenty-four hours.
# Jys lobs lawyer.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-lv-en")
print(pipe("Dienai ir divdesmit četras stundas."))
# expected output: The day has twenty-four hours.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lav-eng/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/lav-eng/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| lav-eng | tatoeba-test-v2021-08-07 | 0.73884 | 59.2 | 1631 | 11213 |
| lav-eng | flores101-devtest | 0.64246 | 37.2 | 1012 | 24721 |
| lav-eng | newsdev2017 | 0.55467 | 30.8 | 2003 | 48175 |
| lav-eng | newstest2017 | 0.48769 | 21.8 | 2001 | 47511 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:46:50 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-et
|
Helsinki-NLP
| 2023-10-10T10:54:12Z | 114 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"et",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T14:00:27Z |
---
language:
- en
- et
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-et
results:
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: flores101-devtest
type: flores_101
args: eng est devtest
metrics:
- name: BLEU
type: bleu
value: 28.3
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: newsdev2018
type: newsdev2018
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 25.2
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 53.4
- task:
name: Translation eng-est
type: translation
args: eng-est
dataset:
name: newstest2018
type: wmt-2018-news
args: eng-est
metrics:
- name: BLEU
type: bleu
value: 26.7
---
# opus-mt-tc-big-en-et
Neural machine translation model for translating from English (en) to Estonian (et).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): eng
* target language(s): est
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-est/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT eng-est README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-est/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>est<< A cab is waiting.",
">>vro<< Where do you live?"
]
model_name = "pytorch-models/opus-mt-tc-big-en-et"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Takso ootab.
# Kus sa elad?
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-et")
print(pipe(">>est<< A cab is waiting."))
# expected output: Takso ootab.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-est/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-est/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-est | tatoeba-test-v2021-08-07 | 0.71255 | 53.4 | 1359 | 7992 |
| eng-est | flores101-devtest | 0.61306 | 28.3 | 1012 | 19788 |
| eng-est | newsdev2018 | 0.57225 | 25.2 | 2000 | 34492 |
| eng-est | newstest2018 | 0.58540 | 26.7 | 2000 | 36269 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:00:19 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-gmq-en
|
Helsinki-NLP
| 2023-10-10T10:53:03Z | 130 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"tc",
"big",
"gmq",
"en",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T16:13:21Z |
---
language:
- da
- en
- fo
- gmq
- is
- nb
- nn
- false
- sv
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-gmq-en
results:
- task:
name: Translation dan-eng
type: translation
args: dan-eng
dataset:
name: flores101-devtest
type: flores_101
args: dan eng devtest
metrics:
- name: BLEU
type: bleu
value: 49.3
- task:
name: Translation isl-eng
type: translation
args: isl-eng
dataset:
name: flores101-devtest
type: flores_101
args: isl eng devtest
metrics:
- name: BLEU
type: bleu
value: 34.2
- task:
name: Translation nob-eng
type: translation
args: nob-eng
dataset:
name: flores101-devtest
type: flores_101
args: nob eng devtest
metrics:
- name: BLEU
type: bleu
value: 44.2
- task:
name: Translation swe-eng
type: translation
args: swe-eng
dataset:
name: flores101-devtest
type: flores_101
args: swe eng devtest
metrics:
- name: BLEU
type: bleu
value: 49.8
- task:
name: Translation isl-eng
type: translation
args: isl-eng
dataset:
name: newsdev2021.is-en
type: newsdev2021.is-en
args: isl-eng
metrics:
- name: BLEU
type: bleu
value: 30.4
- task:
name: Translation dan-eng
type: translation
args: dan-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: dan-eng
metrics:
- name: BLEU
type: bleu
value: 65.9
- task:
name: Translation fao-eng
type: translation
args: fao-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fao-eng
metrics:
- name: BLEU
type: bleu
value: 30.1
- task:
name: Translation isl-eng
type: translation
args: isl-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: isl-eng
metrics:
- name: BLEU
type: bleu
value: 53.3
- task:
name: Translation nno-eng
type: translation
args: nno-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nno-eng
metrics:
- name: BLEU
type: bleu
value: 56.1
- task:
name: Translation nob-eng
type: translation
args: nob-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: nob-eng
metrics:
- name: BLEU
type: bleu
value: 60.2
- task:
name: Translation swe-eng
type: translation
args: swe-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: swe-eng
metrics:
- name: BLEU
type: bleu
value: 66.4
- task:
name: Translation isl-eng
type: translation
args: isl-eng
dataset:
name: newstest2021.is-en
type: wmt-2021-news
args: isl-eng
metrics:
- name: BLEU
type: bleu
value: 34.4
---
# opus-mt-tc-big-gmq-en
Neural machine translation model for translating from North Germanic languages (gmq) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): dan fao isl nno nob nor swe
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT gmq-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Han var synligt nervøs.",
"Inte ens Tom själv var övertygad."
]
model_name = "pytorch-models/opus-mt-tc-big-gmq-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# He was visibly nervous.
# Even Tom was not convinced.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-en")
print(pipe("Han var synligt nervøs."))
# expected output: He was visibly nervous.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| dan-eng | tatoeba-test-v2021-08-07 | 0.78292 | 65.9 | 10795 | 79684 |
| fao-eng | tatoeba-test-v2021-08-07 | 0.47467 | 30.1 | 294 | 1984 |
| isl-eng | tatoeba-test-v2021-08-07 | 0.68346 | 53.3 | 2503 | 19788 |
| nno-eng | tatoeba-test-v2021-08-07 | 0.69788 | 56.1 | 460 | 3524 |
| nob-eng | tatoeba-test-v2021-08-07 | 0.73524 | 60.2 | 4539 | 36823 |
| swe-eng | tatoeba-test-v2021-08-07 | 0.77665 | 66.4 | 10362 | 68513 |
| dan-eng | flores101-devtest | 0.72322 | 49.3 | 1012 | 24721 |
| isl-eng | flores101-devtest | 0.59616 | 34.2 | 1012 | 24721 |
| nob-eng | flores101-devtest | 0.68224 | 44.2 | 1012 | 24721 |
| swe-eng | flores101-devtest | 0.72042 | 49.8 | 1012 | 24721 |
| isl-eng | newsdev2021.is-en | 0.56709 | 30.4 | 2004 | 46383 |
| isl-eng | newstest2021.is-en | 0.57756 | 34.4 | 1000 | 22529 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:13:11 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-ces_slk
|
Helsinki-NLP
| 2023-10-10T10:51:59Z | 139 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"ces",
"slk",
"cs",
"sk",
"en",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T13:46:59Z |
---
language:
- ces
- slk
- cs
- sk
- en
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-ces_slk
results:
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: flores101-devtest
type: flores_101
args: eng ces devtest
metrics:
- name: BLEU
type: bleu
value: 34.1
- task:
name: Translation eng-slk
type: translation
args: eng-slk
dataset:
name: flores101-devtest
type: flores_101
args: eng slk devtest
metrics:
- name: BLEU
type: bleu
value: 35.9
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: news-test2008
type: news-test2008
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 22.8
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 47.5
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2009
type: wmt-2009-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.3
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2010
type: wmt-2010-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2011
type: wmt-2011-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 25.5
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2012
type: wmt-2012-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 22.6
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2013
type: wmt-2013-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 27.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2014
type: wmt-2014-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 31.4
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2015
type: wmt-2015-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 27.0
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 29.9
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2017
type: wmt-2017-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.9
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2018
type: wmt-2018-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 24.6
- task:
name: Translation eng-ces
type: translation
args: eng-ces
dataset:
name: newstest2019
type: wmt-2019-news
args: eng-ces
metrics:
- name: BLEU
type: bleu
value: 26.4
---
# opus-mt-tc-big-en-ces_slk
Neural machine translation model for translating from English (en) to Czech and Slovak (ces+slk).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): eng
* target language(s): ces
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ces+slk/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT eng-ces+slk README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ces+slk/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>ces<< We were enemies.",
">>ces<< Do you think Tom knows what's going on?"
]
model_name = "pytorch-models/opus-mt-tc-big-en-ces_slk"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Byli jsme nepřátelé.
# Myslíš, že Tom ví, co se děje?
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ces_slk")
print(pipe(">>ces<< We were enemies."))
# expected output: Byli jsme nepřátelé.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ces+slk/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ces+slk/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-ces | tatoeba-test-v2021-08-07 | 0.66128 | 47.5 | 13824 | 91332 |
| eng-ces | flores101-devtest | 0.60411 | 34.1 | 1012 | 22101 |
| eng-slk | flores101-devtest | 0.62415 | 35.9 | 1012 | 22543 |
| eng-ces | multi30k_test_2016_flickr | 0.58547 | 33.4 | 1000 | 10503 |
| eng-ces | multi30k_test_2018_flickr | 0.59236 | 33.4 | 1071 | 11631 |
| eng-ces | newssyscomb2009 | 0.52702 | 25.3 | 502 | 10032 |
| eng-ces | news-test2008 | 0.50286 | 22.8 | 2051 | 42484 |
| eng-ces | newstest2009 | 0.52152 | 24.3 | 2525 | 55533 |
| eng-ces | newstest2010 | 0.52527 | 24.4 | 2489 | 52955 |
| eng-ces | newstest2011 | 0.52721 | 25.5 | 3003 | 65653 |
| eng-ces | newstest2012 | 0.50007 | 22.6 | 3003 | 65456 |
| eng-ces | newstest2013 | 0.53643 | 27.4 | 3000 | 57250 |
| eng-ces | newstest2014 | 0.58944 | 31.4 | 3003 | 59902 |
| eng-ces | newstest2015 | 0.55094 | 27.0 | 2656 | 45858 |
| eng-ces | newstest2016 | 0.56864 | 29.9 | 2999 | 56998 |
| eng-ces | newstest2017 | 0.52504 | 24.9 | 3005 | 54361 |
| eng-ces | newstest2018 | 0.52490 | 24.6 | 2983 | 54652 |
| eng-ces | newstest2019 | 0.53994 | 26.4 | 1997 | 43113 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 16:46:48 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-lv
|
Helsinki-NLP
| 2023-10-10T10:50:52Z | 164 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"lv",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T14:36:12Z |
---
language:
- en
- lv
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-lv
results:
- task:
name: Translation eng-lav
type: translation
args: eng-lav
dataset:
name: flores101-devtest
type: flores_101
args: eng lav devtest
metrics:
- name: BLEU
type: bleu
value: 30.1
- task:
name: Translation eng-lav
type: translation
args: eng-lav
dataset:
name: newsdev2017
type: newsdev2017
args: eng-lav
metrics:
- name: BLEU
type: bleu
value: 28.9
- task:
name: Translation eng-lav
type: translation
args: eng-lav
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-lav
metrics:
- name: BLEU
type: bleu
value: 44.0
- task:
name: Translation eng-lav
type: translation
args: eng-lav
dataset:
name: newstest2017
type: wmt-2017-news
args: eng-lav
metrics:
- name: BLEU
type: bleu
value: 22.1
---
# opus-mt-tc-big-en-lv
Neural machine translation model for translating from English (en) to Latvian (lv).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): eng
* target language(s): lav
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lav/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT eng-lav README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-lav/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>lav<< A day has twenty-four hours.",
">>ltg<< He's a good lawyer."
]
model_name = "pytorch-models/opus-mt-tc-big-en-lv"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Dienā ir divdesmit četras stundas.
# Vyss ir labs advokats.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-lv")
print(pipe(">>lav<< A day has twenty-four hours."))
# expected output: Dienā ir divdesmit četras stundas.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lav/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lav/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-lav | tatoeba-test-v2021-08-07 | 0.66411 | 44.0 | 1631 | 9932 |
| eng-lav | flores101-devtest | 0.59397 | 30.1 | 1012 | 22092 |
| eng-lav | newsdev2017 | 0.58082 | 28.9 | 2003 | 41503 |
| eng-lav | newstest2017 | 0.53202 | 22.1 | 2001 | 39392 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:36:04 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-bg-en
|
Helsinki-NLP
| 2023-10-10T10:49:48Z | 170 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"bg",
"en",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T15:24:05Z |
---
language:
- bg
- en
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-bg-en
results:
- task:
name: Translation bul-eng
type: translation
args: bul-eng
dataset:
name: flores101-devtest
type: flores_101
args: bul eng devtest
metrics:
- name: BLEU
type: bleu
value: 42.9
- task:
name: Translation bul-eng
type: translation
args: bul-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: bul-eng
metrics:
- name: BLEU
type: bleu
value: 60.5
---
# opus-mt-tc-big-bg-en
Neural machine translation model for translating from Bulgarian (bg) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): bul
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT bul-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/bul-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"2001 е годината, с която започва 21-ви век.",
"Това е Copacabana!"
]
model_name = "pytorch-models/opus-mt-tc-big-bg-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# 2001 was the year the 21st century began.
# It's Copacabana!
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-bg-en")
print(pipe("2001 е годината, с която започва 21-ви век."))
# expected output: 2001 was the year the 21st century began.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/bul-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| bul-eng | tatoeba-test-v2021-08-07 | 0.73687 | 60.5 | 10000 | 71872 |
| bul-eng | flores101-devtest | 0.67938 | 42.9 | 1012 | 24721 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 18:23:56 EEST 2022
* port machine: LM0-400-22516.local
|
twdent/segformer-b5-finetuned-Hiking
|
twdent
| 2023-10-10T10:47:18Z | 192 | 0 |
transformers
|
[
"transformers",
"pytorch",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"base_model:nvidia/mit-b5",
"base_model:finetune:nvidia/mit-b5",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2023-10-10T10:34:13Z |
---
license: other
base_model: nvidia/mit-b5
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b5-finetuned-Hiking
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b5-finetuned-Hiking
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the twdent/Hiking dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1401
- Mean Iou: 0.6237
- Mean Accuracy: 0.9673
- Overall Accuracy: 0.9683
- Accuracy Unlabeled: nan
- Accuracy Traversable: 0.9641
- Accuracy Non-traversable: 0.9705
- Iou Unlabeled: 0.0
- Iou Traversable: 0.9178
- Iou Non-traversable: 0.9532
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Traversable | Accuracy Non-traversable | Iou Unlabeled | Iou Traversable | Iou Non-traversable |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------------:|:------------------------:|:-------------:|:---------------:|:-------------------:|
| 0.2675 | 1.33 | 20 | 0.2742 | 0.6058 | 0.9616 | 0.9550 | nan | 0.9826 | 0.9406 | 0.0 | 0.8853 | 0.9321 |
| 0.1418 | 2.67 | 40 | 0.1827 | 0.6073 | 0.9562 | 0.9566 | nan | 0.9548 | 0.9575 | 0.0 | 0.8858 | 0.9360 |
| 0.0949 | 4.0 | 60 | 0.1561 | 0.6002 | 0.9382 | 0.9523 | nan | 0.8931 | 0.9832 | 0.0 | 0.8692 | 0.9314 |
| 0.0684 | 5.33 | 80 | 0.1364 | 0.6135 | 0.9556 | 0.9614 | nan | 0.9369 | 0.9742 | 0.0 | 0.8967 | 0.9437 |
| 0.0627 | 6.67 | 100 | 0.1289 | 0.6122 | 0.9506 | 0.9610 | nan | 0.9177 | 0.9836 | 0.0 | 0.8928 | 0.9438 |
| 0.0625 | 8.0 | 120 | 0.1097 | 0.6208 | 0.9610 | 0.9658 | nan | 0.9458 | 0.9762 | 0.0 | 0.9113 | 0.9510 |
| 0.0371 | 9.33 | 140 | 0.1361 | 0.6130 | 0.9551 | 0.9610 | nan | 0.9361 | 0.9741 | 0.0 | 0.8959 | 0.9431 |
| 0.0409 | 10.67 | 160 | 0.1239 | 0.6194 | 0.9615 | 0.9653 | nan | 0.9494 | 0.9737 | 0.0 | 0.9086 | 0.9494 |
| 0.0457 | 12.0 | 180 | 0.0993 | 0.6281 | 0.9715 | 0.9713 | nan | 0.9723 | 0.9707 | 0.0 | 0.9264 | 0.9579 |
| 0.0368 | 13.33 | 200 | 0.1354 | 0.6146 | 0.9563 | 0.9617 | nan | 0.9389 | 0.9737 | 0.0 | 0.8993 | 0.9446 |
| 0.0667 | 14.67 | 220 | 0.1208 | 0.6171 | 0.9565 | 0.9644 | nan | 0.9316 | 0.9815 | 0.0 | 0.9032 | 0.9482 |
| 0.029 | 16.0 | 240 | 0.0946 | 0.6291 | 0.9695 | 0.9724 | nan | 0.9606 | 0.9785 | 0.0 | 0.9276 | 0.9596 |
| 0.0467 | 17.33 | 260 | 0.1188 | 0.6224 | 0.9655 | 0.9676 | nan | 0.9589 | 0.9721 | 0.0 | 0.9151 | 0.9522 |
| 0.0449 | 18.67 | 280 | 0.1201 | 0.6212 | 0.9638 | 0.9667 | nan | 0.9545 | 0.9731 | 0.0 | 0.9125 | 0.9511 |
| 0.0353 | 20.0 | 300 | 0.1285 | 0.6234 | 0.9687 | 0.9681 | nan | 0.9706 | 0.9668 | 0.0 | 0.9174 | 0.9527 |
| 0.025 | 21.33 | 320 | 0.1292 | 0.6204 | 0.9641 | 0.9659 | nan | 0.9582 | 0.9699 | 0.0 | 0.9114 | 0.9500 |
| 0.0244 | 22.67 | 340 | 0.1352 | 0.6208 | 0.9665 | 0.9664 | nan | 0.9667 | 0.9662 | 0.0 | 0.9124 | 0.9501 |
| 0.035 | 24.0 | 360 | 0.1260 | 0.6252 | 0.9699 | 0.9693 | nan | 0.9718 | 0.9681 | 0.0 | 0.9211 | 0.9544 |
| 0.0295 | 25.33 | 380 | 0.1190 | 0.6244 | 0.9669 | 0.9688 | nan | 0.9607 | 0.9730 | 0.0 | 0.9190 | 0.9543 |
| 0.032 | 26.67 | 400 | 0.1258 | 0.6253 | 0.9694 | 0.9695 | nan | 0.9693 | 0.9695 | 0.0 | 0.9211 | 0.9547 |
| 0.0241 | 28.0 | 420 | 0.1255 | 0.6230 | 0.9658 | 0.9678 | nan | 0.9593 | 0.9723 | 0.0 | 0.9164 | 0.9527 |
| 0.0246 | 29.33 | 440 | 0.1273 | 0.6238 | 0.9675 | 0.9683 | nan | 0.9651 | 0.9699 | 0.0 | 0.9179 | 0.9534 |
| 0.0214 | 30.67 | 460 | 0.1321 | 0.6233 | 0.9670 | 0.9675 | nan | 0.9652 | 0.9687 | 0.0 | 0.9171 | 0.9527 |
| 0.0236 | 32.0 | 480 | 0.1289 | 0.6241 | 0.9687 | 0.9685 | nan | 0.9695 | 0.9679 | 0.0 | 0.9189 | 0.9534 |
| 0.0238 | 33.33 | 500 | 0.1309 | 0.6234 | 0.9664 | 0.9680 | nan | 0.9612 | 0.9716 | 0.0 | 0.9172 | 0.9529 |
| 0.0204 | 34.67 | 520 | 0.1271 | 0.6249 | 0.9681 | 0.9693 | nan | 0.9643 | 0.9719 | 0.0 | 0.9201 | 0.9547 |
| 0.0243 | 36.0 | 540 | 0.1264 | 0.6248 | 0.9679 | 0.9693 | nan | 0.9636 | 0.9723 | 0.0 | 0.9196 | 0.9547 |
| 0.0259 | 37.33 | 560 | 0.1305 | 0.6226 | 0.9656 | 0.9679 | nan | 0.9582 | 0.9730 | 0.0 | 0.9154 | 0.9525 |
| 0.0341 | 38.67 | 580 | 0.1277 | 0.6245 | 0.9674 | 0.9690 | nan | 0.9623 | 0.9725 | 0.0 | 0.9192 | 0.9543 |
| 0.0275 | 40.0 | 600 | 0.1369 | 0.6221 | 0.9653 | 0.9672 | nan | 0.9590 | 0.9715 | 0.0 | 0.9147 | 0.9516 |
| 0.0303 | 41.33 | 620 | 0.1380 | 0.6235 | 0.9674 | 0.9681 | nan | 0.9650 | 0.9698 | 0.0 | 0.9175 | 0.9530 |
| 0.0207 | 42.67 | 640 | 0.1389 | 0.6237 | 0.9677 | 0.9682 | nan | 0.9662 | 0.9692 | 0.0 | 0.9180 | 0.9531 |
| 0.0231 | 44.0 | 660 | 0.1369 | 0.6243 | 0.9679 | 0.9688 | nan | 0.9652 | 0.9707 | 0.0 | 0.9190 | 0.9538 |
| 0.0249 | 45.33 | 680 | 0.1379 | 0.6237 | 0.9672 | 0.9683 | nan | 0.9640 | 0.9705 | 0.0 | 0.9179 | 0.9532 |
| 0.0382 | 46.67 | 700 | 0.1384 | 0.6239 | 0.9677 | 0.9685 | nan | 0.9650 | 0.9704 | 0.0 | 0.9182 | 0.9534 |
| 0.0238 | 48.0 | 720 | 0.1420 | 0.6230 | 0.9668 | 0.9677 | nan | 0.9640 | 0.9697 | 0.0 | 0.9166 | 0.9524 |
| 0.0212 | 49.33 | 740 | 0.1401 | 0.6237 | 0.9673 | 0.9683 | nan | 0.9641 | 0.9705 | 0.0 | 0.9178 | 0.9532 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
|
Helsinki-NLP/opus-mt-tc-big-en-ro
|
Helsinki-NLP
| 2023-10-10T10:46:29Z | 256 | 4 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"ro",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T14:55:54Z |
---
language:
- en
- ro
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-ro
results:
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: flores101-devtest
type: flores_101
args: eng ron devtest
metrics:
- name: BLEU
type: bleu
value: 40.4
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: newsdev2016
type: newsdev2016
args: eng-ron
metrics:
- name: BLEU
type: bleu
value: 36.4
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-ron
metrics:
- name: BLEU
type: bleu
value: 48.6
- task:
name: Translation eng-ron
type: translation
args: eng-ron
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-ron
metrics:
- name: BLEU
type: bleu
value: 34.0
---
# opus-mt-tc-big-en-ro
Neural machine translation model for translating from English (en) to Romanian (ro).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-02-25
* source language(s): eng
* target language(s): ron
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opusTCv20210807+bt_transformer-big_2022-02-25.zip)
* more information released models: [OPUS-MT eng-ron README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ron/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>ron<< A bad writer's prose is full of hackneyed phrases.",
">>ron<< Zero is a special number."
]
model_name = "pytorch-models/opus-mt-tc-big-en-ro"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Proza unui scriitor prost este plină de fraze tocite.
# Zero este un număr special.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ro")
print(pipe(">>ron<< A bad writer's prose is full of hackneyed phrases."))
# expected output: Proza unui scriitor prost este plină de fraze tocite.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-ron | tatoeba-test-v2021-08-07 | 0.68606 | 48.6 | 5508 | 40367 |
| eng-ron | flores101-devtest | 0.64876 | 40.4 | 1012 | 26799 |
| eng-ron | newsdev2016 | 0.62682 | 36.4 | 1999 | 51300 |
| eng-ron | newstest2016 | 0.60702 | 34.0 | 1999 | 48945 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:55:46 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-lt
|
Helsinki-NLP
| 2023-10-10T10:42:32Z | 270 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"lt",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T14:42:47Z |
---
language:
- en
- lt
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-lt
results:
- task:
name: Translation eng-lit
type: translation
args: eng-lit
dataset:
name: flores101-devtest
type: flores_101
args: eng lit devtest
metrics:
- name: BLEU
type: bleu
value: 28.0
- task:
name: Translation eng-lit
type: translation
args: eng-lit
dataset:
name: newsdev2019
type: newsdev2019
args: eng-lit
metrics:
- name: BLEU
type: bleu
value: 26.6
- task:
name: Translation eng-lit
type: translation
args: eng-lit
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-lit
metrics:
- name: BLEU
type: bleu
value: 39.5
- task:
name: Translation eng-lit
type: translation
args: eng-lit
dataset:
name: newstest2019
type: wmt-2019-news
args: eng-lit
metrics:
- name: BLEU
type: bleu
value: 17.5
---
# opus-mt-tc-big-en-lt
Neural machine translation model for translating from English (en) to Lithuanian (lt).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-02-25
* source language(s): eng
* target language(s): lit
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lit/opusTCv20210807+bt_transformer-big_2022-02-25.zip)
* more information released models: [OPUS-MT eng-lit README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-lit/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"A cat was sitting on the chair.",
"Yukiko likes potatoes."
]
model_name = "pytorch-models/opus-mt-tc-big-en-lt"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Katė sėdėjo ant kėdės.
# Jukiko mėgsta bulves.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-lt")
print(pipe("A cat was sitting on the chair."))
# expected output: Katė sėdėjo ant kėdės.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lit/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-lit/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-lit | tatoeba-test-v2021-08-07 | 0.67434 | 39.5 | 2528 | 14942 |
| eng-lit | flores101-devtest | 0.59593 | 28.0 | 1012 | 20695 |
| eng-lit | newsdev2019 | 0.58444 | 26.6 | 2000 | 39627 |
| eng-lit | newstest2019 | 0.51559 | 17.5 | 998 | 19711 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:42:39 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-hu
|
Helsinki-NLP
| 2023-10-10T10:40:26Z | 1,246 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"hu",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T14:21:29Z |
---
language:
- en
- hu
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-hu
results:
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: flores101-devtest
type: flores_101
args: eng hun devtest
metrics:
- name: BLEU
type: bleu
value: 29.6
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 38.7
- task:
name: Translation eng-hun
type: translation
args: eng-hun
dataset:
name: newstest2009
type: wmt-2009-news
args: eng-hun
metrics:
- name: BLEU
type: bleu
value: 20.3
---
# opus-mt-tc-big-en-hu
Neural machine translation model for translating from English (en) to Hungarian (hu).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-02-25
* source language(s): eng
* target language(s): hun
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-02-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.zip)
* more information released models: [OPUS-MT eng-hun README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-hun/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"I wish I hadn't seen such a horrible film.",
"She's at school."
]
model_name = "pytorch-models/opus-mt-tc-big-en-hu"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Bárcsak ne láttam volna ilyen szörnyű filmet.
# Iskolában van.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-hu")
print(pipe("I wish I hadn't seen such a horrible film."))
# expected output: Bárcsak ne láttam volna ilyen szörnyű filmet.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-02-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-hun/opusTCv20210807+bt_transformer-big_2022-02-25.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-hun | tatoeba-test-v2021-08-07 | 0.62096 | 38.7 | 13037 | 79562 |
| eng-hun | flores101-devtest | 0.60159 | 29.6 | 1012 | 22183 |
| eng-hun | newssyscomb2009 | 0.51918 | 20.6 | 502 | 9733 |
| eng-hun | newstest2009 | 0.50973 | 20.3 | 2525 | 54965 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:21:20 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-zle
|
Helsinki-NLP
| 2023-10-10T10:39:20Z | 140 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"be",
"en",
"ru",
"uk",
"zle",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-24T12:23:34Z |
---
language:
- be
- en
- ru
- uk
- zle
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-zle
results:
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: flores101-devtest
type: flores_101
args: eng rus devtest
metrics:
- name: BLEU
type: bleu
value: 32.7
- task:
name: Translation eng-ukr
type: translation
args: eng-ukr
dataset:
name: flores101-devtest
type: flores_101
args: eng ukr devtest
metrics:
- name: BLEU
type: bleu
value: 32.1
- task:
name: Translation eng-bel
type: translation
args: eng-bel
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-bel
metrics:
- name: BLEU
type: bleu
value: 24.9
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 45.5
- task:
name: Translation eng-ukr
type: translation
args: eng-ukr
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-ukr
metrics:
- name: BLEU
type: bleu
value: 37.7
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: tico19-test
type: tico19-test
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 33.7
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2012
type: wmt-2012-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 36.8
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2013
type: wmt-2013-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 26.9
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2014
type: wmt-2014-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 43.5
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2015
type: wmt-2015-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 34.9
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 33.1
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2017
type: wmt-2017-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 37.3
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2018
type: wmt-2018-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 32.9
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2019
type: wmt-2019-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 31.8
- task:
name: Translation eng-rus
type: translation
args: eng-rus
dataset:
name: newstest2020
type: wmt-2020-news
args: eng-rus
metrics:
- name: BLEU
type: bleu
value: 25.5
---
# opus-mt-tc-big-en-zle
Neural machine translation model for translating from English (en) to East Slavic languages (zle).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): eng
* target language(s): bel rus ukr
* valid target language labels: >>bel<< >>rus<< >>ukr<<
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT eng-zle README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-zle/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>bel<<`
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>rus<< Are they coming as well?",
">>rus<< I didn't let Tom do what he wanted to do."
]
model_name = "pytorch-models/opus-mt-tc-big-en-zle"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Они тоже приедут?
# Я не позволил Тому сделать то, что он хотел.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-zle")
print(pipe(">>rus<< Are they coming as well?"))
# expected output: Они тоже приедут?
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-zle/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-bel | tatoeba-test-v2021-08-07 | 0.50345 | 24.9 | 2500 | 16237 |
| eng-rus | tatoeba-test-v2021-08-07 | 0.66182 | 45.5 | 19425 | 134296 |
| eng-ukr | tatoeba-test-v2021-08-07 | 0.60175 | 37.7 | 13127 | 80998 |
| eng-bel | flores101-devtest | 0.42078 | 11.2 | 1012 | 24829 |
| eng-rus | flores101-devtest | 0.59654 | 32.7 | 1012 | 23295 |
| eng-ukr | flores101-devtest | 0.60131 | 32.1 | 1012 | 22810 |
| eng-rus | newstest2012 | 0.62842 | 36.8 | 3003 | 64790 |
| eng-rus | newstest2013 | 0.54627 | 26.9 | 3000 | 58560 |
| eng-rus | newstest2014 | 0.68348 | 43.5 | 3003 | 61603 |
| eng-rus | newstest2015 | 0.62621 | 34.9 | 2818 | 55915 |
| eng-rus | newstest2016 | 0.60595 | 33.1 | 2998 | 62014 |
| eng-rus | newstest2017 | 0.64249 | 37.3 | 3001 | 60253 |
| eng-rus | newstest2018 | 0.61219 | 32.9 | 3000 | 61907 |
| eng-rus | newstest2019 | 0.57902 | 31.8 | 1997 | 48147 |
| eng-rus | newstest2020 | 0.52939 | 25.5 | 2002 | 47083 |
| eng-rus | tico19-test | 0.59314 | 33.7 | 2100 | 55843 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 1bdabf7
* port time: Thu Mar 24 01:58:40 EET 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-et-en
|
Helsinki-NLP
| 2023-10-10T10:35:11Z | 142 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"et",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T15:54:21Z |
---
language:
- en
- et
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-et-en
results:
- task:
name: Translation est-eng
type: translation
args: est-eng
dataset:
name: flores101-devtest
type: flores_101
args: est eng devtest
metrics:
- name: BLEU
type: bleu
value: 38.6
- task:
name: Translation est-eng
type: translation
args: est-eng
dataset:
name: newsdev2018
type: newsdev2018
args: est-eng
metrics:
- name: BLEU
type: bleu
value: 33.8
- task:
name: Translation est-eng
type: translation
args: est-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: est-eng
metrics:
- name: BLEU
type: bleu
value: 59.7
- task:
name: Translation est-eng
type: translation
args: est-eng
dataset:
name: newstest2018
type: wmt-2018-news
args: est-eng
metrics:
- name: BLEU
type: bleu
value: 34.3
---
# opus-mt-tc-big-et-en
Neural machine translation model for translating from Estonian (et) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): est
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/est-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT est-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/est-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Takso ootab.",
"Kon sa elät?"
]
model_name = "pytorch-models/opus-mt-tc-big-et-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Taxi's waiting.
# Kon you elät?
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-et-en")
print(pipe("Takso ootab."))
# expected output: Taxi's waiting.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/est-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/est-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| est-eng | tatoeba-test-v2021-08-07 | 0.73707 | 59.7 | 1359 | 8811 |
| est-eng | flores101-devtest | 0.64463 | 38.6 | 1012 | 24721 |
| est-eng | newsdev2018 | 0.59899 | 33.8 | 2000 | 43068 |
| est-eng | newstest2018 | 0.60708 | 34.3 | 2000 | 45405 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 18:54:11 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-gmq
|
Helsinki-NLP
| 2023-10-10T10:34:07Z | 3,092 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"tc",
"big",
"en",
"gmq",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T14:14:55Z |
---
language:
- da
- en
- fo
- gmq
- is
- nb
- nn
- false
- sv
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-gmq
results:
- task:
name: Translation eng-dan
type: translation
args: eng-dan
dataset:
name: flores101-devtest
type: flores_101
args: eng dan devtest
metrics:
- name: BLEU
type: bleu
value: 47.7
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: flores101-devtest
type: flores_101
args: eng isl devtest
metrics:
- name: BLEU
type: bleu
value: 24.1
- task:
name: Translation eng-nob
type: translation
args: eng-nob
dataset:
name: flores101-devtest
type: flores_101
args: eng nob devtest
metrics:
- name: BLEU
type: bleu
value: 34.5
- task:
name: Translation eng-swe
type: translation
args: eng-swe
dataset:
name: flores101-devtest
type: flores_101
args: eng swe devtest
metrics:
- name: BLEU
type: bleu
value: 46.9
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: newsdev2021.en-is
type: newsdev2021.en-is
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 22.6
- task:
name: Translation eng-dan
type: translation
args: eng-dan
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-dan
metrics:
- name: BLEU
type: bleu
value: 61.6
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 39.9
- task:
name: Translation eng-nno
type: translation
args: eng-nno
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-nno
metrics:
- name: BLEU
type: bleu
value: 40.1
- task:
name: Translation eng-nob
type: translation
args: eng-nob
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-nob
metrics:
- name: BLEU
type: bleu
value: 57.3
- task:
name: Translation eng-swe
type: translation
args: eng-swe
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-swe
metrics:
- name: BLEU
type: bleu
value: 60.9
- task:
name: Translation eng-isl
type: translation
args: eng-isl
dataset:
name: newstest2021.en-is
type: wmt-2021-news
args: eng-isl
metrics:
- name: BLEU
type: bleu
value: 21.5
---
# opus-mt-tc-big-en-gmq
Neural machine translation model for translating from English (en) to North Germanic languages (gmq).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-17
* source language(s): eng
* target language(s): dan fao isl nno nob nor swe
* valid target language labels: >>dan<< >>fao<< >>isl<< >>nno<< >>nob<< >>nor<< >>swe<<
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opusTCv20210807+bt_transformer-big_2022-03-17.zip)
* more information released models: [OPUS-MT eng-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-gmq/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<`
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
">>nno<< The United States borders Canada.",
">>nob<< This is the biggest hotel in this city."
]
model_name = "pytorch-models/opus-mt-tc-big-en-gmq"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# USA grensar til Canada.
# Dette er det største hotellet i denne byen.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-gmq")
print(pipe(">>nno<< The United States borders Canada."))
# expected output: USA grensar til Canada.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opusTCv20210807+bt_transformer-big_2022-03-17.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-gmq/opusTCv20210807+bt_transformer-big_2022-03-17.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-dan | tatoeba-test-v2021-08-07 | 0.75165 | 61.6 | 10795 | 79385 |
| eng-fao | tatoeba-test-v2021-08-07 | 0.40395 | 18.3 | 294 | 1933 |
| eng-isl | tatoeba-test-v2021-08-07 | 0.59731 | 39.9 | 2503 | 19023 |
| eng-nno | tatoeba-test-v2021-08-07 | 0.61271 | 40.1 | 460 | 3428 |
| eng-nob | tatoeba-test-v2021-08-07 | 0.72380 | 57.3 | 4539 | 36119 |
| eng-swe | tatoeba-test-v2021-08-07 | 0.74197 | 60.9 | 10362 | 68067 |
| eng-dan | flores101-devtest | 0.70810 | 47.7 | 1012 | 24638 |
| eng-isl | flores101-devtest | 0.52076 | 24.1 | 1012 | 22834 |
| eng-nob | flores101-devtest | 0.62760 | 34.5 | 1012 | 23873 |
| eng-swe | flores101-devtest | 0.70129 | 46.9 | 1012 | 23121 |
| eng-isl | newsdev2021.en-is | 0.50376 | 22.6 | 2004 | 43721 |
| eng-isl | newstest2021.en-is | 0.50516 | 21.5 | 1000 | 25233 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 17:14:46 EEST 2022
* port machine: LM0-400-22516.local
|
YuZhong-Chen/Taxi-v3
|
YuZhong-Chen
| 2023-10-10T10:34:03Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T10:34:01Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="YuZhong-Chen/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
YuZhong-Chen/q-FrozenLake-v1-4x4-noSlippery
|
YuZhong-Chen
| 2023-10-10T10:32:14Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T10:32:11Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="YuZhong-Chen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
vardhanam/face
|
vardhanam
| 2023-10-10T10:31:26Z | 1 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-10-10T10:31:06Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a vardhanam's face
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Text encoder was not trained.
|
Helsinki-NLP/opus-mt-tc-big-en-ko
|
Helsinki-NLP
| 2023-10-10T10:29:58Z | 1,276 | 14 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"ko",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-08-12T08:02:12Z |
---
language:
- en
- ko
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-ko
results:
- task:
name: Translation eng-kor
type: translation
args: eng-kor
dataset:
name: flores101-devtest
type: flores_101
args: eng kor devtest
metrics:
- name: BLEU
type: bleu
value: 13.7
- name: chr-F
type: chrf
value: 0.36399
---
# opus-mt-tc-big-en-ko
## Table of Contents
- [Model Details](#model-details)
- [Uses](#uses)
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
- [Training](#training)
- [Evaluation](#evaluation)
- [Citation Information](#citation-information)
- [Acknowledgements](#acknowledgements)
## Model Details
Neural machine translation model for translating from English (en) to Korean (ko).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
**Model Description:**
- **Developed by:** Language Technology Research Group at the University of Helsinki
- **Model Type:** Translation (transformer-big)
- **Release**: 2022-07-28
- **License:** CC-BY-4.0
- **Language(s):**
- Source Language(s):
- Target Language(s):
- Valid Target Language Labels:
- **Original Model**: [opusTCv20210807-sepvoc_transformer-big_2022-07-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-kor/opusTCv20210807-sepvoc_transformer-big_2022-07-28.zip)
- **Resources for more information:**
- [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
- More information about released models for this language pair: [OPUS-MT eng-kor README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-kor/README.md)
- [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian)
- [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<`
## Uses
This model can be used for translation and text-to-text generation.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
## How to Get Started With the Model
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"2, 4, 6 etc. are even numbers.",
"Yes."
]
model_name = "pytorch-models/opus-mt-tc-big-en-ko"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# 2, 4, 6 등은 짝수입니다.
# 그래
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ko")
print(pipe("2, 4, 6 etc. are even numbers."))
# expected output: 2, 4, 6 등은 짝수입니다.
```
## Training
- **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
- **Pre-processing**: SentencePiece (spm32k,spm32k)
- **Model Type:** transformer-big
- **Original MarianNMT Model**: [opusTCv20210807-sepvoc_transformer-big_2022-07-28.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-kor/opusTCv20210807-sepvoc_transformer-big_2022-07-28.zip)
- **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train)
## Evaluation
* test set translations: [opusTCv20210807-sepvoc_transformer-big_2022-07-28.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-kor/opusTCv20210807-sepvoc_transformer-big_2022-07-28.test.txt)
* test set scores: [opusTCv20210807-sepvoc_transformer-big_2022-07-28.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-kor/opusTCv20210807-sepvoc_transformer-big_2022-07-28.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
## Citation Information
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 8b9f0b0
* port time: Fri Aug 12 11:02:03 EEST 2022
* port machine: LM0-400-22516.local
|
Nga3110/nha97
|
Nga3110
| 2023-10-10T10:27:55Z | 1 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"region:us"
] |
text-to-image
| 2023-10-10T09:59:36Z |
---
library_name: diffusers
pipeline_tag: text-to-image
---
|
Helsinki-NLP/opus-mt-tc-big-en-es
|
Helsinki-NLP
| 2023-10-10T10:27:47Z | 5,042 | 12 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"es",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T15:04:03Z |
---
language:
- en
- es
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-es
results:
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: flores101-devtest
type: flores_101
args: eng spa devtest
metrics:
- name: BLEU
type: bleu
value: 28.5
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: news-test2008
type: news-test2008
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 30.1
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 57.2
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: tico19-test
type: tico19-test
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 53.0
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: newstest2009
type: wmt-2009-news
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 30.2
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: newstest2010
type: wmt-2010-news
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 37.6
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: newstest2011
type: wmt-2011-news
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 38.9
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: newstest2012
type: wmt-2012-news
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 39.5
- task:
name: Translation eng-spa
type: translation
args: eng-spa
dataset:
name: newstest2013
type: wmt-2013-news
args: eng-spa
metrics:
- name: BLEU
type: bleu
value: 35.9
---
# opus-mt-tc-big-en-es
Neural machine translation model for translating from English (en) to Spanish (es).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): eng
* target language(s): spa
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT eng-spa README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-spa/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"A wasp stung him and he had an allergic reaction.",
"I love nature."
]
model_name = "pytorch-models/opus-mt-tc-big-en-es"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Una avispa lo picó y tuvo una reacción alérgica.
# Me encanta la naturaleza.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-es")
print(pipe("A wasp stung him and he had an allergic reaction."))
# expected output: Una avispa lo picó y tuvo una reacción alérgica.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-spa/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-spa | tatoeba-test-v2021-08-07 | 0.73863 | 57.2 | 16583 | 134710 |
| eng-spa | flores101-devtest | 0.56440 | 28.5 | 1012 | 29199 |
| eng-spa | newssyscomb2009 | 0.58415 | 31.5 | 502 | 12503 |
| eng-spa | news-test2008 | 0.56707 | 30.1 | 2051 | 52586 |
| eng-spa | newstest2009 | 0.57836 | 30.2 | 2525 | 68111 |
| eng-spa | newstest2010 | 0.62357 | 37.6 | 2489 | 65480 |
| eng-spa | newstest2011 | 0.62415 | 38.9 | 3003 | 79476 |
| eng-spa | newstest2012 | 0.63031 | 39.5 | 3003 | 79006 |
| eng-spa | newstest2013 | 0.60354 | 35.9 | 3000 | 70528 |
| eng-spa | tico19-test | 0.73554 | 53.0 | 2100 | 66563 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 18:03:53 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-en-fi
|
Helsinki-NLP
| 2023-10-10T10:26:43Z | 1,100 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"fi",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-22T12:45:06Z |
---
language:
- en
- fi
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-fi
results:
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: flores101-devtest
type: flores_101
args: eng fin devtest
metrics:
- name: BLEU
type: bleu
value: 27.6
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newsdev2015
type: newsdev2015
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 24.2
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 39.3
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2015
type: wmt-2015-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 26.4
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2016
type: wmt-2016-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 28.8
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2017
type: wmt-2017-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 31.3
- task:
name: Translation eng-fin
type: translation
args: eng-fin
dataset:
name: newstest2019
type: wmt-2019-news
args: eng-fin
metrics:
- name: BLEU
type: bleu
value: 26.4
---
# opus-mt-tc-big-en-fi
Neural machine translation model for translating from English (en) to Finnish (fi).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): eng
* target language(s): fin
* valid target language labels: >>fin<<
* model: transformer (big)
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fin/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT eng-fin README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-fin/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)
This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>fin<<`
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"Russia is big.",
"Touch wood!"
]
model_name = "pytorch-models/opus-mt-tc-big-en-fi"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Venäjä on suuri.
# Kosketa puuta!
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-fi")
print(pipe("Russia is big."))
# expected output: Venäjä on suuri.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fin/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-fin/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| eng-fin | tatoeba-test-v2021-08-07 | 0.64352 | 39.3 | 10690 | 65122 |
| eng-fin | flores101-devtest | 0.61334 | 27.6 | 1012 | 18781 |
| eng-fin | newsdev2015 | 0.58367 | 24.2 | 1500 | 23091 |
| eng-fin | newstest2015 | 0.60080 | 26.4 | 1370 | 19735 |
| eng-fin | newstest2016 | 0.61636 | 28.8 | 3000 | 47678 |
| eng-fin | newstest2017 | 0.64381 | 31.3 | 3002 | 45269 |
| eng-fin | newstest2018 | 0.55626 | 19.7 | 3000 | 44836 |
| eng-fin | newstest2019 | 0.58420 | 26.4 | 1997 | 38369 |
| eng-fin | newstestB2016 | 0.57554 | 23.3 | 3000 | 45766 |
| eng-fin | newstestB2017 | 0.60212 | 26.8 | 3002 | 45506 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: f084bad
* port time: Tue Mar 22 14:42:32 EET 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-fr-en
|
Helsinki-NLP
| 2023-10-10T10:25:45Z | 1,097 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"fr",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T16:02:39Z |
---
language:
- en
- fr
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-fr-en
results:
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: flores101-devtest
type: flores_101
args: fra eng devtest
metrics:
- name: BLEU
type: bleu
value: 46.0
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 49.7
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2017_flickr
type: multi30k-2017_flickr
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 52.0
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2017_mscoco
type: multi30k-2017_mscoco
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 50.6
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 44.9
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: news-test2008
type: news-test2008
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 26.5
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newsdiscussdev2015
type: newsdiscussdev2015
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 34.4
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newsdiscusstest2015
type: newsdiscusstest2015
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 40.2
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 59.8
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: tico19-test
type: tico19-test
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 41.3
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2009
type: wmt-2009-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 30.4
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2010
type: wmt-2010-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2011
type: wmt-2011-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 33.8
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2012
type: wmt-2012-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 33.6
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2013
type: wmt-2013-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 34.8
- task:
name: Translation fra-eng
type: translation
args: fra-eng
dataset:
name: newstest2014
type: wmt-2014-news
args: fra-eng
metrics:
- name: BLEU
type: bleu
value: 39.4
---
# opus-mt-tc-big-fr-en
Neural machine translation model for translating from French (fr) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-09
* source language(s): fra
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-09.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.zip)
* more information released models: [OPUS-MT fra-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"J'ai adoré l'Angleterre.",
"C'était la seule chose à faire."
]
model_name = "pytorch-models/opus-mt-tc-big-fr-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# I loved England.
# It was the only thing to do.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-en")
print(pipe("J'ai adoré l'Angleterre."))
# expected output: I loved England.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-09.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-eng/opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| fra-eng | tatoeba-test-v2021-08-07 | 0.73772 | 59.8 | 12681 | 101754 |
| fra-eng | flores101-devtest | 0.69350 | 46.0 | 1012 | 24721 |
| fra-eng | multi30k_test_2016_flickr | 0.68005 | 49.7 | 1000 | 12955 |
| fra-eng | multi30k_test_2017_flickr | 0.70596 | 52.0 | 1000 | 11374 |
| fra-eng | multi30k_test_2017_mscoco | 0.69356 | 50.6 | 461 | 5231 |
| fra-eng | multi30k_test_2018_flickr | 0.65751 | 44.9 | 1071 | 14689 |
| fra-eng | newsdiscussdev2015 | 0.59008 | 34.4 | 1500 | 27759 |
| fra-eng | newsdiscusstest2015 | 0.62603 | 40.2 | 1500 | 26982 |
| fra-eng | newssyscomb2009 | 0.57488 | 31.1 | 502 | 11818 |
| fra-eng | news-test2008 | 0.54316 | 26.5 | 2051 | 49380 |
| fra-eng | newstest2009 | 0.56959 | 30.4 | 2525 | 65399 |
| fra-eng | newstest2010 | 0.59561 | 33.4 | 2489 | 61711 |
| fra-eng | newstest2011 | 0.60271 | 33.8 | 3003 | 74681 |
| fra-eng | newstest2012 | 0.59507 | 33.6 | 3003 | 72812 |
| fra-eng | newstest2013 | 0.59691 | 34.8 | 3000 | 64505 |
| fra-eng | newstest2014 | 0.64533 | 39.4 | 3003 | 70708 |
| fra-eng | tico19-test | 0.63326 | 41.3 | 2100 | 56323 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:02:28 EEST 2022
* port machine: LM0-400-22516.local
|
Helsinki-NLP/opus-mt-tc-big-he-en
|
Helsinki-NLP
| 2023-10-10T10:25:39Z | 4,064 | 5 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"safetensors",
"marian",
"text2text-generation",
"translation",
"opus-mt-tc",
"en",
"he",
"license:cc-by-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-04-13T16:27:23Z |
---
language:
- en
- he
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-he-en
results:
- task:
name: Translation heb-eng
type: translation
args: heb-eng
dataset:
name: flores101-devtest
type: flores_101
args: heb eng devtest
metrics:
- name: BLEU
type: bleu
value: 44.1
- task:
name: Translation heb-eng
type: translation
args: heb-eng
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: heb-eng
metrics:
- name: BLEU
type: bleu
value: 53.8
---
# opus-mt-tc-big-he-en
Neural machine translation model for translating from Hebrew (he) to English (en).
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
```
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
```
## Model info
* Release: 2022-03-13
* source language(s): heb
* target language(s): eng
* model: transformer-big
* data: opusTCv20210807+bt ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+bt_transformer-big_2022-03-13.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-eng/opusTCv20210807+bt_transformer-big_2022-03-13.zip)
* more information released models: [OPUS-MT heb-eng README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-eng/README.md)
## Usage
A short example code:
```python
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"היא שכחה לכתוב לו.",
"אני רוצה לדעת מיד כשמשהו יקרה."
]
model_name = "pytorch-models/opus-mt-tc-big-he-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# She forgot to write to him.
# I want to know as soon as something happens.
```
You can also use OPUS-MT models with the transformers pipelines, for example:
```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-en")
print(pipe("היא שכחה לכתוב לו."))
# expected output: She forgot to write to him.
```
## Benchmarks
* test set translations: [opusTCv20210807+bt_transformer-big_2022-03-13.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-eng/opusTCv20210807+bt_transformer-big_2022-03-13.test.txt)
* test set scores: [opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-eng/opusTCv20210807+bt_transformer-big_2022-03-13.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)
| langpair | testset | chr-F | BLEU | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| heb-eng | tatoeba-test-v2021-08-07 | 0.68565 | 53.8 | 10519 | 77427 |
| heb-eng | flores101-devtest | 0.68116 | 44.1 | 1012 | 24721 |
## Acknowledgements
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
## Model conversion info
* transformers version: 4.16.2
* OPUS-MT git hash: 3405783
* port time: Wed Apr 13 19:27:12 EEST 2022
* port machine: LM0-400-22516.local
|
cys/Reinforce-v1
|
cys
| 2023-10-10T10:23:24Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T10:23:14Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
mys/ggml_llava-v1.5-13b
|
mys
| 2023-10-10T10:20:06Z | 1,078 | 53 | null |
[
"gguf",
"llava",
"lmm",
"ggml",
"llama.cpp",
"endpoints_compatible",
"region:us"
] | null | 2023-10-10T10:04:00Z |
---
tags:
- llava
- lmm
- ggml
- llama.cpp
---
# ggml_llava-v1.5-13b
This repo contains GGUF files to inference [llava-v1.5-13b](https://huggingface.co/liuhaotian/llava-v1.5-13b) with [llama.cpp](https://github.com/ggerganov/llama.cpp) end-to-end without any extra dependency.
**Note**: The `mmproj-model-f16.gguf` file structure is experimental and may change. Always use the latest code in llama.cpp.
|
srjn/q-Taxi-v3
|
srjn
| 2023-10-10T10:16:01Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T10:15:59Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="srjn/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Dhineshk/TestDocumentQuestionAnswering
|
Dhineshk
| 2023-10-10T10:15:36Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"layoutlmv2",
"document-question-answering",
"generated_from_trainer",
"base_model:microsoft/layoutlmv2-base-uncased",
"base_model:finetune:microsoft/layoutlmv2-base-uncased",
"license:cc-by-nc-sa-4.0",
"endpoints_compatible",
"region:us"
] |
document-question-answering
| 2023-09-27T07:48:00Z |
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-base-uncased_finetuned_docvqa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-base-uncased_finetuned_docvqa
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.3353
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.153 | 0.22 | 50 | 5.3909 |
| 0.2793 | 0.44 | 100 | 5.0150 |
| 0.2634 | 0.66 | 150 | 4.6620 |
| 0.5192 | 0.88 | 200 | 4.7826 |
| 0.3096 | 1.11 | 250 | 4.9532 |
| 0.2638 | 1.33 | 300 | 5.2584 |
| 0.4727 | 1.55 | 350 | 4.0943 |
| 0.2763 | 1.77 | 400 | 4.8408 |
| 1.0425 | 1.99 | 450 | 5.0344 |
| 0.4477 | 2.21 | 500 | 4.9084 |
| 0.3266 | 2.43 | 550 | 5.0996 |
| 0.3085 | 2.65 | 600 | 4.4858 |
| 0.4648 | 2.88 | 650 | 4.0630 |
| 0.1845 | 3.1 | 700 | 5.3969 |
| 0.1616 | 3.32 | 750 | 4.8225 |
| 0.1752 | 3.54 | 800 | 5.2945 |
| 0.1877 | 3.76 | 850 | 5.2358 |
| 0.3172 | 3.98 | 900 | 5.2205 |
| 0.1627 | 4.2 | 950 | 4.9991 |
| 0.2548 | 4.42 | 1000 | 4.6917 |
| 0.1566 | 4.65 | 1050 | 5.1266 |
| 0.2616 | 4.87 | 1100 | 4.3241 |
| 0.1199 | 5.09 | 1150 | 4.9821 |
| 0.1372 | 5.31 | 1200 | 5.0838 |
| 0.1198 | 5.53 | 1250 | 5.0156 |
| 0.0558 | 5.75 | 1300 | 4.8638 |
| 0.1331 | 5.97 | 1350 | 4.9492 |
| 0.0689 | 6.19 | 1400 | 4.6926 |
| 0.0912 | 6.42 | 1450 | 4.5153 |
| 0.0495 | 6.64 | 1500 | 4.6969 |
| 0.0853 | 6.86 | 1550 | 4.7690 |
| 0.1072 | 7.08 | 1600 | 4.6783 |
| 0.034 | 7.3 | 1650 | 4.7351 |
| 0.2999 | 7.52 | 1700 | 4.5185 |
| 0.0763 | 7.74 | 1750 | 4.5825 |
| 0.0799 | 7.96 | 1800 | 4.7218 |
| 0.0343 | 8.19 | 1850 | 5.1508 |
| 0.0396 | 8.41 | 1900 | 5.4893 |
| 0.033 | 8.63 | 1950 | 5.5167 |
| 0.0295 | 8.85 | 2000 | 5.6252 |
| 0.2303 | 9.07 | 2050 | 4.7031 |
| 0.088 | 9.29 | 2100 | 4.7323 |
| 0.0666 | 9.51 | 2150 | 4.8688 |
| 0.0597 | 9.73 | 2200 | 5.6007 |
| 0.0615 | 9.96 | 2250 | 5.5403 |
| 0.1003 | 10.18 | 2300 | 5.3198 |
| 0.0457 | 10.4 | 2350 | 5.4828 |
| 0.0391 | 10.62 | 2400 | 5.5312 |
| 0.0325 | 10.84 | 2450 | 5.7410 |
| 0.0147 | 11.06 | 2500 | 5.8749 |
| 0.1013 | 11.28 | 2550 | 5.6522 |
| 0.001 | 11.5 | 2600 | 5.7776 |
| 0.0002 | 11.73 | 2650 | 5.8431 |
| 0.03 | 11.95 | 2700 | 5.9751 |
| 0.0452 | 12.17 | 2750 | 5.6928 |
| 0.0002 | 12.39 | 2800 | 5.6264 |
| 0.0109 | 12.61 | 2850 | 5.2688 |
| 0.0801 | 12.83 | 2900 | 5.2780 |
| 0.0216 | 13.05 | 2950 | 5.3691 |
| 0.0002 | 13.27 | 3000 | 5.5237 |
| 0.0092 | 13.5 | 3050 | 5.3662 |
| 0.0124 | 13.72 | 3100 | 5.4474 |
| 0.0515 | 13.94 | 3150 | 5.3623 |
| 0.0032 | 14.16 | 3200 | 5.4168 |
| 0.0051 | 14.38 | 3250 | 5.2897 |
| 0.0002 | 14.6 | 3300 | 5.3205 |
| 0.014 | 14.82 | 3350 | 5.2114 |
| 0.0004 | 15.04 | 3400 | 5.2342 |
| 0.0104 | 15.27 | 3450 | 5.2562 |
| 0.0107 | 15.49 | 3500 | 5.1112 |
| 0.0002 | 15.71 | 3550 | 5.1515 |
| 0.0002 | 15.93 | 3600 | 5.2054 |
| 0.0002 | 16.15 | 3650 | 5.1968 |
| 0.0003 | 16.37 | 3700 | 5.3196 |
| 0.0246 | 16.59 | 3750 | 5.3111 |
| 0.0054 | 16.81 | 3800 | 5.3335 |
| 0.0001 | 17.04 | 3850 | 5.3488 |
| 0.0243 | 17.26 | 3900 | 5.2597 |
| 0.0217 | 17.48 | 3950 | 5.2834 |
| 0.0002 | 17.7 | 4000 | 5.2947 |
| 0.0002 | 17.92 | 4050 | 5.3131 |
| 0.0001 | 18.14 | 4100 | 5.3240 |
| 0.0016 | 18.36 | 4150 | 5.3129 |
| 0.0133 | 18.58 | 4200 | 5.3241 |
| 0.0002 | 18.81 | 4250 | 5.3382 |
| 0.0159 | 19.03 | 4300 | 5.3764 |
| 0.003 | 19.25 | 4350 | 5.3776 |
| 0.0516 | 19.47 | 4400 | 5.3389 |
| 0.016 | 19.69 | 4450 | 5.3275 |
| 0.0105 | 19.91 | 4500 | 5.3353 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cpu
- Datasets 2.14.5
- Tokenizers 0.13.3
|
amanpelago/pelago-sentence-transformer-v1
|
amanpelago
| 2023-10-10T10:13:38Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-10-10T04:28:10Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# amanpelago/pelago-sentence-transformer-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('amanpelago/pelago-sentence-transformer-v1')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=amanpelago/pelago-sentence-transformer-v1)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 3181 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
```
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
```
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
Utkarshquytech/sd-german-shepherd
|
Utkarshquytech
| 2023-10-10T10:03:20Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-10-10T09:50:27Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### sd-german-shepherd Dreambooth model trained by Utkarshquytech with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
|
szdodo/dqn-SpaceInvadersNoFrameskip-v4
|
szdodo
| 2023-10-10T10:03:15Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T10:02:39Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 615.00 +/- 229.92
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga szdodo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga szdodo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga szdodo
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
digiplay/elegantEntropy_v1.1
|
digiplay
| 2023-10-10T09:57:04Z | 249 | 2 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-22T01:44:34Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/78341/elegant-entropy
Original Author's DEMO images :


Sample image I made:

|
chdoca/test-AI
|
chdoca
| 2023-10-10T09:42:19Z | 0 | 1 | null |
[
"biology",
"finance",
"text-classification",
"dataset:fka/awesome-chatgpt-prompts",
"license:creativeml-openrail-m",
"region:us"
] |
text-classification
| 2023-09-07T07:26:02Z |
---
license: creativeml-openrail-m
datasets:
- fka/awesome-chatgpt-prompts
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- biology
- finance
---
|
lsquaremaster/ppo-lunarlander
|
lsquaremaster
| 2023-10-10T09:35:22Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T07:40:24Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 277.74 +/- 10.55
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
GT4SD/multitask-text-and-chemistry-t5-small-standard
|
GT4SD
| 2023-10-10T09:30:23Z | 180 | 2 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"en",
"arxiv:2301.12586",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-05-12T21:52:12Z |
---
license: mit
language:
- en
---
# Multitask Text and Chemistry T5
Multitask Text and Chemistry T5 : a multi-domain, multi-task language model to solve a wide range of tasks in both the chemical and natural language domains. Published by [Christofidellis et al.](https://arxiv.org/pdf/2301.12586.pdf)
**Model Details**: The Multitask Text and Chemistry T5 variant trained using <em>t5-small</em> as its pretrained based and the <em>standard dataset</em>.
**Developers**: Dimitrios Christofidellis*, Giorgio Giannone*, Jannis Born, Teodoro Laino and Matteo Manica from IBM Research and Ole Winther from Technical University of Denmark.
**Distributors**: Model natively integrated into GT4SD.
**Model date**: 2023.
**Model type**: A Transformer-based language model that is trained on a multi-domain and a multi-task dataset by aggregating available datasets
for the tasks of Forward reaction prediction, Retrosynthesis, Molecular captioning, Text-conditional de novo generation and Paragraph to actions.
**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
N.A.
**Paper or other resource for more information**:
The Multitask Text and Chemistry T5 [Christofidellis et al.](https://arxiv.org/pdf/2301.12586.pdf)
**License**: MIT
**Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).
## Citation
```bib
@article{christofidellis2023unifying,
title={Unifying Molecular and Textual Representations via Multi-task Language Modelling},
author={Christofidellis, Dimitrios and Giannone, Giorgio and Born, Jannis and Winther, Ole and Laino, Teodoro and Manica, Matteo},
journal={arXiv preprint arXiv:2301.12586},
year={2023}
}
```
*equal contribution
|
madoe001/ppo-cleanrl-LunarLander-v2
|
madoe001
| 2023-10-10T09:29:22Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T09:29:17Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -192.88 +/- 154.71
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'madoe001/ppo-cleanrl-LunarLander-v2'
'batch_size': 512
'minibatch_size': 128}
```
|
kwwww/test_16_2770
|
kwwww
| 2023-10-10T09:28:28Z | 0 | 0 | null |
[
"pytorch",
"generated_from_trainer",
"dataset:bionlp2004",
"license:apache-2.0",
"region:us"
] | null | 2023-10-10T03:56:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- bionlp2004
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: test_16_2770
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test_16_2770
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the bionlp2004 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6607
- Precision: 0.7753
- Recall: 0.8003
- F1: 0.7876
- Accuracy: 0.9420
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 174 | 0.2580 | 0.5740 | 0.6811 | 0.6230 | 0.9116 |
| No log | 2.0 | 348 | 0.2144 | 0.6861 | 0.7045 | 0.6952 | 0.9292 |
| 0.3061 | 3.0 | 522 | 0.2026 | 0.6843 | 0.7598 | 0.7201 | 0.9337 |
| 0.3061 | 4.0 | 696 | 0.1943 | 0.7174 | 0.7500 | 0.7333 | 0.9373 |
| 0.3061 | 5.0 | 870 | 0.2267 | 0.6492 | 0.6586 | 0.6539 | 0.9215 |
| 0.1644 | 6.0 | 1044 | 0.2055 | 0.7073 | 0.7518 | 0.7289 | 0.9365 |
| 0.1644 | 7.0 | 1218 | 0.2213 | 0.6942 | 0.7513 | 0.7216 | 0.9331 |
| 0.1644 | 8.0 | 1392 | 0.2047 | 0.7201 | 0.7745 | 0.7463 | 0.9375 |
| 0.121 | 9.0 | 1566 | 0.2138 | 0.7214 | 0.7837 | 0.7513 | 0.9372 |
| 0.121 | 10.0 | 1740 | 0.2279 | 0.6868 | 0.7769 | 0.7291 | 0.9330 |
| 0.121 | 11.0 | 1914 | 0.2437 | 0.7201 | 0.7430 | 0.7314 | 0.9335 |
| 0.0985 | 12.0 | 2088 | 0.2396 | 0.7210 | 0.7353 | 0.7281 | 0.9322 |
| 0.0985 | 13.0 | 2262 | 0.2532 | 0.6977 | 0.7542 | 0.7248 | 0.9333 |
| 0.0985 | 14.0 | 2436 | 0.2704 | 0.7227 | 0.7331 | 0.7279 | 0.9334 |
| 0.0801 | 15.0 | 2610 | 0.2632 | 0.7147 | 0.7598 | 0.7366 | 0.9347 |
| 0.0801 | 16.0 | 2784 | 0.2759 | 0.7110 | 0.7985 | 0.7522 | 0.9381 |
| 0.0801 | 17.0 | 2958 | 0.2968 | 0.7333 | 0.7724 | 0.7523 | 0.9356 |
| 0.0703 | 18.0 | 3132 | 0.2678 | 0.7169 | 0.7693 | 0.7422 | 0.9356 |
| 0.0703 | 19.0 | 3306 | 0.2808 | 0.7071 | 0.7785 | 0.7411 | 0.9357 |
| 0.0703 | 20.0 | 3480 | 0.2772 | 0.7103 | 0.7563 | 0.7326 | 0.9344 |
| 0.0606 | 21.0 | 3654 | 0.3072 | 0.7381 | 0.7572 | 0.7476 | 0.9373 |
| 0.0606 | 22.0 | 3828 | 0.3188 | 0.7152 | 0.7634 | 0.7385 | 0.9346 |
| 0.0503 | 23.0 | 4002 | 0.3239 | 0.7008 | 0.7612 | 0.7297 | 0.9306 |
| 0.0503 | 24.0 | 4176 | 0.3289 | 0.7190 | 0.7488 | 0.7336 | 0.9348 |
| 0.0503 | 25.0 | 4350 | 0.3337 | 0.7305 | 0.7776 | 0.7533 | 0.9365 |
| 0.046 | 26.0 | 4524 | 0.3233 | 0.7263 | 0.7709 | 0.7480 | 0.9358 |
| 0.046 | 27.0 | 4698 | 0.3178 | 0.7239 | 0.7655 | 0.7442 | 0.9368 |
| 0.046 | 28.0 | 4872 | 0.3252 | 0.7096 | 0.7801 | 0.7432 | 0.9367 |
| 0.0426 | 29.0 | 5046 | 0.3322 | 0.7202 | 0.7819 | 0.7498 | 0.9369 |
| 0.0426 | 30.0 | 5220 | 0.3316 | 0.7225 | 0.7785 | 0.7495 | 0.9380 |
| 0.0426 | 31.0 | 5394 | 0.3721 | 0.7110 | 0.7542 | 0.7320 | 0.9322 |
| 0.0383 | 32.0 | 5568 | 0.3529 | 0.7269 | 0.7619 | 0.7440 | 0.9366 |
| 0.0383 | 33.0 | 5742 | 0.3476 | 0.7302 | 0.7526 | 0.7412 | 0.9350 |
| 0.0383 | 34.0 | 5916 | 0.3328 | 0.7251 | 0.7632 | 0.7436 | 0.9360 |
| 0.0389 | 35.0 | 6090 | 0.3397 | 0.7212 | 0.7583 | 0.7393 | 0.9356 |
| 0.0389 | 36.0 | 6264 | 0.3500 | 0.7328 | 0.7641 | 0.7481 | 0.9354 |
| 0.0389 | 37.0 | 6438 | 0.3474 | 0.7339 | 0.7387 | 0.7363 | 0.9345 |
| 0.0325 | 38.0 | 6612 | 0.3530 | 0.7297 | 0.7765 | 0.7524 | 0.9364 |
| 0.0325 | 39.0 | 6786 | 0.3731 | 0.7124 | 0.7963 | 0.7520 | 0.9355 |
| 0.0325 | 40.0 | 6960 | 0.3618 | 0.7237 | 0.7522 | 0.7377 | 0.9339 |
| 0.0291 | 41.0 | 7134 | 0.3641 | 0.7266 | 0.7618 | 0.7437 | 0.9349 |
| 0.0291 | 42.0 | 7308 | 0.3776 | 0.7327 | 0.7749 | 0.7532 | 0.9361 |
| 0.0291 | 43.0 | 7482 | 0.3596 | 0.7314 | 0.7592 | 0.7451 | 0.9348 |
| 0.0304 | 44.0 | 7656 | 0.3564 | 0.7447 | 0.7506 | 0.7476 | 0.9364 |
| 0.0304 | 45.0 | 7830 | 0.3891 | 0.7243 | 0.7754 | 0.7490 | 0.9358 |
| 0.0305 | 46.0 | 8004 | 0.3380 | 0.7239 | 0.7580 | 0.7406 | 0.9358 |
| 0.0305 | 47.0 | 8178 | 0.3861 | 0.7271 | 0.7652 | 0.7456 | 0.9362 |
| 0.0305 | 48.0 | 8352 | 0.3934 | 0.7279 | 0.7688 | 0.7478 | 0.9350 |
| 0.0301 | 49.0 | 8526 | 0.3685 | 0.7424 | 0.7785 | 0.7600 | 0.9369 |
| 0.0301 | 50.0 | 8700 | 0.4242 | 0.7200 | 0.7551 | 0.7371 | 0.9331 |
| 0.0301 | 51.0 | 8874 | 0.4039 | 0.7457 | 0.7547 | 0.7502 | 0.9363 |
| 0.0254 | 52.0 | 9048 | 0.3900 | 0.7256 | 0.7645 | 0.7445 | 0.9348 |
| 0.0254 | 53.0 | 9222 | 0.3629 | 0.7399 | 0.7832 | 0.7609 | 0.9378 |
| 0.0254 | 54.0 | 9396 | 0.3840 | 0.7433 | 0.7735 | 0.7581 | 0.9378 |
| 0.0261 | 55.0 | 9570 | 0.3835 | 0.7303 | 0.7637 | 0.7467 | 0.9356 |
| 0.0261 | 56.0 | 9744 | 0.4042 | 0.7264 | 0.7612 | 0.7434 | 0.9343 |
| 0.0261 | 57.0 | 9918 | 0.3912 | 0.7121 | 0.7978 | 0.7525 | 0.9363 |
| 0.0253 | 58.0 | 10092 | 0.3733 | 0.7407 | 0.7690 | 0.7546 | 0.9377 |
| 0.0253 | 59.0 | 10266 | 0.3972 | 0.7302 | 0.7889 | 0.7584 | 0.9363 |
| 0.0253 | 60.0 | 10440 | 0.4311 | 0.7362 | 0.7522 | 0.7441 | 0.9348 |
| 0.0257 | 61.0 | 10614 | 0.4097 | 0.7361 | 0.7817 | 0.7583 | 0.9372 |
| 0.0257 | 62.0 | 10788 | 0.4141 | 0.7429 | 0.7801 | 0.7611 | 0.9373 |
| 0.0257 | 63.0 | 10962 | 0.4130 | 0.7289 | 0.7731 | 0.7503 | 0.9367 |
| 0.0224 | 64.0 | 11136 | 0.4004 | 0.7211 | 0.7837 | 0.7511 | 0.9361 |
| 0.0224 | 65.0 | 11310 | 0.3668 | 0.7269 | 0.7663 | 0.7460 | 0.9361 |
| 0.0224 | 66.0 | 11484 | 0.3736 | 0.7285 | 0.7875 | 0.7568 | 0.9368 |
| 0.0238 | 67.0 | 11658 | 0.3700 | 0.7253 | 0.7787 | 0.7510 | 0.9362 |
| 0.0238 | 68.0 | 11832 | 0.3940 | 0.7480 | 0.7562 | 0.7520 | 0.9360 |
| 0.0233 | 69.0 | 12006 | 0.4209 | 0.7308 | 0.7884 | 0.7585 | 0.9369 |
| 0.0233 | 70.0 | 12180 | 0.4140 | 0.7408 | 0.7718 | 0.7560 | 0.9371 |
| 0.0233 | 71.0 | 12354 | 0.3971 | 0.7501 | 0.7488 | 0.7495 | 0.9356 |
| 0.0223 | 72.0 | 12528 | 0.3904 | 0.7246 | 0.7918 | 0.7567 | 0.9387 |
| 0.0223 | 73.0 | 12702 | 0.4087 | 0.7408 | 0.7828 | 0.7612 | 0.9379 |
| 0.0223 | 74.0 | 12876 | 0.4145 | 0.7370 | 0.7942 | 0.7645 | 0.9379 |
| 0.021 | 75.0 | 13050 | 0.4130 | 0.7197 | 0.7891 | 0.7528 | 0.9357 |
| 0.021 | 76.0 | 13224 | 0.3953 | 0.7343 | 0.7852 | 0.7589 | 0.9368 |
| 0.021 | 77.0 | 13398 | 0.3903 | 0.7551 | 0.7639 | 0.7595 | 0.9377 |
| 0.0216 | 78.0 | 13572 | 0.4032 | 0.7371 | 0.7785 | 0.7572 | 0.9379 |
| 0.0216 | 79.0 | 13746 | 0.4310 | 0.7500 | 0.7808 | 0.7651 | 0.9370 |
| 0.0216 | 80.0 | 13920 | 0.3695 | 0.7297 | 0.7898 | 0.7586 | 0.9367 |
| 0.021 | 81.0 | 14094 | 0.3793 | 0.7370 | 0.7807 | 0.7582 | 0.9371 |
| 0.021 | 82.0 | 14268 | 0.4069 | 0.7427 | 0.7808 | 0.7613 | 0.9390 |
| 0.021 | 83.0 | 14442 | 0.4300 | 0.7136 | 0.7803 | 0.7455 | 0.9346 |
| 0.0198 | 84.0 | 14616 | 0.4073 | 0.7224 | 0.7704 | 0.7456 | 0.9356 |
| 0.0198 | 85.0 | 14790 | 0.3862 | 0.7402 | 0.7708 | 0.7552 | 0.9371 |
| 0.0198 | 86.0 | 14964 | 0.4018 | 0.7524 | 0.7832 | 0.7675 | 0.9390 |
| 0.0211 | 87.0 | 15138 | 0.4052 | 0.7384 | 0.7745 | 0.7560 | 0.9382 |
| 0.0211 | 88.0 | 15312 | 0.3972 | 0.7535 | 0.7850 | 0.7689 | 0.9397 |
| 0.0211 | 89.0 | 15486 | 0.4420 | 0.7318 | 0.8008 | 0.7647 | 0.9387 |
| 0.0197 | 90.0 | 15660 | 0.3784 | 0.7340 | 0.7731 | 0.7530 | 0.9372 |
| 0.0197 | 91.0 | 15834 | 0.4347 | 0.7452 | 0.7884 | 0.7662 | 0.9394 |
| 0.0183 | 92.0 | 16008 | 0.4245 | 0.7219 | 0.7733 | 0.7467 | 0.9358 |
| 0.0183 | 93.0 | 16182 | 0.4110 | 0.7436 | 0.7835 | 0.7631 | 0.9383 |
| 0.0183 | 94.0 | 16356 | 0.4004 | 0.7343 | 0.7933 | 0.7626 | 0.9386 |
| 0.0192 | 95.0 | 16530 | 0.4558 | 0.7298 | 0.7861 | 0.7569 | 0.9353 |
| 0.0192 | 96.0 | 16704 | 0.4076 | 0.7256 | 0.7677 | 0.7461 | 0.9343 |
| 0.0192 | 97.0 | 16878 | 0.4199 | 0.7338 | 0.7814 | 0.7568 | 0.9366 |
| 0.0215 | 98.0 | 17052 | 0.3818 | 0.7358 | 0.7508 | 0.7432 | 0.9351 |
| 0.0215 | 99.0 | 17226 | 0.4060 | 0.7305 | 0.7870 | 0.7577 | 0.9378 |
| 0.0215 | 100.0 | 17400 | 0.4262 | 0.7505 | 0.7585 | 0.7545 | 0.9361 |
| 0.0186 | 101.0 | 17574 | 0.3862 | 0.7306 | 0.7745 | 0.7519 | 0.9362 |
| 0.0186 | 102.0 | 17748 | 0.4218 | 0.7406 | 0.7518 | 0.7462 | 0.9349 |
| 0.0186 | 103.0 | 17922 | 0.3802 | 0.7380 | 0.7852 | 0.7608 | 0.9380 |
| 0.0207 | 104.0 | 18096 | 0.4168 | 0.7415 | 0.7736 | 0.7572 | 0.9375 |
| 0.0207 | 105.0 | 18270 | 0.4417 | 0.7349 | 0.7844 | 0.7589 | 0.9371 |
| 0.0207 | 106.0 | 18444 | 0.4423 | 0.7437 | 0.7821 | 0.7624 | 0.9375 |
| 0.0177 | 107.0 | 18618 | 0.4082 | 0.7336 | 0.7879 | 0.7597 | 0.9378 |
| 0.0177 | 108.0 | 18792 | 0.4681 | 0.7301 | 0.7598 | 0.7446 | 0.9339 |
| 0.0177 | 109.0 | 18966 | 0.4166 | 0.7415 | 0.7929 | 0.7663 | 0.9385 |
| 0.0165 | 110.0 | 19140 | 0.4409 | 0.7415 | 0.7808 | 0.7606 | 0.9369 |
| 0.0165 | 111.0 | 19314 | 0.4266 | 0.7468 | 0.7798 | 0.7629 | 0.9377 |
| 0.0165 | 112.0 | 19488 | 0.4671 | 0.7211 | 0.7837 | 0.7511 | 0.9343 |
| 0.0161 | 113.0 | 19662 | 0.4201 | 0.7484 | 0.7796 | 0.7637 | 0.9381 |
| 0.0161 | 114.0 | 19836 | 0.4184 | 0.7349 | 0.7699 | 0.7520 | 0.9363 |
| 0.0174 | 115.0 | 20010 | 0.4239 | 0.7287 | 0.7871 | 0.7568 | 0.9372 |
| 0.0174 | 116.0 | 20184 | 0.4236 | 0.7327 | 0.7927 | 0.7615 | 0.9370 |
| 0.0174 | 117.0 | 20358 | 0.4087 | 0.7529 | 0.7801 | 0.7663 | 0.9395 |
| 0.0155 | 118.0 | 20532 | 0.4413 | 0.7410 | 0.7751 | 0.7577 | 0.9359 |
| 0.0155 | 119.0 | 20706 | 0.4119 | 0.7247 | 0.8008 | 0.7609 | 0.9360 |
| 0.0155 | 120.0 | 20880 | 0.4476 | 0.7366 | 0.7726 | 0.7542 | 0.9370 |
| 0.0145 | 121.0 | 21054 | 0.4388 | 0.7429 | 0.7585 | 0.7506 | 0.9354 |
| 0.0145 | 122.0 | 21228 | 0.4221 | 0.7335 | 0.7875 | 0.7595 | 0.9365 |
| 0.0145 | 123.0 | 21402 | 0.4326 | 0.7454 | 0.7898 | 0.7670 | 0.9387 |
| 0.0162 | 124.0 | 21576 | 0.4151 | 0.7513 | 0.7724 | 0.7617 | 0.9377 |
| 0.0162 | 125.0 | 21750 | 0.4281 | 0.7330 | 0.7871 | 0.7591 | 0.9377 |
| 0.0162 | 126.0 | 21924 | 0.4078 | 0.7336 | 0.7742 | 0.7534 | 0.9362 |
| 0.0177 | 127.0 | 22098 | 0.4318 | 0.7340 | 0.7877 | 0.7599 | 0.9375 |
| 0.0177 | 128.0 | 22272 | 0.4145 | 0.7358 | 0.7684 | 0.7518 | 0.9358 |
| 0.0177 | 129.0 | 22446 | 0.4223 | 0.7482 | 0.7661 | 0.7570 | 0.9369 |
| 0.0172 | 130.0 | 22620 | 0.4315 | 0.7409 | 0.7695 | 0.7549 | 0.9361 |
| 0.0172 | 131.0 | 22794 | 0.4391 | 0.7533 | 0.7621 | 0.7577 | 0.9378 |
| 0.0172 | 132.0 | 22968 | 0.4387 | 0.7380 | 0.7938 | 0.7649 | 0.9380 |
| 0.016 | 133.0 | 23142 | 0.4193 | 0.7380 | 0.7904 | 0.7633 | 0.9374 |
| 0.016 | 134.0 | 23316 | 0.4047 | 0.7470 | 0.7614 | 0.7541 | 0.9359 |
| 0.016 | 135.0 | 23490 | 0.4181 | 0.7386 | 0.7835 | 0.7604 | 0.9362 |
| 0.0161 | 136.0 | 23664 | 0.4271 | 0.7404 | 0.7771 | 0.7583 | 0.9364 |
| 0.0161 | 137.0 | 23838 | 0.4196 | 0.7331 | 0.7686 | 0.7504 | 0.9351 |
| 0.0154 | 138.0 | 24012 | 0.4402 | 0.7405 | 0.7873 | 0.7632 | 0.9373 |
| 0.0154 | 139.0 | 24186 | 0.4462 | 0.7452 | 0.7767 | 0.7606 | 0.9371 |
| 0.0154 | 140.0 | 24360 | 0.4812 | 0.7377 | 0.7556 | 0.7466 | 0.9342 |
| 0.0135 | 141.0 | 24534 | 0.4427 | 0.7514 | 0.7637 | 0.7575 | 0.9363 |
| 0.0135 | 142.0 | 24708 | 0.4757 | 0.7391 | 0.7726 | 0.7555 | 0.9364 |
| 0.0135 | 143.0 | 24882 | 0.4717 | 0.7450 | 0.7801 | 0.7621 | 0.9365 |
| 0.0146 | 144.0 | 25056 | 0.4523 | 0.7422 | 0.7807 | 0.7609 | 0.9370 |
| 0.0146 | 145.0 | 25230 | 0.4064 | 0.7427 | 0.7814 | 0.7616 | 0.9369 |
| 0.0146 | 146.0 | 25404 | 0.4439 | 0.7458 | 0.7729 | 0.7591 | 0.9360 |
| 0.015 | 147.0 | 25578 | 0.4195 | 0.7435 | 0.7861 | 0.7642 | 0.9386 |
| 0.015 | 148.0 | 25752 | 0.4415 | 0.7197 | 0.7639 | 0.7412 | 0.9324 |
| 0.015 | 149.0 | 25926 | 0.4849 | 0.7352 | 0.7830 | 0.7584 | 0.9365 |
| 0.0152 | 150.0 | 26100 | 0.4361 | 0.7257 | 0.7933 | 0.7580 | 0.9376 |
| 0.0152 | 151.0 | 26274 | 0.4563 | 0.7441 | 0.7826 | 0.7629 | 0.9362 |
| 0.0152 | 152.0 | 26448 | 0.4426 | 0.7407 | 0.7839 | 0.7617 | 0.9383 |
| 0.0133 | 153.0 | 26622 | 0.4379 | 0.7487 | 0.7661 | 0.7573 | 0.9366 |
| 0.0133 | 154.0 | 26796 | 0.4207 | 0.7418 | 0.7819 | 0.7614 | 0.9372 |
| 0.0133 | 155.0 | 26970 | 0.4504 | 0.7445 | 0.7835 | 0.7635 | 0.9379 |
| 0.0129 | 156.0 | 27144 | 0.4425 | 0.7359 | 0.7668 | 0.7510 | 0.9350 |
| 0.0129 | 157.0 | 27318 | 0.4406 | 0.7484 | 0.7848 | 0.7662 | 0.9384 |
| 0.0129 | 158.0 | 27492 | 0.4338 | 0.7387 | 0.7745 | 0.7562 | 0.9375 |
| 0.0148 | 159.0 | 27666 | 0.4249 | 0.7403 | 0.7801 | 0.7597 | 0.9381 |
| 0.0148 | 160.0 | 27840 | 0.4369 | 0.7390 | 0.7859 | 0.7617 | 0.9375 |
| 0.0155 | 161.0 | 28014 | 0.4376 | 0.7416 | 0.7798 | 0.7602 | 0.9374 |
| 0.0155 | 162.0 | 28188 | 0.4598 | 0.7549 | 0.7774 | 0.7660 | 0.9387 |
| 0.0155 | 163.0 | 28362 | 0.4303 | 0.7420 | 0.7700 | 0.7557 | 0.9361 |
| 0.0132 | 164.0 | 28536 | 0.4221 | 0.7490 | 0.7798 | 0.7641 | 0.9383 |
| 0.0132 | 165.0 | 28710 | 0.4498 | 0.7387 | 0.7758 | 0.7568 | 0.9362 |
| 0.0132 | 166.0 | 28884 | 0.4304 | 0.7506 | 0.7888 | 0.7692 | 0.9386 |
| 0.0143 | 167.0 | 29058 | 0.4085 | 0.7404 | 0.7652 | 0.7526 | 0.9369 |
| 0.0143 | 168.0 | 29232 | 0.4363 | 0.7503 | 0.7677 | 0.7589 | 0.9370 |
| 0.0143 | 169.0 | 29406 | 0.4310 | 0.7378 | 0.7627 | 0.7500 | 0.9358 |
| 0.014 | 170.0 | 29580 | 0.4197 | 0.7469 | 0.7792 | 0.7627 | 0.9373 |
| 0.014 | 171.0 | 29754 | 0.4564 | 0.7534 | 0.7983 | 0.7752 | 0.9393 |
| 0.014 | 172.0 | 29928 | 0.4644 | 0.7487 | 0.7758 | 0.7620 | 0.9366 |
| 0.0129 | 173.0 | 30102 | 0.4530 | 0.7180 | 0.7850 | 0.7500 | 0.9341 |
| 0.0129 | 174.0 | 30276 | 0.3980 | 0.7447 | 0.7897 | 0.7665 | 0.9371 |
| 0.0129 | 175.0 | 30450 | 0.4738 | 0.7439 | 0.8075 | 0.7744 | 0.9374 |
| 0.0122 | 176.0 | 30624 | 0.4251 | 0.7400 | 0.7709 | 0.7552 | 0.9372 |
| 0.0122 | 177.0 | 30798 | 0.4782 | 0.7374 | 0.7834 | 0.7597 | 0.9357 |
| 0.0122 | 178.0 | 30972 | 0.4521 | 0.7515 | 0.7861 | 0.7684 | 0.9401 |
| 0.0123 | 179.0 | 31146 | 0.4303 | 0.7576 | 0.7695 | 0.7635 | 0.9370 |
| 0.0123 | 180.0 | 31320 | 0.4230 | 0.7389 | 0.7763 | 0.7572 | 0.9376 |
| 0.0123 | 181.0 | 31494 | 0.4576 | 0.7475 | 0.7535 | 0.7505 | 0.9353 |
| 0.0132 | 182.0 | 31668 | 0.4414 | 0.7397 | 0.7736 | 0.7563 | 0.9353 |
| 0.0132 | 183.0 | 31842 | 0.4430 | 0.7428 | 0.7735 | 0.7578 | 0.9361 |
| 0.0156 | 184.0 | 32016 | 0.4060 | 0.7486 | 0.7846 | 0.7662 | 0.9375 |
| 0.0156 | 185.0 | 32190 | 0.4421 | 0.7461 | 0.7740 | 0.7598 | 0.9366 |
| 0.0156 | 186.0 | 32364 | 0.4430 | 0.7455 | 0.7821 | 0.7633 | 0.9368 |
| 0.0137 | 187.0 | 32538 | 0.4059 | 0.7488 | 0.7745 | 0.7614 | 0.9380 |
| 0.0137 | 188.0 | 32712 | 0.4546 | 0.7648 | 0.7693 | 0.7670 | 0.9388 |
| 0.0137 | 189.0 | 32886 | 0.4378 | 0.7398 | 0.7891 | 0.7637 | 0.9384 |
| 0.0118 | 190.0 | 33060 | 0.4445 | 0.7561 | 0.7976 | 0.7763 | 0.9396 |
| 0.0118 | 191.0 | 33234 | 0.4536 | 0.7626 | 0.7745 | 0.7685 | 0.9389 |
| 0.0118 | 192.0 | 33408 | 0.4277 | 0.7469 | 0.7700 | 0.7583 | 0.9355 |
| 0.0117 | 193.0 | 33582 | 0.4446 | 0.7399 | 0.7911 | 0.7647 | 0.9378 |
| 0.0117 | 194.0 | 33756 | 0.4530 | 0.7556 | 0.7654 | 0.7604 | 0.9360 |
| 0.0117 | 195.0 | 33930 | 0.4741 | 0.7405 | 0.7713 | 0.7556 | 0.9358 |
| 0.0125 | 196.0 | 34104 | 0.4256 | 0.7408 | 0.7853 | 0.7624 | 0.9375 |
| 0.0125 | 197.0 | 34278 | 0.4774 | 0.7591 | 0.7850 | 0.7718 | 0.9375 |
| 0.0125 | 198.0 | 34452 | 0.4282 | 0.7428 | 0.7823 | 0.7620 | 0.9366 |
| 0.0146 | 199.0 | 34626 | 0.4427 | 0.7527 | 0.7812 | 0.7667 | 0.9383 |
| 0.0146 | 200.0 | 34800 | 0.4572 | 0.7424 | 0.7796 | 0.7605 | 0.9356 |
| 0.0146 | 201.0 | 34974 | 0.4586 | 0.7526 | 0.7691 | 0.7608 | 0.9365 |
| 0.0119 | 202.0 | 35148 | 0.4393 | 0.7412 | 0.7729 | 0.7567 | 0.9359 |
| 0.0119 | 203.0 | 35322 | 0.4489 | 0.7540 | 0.7808 | 0.7672 | 0.9383 |
| 0.0119 | 204.0 | 35496 | 0.4314 | 0.7498 | 0.7880 | 0.7685 | 0.9381 |
| 0.0116 | 205.0 | 35670 | 0.4501 | 0.7420 | 0.7868 | 0.7637 | 0.9379 |
| 0.0116 | 206.0 | 35844 | 0.4731 | 0.7589 | 0.7945 | 0.7763 | 0.9408 |
| 0.0119 | 207.0 | 36018 | 0.4493 | 0.7595 | 0.7630 | 0.7612 | 0.9378 |
| 0.0119 | 208.0 | 36192 | 0.4570 | 0.7508 | 0.7938 | 0.7717 | 0.9389 |
| 0.0119 | 209.0 | 36366 | 0.4698 | 0.7488 | 0.7823 | 0.7652 | 0.9374 |
| 0.0111 | 210.0 | 36540 | 0.4270 | 0.7456 | 0.7817 | 0.7633 | 0.9372 |
| 0.0111 | 211.0 | 36714 | 0.4625 | 0.7470 | 0.7897 | 0.7677 | 0.9385 |
| 0.0111 | 212.0 | 36888 | 0.4973 | 0.7254 | 0.7567 | 0.7407 | 0.9321 |
| 0.0113 | 213.0 | 37062 | 0.4465 | 0.7557 | 0.7720 | 0.7638 | 0.9361 |
| 0.0113 | 214.0 | 37236 | 0.4512 | 0.7569 | 0.7843 | 0.7703 | 0.9385 |
| 0.0113 | 215.0 | 37410 | 0.4488 | 0.7477 | 0.7610 | 0.7543 | 0.9350 |
| 0.0117 | 216.0 | 37584 | 0.4719 | 0.7524 | 0.7706 | 0.7614 | 0.9369 |
| 0.0117 | 217.0 | 37758 | 0.4410 | 0.7449 | 0.7682 | 0.7564 | 0.9354 |
| 0.0117 | 218.0 | 37932 | 0.4638 | 0.7537 | 0.7754 | 0.7644 | 0.9384 |
| 0.0123 | 219.0 | 38106 | 0.4629 | 0.7324 | 0.7796 | 0.7552 | 0.9347 |
| 0.0123 | 220.0 | 38280 | 0.4268 | 0.7688 | 0.7744 | 0.7716 | 0.9387 |
| 0.0123 | 221.0 | 38454 | 0.4265 | 0.7575 | 0.7796 | 0.7684 | 0.9379 |
| 0.0118 | 222.0 | 38628 | 0.4469 | 0.7496 | 0.7855 | 0.7671 | 0.9393 |
| 0.0118 | 223.0 | 38802 | 0.4554 | 0.7517 | 0.7925 | 0.7716 | 0.9386 |
| 0.0118 | 224.0 | 38976 | 0.4262 | 0.7447 | 0.7720 | 0.7581 | 0.9362 |
| 0.0115 | 225.0 | 39150 | 0.4910 | 0.7658 | 0.7661 | 0.7659 | 0.9362 |
| 0.0115 | 226.0 | 39324 | 0.5130 | 0.7545 | 0.7774 | 0.7658 | 0.9372 |
| 0.0115 | 227.0 | 39498 | 0.4266 | 0.7534 | 0.7857 | 0.7692 | 0.9376 |
| 0.01 | 228.0 | 39672 | 0.5057 | 0.7469 | 0.7799 | 0.7630 | 0.9385 |
| 0.01 | 229.0 | 39846 | 0.4558 | 0.7404 | 0.7961 | 0.7673 | 0.9373 |
| 0.0085 | 230.0 | 40020 | 0.4580 | 0.7675 | 0.7828 | 0.7751 | 0.9397 |
| 0.0085 | 231.0 | 40194 | 0.5008 | 0.7576 | 0.7774 | 0.7674 | 0.9379 |
| 0.0085 | 232.0 | 40368 | 0.4653 | 0.7545 | 0.7639 | 0.7592 | 0.9361 |
| 0.0113 | 233.0 | 40542 | 0.4747 | 0.7344 | 0.7756 | 0.7544 | 0.9359 |
| 0.0113 | 234.0 | 40716 | 0.4761 | 0.7567 | 0.7798 | 0.7681 | 0.9378 |
| 0.0113 | 235.0 | 40890 | 0.4616 | 0.7532 | 0.7745 | 0.7637 | 0.9374 |
| 0.0121 | 236.0 | 41064 | 0.4353 | 0.7492 | 0.7902 | 0.7691 | 0.9376 |
| 0.0121 | 237.0 | 41238 | 0.5062 | 0.7379 | 0.7819 | 0.7593 | 0.9364 |
| 0.0121 | 238.0 | 41412 | 0.4255 | 0.7377 | 0.7718 | 0.7544 | 0.9358 |
| 0.012 | 239.0 | 41586 | 0.4816 | 0.7296 | 0.7740 | 0.7511 | 0.9350 |
| 0.012 | 240.0 | 41760 | 0.4983 | 0.7507 | 0.7749 | 0.7626 | 0.9353 |
| 0.012 | 241.0 | 41934 | 0.4587 | 0.7533 | 0.7857 | 0.7691 | 0.9392 |
| 0.0087 | 242.0 | 42108 | 0.4976 | 0.7471 | 0.7949 | 0.7703 | 0.9391 |
| 0.0087 | 243.0 | 42282 | 0.4927 | 0.7510 | 0.7717 | 0.7612 | 0.9371 |
| 0.0087 | 244.0 | 42456 | 0.4677 | 0.7446 | 0.7763 | 0.7601 | 0.9362 |
| 0.009 | 245.0 | 42630 | 0.4708 | 0.7528 | 0.7745 | 0.7635 | 0.9384 |
| 0.009 | 246.0 | 42804 | 0.4398 | 0.7473 | 0.7632 | 0.7552 | 0.9356 |
| 0.009 | 247.0 | 42978 | 0.4850 | 0.7577 | 0.7886 | 0.7729 | 0.9381 |
| 0.0111 | 248.0 | 43152 | 0.4562 | 0.7456 | 0.7657 | 0.7555 | 0.9364 |
| 0.0111 | 249.0 | 43326 | 0.4476 | 0.7471 | 0.7720 | 0.7594 | 0.9370 |
| 0.0103 | 250.0 | 43500 | 0.4294 | 0.7628 | 0.7756 | 0.7692 | 0.9382 |
| 0.0103 | 251.0 | 43674 | 0.4518 | 0.7503 | 0.7796 | 0.7646 | 0.9378 |
| 0.0103 | 252.0 | 43848 | 0.4473 | 0.7552 | 0.8021 | 0.7779 | 0.9401 |
| 0.0108 | 253.0 | 44022 | 0.4770 | 0.7429 | 0.7760 | 0.7591 | 0.9371 |
| 0.0108 | 254.0 | 44196 | 0.4250 | 0.7636 | 0.7747 | 0.7691 | 0.9391 |
| 0.0108 | 255.0 | 44370 | 0.4571 | 0.7550 | 0.7925 | 0.7733 | 0.9404 |
| 0.0098 | 256.0 | 44544 | 0.4702 | 0.7534 | 0.7933 | 0.7728 | 0.9376 |
| 0.0098 | 257.0 | 44718 | 0.4349 | 0.7457 | 0.8012 | 0.7725 | 0.9391 |
| 0.0098 | 258.0 | 44892 | 0.4593 | 0.7603 | 0.7987 | 0.7790 | 0.9392 |
| 0.0082 | 259.0 | 45066 | 0.4534 | 0.7585 | 0.7861 | 0.7720 | 0.9397 |
| 0.0082 | 260.0 | 45240 | 0.4422 | 0.7447 | 0.7960 | 0.7695 | 0.9392 |
| 0.0082 | 261.0 | 45414 | 0.4863 | 0.7430 | 0.8059 | 0.7732 | 0.9368 |
| 0.009 | 262.0 | 45588 | 0.4416 | 0.7541 | 0.7893 | 0.7713 | 0.9379 |
| 0.009 | 263.0 | 45762 | 0.4348 | 0.7636 | 0.7934 | 0.7782 | 0.9394 |
| 0.009 | 264.0 | 45936 | 0.4388 | 0.7456 | 0.7979 | 0.7709 | 0.9377 |
| 0.01 | 265.0 | 46110 | 0.4662 | 0.7424 | 0.7906 | 0.7657 | 0.9376 |
| 0.01 | 266.0 | 46284 | 0.4444 | 0.7392 | 0.7673 | 0.7530 | 0.9364 |
| 0.01 | 267.0 | 46458 | 0.4596 | 0.7477 | 0.7862 | 0.7665 | 0.9373 |
| 0.0109 | 268.0 | 46632 | 0.4544 | 0.7588 | 0.7848 | 0.7716 | 0.9385 |
| 0.0109 | 269.0 | 46806 | 0.5061 | 0.7548 | 0.7961 | 0.7749 | 0.9383 |
| 0.0109 | 270.0 | 46980 | 0.4716 | 0.7675 | 0.7789 | 0.7731 | 0.9392 |
| 0.0106 | 271.0 | 47154 | 0.4670 | 0.7523 | 0.7762 | 0.7640 | 0.9378 |
| 0.0106 | 272.0 | 47328 | 0.4665 | 0.7437 | 0.7814 | 0.7621 | 0.9361 |
| 0.0094 | 273.0 | 47502 | 0.4735 | 0.7483 | 0.7855 | 0.7665 | 0.9372 |
| 0.0094 | 274.0 | 47676 | 0.4754 | 0.7443 | 0.7943 | 0.7685 | 0.9375 |
| 0.0094 | 275.0 | 47850 | 0.4715 | 0.7527 | 0.7787 | 0.7654 | 0.9381 |
| 0.0089 | 276.0 | 48024 | 0.4728 | 0.7660 | 0.7810 | 0.7734 | 0.9397 |
| 0.0089 | 277.0 | 48198 | 0.4669 | 0.7573 | 0.7855 | 0.7711 | 0.9389 |
| 0.0089 | 278.0 | 48372 | 0.4120 | 0.7557 | 0.7758 | 0.7656 | 0.9378 |
| 0.0093 | 279.0 | 48546 | 0.4624 | 0.7426 | 0.7823 | 0.7619 | 0.9378 |
| 0.0093 | 280.0 | 48720 | 0.4641 | 0.7562 | 0.7841 | 0.7699 | 0.9391 |
| 0.0093 | 281.0 | 48894 | 0.4328 | 0.7500 | 0.7695 | 0.7596 | 0.9383 |
| 0.0087 | 282.0 | 49068 | 0.4777 | 0.7547 | 0.7706 | 0.7625 | 0.9380 |
| 0.0087 | 283.0 | 49242 | 0.4657 | 0.7526 | 0.7877 | 0.7697 | 0.9378 |
| 0.0087 | 284.0 | 49416 | 0.4747 | 0.7571 | 0.7801 | 0.7684 | 0.9387 |
| 0.0089 | 285.0 | 49590 | 0.4648 | 0.7487 | 0.7799 | 0.7640 | 0.9366 |
| 0.0089 | 286.0 | 49764 | 0.4483 | 0.7335 | 0.7758 | 0.7541 | 0.9372 |
| 0.0089 | 287.0 | 49938 | 0.4479 | 0.7642 | 0.7970 | 0.7803 | 0.9419 |
| 0.0092 | 288.0 | 50112 | 0.4889 | 0.7656 | 0.7688 | 0.7672 | 0.9390 |
| 0.0092 | 289.0 | 50286 | 0.4417 | 0.7663 | 0.7771 | 0.7716 | 0.9390 |
| 0.0092 | 290.0 | 50460 | 0.4840 | 0.7610 | 0.7994 | 0.7797 | 0.9404 |
| 0.0105 | 291.0 | 50634 | 0.4518 | 0.7604 | 0.8001 | 0.7797 | 0.9403 |
| 0.0105 | 292.0 | 50808 | 0.4606 | 0.7577 | 0.7891 | 0.7731 | 0.9396 |
| 0.0105 | 293.0 | 50982 | 0.4604 | 0.7654 | 0.7769 | 0.7711 | 0.9396 |
| 0.0084 | 294.0 | 51156 | 0.4559 | 0.7564 | 0.7913 | 0.7735 | 0.9392 |
| 0.0084 | 295.0 | 51330 | 0.4397 | 0.7561 | 0.7933 | 0.7742 | 0.9396 |
| 0.008 | 296.0 | 51504 | 0.4298 | 0.7526 | 0.7909 | 0.7713 | 0.9401 |
| 0.008 | 297.0 | 51678 | 0.4616 | 0.7621 | 0.7880 | 0.7749 | 0.9404 |
| 0.008 | 298.0 | 51852 | 0.4714 | 0.7561 | 0.7999 | 0.7774 | 0.9409 |
| 0.0088 | 299.0 | 52026 | 0.4828 | 0.7509 | 0.7763 | 0.7634 | 0.9387 |
| 0.0088 | 300.0 | 52200 | 0.4897 | 0.7538 | 0.7871 | 0.7701 | 0.9388 |
| 0.0088 | 301.0 | 52374 | 0.4290 | 0.7636 | 0.7810 | 0.7722 | 0.9393 |
| 0.0098 | 302.0 | 52548 | 0.4747 | 0.7546 | 0.8024 | 0.7778 | 0.9411 |
| 0.0098 | 303.0 | 52722 | 0.4725 | 0.7595 | 0.7724 | 0.7659 | 0.9376 |
| 0.0098 | 304.0 | 52896 | 0.4325 | 0.7551 | 0.7897 | 0.7720 | 0.9390 |
| 0.0076 | 305.0 | 53070 | 0.4582 | 0.7573 | 0.7772 | 0.7672 | 0.9387 |
| 0.0076 | 306.0 | 53244 | 0.4364 | 0.7575 | 0.7792 | 0.7682 | 0.9387 |
| 0.0076 | 307.0 | 53418 | 0.4393 | 0.7439 | 0.7925 | 0.7675 | 0.9384 |
| 0.0077 | 308.0 | 53592 | 0.4559 | 0.7648 | 0.7862 | 0.7754 | 0.9394 |
| 0.0077 | 309.0 | 53766 | 0.4433 | 0.7556 | 0.7943 | 0.7745 | 0.9391 |
| 0.0077 | 310.0 | 53940 | 0.4418 | 0.7604 | 0.7945 | 0.7771 | 0.9402 |
| 0.0094 | 311.0 | 54114 | 0.4688 | 0.7552 | 0.7841 | 0.7694 | 0.9378 |
| 0.0094 | 312.0 | 54288 | 0.4746 | 0.7486 | 0.7690 | 0.7586 | 0.9351 |
| 0.0094 | 313.0 | 54462 | 0.4710 | 0.7535 | 0.7981 | 0.7752 | 0.9392 |
| 0.0084 | 314.0 | 54636 | 0.4606 | 0.7616 | 0.7927 | 0.7768 | 0.9386 |
| 0.0084 | 315.0 | 54810 | 0.4697 | 0.7488 | 0.7817 | 0.7649 | 0.9378 |
| 0.0084 | 316.0 | 54984 | 0.4446 | 0.7537 | 0.7835 | 0.7683 | 0.9380 |
| 0.0084 | 317.0 | 55158 | 0.4825 | 0.7537 | 0.7868 | 0.7699 | 0.9381 |
| 0.0084 | 318.0 | 55332 | 0.4835 | 0.7608 | 0.7882 | 0.7743 | 0.9390 |
| 0.0066 | 319.0 | 55506 | 0.4834 | 0.7663 | 0.7830 | 0.7746 | 0.9384 |
| 0.0066 | 320.0 | 55680 | 0.4519 | 0.7537 | 0.7826 | 0.7679 | 0.9381 |
| 0.0066 | 321.0 | 55854 | 0.4876 | 0.7611 | 0.7906 | 0.7755 | 0.9396 |
| 0.0074 | 322.0 | 56028 | 0.4718 | 0.7484 | 0.7823 | 0.7650 | 0.9384 |
| 0.0074 | 323.0 | 56202 | 0.4727 | 0.7550 | 0.7753 | 0.7650 | 0.9377 |
| 0.0074 | 324.0 | 56376 | 0.4820 | 0.7440 | 0.7753 | 0.7593 | 0.9375 |
| 0.0078 | 325.0 | 56550 | 0.4857 | 0.7538 | 0.7765 | 0.7650 | 0.9378 |
| 0.0078 | 326.0 | 56724 | 0.4881 | 0.7522 | 0.7828 | 0.7672 | 0.9384 |
| 0.0078 | 327.0 | 56898 | 0.4716 | 0.7538 | 0.7884 | 0.7707 | 0.9385 |
| 0.0079 | 328.0 | 57072 | 0.5031 | 0.7542 | 0.7508 | 0.7525 | 0.9335 |
| 0.0079 | 329.0 | 57246 | 0.4723 | 0.7592 | 0.7916 | 0.7751 | 0.9406 |
| 0.0079 | 330.0 | 57420 | 0.4659 | 0.7597 | 0.7978 | 0.7783 | 0.9400 |
| 0.0071 | 331.0 | 57594 | 0.4736 | 0.7503 | 0.7918 | 0.7705 | 0.9395 |
| 0.0071 | 332.0 | 57768 | 0.4928 | 0.7580 | 0.7729 | 0.7654 | 0.9373 |
| 0.0071 | 333.0 | 57942 | 0.4644 | 0.7553 | 0.7920 | 0.7732 | 0.9400 |
| 0.0084 | 334.0 | 58116 | 0.4374 | 0.7522 | 0.7812 | 0.7664 | 0.9382 |
| 0.0084 | 335.0 | 58290 | 0.4875 | 0.7513 | 0.8057 | 0.7775 | 0.9399 |
| 0.0084 | 336.0 | 58464 | 0.4719 | 0.7526 | 0.7763 | 0.7643 | 0.9374 |
| 0.0082 | 337.0 | 58638 | 0.4881 | 0.7439 | 0.7900 | 0.7663 | 0.9381 |
| 0.0082 | 338.0 | 58812 | 0.4615 | 0.7385 | 0.7952 | 0.7658 | 0.9388 |
| 0.0082 | 339.0 | 58986 | 0.4831 | 0.7529 | 0.7659 | 0.7593 | 0.9361 |
| 0.0071 | 340.0 | 59160 | 0.4570 | 0.7511 | 0.7803 | 0.7654 | 0.9372 |
| 0.0071 | 341.0 | 59334 | 0.4806 | 0.7453 | 0.7934 | 0.7686 | 0.9377 |
| 0.0073 | 342.0 | 59508 | 0.4975 | 0.7451 | 0.7807 | 0.7625 | 0.9373 |
| 0.0073 | 343.0 | 59682 | 0.4970 | 0.7489 | 0.8010 | 0.7741 | 0.9397 |
| 0.0073 | 344.0 | 59856 | 0.4881 | 0.7528 | 0.7727 | 0.7626 | 0.9380 |
| 0.0068 | 345.0 | 60030 | 0.4667 | 0.7534 | 0.7879 | 0.7702 | 0.9399 |
| 0.0068 | 346.0 | 60204 | 0.4656 | 0.7562 | 0.7787 | 0.7673 | 0.9383 |
| 0.0068 | 347.0 | 60378 | 0.4717 | 0.7473 | 0.7907 | 0.7684 | 0.9380 |
| 0.0078 | 348.0 | 60552 | 0.4204 | 0.7532 | 0.7945 | 0.7733 | 0.9398 |
| 0.0078 | 349.0 | 60726 | 0.4325 | 0.7525 | 0.7835 | 0.7677 | 0.9391 |
| 0.0078 | 350.0 | 60900 | 0.4657 | 0.7536 | 0.7893 | 0.7710 | 0.9384 |
| 0.0078 | 351.0 | 61074 | 0.4641 | 0.7576 | 0.8026 | 0.7795 | 0.9416 |
| 0.0078 | 352.0 | 61248 | 0.4661 | 0.7610 | 0.7877 | 0.7741 | 0.9395 |
| 0.0078 | 353.0 | 61422 | 0.4755 | 0.7596 | 0.8019 | 0.7802 | 0.9411 |
| 0.0076 | 354.0 | 61596 | 0.4923 | 0.7712 | 0.7960 | 0.7834 | 0.9413 |
| 0.0076 | 355.0 | 61770 | 0.4514 | 0.7624 | 0.7857 | 0.7739 | 0.9400 |
| 0.0076 | 356.0 | 61944 | 0.4318 | 0.7593 | 0.7913 | 0.7750 | 0.9402 |
| 0.0071 | 357.0 | 62118 | 0.4951 | 0.7578 | 0.7940 | 0.7755 | 0.9397 |
| 0.0071 | 358.0 | 62292 | 0.4920 | 0.7637 | 0.7997 | 0.7813 | 0.9406 |
| 0.0071 | 359.0 | 62466 | 0.4887 | 0.7631 | 0.7844 | 0.7736 | 0.9387 |
| 0.0051 | 360.0 | 62640 | 0.5305 | 0.7458 | 0.7607 | 0.7531 | 0.9343 |
| 0.0051 | 361.0 | 62814 | 0.4437 | 0.7676 | 0.7697 | 0.7686 | 0.9383 |
| 0.0051 | 362.0 | 62988 | 0.4742 | 0.7533 | 0.7934 | 0.7728 | 0.9399 |
| 0.008 | 363.0 | 63162 | 0.4632 | 0.7551 | 0.7803 | 0.7675 | 0.9382 |
| 0.008 | 364.0 | 63336 | 0.4493 | 0.7619 | 0.7861 | 0.7738 | 0.9401 |
| 0.0075 | 365.0 | 63510 | 0.4681 | 0.7410 | 0.7866 | 0.7631 | 0.9375 |
| 0.0075 | 366.0 | 63684 | 0.4856 | 0.7544 | 0.7799 | 0.7670 | 0.9388 |
| 0.0075 | 367.0 | 63858 | 0.4339 | 0.7516 | 0.7945 | 0.7725 | 0.9389 |
| 0.0065 | 368.0 | 64032 | 0.4757 | 0.7688 | 0.7837 | 0.7762 | 0.9401 |
| 0.0065 | 369.0 | 64206 | 0.4946 | 0.7516 | 0.7864 | 0.7686 | 0.9383 |
| 0.0065 | 370.0 | 64380 | 0.5174 | 0.7466 | 0.8006 | 0.7727 | 0.9386 |
| 0.0076 | 371.0 | 64554 | 0.4378 | 0.7624 | 0.7718 | 0.7671 | 0.9379 |
| 0.0076 | 372.0 | 64728 | 0.5206 | 0.7606 | 0.7828 | 0.7716 | 0.9396 |
| 0.0076 | 373.0 | 64902 | 0.4914 | 0.7545 | 0.7925 | 0.7731 | 0.9390 |
| 0.0053 | 374.0 | 65076 | 0.4985 | 0.7554 | 0.7949 | 0.7747 | 0.9398 |
| 0.0053 | 375.0 | 65250 | 0.4903 | 0.7624 | 0.7895 | 0.7757 | 0.9402 |
| 0.0053 | 376.0 | 65424 | 0.5177 | 0.7527 | 0.8001 | 0.7757 | 0.9404 |
| 0.0052 | 377.0 | 65598 | 0.4793 | 0.7386 | 0.7992 | 0.7677 | 0.9385 |
| 0.0052 | 378.0 | 65772 | 0.4765 | 0.7449 | 0.7713 | 0.7579 | 0.9379 |
| 0.0052 | 379.0 | 65946 | 0.4642 | 0.7652 | 0.7717 | 0.7684 | 0.9386 |
| 0.0075 | 380.0 | 66120 | 0.5118 | 0.7472 | 0.7873 | 0.7667 | 0.9370 |
| 0.0075 | 381.0 | 66294 | 0.4688 | 0.7616 | 0.7819 | 0.7716 | 0.9392 |
| 0.0075 | 382.0 | 66468 | 0.5202 | 0.7479 | 0.7859 | 0.7664 | 0.9383 |
| 0.0054 | 383.0 | 66642 | 0.5144 | 0.7525 | 0.7825 | 0.7672 | 0.9386 |
| 0.0054 | 384.0 | 66816 | 0.4795 | 0.7418 | 0.7873 | 0.7639 | 0.9377 |
| 0.0054 | 385.0 | 66990 | 0.4762 | 0.7508 | 0.8003 | 0.7748 | 0.9392 |
| 0.0059 | 386.0 | 67164 | 0.4670 | 0.7537 | 0.7947 | 0.7737 | 0.9402 |
| 0.0059 | 387.0 | 67338 | 0.4721 | 0.7398 | 0.8005 | 0.7690 | 0.9381 |
| 0.0069 | 388.0 | 67512 | 0.4492 | 0.7492 | 0.7961 | 0.7720 | 0.9387 |
| 0.0069 | 389.0 | 67686 | 0.5070 | 0.7641 | 0.7735 | 0.7687 | 0.9394 |
| 0.0069 | 390.0 | 67860 | 0.4798 | 0.7620 | 0.7803 | 0.7711 | 0.9387 |
| 0.007 | 391.0 | 68034 | 0.4535 | 0.7563 | 0.7942 | 0.7748 | 0.9408 |
| 0.007 | 392.0 | 68208 | 0.4686 | 0.7577 | 0.7933 | 0.7751 | 0.9400 |
| 0.007 | 393.0 | 68382 | 0.4634 | 0.7589 | 0.7753 | 0.7670 | 0.9386 |
| 0.0078 | 394.0 | 68556 | 0.4392 | 0.7509 | 0.8014 | 0.7753 | 0.9403 |
| 0.0078 | 395.0 | 68730 | 0.4722 | 0.7420 | 0.7853 | 0.7631 | 0.9383 |
| 0.0078 | 396.0 | 68904 | 0.4613 | 0.7578 | 0.7839 | 0.7706 | 0.9401 |
| 0.0055 | 397.0 | 69078 | 0.5001 | 0.7575 | 0.8015 | 0.7789 | 0.9403 |
| 0.0055 | 398.0 | 69252 | 0.4868 | 0.7626 | 0.7886 | 0.7754 | 0.9394 |
| 0.0055 | 399.0 | 69426 | 0.4913 | 0.7507 | 0.8026 | 0.7758 | 0.9396 |
| 0.0045 | 400.0 | 69600 | 0.4784 | 0.7771 | 0.7817 | 0.7794 | 0.9406 |
| 0.0045 | 401.0 | 69774 | 0.4706 | 0.7757 | 0.7745 | 0.7751 | 0.9391 |
| 0.0045 | 402.0 | 69948 | 0.5051 | 0.7397 | 0.7810 | 0.7598 | 0.9365 |
| 0.0062 | 403.0 | 70122 | 0.5176 | 0.7586 | 0.7888 | 0.7734 | 0.9391 |
| 0.0062 | 404.0 | 70296 | 0.4870 | 0.7412 | 0.7735 | 0.7570 | 0.9380 |
| 0.0062 | 405.0 | 70470 | 0.5023 | 0.7441 | 0.7762 | 0.7598 | 0.9373 |
| 0.0062 | 406.0 | 70644 | 0.4699 | 0.7606 | 0.7823 | 0.7713 | 0.9403 |
| 0.0062 | 407.0 | 70818 | 0.5008 | 0.7518 | 0.8008 | 0.7755 | 0.9397 |
| 0.0062 | 408.0 | 70992 | 0.4870 | 0.7601 | 0.7801 | 0.7700 | 0.9396 |
| 0.0057 | 409.0 | 71166 | 0.4738 | 0.7552 | 0.7776 | 0.7662 | 0.9392 |
| 0.0057 | 410.0 | 71340 | 0.4712 | 0.7631 | 0.7816 | 0.7722 | 0.9399 |
| 0.0061 | 411.0 | 71514 | 0.4595 | 0.7635 | 0.8033 | 0.7829 | 0.9411 |
| 0.0061 | 412.0 | 71688 | 0.4862 | 0.7581 | 0.7657 | 0.7619 | 0.9395 |
| 0.0061 | 413.0 | 71862 | 0.4364 | 0.7621 | 0.7796 | 0.7708 | 0.9409 |
| 0.005 | 414.0 | 72036 | 0.4589 | 0.7726 | 0.7857 | 0.7791 | 0.9408 |
| 0.005 | 415.0 | 72210 | 0.4529 | 0.7589 | 0.7884 | 0.7734 | 0.9394 |
| 0.005 | 416.0 | 72384 | 0.4667 | 0.7513 | 0.7771 | 0.7640 | 0.9388 |
| 0.0053 | 417.0 | 72558 | 0.5027 | 0.7534 | 0.8023 | 0.7771 | 0.9407 |
| 0.0053 | 418.0 | 72732 | 0.4874 | 0.7554 | 0.7934 | 0.7739 | 0.9400 |
| 0.0053 | 419.0 | 72906 | 0.4775 | 0.7632 | 0.7934 | 0.7780 | 0.9407 |
| 0.0049 | 420.0 | 73080 | 0.4605 | 0.7586 | 0.7981 | 0.7779 | 0.9418 |
| 0.0049 | 421.0 | 73254 | 0.4374 | 0.7660 | 0.7900 | 0.7778 | 0.9401 |
| 0.0049 | 422.0 | 73428 | 0.5087 | 0.7472 | 0.7958 | 0.7707 | 0.9385 |
| 0.0056 | 423.0 | 73602 | 0.4880 | 0.7657 | 0.7974 | 0.7812 | 0.9408 |
| 0.0056 | 424.0 | 73776 | 0.4488 | 0.7678 | 0.7776 | 0.7727 | 0.9396 |
| 0.0056 | 425.0 | 73950 | 0.4559 | 0.7536 | 0.7902 | 0.7714 | 0.9388 |
| 0.006 | 426.0 | 74124 | 0.4532 | 0.7528 | 0.8006 | 0.7760 | 0.9399 |
| 0.006 | 427.0 | 74298 | 0.4693 | 0.7679 | 0.7711 | 0.7695 | 0.9380 |
| 0.006 | 428.0 | 74472 | 0.4799 | 0.7580 | 0.7853 | 0.7714 | 0.9387 |
| 0.0056 | 429.0 | 74646 | 0.4685 | 0.7690 | 0.7859 | 0.7773 | 0.9401 |
| 0.0056 | 430.0 | 74820 | 0.4268 | 0.7468 | 0.7835 | 0.7647 | 0.9398 |
| 0.0056 | 431.0 | 74994 | 0.4773 | 0.7537 | 0.7873 | 0.7701 | 0.9401 |
| 0.0053 | 432.0 | 75168 | 0.5118 | 0.7501 | 0.8015 | 0.7750 | 0.9405 |
| 0.0053 | 433.0 | 75342 | 0.4640 | 0.7598 | 0.7848 | 0.7721 | 0.9403 |
| 0.0048 | 434.0 | 75516 | 0.4860 | 0.7640 | 0.7738 | 0.7689 | 0.9386 |
| 0.0048 | 435.0 | 75690 | 0.5147 | 0.7700 | 0.8017 | 0.7855 | 0.9417 |
| 0.0048 | 436.0 | 75864 | 0.4878 | 0.7557 | 0.7884 | 0.7717 | 0.9383 |
| 0.0046 | 437.0 | 76038 | 0.4966 | 0.7635 | 0.8017 | 0.7822 | 0.9408 |
| 0.0046 | 438.0 | 76212 | 0.4604 | 0.7448 | 0.7911 | 0.7673 | 0.9377 |
| 0.0046 | 439.0 | 76386 | 0.4839 | 0.7596 | 0.7951 | 0.7769 | 0.9411 |
| 0.0058 | 440.0 | 76560 | 0.4708 | 0.7476 | 0.7888 | 0.7676 | 0.9391 |
| 0.0058 | 441.0 | 76734 | 0.4490 | 0.7632 | 0.7922 | 0.7774 | 0.9407 |
| 0.0058 | 442.0 | 76908 | 0.4947 | 0.7613 | 0.7927 | 0.7767 | 0.9412 |
| 0.0059 | 443.0 | 77082 | 0.4897 | 0.7716 | 0.7835 | 0.7775 | 0.9409 |
| 0.0059 | 444.0 | 77256 | 0.5046 | 0.7500 | 0.8010 | 0.7746 | 0.9391 |
| 0.0059 | 445.0 | 77430 | 0.5258 | 0.7585 | 0.7920 | 0.7749 | 0.9398 |
| 0.0044 | 446.0 | 77604 | 0.4842 | 0.7675 | 0.7906 | 0.7789 | 0.9411 |
| 0.0044 | 447.0 | 77778 | 0.4685 | 0.7593 | 0.7864 | 0.7726 | 0.9402 |
| 0.0044 | 448.0 | 77952 | 0.4577 | 0.7629 | 0.7951 | 0.7787 | 0.9414 |
| 0.0053 | 449.0 | 78126 | 0.4895 | 0.7689 | 0.7999 | 0.7841 | 0.9411 |
| 0.0053 | 450.0 | 78300 | 0.5107 | 0.7650 | 0.7861 | 0.7754 | 0.9392 |
| 0.0053 | 451.0 | 78474 | 0.5035 | 0.7623 | 0.7832 | 0.7726 | 0.9399 |
| 0.0045 | 452.0 | 78648 | 0.5005 | 0.7485 | 0.7916 | 0.7695 | 0.9389 |
| 0.0045 | 453.0 | 78822 | 0.5180 | 0.7518 | 0.7918 | 0.7713 | 0.9387 |
| 0.0045 | 454.0 | 78996 | 0.5343 | 0.7341 | 0.7837 | 0.7581 | 0.9366 |
| 0.0045 | 455.0 | 79170 | 0.4669 | 0.7669 | 0.7736 | 0.7702 | 0.9385 |
| 0.0045 | 456.0 | 79344 | 0.5165 | 0.7749 | 0.7868 | 0.7808 | 0.9413 |
| 0.0045 | 457.0 | 79518 | 0.4796 | 0.7654 | 0.7699 | 0.7676 | 0.9377 |
| 0.0045 | 458.0 | 79692 | 0.4604 | 0.7682 | 0.7902 | 0.7791 | 0.9398 |
| 0.0045 | 459.0 | 79866 | 0.5214 | 0.7586 | 0.8100 | 0.7835 | 0.9412 |
| 0.0049 | 460.0 | 80040 | 0.4568 | 0.7582 | 0.7799 | 0.7689 | 0.9388 |
| 0.0049 | 461.0 | 80214 | 0.4892 | 0.7645 | 0.7852 | 0.7747 | 0.9398 |
| 0.0049 | 462.0 | 80388 | 0.4931 | 0.7583 | 0.7922 | 0.7749 | 0.9400 |
| 0.0049 | 463.0 | 80562 | 0.5158 | 0.7414 | 0.8133 | 0.7757 | 0.9387 |
| 0.0049 | 464.0 | 80736 | 0.5197 | 0.7661 | 0.7852 | 0.7755 | 0.9403 |
| 0.0049 | 465.0 | 80910 | 0.4984 | 0.7536 | 0.7949 | 0.7737 | 0.9385 |
| 0.005 | 466.0 | 81084 | 0.4820 | 0.7513 | 0.7866 | 0.7685 | 0.9383 |
| 0.005 | 467.0 | 81258 | 0.4978 | 0.7672 | 0.7846 | 0.7758 | 0.9392 |
| 0.005 | 468.0 | 81432 | 0.5128 | 0.7688 | 0.7832 | 0.7759 | 0.9387 |
| 0.0046 | 469.0 | 81606 | 0.5195 | 0.7563 | 0.7792 | 0.7676 | 0.9383 |
| 0.0046 | 470.0 | 81780 | 0.5055 | 0.7549 | 0.7931 | 0.7735 | 0.9388 |
| 0.0046 | 471.0 | 81954 | 0.5097 | 0.7558 | 0.7803 | 0.7679 | 0.9387 |
| 0.0049 | 472.0 | 82128 | 0.4984 | 0.7583 | 0.7864 | 0.7721 | 0.9391 |
| 0.0049 | 473.0 | 82302 | 0.5183 | 0.7599 | 0.7758 | 0.7678 | 0.9382 |
| 0.0049 | 474.0 | 82476 | 0.4980 | 0.7660 | 0.7988 | 0.7821 | 0.9407 |
| 0.0044 | 475.0 | 82650 | 0.4859 | 0.7629 | 0.7943 | 0.7783 | 0.9392 |
| 0.0044 | 476.0 | 82824 | 0.5509 | 0.7529 | 0.7803 | 0.7664 | 0.9369 |
| 0.0044 | 477.0 | 82998 | 0.5148 | 0.7595 | 0.7843 | 0.7717 | 0.9388 |
| 0.0042 | 478.0 | 83172 | 0.4807 | 0.7531 | 0.7904 | 0.7713 | 0.9390 |
| 0.0042 | 479.0 | 83346 | 0.4915 | 0.7534 | 0.7841 | 0.7684 | 0.9390 |
| 0.0054 | 480.0 | 83520 | 0.5090 | 0.7608 | 0.7576 | 0.7592 | 0.9351 |
| 0.0054 | 481.0 | 83694 | 0.4662 | 0.7541 | 0.7826 | 0.7681 | 0.9382 |
| 0.0054 | 482.0 | 83868 | 0.4960 | 0.7642 | 0.7735 | 0.7688 | 0.9376 |
| 0.005 | 483.0 | 84042 | 0.4847 | 0.7477 | 0.8017 | 0.7738 | 0.9385 |
| 0.005 | 484.0 | 84216 | 0.4850 | 0.7599 | 0.7974 | 0.7782 | 0.9400 |
| 0.005 | 485.0 | 84390 | 0.5291 | 0.7610 | 0.7913 | 0.7758 | 0.9394 |
| 0.0034 | 486.0 | 84564 | 0.5256 | 0.7447 | 0.8017 | 0.7722 | 0.9378 |
| 0.0034 | 487.0 | 84738 | 0.4953 | 0.7704 | 0.7697 | 0.7700 | 0.9384 |
| 0.0034 | 488.0 | 84912 | 0.4912 | 0.7609 | 0.7996 | 0.7798 | 0.9405 |
| 0.004 | 489.0 | 85086 | 0.5076 | 0.7558 | 0.7861 | 0.7707 | 0.9379 |
| 0.004 | 490.0 | 85260 | 0.4921 | 0.7336 | 0.7931 | 0.7622 | 0.9368 |
| 0.004 | 491.0 | 85434 | 0.4789 | 0.7504 | 0.7812 | 0.7655 | 0.9377 |
| 0.0044 | 492.0 | 85608 | 0.5116 | 0.7472 | 0.7816 | 0.7640 | 0.9383 |
| 0.0044 | 493.0 | 85782 | 0.4777 | 0.7525 | 0.7844 | 0.7681 | 0.9377 |
| 0.0044 | 494.0 | 85956 | 0.5414 | 0.7636 | 0.7884 | 0.7758 | 0.9392 |
| 0.004 | 495.0 | 86130 | 0.5056 | 0.7565 | 0.7949 | 0.7752 | 0.9400 |
| 0.004 | 496.0 | 86304 | 0.4655 | 0.7641 | 0.7844 | 0.7741 | 0.9393 |
| 0.004 | 497.0 | 86478 | 0.4739 | 0.7479 | 0.7843 | 0.7656 | 0.9385 |
| 0.0054 | 498.0 | 86652 | 0.4946 | 0.7629 | 0.7909 | 0.7767 | 0.9402 |
| 0.0054 | 499.0 | 86826 | 0.5502 | 0.7495 | 0.8014 | 0.7746 | 0.9392 |
| 0.0045 | 500.0 | 87000 | 0.4974 | 0.7721 | 0.7954 | 0.7836 | 0.9414 |
| 0.0045 | 501.0 | 87174 | 0.5209 | 0.7614 | 0.7994 | 0.7799 | 0.9393 |
| 0.0045 | 502.0 | 87348 | 0.5026 | 0.7644 | 0.7988 | 0.7813 | 0.9404 |
| 0.0039 | 503.0 | 87522 | 0.5084 | 0.7544 | 0.7961 | 0.7747 | 0.9396 |
| 0.0039 | 504.0 | 87696 | 0.5073 | 0.7638 | 0.7979 | 0.7805 | 0.9398 |
| 0.0039 | 505.0 | 87870 | 0.4764 | 0.7594 | 0.7900 | 0.7744 | 0.9399 |
| 0.0045 | 506.0 | 88044 | 0.5171 | 0.7596 | 0.8030 | 0.7807 | 0.9408 |
| 0.0045 | 507.0 | 88218 | 0.4914 | 0.7604 | 0.7909 | 0.7754 | 0.9389 |
| 0.0045 | 508.0 | 88392 | 0.4871 | 0.7607 | 0.7992 | 0.7795 | 0.9403 |
| 0.0035 | 509.0 | 88566 | 0.5326 | 0.7499 | 0.8052 | 0.7766 | 0.9382 |
| 0.0035 | 510.0 | 88740 | 0.5295 | 0.7626 | 0.7972 | 0.7795 | 0.9397 |
| 0.0035 | 511.0 | 88914 | 0.4840 | 0.7674 | 0.7979 | 0.7824 | 0.9420 |
| 0.0031 | 512.0 | 89088 | 0.5239 | 0.7603 | 0.7911 | 0.7754 | 0.9388 |
| 0.0031 | 513.0 | 89262 | 0.5085 | 0.7560 | 0.7949 | 0.7749 | 0.9392 |
| 0.0031 | 514.0 | 89436 | 0.4791 | 0.7512 | 0.7936 | 0.7718 | 0.9398 |
| 0.0046 | 515.0 | 89610 | 0.5041 | 0.7489 | 0.7870 | 0.7675 | 0.9386 |
| 0.0046 | 516.0 | 89784 | 0.4964 | 0.7587 | 0.7825 | 0.7704 | 0.9390 |
| 0.0046 | 517.0 | 89958 | 0.4531 | 0.7659 | 0.7915 | 0.7785 | 0.9406 |
| 0.0041 | 518.0 | 90132 | 0.5237 | 0.7605 | 0.7823 | 0.7712 | 0.9392 |
| 0.0041 | 519.0 | 90306 | 0.4824 | 0.7586 | 0.7916 | 0.7748 | 0.9390 |
| 0.0041 | 520.0 | 90480 | 0.4981 | 0.7499 | 0.8052 | 0.7766 | 0.9404 |
| 0.0034 | 521.0 | 90654 | 0.4819 | 0.7607 | 0.7744 | 0.7674 | 0.9383 |
| 0.0034 | 522.0 | 90828 | 0.4985 | 0.7687 | 0.7803 | 0.7744 | 0.9402 |
| 0.0037 | 523.0 | 91002 | 0.5253 | 0.7576 | 0.7859 | 0.7715 | 0.9392 |
| 0.0037 | 524.0 | 91176 | 0.4963 | 0.7606 | 0.7857 | 0.7730 | 0.9394 |
| 0.0037 | 525.0 | 91350 | 0.5193 | 0.7567 | 0.7886 | 0.7723 | 0.9399 |
| 0.0035 | 526.0 | 91524 | 0.4804 | 0.7638 | 0.7898 | 0.7766 | 0.9405 |
| 0.0035 | 527.0 | 91698 | 0.5161 | 0.7555 | 0.7812 | 0.7681 | 0.9392 |
| 0.0035 | 528.0 | 91872 | 0.5194 | 0.7498 | 0.7945 | 0.7715 | 0.9383 |
| 0.0041 | 529.0 | 92046 | 0.5046 | 0.7500 | 0.7875 | 0.7683 | 0.9387 |
| 0.0041 | 530.0 | 92220 | 0.4954 | 0.7517 | 0.7967 | 0.7736 | 0.9397 |
| 0.0041 | 531.0 | 92394 | 0.4996 | 0.7577 | 0.7913 | 0.7741 | 0.9392 |
| 0.0035 | 532.0 | 92568 | 0.5126 | 0.7661 | 0.7976 | 0.7815 | 0.9409 |
| 0.0035 | 533.0 | 92742 | 0.5498 | 0.7627 | 0.7924 | 0.7772 | 0.9403 |
| 0.0035 | 534.0 | 92916 | 0.5164 | 0.7485 | 0.8008 | 0.7738 | 0.9402 |
| 0.0038 | 535.0 | 93090 | 0.5013 | 0.7580 | 0.7958 | 0.7764 | 0.9414 |
| 0.0038 | 536.0 | 93264 | 0.4982 | 0.7552 | 0.8066 | 0.7800 | 0.9413 |
| 0.0038 | 537.0 | 93438 | 0.5042 | 0.7474 | 0.7994 | 0.7725 | 0.9401 |
| 0.0037 | 538.0 | 93612 | 0.5080 | 0.7701 | 0.7825 | 0.7762 | 0.9402 |
| 0.0037 | 539.0 | 93786 | 0.5246 | 0.7614 | 0.7967 | 0.7787 | 0.9402 |
| 0.0037 | 540.0 | 93960 | 0.4829 | 0.7586 | 0.7825 | 0.7703 | 0.9389 |
| 0.0027 | 541.0 | 94134 | 0.4933 | 0.7600 | 0.7814 | 0.7706 | 0.9378 |
| 0.0027 | 542.0 | 94308 | 0.5184 | 0.7519 | 0.7907 | 0.7708 | 0.9386 |
| 0.0027 | 543.0 | 94482 | 0.5012 | 0.7653 | 0.8021 | 0.7833 | 0.9405 |
| 0.0032 | 544.0 | 94656 | 0.5303 | 0.7568 | 0.7913 | 0.7737 | 0.9383 |
| 0.0032 | 545.0 | 94830 | 0.4911 | 0.7603 | 0.7787 | 0.7694 | 0.9386 |
| 0.0034 | 546.0 | 95004 | 0.5210 | 0.7597 | 0.7913 | 0.7752 | 0.9396 |
| 0.0034 | 547.0 | 95178 | 0.5194 | 0.7658 | 0.7790 | 0.7724 | 0.9396 |
| 0.0034 | 548.0 | 95352 | 0.5215 | 0.7549 | 0.7915 | 0.7727 | 0.9393 |
| 0.004 | 549.0 | 95526 | 0.5144 | 0.7606 | 0.7853 | 0.7727 | 0.9385 |
| 0.004 | 550.0 | 95700 | 0.5175 | 0.7524 | 0.7906 | 0.7710 | 0.9391 |
| 0.004 | 551.0 | 95874 | 0.5131 | 0.7439 | 0.7994 | 0.7707 | 0.9369 |
| 0.0031 | 552.0 | 96048 | 0.5553 | 0.7549 | 0.7826 | 0.7685 | 0.9375 |
| 0.0031 | 553.0 | 96222 | 0.5453 | 0.7624 | 0.7817 | 0.7719 | 0.9387 |
| 0.0031 | 554.0 | 96396 | 0.5477 | 0.7593 | 0.7949 | 0.7767 | 0.9396 |
| 0.0026 | 555.0 | 96570 | 0.5526 | 0.7521 | 0.7871 | 0.7692 | 0.9391 |
| 0.0026 | 556.0 | 96744 | 0.5737 | 0.7492 | 0.7780 | 0.7633 | 0.9378 |
| 0.0026 | 557.0 | 96918 | 0.5081 | 0.7701 | 0.7771 | 0.7736 | 0.9384 |
| 0.0028 | 558.0 | 97092 | 0.5219 | 0.7686 | 0.7834 | 0.7759 | 0.9389 |
| 0.0028 | 559.0 | 97266 | 0.5459 | 0.7731 | 0.7864 | 0.7797 | 0.9398 |
| 0.0028 | 560.0 | 97440 | 0.5346 | 0.7703 | 0.7825 | 0.7763 | 0.9398 |
| 0.0029 | 561.0 | 97614 | 0.5723 | 0.7462 | 0.7994 | 0.7719 | 0.9387 |
| 0.0029 | 562.0 | 97788 | 0.5396 | 0.7647 | 0.7924 | 0.7783 | 0.9404 |
| 0.0029 | 563.0 | 97962 | 0.5643 | 0.7574 | 0.7641 | 0.7607 | 0.9372 |
| 0.0025 | 564.0 | 98136 | 0.5477 | 0.7381 | 0.7844 | 0.7605 | 0.9369 |
| 0.0025 | 565.0 | 98310 | 0.5084 | 0.7539 | 0.7920 | 0.7725 | 0.9389 |
| 0.0025 | 566.0 | 98484 | 0.5373 | 0.7529 | 0.7967 | 0.7742 | 0.9383 |
| 0.0034 | 567.0 | 98658 | 0.5236 | 0.7463 | 0.7879 | 0.7665 | 0.9371 |
| 0.0034 | 568.0 | 98832 | 0.5198 | 0.7628 | 0.7819 | 0.7723 | 0.9387 |
| 0.0031 | 569.0 | 99006 | 0.5266 | 0.7546 | 0.7929 | 0.7733 | 0.9392 |
| 0.0031 | 570.0 | 99180 | 0.5165 | 0.7457 | 0.7886 | 0.7666 | 0.9385 |
| 0.0031 | 571.0 | 99354 | 0.5218 | 0.7698 | 0.7751 | 0.7724 | 0.9385 |
| 0.0026 | 572.0 | 99528 | 0.5182 | 0.7492 | 0.7720 | 0.7604 | 0.9375 |
| 0.0026 | 573.0 | 99702 | 0.5420 | 0.7680 | 0.7913 | 0.7795 | 0.9403 |
| 0.0026 | 574.0 | 99876 | 0.5034 | 0.7446 | 0.7963 | 0.7696 | 0.9386 |
| 0.0033 | 575.0 | 100050 | 0.5401 | 0.7447 | 0.7850 | 0.7643 | 0.9378 |
| 0.0033 | 576.0 | 100224 | 0.5312 | 0.7629 | 0.7774 | 0.7701 | 0.9392 |
| 0.0033 | 577.0 | 100398 | 0.5671 | 0.7669 | 0.7861 | 0.7763 | 0.9397 |
| 0.003 | 578.0 | 100572 | 0.5286 | 0.7548 | 0.7987 | 0.7761 | 0.9398 |
| 0.003 | 579.0 | 100746 | 0.5178 | 0.7605 | 0.7875 | 0.7738 | 0.9391 |
| 0.003 | 580.0 | 100920 | 0.5226 | 0.7599 | 0.7853 | 0.7724 | 0.9390 |
| 0.0032 | 581.0 | 101094 | 0.5105 | 0.7485 | 0.7825 | 0.7651 | 0.9390 |
| 0.0032 | 582.0 | 101268 | 0.5186 | 0.7642 | 0.7805 | 0.7723 | 0.9386 |
| 0.0032 | 583.0 | 101442 | 0.5425 | 0.7485 | 0.7931 | 0.7701 | 0.9386 |
| 0.0027 | 584.0 | 101616 | 0.5209 | 0.7622 | 0.7947 | 0.7781 | 0.9402 |
| 0.0027 | 585.0 | 101790 | 0.4974 | 0.7614 | 0.7846 | 0.7729 | 0.9393 |
| 0.0027 | 586.0 | 101964 | 0.5281 | 0.7684 | 0.7891 | 0.7786 | 0.9400 |
| 0.0034 | 587.0 | 102138 | 0.5201 | 0.7597 | 0.7954 | 0.7772 | 0.9408 |
| 0.0034 | 588.0 | 102312 | 0.5103 | 0.7654 | 0.7915 | 0.7782 | 0.9406 |
| 0.0034 | 589.0 | 102486 | 0.4906 | 0.7654 | 0.7913 | 0.7781 | 0.9397 |
| 0.0026 | 590.0 | 102660 | 0.5055 | 0.7630 | 0.7897 | 0.7761 | 0.9405 |
| 0.0026 | 591.0 | 102834 | 0.5294 | 0.7616 | 0.7650 | 0.7633 | 0.9368 |
| 0.0024 | 592.0 | 103008 | 0.5285 | 0.7595 | 0.8021 | 0.7802 | 0.9413 |
| 0.0024 | 593.0 | 103182 | 0.5331 | 0.7625 | 0.7690 | 0.7657 | 0.9386 |
| 0.0024 | 594.0 | 103356 | 0.4922 | 0.7676 | 0.7942 | 0.7807 | 0.9419 |
| 0.0041 | 595.0 | 103530 | 0.4910 | 0.7532 | 0.7846 | 0.7686 | 0.9381 |
| 0.0041 | 596.0 | 103704 | 0.4904 | 0.7639 | 0.7893 | 0.7764 | 0.9393 |
| 0.0041 | 597.0 | 103878 | 0.5110 | 0.7704 | 0.7898 | 0.7800 | 0.9405 |
| 0.0026 | 598.0 | 104052 | 0.5124 | 0.7621 | 0.7949 | 0.7781 | 0.9393 |
| 0.0026 | 599.0 | 104226 | 0.5524 | 0.7565 | 0.7943 | 0.7749 | 0.9388 |
| 0.0026 | 600.0 | 104400 | 0.5630 | 0.7688 | 0.7825 | 0.7755 | 0.9390 |
| 0.0026 | 601.0 | 104574 | 0.5817 | 0.7640 | 0.7790 | 0.7715 | 0.9391 |
| 0.0026 | 602.0 | 104748 | 0.5518 | 0.7670 | 0.7902 | 0.7784 | 0.9395 |
| 0.0026 | 603.0 | 104922 | 0.5181 | 0.7692 | 0.7798 | 0.7745 | 0.9404 |
| 0.003 | 604.0 | 105096 | 0.5178 | 0.7724 | 0.7848 | 0.7786 | 0.9395 |
| 0.003 | 605.0 | 105270 | 0.5312 | 0.7680 | 0.7742 | 0.7711 | 0.9390 |
| 0.003 | 606.0 | 105444 | 0.5384 | 0.7624 | 0.7803 | 0.7713 | 0.9388 |
| 0.0022 | 607.0 | 105618 | 0.5421 | 0.7640 | 0.7861 | 0.7749 | 0.9404 |
| 0.0022 | 608.0 | 105792 | 0.5437 | 0.7590 | 0.7934 | 0.7758 | 0.9401 |
| 0.0022 | 609.0 | 105966 | 0.5202 | 0.7552 | 0.7918 | 0.7731 | 0.9395 |
| 0.0027 | 610.0 | 106140 | 0.5404 | 0.7673 | 0.7947 | 0.7808 | 0.9404 |
| 0.0027 | 611.0 | 106314 | 0.5339 | 0.7744 | 0.7852 | 0.7798 | 0.9409 |
| 0.0027 | 612.0 | 106488 | 0.5324 | 0.7667 | 0.7835 | 0.7750 | 0.9394 |
| 0.0025 | 613.0 | 106662 | 0.5285 | 0.7568 | 0.7940 | 0.7749 | 0.9402 |
| 0.0025 | 614.0 | 106836 | 0.5031 | 0.7677 | 0.7976 | 0.7824 | 0.9402 |
| 0.0026 | 615.0 | 107010 | 0.5261 | 0.7597 | 0.7931 | 0.7760 | 0.9398 |
| 0.0026 | 616.0 | 107184 | 0.5660 | 0.7525 | 0.7983 | 0.7747 | 0.9397 |
| 0.0026 | 617.0 | 107358 | 0.5529 | 0.7661 | 0.7852 | 0.7755 | 0.9408 |
| 0.0018 | 618.0 | 107532 | 0.5499 | 0.7663 | 0.7889 | 0.7775 | 0.9402 |
| 0.0018 | 619.0 | 107706 | 0.5600 | 0.7717 | 0.7870 | 0.7792 | 0.9403 |
| 0.0018 | 620.0 | 107880 | 0.5538 | 0.7697 | 0.7814 | 0.7755 | 0.9403 |
| 0.0016 | 621.0 | 108054 | 0.5401 | 0.7680 | 0.7868 | 0.7773 | 0.9415 |
| 0.0016 | 622.0 | 108228 | 0.4978 | 0.7596 | 0.8064 | 0.7823 | 0.9416 |
| 0.0016 | 623.0 | 108402 | 0.5302 | 0.7728 | 0.7826 | 0.7777 | 0.9404 |
| 0.0034 | 624.0 | 108576 | 0.5106 | 0.7714 | 0.7729 | 0.7722 | 0.9391 |
| 0.0034 | 625.0 | 108750 | 0.5068 | 0.7563 | 0.7931 | 0.7743 | 0.9401 |
| 0.0034 | 626.0 | 108924 | 0.5524 | 0.7599 | 0.7992 | 0.7791 | 0.9410 |
| 0.0027 | 627.0 | 109098 | 0.5395 | 0.7661 | 0.7832 | 0.7745 | 0.9401 |
| 0.0027 | 628.0 | 109272 | 0.5157 | 0.7499 | 0.8050 | 0.7764 | 0.9396 |
| 0.0027 | 629.0 | 109446 | 0.5282 | 0.7681 | 0.7945 | 0.7811 | 0.9404 |
| 0.0025 | 630.0 | 109620 | 0.5317 | 0.7477 | 0.7931 | 0.7697 | 0.9395 |
| 0.0025 | 631.0 | 109794 | 0.5364 | 0.7618 | 0.7832 | 0.7723 | 0.9387 |
| 0.0025 | 632.0 | 109968 | 0.4884 | 0.7661 | 0.7916 | 0.7787 | 0.9403 |
| 0.0024 | 633.0 | 110142 | 0.5333 | 0.7540 | 0.7963 | 0.7746 | 0.9388 |
| 0.0024 | 634.0 | 110316 | 0.5084 | 0.7585 | 0.7835 | 0.7708 | 0.9397 |
| 0.0024 | 635.0 | 110490 | 0.5210 | 0.7782 | 0.7808 | 0.7795 | 0.9406 |
| 0.0026 | 636.0 | 110664 | 0.5327 | 0.7569 | 0.7879 | 0.7721 | 0.9395 |
| 0.0026 | 637.0 | 110838 | 0.5191 | 0.7653 | 0.7882 | 0.7766 | 0.9402 |
| 0.0021 | 638.0 | 111012 | 0.5605 | 0.7525 | 0.7848 | 0.7683 | 0.9386 |
| 0.0021 | 639.0 | 111186 | 0.5369 | 0.7667 | 0.7943 | 0.7803 | 0.9409 |
| 0.0021 | 640.0 | 111360 | 0.5572 | 0.7683 | 0.7916 | 0.7798 | 0.9404 |
| 0.0023 | 641.0 | 111534 | 0.5400 | 0.7603 | 0.7909 | 0.7753 | 0.9406 |
| 0.0023 | 642.0 | 111708 | 0.5253 | 0.7723 | 0.7841 | 0.7781 | 0.9404 |
| 0.0023 | 643.0 | 111882 | 0.5721 | 0.7658 | 0.7900 | 0.7777 | 0.9404 |
| 0.0017 | 644.0 | 112056 | 0.5509 | 0.7583 | 0.7837 | 0.7708 | 0.9398 |
| 0.0017 | 645.0 | 112230 | 0.5712 | 0.7584 | 0.7850 | 0.7714 | 0.9385 |
| 0.0017 | 646.0 | 112404 | 0.5586 | 0.7622 | 0.7879 | 0.7748 | 0.9397 |
| 0.0018 | 647.0 | 112578 | 0.5615 | 0.7656 | 0.7859 | 0.7756 | 0.9395 |
| 0.0018 | 648.0 | 112752 | 0.5791 | 0.7651 | 0.7970 | 0.7807 | 0.9402 |
| 0.0018 | 649.0 | 112926 | 0.5258 | 0.7628 | 0.7808 | 0.7717 | 0.9394 |
| 0.0018 | 650.0 | 113100 | 0.5469 | 0.7630 | 0.8010 | 0.7815 | 0.9406 |
| 0.0018 | 651.0 | 113274 | 0.5324 | 0.7582 | 0.7987 | 0.7779 | 0.9395 |
| 0.0018 | 652.0 | 113448 | 0.4993 | 0.7556 | 0.7850 | 0.7700 | 0.9376 |
| 0.0035 | 653.0 | 113622 | 0.5262 | 0.7615 | 0.7871 | 0.7741 | 0.9393 |
| 0.0035 | 654.0 | 113796 | 0.5184 | 0.7594 | 0.7916 | 0.7752 | 0.9397 |
| 0.0035 | 655.0 | 113970 | 0.5543 | 0.7581 | 0.7969 | 0.7770 | 0.9391 |
| 0.0019 | 656.0 | 114144 | 0.4987 | 0.7671 | 0.7898 | 0.7783 | 0.9398 |
| 0.0019 | 657.0 | 114318 | 0.5089 | 0.7602 | 0.7886 | 0.7742 | 0.9397 |
| 0.0019 | 658.0 | 114492 | 0.5449 | 0.7652 | 0.8012 | 0.7828 | 0.9413 |
| 0.0016 | 659.0 | 114666 | 0.5742 | 0.7604 | 0.8006 | 0.7800 | 0.9400 |
| 0.0016 | 660.0 | 114840 | 0.5332 | 0.7670 | 0.7927 | 0.7797 | 0.9396 |
| 0.0019 | 661.0 | 115014 | 0.5334 | 0.7639 | 0.7949 | 0.7791 | 0.9387 |
| 0.0019 | 662.0 | 115188 | 0.5694 | 0.7636 | 0.7778 | 0.7706 | 0.9386 |
| 0.0019 | 663.0 | 115362 | 0.5569 | 0.7596 | 0.8046 | 0.7815 | 0.9401 |
| 0.0024 | 664.0 | 115536 | 0.5129 | 0.7621 | 0.8021 | 0.7816 | 0.9413 |
| 0.0024 | 665.0 | 115710 | 0.5407 | 0.7607 | 0.7999 | 0.7798 | 0.9404 |
| 0.0024 | 666.0 | 115884 | 0.5797 | 0.7662 | 0.8005 | 0.7830 | 0.9400 |
| 0.0021 | 667.0 | 116058 | 0.5666 | 0.7727 | 0.7718 | 0.7723 | 0.9376 |
| 0.0021 | 668.0 | 116232 | 0.5306 | 0.7624 | 0.8052 | 0.7832 | 0.9411 |
| 0.0021 | 669.0 | 116406 | 0.5518 | 0.7668 | 0.8035 | 0.7847 | 0.9407 |
| 0.0016 | 670.0 | 116580 | 0.5288 | 0.7614 | 0.7963 | 0.7785 | 0.9406 |
| 0.0016 | 671.0 | 116754 | 0.5430 | 0.7538 | 0.8082 | 0.7800 | 0.9404 |
| 0.0016 | 672.0 | 116928 | 0.5247 | 0.7606 | 0.7942 | 0.7770 | 0.9391 |
| 0.0025 | 673.0 | 117102 | 0.5344 | 0.7610 | 0.8003 | 0.7801 | 0.9402 |
| 0.0025 | 674.0 | 117276 | 0.5360 | 0.7660 | 0.7880 | 0.7769 | 0.9396 |
| 0.0025 | 675.0 | 117450 | 0.5316 | 0.7660 | 0.7958 | 0.7806 | 0.9400 |
| 0.002 | 676.0 | 117624 | 0.5465 | 0.7662 | 0.7918 | 0.7788 | 0.9402 |
| 0.002 | 677.0 | 117798 | 0.5607 | 0.7578 | 0.8023 | 0.7794 | 0.9399 |
| 0.002 | 678.0 | 117972 | 0.5369 | 0.7659 | 0.7837 | 0.7747 | 0.9396 |
| 0.0019 | 679.0 | 118146 | 0.5474 | 0.7703 | 0.7846 | 0.7774 | 0.9403 |
| 0.0019 | 680.0 | 118320 | 0.5300 | 0.7694 | 0.7889 | 0.7791 | 0.9405 |
| 0.0019 | 681.0 | 118494 | 0.5401 | 0.7631 | 0.7940 | 0.7782 | 0.9400 |
| 0.002 | 682.0 | 118668 | 0.5301 | 0.7684 | 0.7873 | 0.7777 | 0.9397 |
| 0.002 | 683.0 | 118842 | 0.5432 | 0.7659 | 0.7958 | 0.7805 | 0.9410 |
| 0.0016 | 684.0 | 119016 | 0.5291 | 0.7690 | 0.7895 | 0.7791 | 0.9391 |
| 0.0016 | 685.0 | 119190 | 0.5592 | 0.7522 | 0.7979 | 0.7744 | 0.9398 |
| 0.0016 | 686.0 | 119364 | 0.5702 | 0.7662 | 0.7996 | 0.7825 | 0.9422 |
| 0.0015 | 687.0 | 119538 | 0.5173 | 0.7621 | 0.7915 | 0.7765 | 0.9396 |
| 0.0015 | 688.0 | 119712 | 0.5428 | 0.7737 | 0.7848 | 0.7792 | 0.9397 |
| 0.0015 | 689.0 | 119886 | 0.5510 | 0.7609 | 0.7893 | 0.7749 | 0.9398 |
| 0.0014 | 690.0 | 120060 | 0.5749 | 0.7610 | 0.7907 | 0.7756 | 0.9395 |
| 0.0014 | 691.0 | 120234 | 0.5699 | 0.7636 | 0.7889 | 0.7761 | 0.9386 |
| 0.0014 | 692.0 | 120408 | 0.5464 | 0.7586 | 0.8024 | 0.7799 | 0.9397 |
| 0.002 | 693.0 | 120582 | 0.5264 | 0.7512 | 0.7945 | 0.7723 | 0.9391 |
| 0.002 | 694.0 | 120756 | 0.5494 | 0.7561 | 0.7765 | 0.7662 | 0.9373 |
| 0.002 | 695.0 | 120930 | 0.5751 | 0.7660 | 0.7834 | 0.7746 | 0.9395 |
| 0.0016 | 696.0 | 121104 | 0.5758 | 0.7704 | 0.7832 | 0.7767 | 0.9392 |
| 0.0016 | 697.0 | 121278 | 0.5411 | 0.7635 | 0.7736 | 0.7685 | 0.9375 |
| 0.0016 | 698.0 | 121452 | 0.5433 | 0.7712 | 0.7945 | 0.7827 | 0.9417 |
| 0.0018 | 699.0 | 121626 | 0.5593 | 0.7624 | 0.7754 | 0.7689 | 0.9384 |
| 0.0018 | 700.0 | 121800 | 0.5865 | 0.7569 | 0.7916 | 0.7739 | 0.9401 |
| 0.0018 | 701.0 | 121974 | 0.5833 | 0.7668 | 0.7880 | 0.7773 | 0.9399 |
| 0.0015 | 702.0 | 122148 | 0.6080 | 0.7651 | 0.7742 | 0.7696 | 0.9388 |
| 0.0015 | 703.0 | 122322 | 0.5951 | 0.7491 | 0.7929 | 0.7704 | 0.9383 |
| 0.0015 | 704.0 | 122496 | 0.5523 | 0.7627 | 0.7897 | 0.7760 | 0.9407 |
| 0.0015 | 705.0 | 122670 | 0.5761 | 0.7600 | 0.7911 | 0.7753 | 0.9404 |
| 0.0015 | 706.0 | 122844 | 0.5807 | 0.7558 | 0.7785 | 0.7670 | 0.9385 |
| 0.001 | 707.0 | 123018 | 0.6004 | 0.7621 | 0.7888 | 0.7752 | 0.9404 |
| 0.001 | 708.0 | 123192 | 0.5895 | 0.7610 | 0.7911 | 0.7757 | 0.9403 |
| 0.001 | 709.0 | 123366 | 0.5402 | 0.7570 | 0.7940 | 0.7751 | 0.9393 |
| 0.0019 | 710.0 | 123540 | 0.5396 | 0.7575 | 0.7875 | 0.7722 | 0.9388 |
| 0.0019 | 711.0 | 123714 | 0.5586 | 0.7660 | 0.7936 | 0.7796 | 0.9402 |
| 0.0019 | 712.0 | 123888 | 0.5683 | 0.7728 | 0.7866 | 0.7797 | 0.9403 |
| 0.0012 | 713.0 | 124062 | 0.5357 | 0.7597 | 0.7891 | 0.7741 | 0.9395 |
| 0.0012 | 714.0 | 124236 | 0.5545 | 0.7608 | 0.7978 | 0.7788 | 0.9410 |
| 0.0012 | 715.0 | 124410 | 0.5560 | 0.7570 | 0.7990 | 0.7775 | 0.9409 |
| 0.0018 | 716.0 | 124584 | 0.5593 | 0.7516 | 0.7918 | 0.7712 | 0.9393 |
| 0.0018 | 717.0 | 124758 | 0.5748 | 0.7616 | 0.7823 | 0.7718 | 0.9390 |
| 0.0018 | 718.0 | 124932 | 0.5538 | 0.7656 | 0.7942 | 0.7796 | 0.9408 |
| 0.0012 | 719.0 | 125106 | 0.5552 | 0.7622 | 0.7956 | 0.7786 | 0.9401 |
| 0.0012 | 720.0 | 125280 | 0.5117 | 0.7664 | 0.7875 | 0.7768 | 0.9389 |
| 0.0012 | 721.0 | 125454 | 0.5464 | 0.7629 | 0.7868 | 0.7746 | 0.9387 |
| 0.0016 | 722.0 | 125628 | 0.5658 | 0.7519 | 0.7904 | 0.7707 | 0.9382 |
| 0.0016 | 723.0 | 125802 | 0.5788 | 0.7506 | 0.7947 | 0.7720 | 0.9380 |
| 0.0016 | 724.0 | 125976 | 0.5741 | 0.7683 | 0.7888 | 0.7784 | 0.9391 |
| 0.001 | 725.0 | 126150 | 0.5639 | 0.7647 | 0.7983 | 0.7811 | 0.9401 |
| 0.001 | 726.0 | 126324 | 0.5446 | 0.7604 | 0.7951 | 0.7774 | 0.9403 |
| 0.001 | 727.0 | 126498 | 0.5589 | 0.7609 | 0.7920 | 0.7761 | 0.9400 |
| 0.0011 | 728.0 | 126672 | 0.5671 | 0.7734 | 0.7916 | 0.7824 | 0.9409 |
| 0.0011 | 729.0 | 126846 | 0.5457 | 0.7742 | 0.7936 | 0.7838 | 0.9413 |
| 0.0007 | 730.0 | 127020 | 0.5840 | 0.7644 | 0.7904 | 0.7772 | 0.9403 |
| 0.0007 | 731.0 | 127194 | 0.6136 | 0.7714 | 0.8005 | 0.7857 | 0.9406 |
| 0.0007 | 732.0 | 127368 | 0.5445 | 0.7652 | 0.7933 | 0.7790 | 0.9396 |
| 0.0013 | 733.0 | 127542 | 0.5537 | 0.7685 | 0.7951 | 0.7816 | 0.9403 |
| 0.0013 | 734.0 | 127716 | 0.5724 | 0.7658 | 0.7897 | 0.7776 | 0.9399 |
| 0.0013 | 735.0 | 127890 | 0.5680 | 0.7571 | 0.7978 | 0.7769 | 0.9396 |
| 0.0012 | 736.0 | 128064 | 0.5754 | 0.7564 | 0.7990 | 0.7771 | 0.9396 |
| 0.0012 | 737.0 | 128238 | 0.5418 | 0.7625 | 0.7925 | 0.7772 | 0.9390 |
| 0.0012 | 738.0 | 128412 | 0.5433 | 0.7692 | 0.7920 | 0.7804 | 0.9400 |
| 0.0012 | 739.0 | 128586 | 0.5430 | 0.7694 | 0.7920 | 0.7805 | 0.9412 |
| 0.0012 | 740.0 | 128760 | 0.5885 | 0.7693 | 0.7920 | 0.7805 | 0.9403 |
| 0.0012 | 741.0 | 128934 | 0.5722 | 0.7655 | 0.7961 | 0.7805 | 0.9402 |
| 0.001 | 742.0 | 129108 | 0.5469 | 0.7640 | 0.7951 | 0.7792 | 0.9404 |
| 0.001 | 743.0 | 129282 | 0.5568 | 0.7511 | 0.7942 | 0.7721 | 0.9399 |
| 0.001 | 744.0 | 129456 | 0.5844 | 0.7586 | 0.8008 | 0.7792 | 0.9402 |
| 0.001 | 745.0 | 129630 | 0.5727 | 0.7551 | 0.7961 | 0.7751 | 0.9391 |
| 0.001 | 746.0 | 129804 | 0.5818 | 0.7589 | 0.8023 | 0.7800 | 0.9393 |
| 0.001 | 747.0 | 129978 | 0.5839 | 0.7615 | 0.7922 | 0.7765 | 0.9399 |
| 0.0008 | 748.0 | 130152 | 0.5749 | 0.7638 | 0.7904 | 0.7769 | 0.9399 |
| 0.0008 | 749.0 | 130326 | 0.5991 | 0.7659 | 0.7958 | 0.7805 | 0.9407 |
| 0.0009 | 750.0 | 130500 | 0.6038 | 0.7618 | 0.7877 | 0.7745 | 0.9396 |
| 0.0009 | 751.0 | 130674 | 0.5833 | 0.7588 | 0.7999 | 0.7788 | 0.9408 |
| 0.0009 | 752.0 | 130848 | 0.5638 | 0.7626 | 0.7925 | 0.7773 | 0.9399 |
| 0.0012 | 753.0 | 131022 | 0.5862 | 0.7635 | 0.7970 | 0.7799 | 0.9407 |
| 0.0012 | 754.0 | 131196 | 0.5842 | 0.7626 | 0.7954 | 0.7787 | 0.9403 |
| 0.0012 | 755.0 | 131370 | 0.5651 | 0.7574 | 0.7972 | 0.7768 | 0.9400 |
| 0.0016 | 756.0 | 131544 | 0.5734 | 0.7593 | 0.8017 | 0.7800 | 0.9401 |
| 0.0016 | 757.0 | 131718 | 0.5735 | 0.7619 | 0.7983 | 0.7797 | 0.9405 |
| 0.0016 | 758.0 | 131892 | 0.5512 | 0.7720 | 0.7916 | 0.7817 | 0.9414 |
| 0.0009 | 759.0 | 132066 | 0.5894 | 0.7620 | 0.7864 | 0.7740 | 0.9394 |
| 0.0009 | 760.0 | 132240 | 0.5505 | 0.7645 | 0.7915 | 0.7777 | 0.9393 |
| 0.0009 | 761.0 | 132414 | 0.5677 | 0.7621 | 0.7967 | 0.7790 | 0.9403 |
| 0.0008 | 762.0 | 132588 | 0.5627 | 0.7697 | 0.7886 | 0.7790 | 0.9409 |
| 0.0008 | 763.0 | 132762 | 0.5793 | 0.7599 | 0.7947 | 0.7769 | 0.9402 |
| 0.0008 | 764.0 | 132936 | 0.5742 | 0.7676 | 0.7918 | 0.7795 | 0.9406 |
| 0.0012 | 765.0 | 133110 | 0.5853 | 0.7739 | 0.7873 | 0.7806 | 0.9409 |
| 0.0012 | 766.0 | 133284 | 0.5557 | 0.7584 | 0.7970 | 0.7772 | 0.9391 |
| 0.0012 | 767.0 | 133458 | 0.5735 | 0.7719 | 0.7857 | 0.7788 | 0.9408 |
| 0.001 | 768.0 | 133632 | 0.5893 | 0.7690 | 0.7974 | 0.7830 | 0.9416 |
| 0.001 | 769.0 | 133806 | 0.5809 | 0.7743 | 0.7810 | 0.7777 | 0.9399 |
| 0.001 | 770.0 | 133980 | 0.5660 | 0.7666 | 0.8001 | 0.7830 | 0.9412 |
| 0.0011 | 771.0 | 134154 | 0.5704 | 0.7705 | 0.7780 | 0.7742 | 0.9403 |
| 0.0011 | 772.0 | 134328 | 0.5691 | 0.7617 | 0.7916 | 0.7764 | 0.9403 |
| 0.0011 | 773.0 | 134502 | 0.5652 | 0.7656 | 0.7952 | 0.7801 | 0.9409 |
| 0.0011 | 774.0 | 134676 | 0.5552 | 0.7668 | 0.8015 | 0.7838 | 0.9408 |
| 0.0011 | 775.0 | 134850 | 0.5624 | 0.7686 | 0.7906 | 0.7794 | 0.9404 |
| 0.001 | 776.0 | 135024 | 0.5560 | 0.7652 | 0.8041 | 0.7842 | 0.9413 |
| 0.001 | 777.0 | 135198 | 0.5596 | 0.7611 | 0.7844 | 0.7726 | 0.9392 |
| 0.001 | 778.0 | 135372 | 0.5857 | 0.7603 | 0.7846 | 0.7722 | 0.9394 |
| 0.001 | 779.0 | 135546 | 0.5912 | 0.7599 | 0.7916 | 0.7754 | 0.9399 |
| 0.001 | 780.0 | 135720 | 0.5629 | 0.7547 | 0.8061 | 0.7795 | 0.9406 |
| 0.001 | 781.0 | 135894 | 0.5644 | 0.7676 | 0.7960 | 0.7815 | 0.9412 |
| 0.0013 | 782.0 | 136068 | 0.5994 | 0.7694 | 0.7985 | 0.7837 | 0.9410 |
| 0.0013 | 783.0 | 136242 | 0.6031 | 0.7608 | 0.8055 | 0.7825 | 0.9406 |
| 0.0013 | 784.0 | 136416 | 0.5842 | 0.7659 | 0.7913 | 0.7784 | 0.9396 |
| 0.0007 | 785.0 | 136590 | 0.5773 | 0.7709 | 0.7727 | 0.7718 | 0.9395 |
| 0.0007 | 786.0 | 136764 | 0.5928 | 0.7619 | 0.8042 | 0.7825 | 0.9406 |
| 0.0007 | 787.0 | 136938 | 0.5765 | 0.7761 | 0.7819 | 0.7790 | 0.9399 |
| 0.0007 | 788.0 | 137112 | 0.5978 | 0.7662 | 0.8021 | 0.7837 | 0.9415 |
| 0.0007 | 789.0 | 137286 | 0.5927 | 0.7690 | 0.7884 | 0.7786 | 0.9399 |
| 0.0007 | 790.0 | 137460 | 0.5910 | 0.7576 | 0.7893 | 0.7732 | 0.9387 |
| 0.001 | 791.0 | 137634 | 0.5718 | 0.7716 | 0.7841 | 0.7778 | 0.9398 |
| 0.001 | 792.0 | 137808 | 0.5782 | 0.7659 | 0.7940 | 0.7797 | 0.9402 |
| 0.001 | 793.0 | 137982 | 0.6104 | 0.7506 | 0.7828 | 0.7664 | 0.9368 |
| 0.0008 | 794.0 | 138156 | 0.5699 | 0.7683 | 0.7974 | 0.7826 | 0.9410 |
| 0.0008 | 795.0 | 138330 | 0.5508 | 0.7667 | 0.7943 | 0.7803 | 0.9406 |
| 0.0007 | 796.0 | 138504 | 0.5677 | 0.7618 | 0.7861 | 0.7737 | 0.9397 |
| 0.0007 | 797.0 | 138678 | 0.5844 | 0.7675 | 0.7929 | 0.7800 | 0.9411 |
| 0.0007 | 798.0 | 138852 | 0.5848 | 0.7712 | 0.7947 | 0.7828 | 0.9410 |
| 0.0005 | 799.0 | 139026 | 0.6056 | 0.7608 | 0.8006 | 0.7802 | 0.9412 |
| 0.0005 | 800.0 | 139200 | 0.5993 | 0.7686 | 0.7938 | 0.7810 | 0.9407 |
| 0.0005 | 801.0 | 139374 | 0.6284 | 0.7581 | 0.7942 | 0.7757 | 0.9395 |
| 0.0008 | 802.0 | 139548 | 0.6304 | 0.7682 | 0.7859 | 0.7769 | 0.9391 |
| 0.0008 | 803.0 | 139722 | 0.5859 | 0.7608 | 0.7769 | 0.7688 | 0.9382 |
| 0.0008 | 804.0 | 139896 | 0.5932 | 0.7626 | 0.7909 | 0.7765 | 0.9398 |
| 0.0009 | 805.0 | 140070 | 0.5850 | 0.7652 | 0.8030 | 0.7837 | 0.9411 |
| 0.0009 | 806.0 | 140244 | 0.5932 | 0.7647 | 0.7738 | 0.7692 | 0.9391 |
| 0.0009 | 807.0 | 140418 | 0.6064 | 0.7604 | 0.7875 | 0.7737 | 0.9401 |
| 0.0007 | 808.0 | 140592 | 0.5680 | 0.7721 | 0.7803 | 0.7762 | 0.9391 |
| 0.0007 | 809.0 | 140766 | 0.6108 | 0.7544 | 0.7895 | 0.7716 | 0.9383 |
| 0.0007 | 810.0 | 140940 | 0.6156 | 0.7654 | 0.7936 | 0.7792 | 0.9397 |
| 0.0008 | 811.0 | 141114 | 0.6231 | 0.7654 | 0.7834 | 0.7743 | 0.9399 |
| 0.0008 | 812.0 | 141288 | 0.6274 | 0.7640 | 0.7823 | 0.7730 | 0.9387 |
| 0.0008 | 813.0 | 141462 | 0.6253 | 0.7670 | 0.7951 | 0.7808 | 0.9403 |
| 0.0005 | 814.0 | 141636 | 0.6335 | 0.7603 | 0.7895 | 0.7746 | 0.9396 |
| 0.0005 | 815.0 | 141810 | 0.6381 | 0.7606 | 0.7884 | 0.7743 | 0.9395 |
| 0.0005 | 816.0 | 141984 | 0.6253 | 0.7606 | 0.7983 | 0.7790 | 0.9401 |
| 0.0006 | 817.0 | 142158 | 0.6289 | 0.7647 | 0.7889 | 0.7766 | 0.9396 |
| 0.0006 | 818.0 | 142332 | 0.5973 | 0.7653 | 0.7934 | 0.7791 | 0.9410 |
| 0.0006 | 819.0 | 142506 | 0.6083 | 0.7586 | 0.7958 | 0.7768 | 0.9402 |
| 0.0006 | 820.0 | 142680 | 0.5842 | 0.7709 | 0.7961 | 0.7833 | 0.9413 |
| 0.0006 | 821.0 | 142854 | 0.6084 | 0.7610 | 0.7992 | 0.7796 | 0.9404 |
| 0.001 | 822.0 | 143028 | 0.6156 | 0.7610 | 0.7981 | 0.7791 | 0.9412 |
| 0.001 | 823.0 | 143202 | 0.6018 | 0.7592 | 0.7990 | 0.7786 | 0.9408 |
| 0.001 | 824.0 | 143376 | 0.5920 | 0.7628 | 0.7974 | 0.7797 | 0.9412 |
| 0.0007 | 825.0 | 143550 | 0.6093 | 0.7658 | 0.7913 | 0.7783 | 0.9400 |
| 0.0007 | 826.0 | 143724 | 0.6057 | 0.7636 | 0.7938 | 0.7784 | 0.9409 |
| 0.0007 | 827.0 | 143898 | 0.5992 | 0.7628 | 0.8003 | 0.7811 | 0.9411 |
| 0.0006 | 828.0 | 144072 | 0.6110 | 0.7717 | 0.7879 | 0.7797 | 0.9408 |
| 0.0006 | 829.0 | 144246 | 0.5798 | 0.7670 | 0.7972 | 0.7818 | 0.9411 |
| 0.0006 | 830.0 | 144420 | 0.5785 | 0.7685 | 0.7992 | 0.7835 | 0.9419 |
| 0.0007 | 831.0 | 144594 | 0.6012 | 0.7696 | 0.7855 | 0.7775 | 0.9404 |
| 0.0007 | 832.0 | 144768 | 0.6055 | 0.7649 | 0.7929 | 0.7787 | 0.9408 |
| 0.0007 | 833.0 | 144942 | 0.6022 | 0.7711 | 0.7924 | 0.7816 | 0.9413 |
| 0.0003 | 834.0 | 145116 | 0.6119 | 0.7718 | 0.7862 | 0.7789 | 0.9411 |
| 0.0003 | 835.0 | 145290 | 0.5827 | 0.7706 | 0.7960 | 0.7831 | 0.9421 |
| 0.0003 | 836.0 | 145464 | 0.5844 | 0.7682 | 0.7789 | 0.7735 | 0.9400 |
| 0.001 | 837.0 | 145638 | 0.6001 | 0.7695 | 0.7947 | 0.7819 | 0.9414 |
| 0.001 | 838.0 | 145812 | 0.6120 | 0.7651 | 0.7929 | 0.7787 | 0.9408 |
| 0.001 | 839.0 | 145986 | 0.6139 | 0.7631 | 0.8001 | 0.7812 | 0.9412 |
| 0.0007 | 840.0 | 146160 | 0.6323 | 0.7673 | 0.7855 | 0.7763 | 0.9404 |
| 0.0007 | 841.0 | 146334 | 0.6773 | 0.7647 | 0.7882 | 0.7763 | 0.9401 |
| 0.0005 | 842.0 | 146508 | 0.6406 | 0.7692 | 0.7916 | 0.7803 | 0.9407 |
| 0.0005 | 843.0 | 146682 | 0.6117 | 0.7626 | 0.7900 | 0.7760 | 0.9400 |
| 0.0005 | 844.0 | 146856 | 0.6223 | 0.7638 | 0.7846 | 0.7741 | 0.9399 |
| 0.0005 | 845.0 | 147030 | 0.6309 | 0.7693 | 0.7979 | 0.7833 | 0.9407 |
| 0.0005 | 846.0 | 147204 | 0.6475 | 0.7609 | 0.7999 | 0.7799 | 0.9401 |
| 0.0005 | 847.0 | 147378 | 0.6018 | 0.7672 | 0.7888 | 0.7778 | 0.9401 |
| 0.0008 | 848.0 | 147552 | 0.6146 | 0.7641 | 0.7967 | 0.7800 | 0.9409 |
| 0.0008 | 849.0 | 147726 | 0.6105 | 0.7647 | 0.7859 | 0.7751 | 0.9402 |
| 0.0008 | 850.0 | 147900 | 0.5892 | 0.7764 | 0.7911 | 0.7837 | 0.9417 |
| 0.0004 | 851.0 | 148074 | 0.5999 | 0.7736 | 0.8012 | 0.7872 | 0.9421 |
| 0.0004 | 852.0 | 148248 | 0.6043 | 0.7618 | 0.8017 | 0.7813 | 0.9413 |
| 0.0004 | 853.0 | 148422 | 0.6227 | 0.7597 | 0.7918 | 0.7754 | 0.9409 |
| 0.0004 | 854.0 | 148596 | 0.6485 | 0.7620 | 0.7888 | 0.7752 | 0.9400 |
| 0.0004 | 855.0 | 148770 | 0.6376 | 0.7638 | 0.7933 | 0.7783 | 0.9408 |
| 0.0004 | 856.0 | 148944 | 0.6426 | 0.7716 | 0.7965 | 0.7839 | 0.9413 |
| 0.0003 | 857.0 | 149118 | 0.6455 | 0.7723 | 0.8033 | 0.7875 | 0.9413 |
| 0.0003 | 858.0 | 149292 | 0.6459 | 0.7660 | 0.8086 | 0.7867 | 0.9417 |
| 0.0003 | 859.0 | 149466 | 0.6244 | 0.7628 | 0.7875 | 0.7749 | 0.9399 |
| 0.0003 | 860.0 | 149640 | 0.6304 | 0.7683 | 0.7810 | 0.7746 | 0.9399 |
| 0.0003 | 861.0 | 149814 | 0.6419 | 0.7692 | 0.7808 | 0.7750 | 0.9400 |
| 0.0003 | 862.0 | 149988 | 0.6350 | 0.7668 | 0.7992 | 0.7826 | 0.9419 |
| 0.0003 | 863.0 | 150162 | 0.6327 | 0.7769 | 0.7960 | 0.7863 | 0.9414 |
| 0.0003 | 864.0 | 150336 | 0.6530 | 0.7560 | 0.7934 | 0.7743 | 0.9402 |
| 0.0005 | 865.0 | 150510 | 0.6452 | 0.7549 | 0.7994 | 0.7765 | 0.9409 |
| 0.0005 | 866.0 | 150684 | 0.6417 | 0.7648 | 0.7857 | 0.7751 | 0.9405 |
| 0.0005 | 867.0 | 150858 | 0.6240 | 0.7566 | 0.8033 | 0.7793 | 0.9418 |
| 0.0004 | 868.0 | 151032 | 0.6317 | 0.7663 | 0.7956 | 0.7807 | 0.9417 |
| 0.0004 | 869.0 | 151206 | 0.6258 | 0.7652 | 0.7922 | 0.7784 | 0.9410 |
| 0.0004 | 870.0 | 151380 | 0.6313 | 0.7699 | 0.7961 | 0.7828 | 0.9422 |
| 0.0004 | 871.0 | 151554 | 0.6250 | 0.7710 | 0.7925 | 0.7816 | 0.9409 |
| 0.0004 | 872.0 | 151728 | 0.6365 | 0.7677 | 0.7902 | 0.7788 | 0.9408 |
| 0.0004 | 873.0 | 151902 | 0.6250 | 0.7713 | 0.7848 | 0.7780 | 0.9408 |
| 0.0004 | 874.0 | 152076 | 0.6261 | 0.7594 | 0.7965 | 0.7775 | 0.9410 |
| 0.0004 | 875.0 | 152250 | 0.6320 | 0.7700 | 0.7940 | 0.7818 | 0.9414 |
| 0.0004 | 876.0 | 152424 | 0.6377 | 0.7692 | 0.7969 | 0.7828 | 0.9420 |
| 0.0002 | 877.0 | 152598 | 0.6272 | 0.7673 | 0.8041 | 0.7853 | 0.9420 |
| 0.0002 | 878.0 | 152772 | 0.6190 | 0.7664 | 0.7994 | 0.7825 | 0.9412 |
| 0.0002 | 879.0 | 152946 | 0.6321 | 0.7687 | 0.7920 | 0.7802 | 0.9407 |
| 0.0003 | 880.0 | 153120 | 0.6322 | 0.7672 | 0.7933 | 0.7800 | 0.9411 |
| 0.0003 | 881.0 | 153294 | 0.6343 | 0.7683 | 0.7920 | 0.7800 | 0.9406 |
| 0.0003 | 882.0 | 153468 | 0.6101 | 0.7520 | 0.7895 | 0.7703 | 0.9387 |
| 0.0005 | 883.0 | 153642 | 0.6241 | 0.7665 | 0.7898 | 0.7780 | 0.9406 |
| 0.0005 | 884.0 | 153816 | 0.6413 | 0.7677 | 0.7934 | 0.7804 | 0.9408 |
| 0.0005 | 885.0 | 153990 | 0.6446 | 0.7592 | 0.7956 | 0.7770 | 0.9408 |
| 0.0002 | 886.0 | 154164 | 0.6245 | 0.7623 | 0.7897 | 0.7758 | 0.9399 |
| 0.0002 | 887.0 | 154338 | 0.6366 | 0.7666 | 0.7967 | 0.7813 | 0.9407 |
| 0.0003 | 888.0 | 154512 | 0.6413 | 0.7628 | 0.7942 | 0.7782 | 0.9403 |
| 0.0003 | 889.0 | 154686 | 0.6300 | 0.7632 | 0.7990 | 0.7807 | 0.9409 |
| 0.0003 | 890.0 | 154860 | 0.6219 | 0.7640 | 0.7956 | 0.7795 | 0.9400 |
| 0.0004 | 891.0 | 155034 | 0.6225 | 0.7647 | 0.7891 | 0.7767 | 0.9399 |
| 0.0004 | 892.0 | 155208 | 0.6477 | 0.7662 | 0.7816 | 0.7738 | 0.9395 |
| 0.0004 | 893.0 | 155382 | 0.6345 | 0.7694 | 0.7873 | 0.7783 | 0.9403 |
| 0.0004 | 894.0 | 155556 | 0.5839 | 0.7660 | 0.7931 | 0.7793 | 0.9402 |
| 0.0004 | 895.0 | 155730 | 0.6053 | 0.7579 | 0.7999 | 0.7783 | 0.9398 |
| 0.0004 | 896.0 | 155904 | 0.5843 | 0.7707 | 0.7834 | 0.7770 | 0.9401 |
| 0.0005 | 897.0 | 156078 | 0.6095 | 0.7651 | 0.7938 | 0.7792 | 0.9392 |
| 0.0005 | 898.0 | 156252 | 0.6045 | 0.7640 | 0.7958 | 0.7796 | 0.9406 |
| 0.0005 | 899.0 | 156426 | 0.6185 | 0.7625 | 0.7943 | 0.7781 | 0.9399 |
| 0.0004 | 900.0 | 156600 | 0.6091 | 0.7636 | 0.7900 | 0.7766 | 0.9401 |
| 0.0004 | 901.0 | 156774 | 0.6223 | 0.7673 | 0.7906 | 0.7788 | 0.9405 |
| 0.0004 | 902.0 | 156948 | 0.6251 | 0.7681 | 0.7927 | 0.7802 | 0.9417 |
| 0.0003 | 903.0 | 157122 | 0.6235 | 0.7657 | 0.7882 | 0.7768 | 0.9409 |
| 0.0003 | 904.0 | 157296 | 0.6192 | 0.7749 | 0.7958 | 0.7852 | 0.9417 |
| 0.0003 | 905.0 | 157470 | 0.6311 | 0.7724 | 0.7897 | 0.7809 | 0.9405 |
| 0.0002 | 906.0 | 157644 | 0.6373 | 0.7669 | 0.7967 | 0.7815 | 0.9419 |
| 0.0002 | 907.0 | 157818 | 0.6306 | 0.7643 | 0.7990 | 0.7813 | 0.9412 |
| 0.0002 | 908.0 | 157992 | 0.6225 | 0.7703 | 0.7945 | 0.7822 | 0.9412 |
| 0.0002 | 909.0 | 158166 | 0.6268 | 0.7733 | 0.7967 | 0.7848 | 0.9421 |
| 0.0002 | 910.0 | 158340 | 0.6422 | 0.7759 | 0.7994 | 0.7875 | 0.9421 |
| 0.0002 | 911.0 | 158514 | 0.6512 | 0.7676 | 0.8041 | 0.7854 | 0.9422 |
| 0.0002 | 912.0 | 158688 | 0.6567 | 0.7701 | 0.8012 | 0.7853 | 0.9420 |
| 0.0002 | 913.0 | 158862 | 0.6555 | 0.7672 | 0.7999 | 0.7832 | 0.9419 |
| 0.0002 | 914.0 | 159036 | 0.6499 | 0.7679 | 0.7978 | 0.7825 | 0.9416 |
| 0.0002 | 915.0 | 159210 | 0.6461 | 0.7659 | 0.7990 | 0.7821 | 0.9416 |
| 0.0002 | 916.0 | 159384 | 0.6302 | 0.7701 | 0.7909 | 0.7804 | 0.9413 |
| 0.0003 | 917.0 | 159558 | 0.6350 | 0.7665 | 0.7916 | 0.7789 | 0.9412 |
| 0.0003 | 918.0 | 159732 | 0.6447 | 0.7647 | 0.7940 | 0.7790 | 0.9413 |
| 0.0003 | 919.0 | 159906 | 0.6557 | 0.7666 | 0.7954 | 0.7807 | 0.9416 |
| 0.0001 | 920.0 | 160080 | 0.6554 | 0.7714 | 0.7954 | 0.7832 | 0.9417 |
| 0.0001 | 921.0 | 160254 | 0.6628 | 0.7657 | 0.7852 | 0.7753 | 0.9403 |
| 0.0001 | 922.0 | 160428 | 0.6537 | 0.7687 | 0.7826 | 0.7756 | 0.9407 |
| 0.0002 | 923.0 | 160602 | 0.6584 | 0.7642 | 0.7925 | 0.7781 | 0.9410 |
| 0.0002 | 924.0 | 160776 | 0.6516 | 0.7715 | 0.7965 | 0.7838 | 0.9414 |
| 0.0002 | 925.0 | 160950 | 0.6378 | 0.7691 | 0.7978 | 0.7832 | 0.9417 |
| 0.0003 | 926.0 | 161124 | 0.6408 | 0.7716 | 0.7934 | 0.7824 | 0.9407 |
| 0.0003 | 927.0 | 161298 | 0.6366 | 0.7717 | 0.7895 | 0.7805 | 0.9408 |
| 0.0003 | 928.0 | 161472 | 0.6325 | 0.7678 | 0.7983 | 0.7827 | 0.9410 |
| 0.0002 | 929.0 | 161646 | 0.6356 | 0.7723 | 0.7940 | 0.7830 | 0.9411 |
| 0.0002 | 930.0 | 161820 | 0.6340 | 0.7723 | 0.7981 | 0.7850 | 0.9414 |
| 0.0002 | 931.0 | 161994 | 0.6349 | 0.7755 | 0.7981 | 0.7867 | 0.9417 |
| 0.0002 | 932.0 | 162168 | 0.6261 | 0.7783 | 0.7913 | 0.7847 | 0.9416 |
| 0.0002 | 933.0 | 162342 | 0.6299 | 0.7783 | 0.7940 | 0.7861 | 0.9421 |
| 0.0001 | 934.0 | 162516 | 0.6277 | 0.7767 | 0.7911 | 0.7838 | 0.9411 |
| 0.0001 | 935.0 | 162690 | 0.6299 | 0.7733 | 0.7949 | 0.7839 | 0.9409 |
| 0.0001 | 936.0 | 162864 | 0.6429 | 0.7705 | 0.7967 | 0.7834 | 0.9406 |
| 0.0001 | 937.0 | 163038 | 0.6487 | 0.7734 | 0.7958 | 0.7844 | 0.9408 |
| 0.0001 | 938.0 | 163212 | 0.6485 | 0.7729 | 0.7925 | 0.7826 | 0.9408 |
| 0.0001 | 939.0 | 163386 | 0.6593 | 0.7687 | 0.7967 | 0.7825 | 0.9409 |
| 0.0002 | 940.0 | 163560 | 0.6535 | 0.7674 | 0.7960 | 0.7814 | 0.9404 |
| 0.0002 | 941.0 | 163734 | 0.6542 | 0.7684 | 0.8046 | 0.7861 | 0.9414 |
| 0.0002 | 942.0 | 163908 | 0.6575 | 0.77 | 0.8042 | 0.7868 | 0.9418 |
| 0.0001 | 943.0 | 164082 | 0.6625 | 0.7725 | 0.7969 | 0.7845 | 0.9415 |
| 0.0001 | 944.0 | 164256 | 0.6729 | 0.7747 | 0.7961 | 0.7853 | 0.9412 |
| 0.0001 | 945.0 | 164430 | 0.6757 | 0.7729 | 0.7956 | 0.7841 | 0.9416 |
| 0.0002 | 946.0 | 164604 | 0.6629 | 0.7720 | 0.8014 | 0.7864 | 0.9417 |
| 0.0002 | 947.0 | 164778 | 0.6645 | 0.7737 | 0.7999 | 0.7866 | 0.9420 |
| 0.0002 | 948.0 | 164952 | 0.6658 | 0.7777 | 0.7902 | 0.7839 | 0.9416 |
| 0.0001 | 949.0 | 165126 | 0.6666 | 0.7790 | 0.7933 | 0.7860 | 0.9421 |
| 0.0001 | 950.0 | 165300 | 0.6737 | 0.7688 | 0.8062 | 0.7871 | 0.9422 |
| 0.0001 | 951.0 | 165474 | 0.6776 | 0.7723 | 0.8046 | 0.7881 | 0.9424 |
| 0.0002 | 952.0 | 165648 | 0.6628 | 0.7735 | 0.7976 | 0.7854 | 0.9422 |
| 0.0002 | 953.0 | 165822 | 0.6619 | 0.7773 | 0.7918 | 0.7845 | 0.9414 |
| 0.0002 | 954.0 | 165996 | 0.6516 | 0.7765 | 0.7978 | 0.7870 | 0.9421 |
| 0.0002 | 955.0 | 166170 | 0.6534 | 0.7714 | 0.8003 | 0.7856 | 0.9420 |
| 0.0002 | 956.0 | 166344 | 0.6476 | 0.7754 | 0.7999 | 0.7874 | 0.9421 |
| 0.0003 | 957.0 | 166518 | 0.6444 | 0.7745 | 0.7974 | 0.7858 | 0.9417 |
| 0.0003 | 958.0 | 166692 | 0.6442 | 0.7754 | 0.7985 | 0.7868 | 0.9418 |
| 0.0003 | 959.0 | 166866 | 0.6619 | 0.7704 | 0.7976 | 0.7838 | 0.9409 |
| 0.0002 | 960.0 | 167040 | 0.6678 | 0.7732 | 0.7987 | 0.7857 | 0.9413 |
| 0.0002 | 961.0 | 167214 | 0.6673 | 0.7758 | 0.8003 | 0.7879 | 0.9417 |
| 0.0002 | 962.0 | 167388 | 0.6671 | 0.7749 | 0.8023 | 0.7884 | 0.9417 |
| 0.0001 | 963.0 | 167562 | 0.6559 | 0.7718 | 0.8019 | 0.7865 | 0.9415 |
| 0.0001 | 964.0 | 167736 | 0.6596 | 0.7728 | 0.7976 | 0.7850 | 0.9412 |
| 0.0001 | 965.0 | 167910 | 0.6554 | 0.7714 | 0.8028 | 0.7868 | 0.9418 |
| 0.0002 | 966.0 | 168084 | 0.6524 | 0.7716 | 0.8026 | 0.7868 | 0.9418 |
| 0.0002 | 967.0 | 168258 | 0.6546 | 0.7715 | 0.8019 | 0.7864 | 0.9416 |
| 0.0002 | 968.0 | 168432 | 0.6555 | 0.7708 | 0.8024 | 0.7863 | 0.9419 |
| 0.0001 | 969.0 | 168606 | 0.6524 | 0.7708 | 0.7990 | 0.7847 | 0.9418 |
| 0.0001 | 970.0 | 168780 | 0.6575 | 0.7697 | 0.7999 | 0.7845 | 0.9416 |
| 0.0001 | 971.0 | 168954 | 0.6583 | 0.7732 | 0.7996 | 0.7862 | 0.9418 |
| 0.0001 | 972.0 | 169128 | 0.6571 | 0.7717 | 0.8021 | 0.7866 | 0.9419 |
| 0.0001 | 973.0 | 169302 | 0.6606 | 0.7725 | 0.7985 | 0.7853 | 0.9417 |
| 0.0001 | 974.0 | 169476 | 0.6600 | 0.7718 | 0.8010 | 0.7861 | 0.9421 |
| 0.0001 | 975.0 | 169650 | 0.6629 | 0.7705 | 0.8046 | 0.7872 | 0.9422 |
| 0.0001 | 976.0 | 169824 | 0.6607 | 0.7732 | 0.8014 | 0.7871 | 0.9422 |
| 0.0001 | 977.0 | 169998 | 0.6619 | 0.7728 | 0.7987 | 0.7855 | 0.9418 |
| 0.0001 | 978.0 | 170172 | 0.6641 | 0.7715 | 0.8019 | 0.7864 | 0.9421 |
| 0.0001 | 979.0 | 170346 | 0.6599 | 0.7708 | 0.8001 | 0.7852 | 0.9419 |
| 0.0001 | 980.0 | 170520 | 0.6615 | 0.7721 | 0.8028 | 0.7871 | 0.9420 |
| 0.0001 | 981.0 | 170694 | 0.6620 | 0.7729 | 0.8033 | 0.7878 | 0.9421 |
| 0.0001 | 982.0 | 170868 | 0.6630 | 0.7725 | 0.8015 | 0.7867 | 0.9421 |
| 0.0001 | 983.0 | 171042 | 0.6621 | 0.7738 | 0.7976 | 0.7855 | 0.9418 |
| 0.0001 | 984.0 | 171216 | 0.6634 | 0.7733 | 0.7979 | 0.7854 | 0.9417 |
| 0.0001 | 985.0 | 171390 | 0.6642 | 0.7741 | 0.8008 | 0.7872 | 0.9417 |
| 0.0001 | 986.0 | 171564 | 0.6660 | 0.7713 | 0.8030 | 0.7868 | 0.9418 |
| 0.0001 | 987.0 | 171738 | 0.6668 | 0.7717 | 0.8030 | 0.7870 | 0.9418 |
| 0.0001 | 988.0 | 171912 | 0.6639 | 0.7717 | 0.7987 | 0.7850 | 0.9415 |
| 0.0 | 989.0 | 172086 | 0.6646 | 0.7720 | 0.7983 | 0.7849 | 0.9416 |
| 0.0 | 990.0 | 172260 | 0.6626 | 0.7745 | 0.7983 | 0.7862 | 0.9417 |
| 0.0 | 991.0 | 172434 | 0.6630 | 0.7740 | 0.7981 | 0.7859 | 0.9417 |
| 0.0001 | 992.0 | 172608 | 0.6630 | 0.7733 | 0.7978 | 0.7853 | 0.9417 |
| 0.0001 | 993.0 | 172782 | 0.6607 | 0.7746 | 0.7988 | 0.7865 | 0.9418 |
| 0.0001 | 994.0 | 172956 | 0.6612 | 0.7750 | 0.7996 | 0.7871 | 0.9418 |
| 0.0001 | 995.0 | 173130 | 0.6608 | 0.7749 | 0.7992 | 0.7869 | 0.9419 |
| 0.0001 | 996.0 | 173304 | 0.6601 | 0.7748 | 0.7988 | 0.7867 | 0.9418 |
| 0.0001 | 997.0 | 173478 | 0.6604 | 0.7743 | 0.7988 | 0.7864 | 0.9418 |
| 0.0 | 998.0 | 173652 | 0.6605 | 0.7751 | 0.7999 | 0.7873 | 0.9419 |
| 0.0 | 999.0 | 173826 | 0.6606 | 0.7753 | 0.8003 | 0.7876 | 0.9420 |
| 0.0003 | 1000.0 | 174000 | 0.6607 | 0.7753 | 0.8003 | 0.7876 | 0.9420 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
bibuwei1/bloom_prompt_tuning_1696929687.587977
|
bibuwei1
| 2023-10-10T09:27:37Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-10-10T09:27:34Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
ayeshaliaqat/ppo-LunarLander-v2
|
ayeshaliaqat
| 2023-10-10T09:25:06Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T09:24:50Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -325.31 +/- 84.40
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
abheek19/q-FrozenLake-v1-4x4-noSlippery
|
abheek19
| 2023-10-10T09:25:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T09:25:04Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="abheek19/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
diwank/dfe-large-en-2
|
diwank
| 2023-10-10T08:57:48Z | 8 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-10-10T08:57:31Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# diwank/dfe-large-en-2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('diwank/dfe-large-en-2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=diwank/dfe-large-en-2)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 3633 with parameters:
```
{'batch_size': 1024, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 2000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>",
"optimizer_params": {
"lr": 0.0001,
"weight_decay": 0.01
},
"scheduler": "WarmupCosine",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Asym(
(dialog-0): Dense({'in_features': 1024, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-1): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-2): Dropout(
(dropout_layer): Dropout(p=0.1, inplace=False)
)
(dialog-3): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-4): Dense({'in_features': 2048, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-5): Normalize()
(fact-0): Dense({'in_features': 1024, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-1): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-2): Dropout(
(dropout_layer): Dropout(p=0.1, inplace=False)
)
(fact-3): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-4): Dense({'in_features': 2048, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-5): Normalize()
)
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
XiaohaiZhu/a2c-PandaReachDense-v3
|
XiaohaiZhu
| 2023-10-10T08:47:35Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T08:37:24Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.24 +/- 0.15
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
HaseebArshad786/LunarLander
|
HaseebArshad786
| 2023-10-10T08:47:11Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-09T20:34:30Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.40 +/- 21.70
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
User1115/whisper-large-v2-hindi-100steps
|
User1115
| 2023-10-10T08:46:45Z | 1 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:openai/whisper-large-v2",
"base_model:adapter:openai/whisper-large-v2",
"region:us"
] | null | 2023-09-29T17:28:55Z |
---
library_name: peft
base_model: openai/whisper-large-v2
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.6.0.dev0
|
alperenunlu/poca-SoccerTwos
|
alperenunlu
| 2023-10-10T08:44:41Z | 41 | 2 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-10-10T08:38:06Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: alperenunlu/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
flax-community/t5-base-cnn-dm
|
flax-community
| 2023-10-10T08:42:55Z | 423 | 1 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"summarization",
"en",
"dataset:cnn_dailymail",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
language: en
license: apache-2.0
tags:
- summarization
datasets:
- cnn_dailymail
model-index:
- name: flax-community/t5-base-cnn-dm
results:
- task:
type: summarization
name: Summarization
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: test
metrics:
- type: rouge
value: 24.1585
name: ROUGE-1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2Q0Nzk3ZTNkNTFjMTM2YjliNzcxYTVlMDgyNDE4MzZjNzgzZjgzYjI1NWFjZTE2YjE4MWE3NGRiNGZiMmVhNyIsInZlcnNpb24iOjF9.H2oS1cN5A3wY8oFZTVtCMwnbDPAdUhNwjTSDocqQinhDq7aSee_AvIVn-7m84Ke8qaMTAvHB9e56MDAAVT8XBA
- type: rouge
value: 11.0688
name: ROUGE-2
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGIyMmYzZTFhNjgwMmU5YWQ1MTZjM2ZlNjEwYmVmODkyMGQwZDQ2MjM1YmRkYjM2NTEyNjE5N2ExYzc0ZTcyYSIsInZlcnNpb24iOjF9.6GtmrXTD0EnrXx02enbLdbeiLh--I9u0GfrPdXZ_CKHeYgpFs0Gk1F0c75QBfGoMilodGymS15A9Bjvt00baBw
- type: rouge
value: 19.7293
name: ROUGE-L
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzc4MGQyNmYwNDk5NDE0MDk2ZjE2NmVkZDIwN2NmYzQxZTI0NWZhZjkxOGFkMWZmNjQ5NzRkODViNzg5Zjc5MiIsInZlcnNpb24iOjF9.rOgFJeHsW74nQiKc3DPoMIB9aWKqWTRtnweYP3DCp4duJN5jq32PPNyXo3EYuskGgTSp4KWwf7-Hl2MYwDrSCQ
- type: rouge
value: 22.6394
name: ROUGE-LSUM
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTA4M2JlZDliMmFlZDgwM2E2MDZjY2ZjZGUwZTcxNDM0NGU3NzdlYzJlZTEzNDEyZDE0OWFiMjUzMmYwNjRhNyIsInZlcnNpb24iOjF9.Mq9ltLQ5YAZfLLaGsPtSOe6KCRLRwjT_2nSAH9KWvOiyagJ16F5xQ1m9uUx9mhiu_UOmpjDaAtD3y4AOy4L0Dg
- type: loss
value: 2.516355514526367
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGQwNTIyZmU5ZjU3OWM1NGMwYzJiYTA0ZGVmOTA2MjcxYzZmZDRjZDViZDg0NGNlOWNjODkxYTc1ZTJhMmYyMiIsInZlcnNpb24iOjF9.mh6ZVu82CFnb5g92Uj-99wjyvoSQQI-gO-PDBdH4JZyc8mVPJYzV-S7jyXwC_XsOfD1OsR9XKTxM1NUirfBKAw
- type: gen_len
value: 18.9993
name: gen_len
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGY5YTYxZmZiYmY4NTZjNmMzMjllNWE1M2M2ZjA0MWM1MzBhZjc0MDM5ZGFiYTAzNjFiZjg5ZjMxYzlmOGYwMyIsInZlcnNpb24iOjF9.eXiPrQ-CeB3BWzlQzkTIA1q0xYP1GtFGIK9XyIneEmh5ajN5pCATxNDvn6n09d84OEr5432SoPJfdpNCd_UyCA
---
# Model
This model is fine-tuned from https://huggingface.co/flax-community/t5-base-openwebtext, fine-tuned on cnn_dailymail.
|
JJJJerry/Taxi-v3
|
JJJJerry
| 2023-10-10T08:40:24Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T08:40:21Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.72
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="JJJJerry/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Gayathri142214002/Pegasus_paraphraser_ComQG_3
|
Gayathri142214002
| 2023-10-10T08:37:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-10-10T06:44:44Z |
---
tags:
- generated_from_trainer
model-index:
- name: Pegasus_paraphraser_ComQG_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Pegasus_paraphraser_ComQG_3
This model is a fine-tuned version of [Gayathri142214002/Pegasus_paraphraser_ComQG_2](https://huggingface.co/Gayathri142214002/Pegasus_paraphraser_ComQG_2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2753
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2237 | 0.47 | 1000 | 0.2237 |
| 0.244 | 0.93 | 2000 | 0.2321 |
| 0.2073 | 1.4 | 3000 | 0.2543 |
| 0.213 | 1.86 | 4000 | 0.2511 |
| 0.1863 | 2.33 | 5000 | 0.2712 |
| 0.1844 | 2.79 | 6000 | 0.2621 |
| 0.1707 | 3.26 | 7000 | 0.2778 |
| 0.1585 | 3.72 | 8000 | 0.2753 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
JJJJerry/q-FrozenLake-v1-4x4-noSlippery
|
JJJJerry
| 2023-10-10T08:36:34Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T08:36:31Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="JJJJerry/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SHENMU007/neunit_BASE_V9.5.15
|
SHENMU007
| 2023-10-10T08:32:33Z | 77 | 0 |
transformers
|
[
"transformers",
"pytorch",
"speecht5",
"text-to-audio",
"1.1.0",
"generated_from_trainer",
"zh",
"dataset:facebook/voxpopuli",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-audio
| 2023-10-10T07:29:20Z |
---
language:
- zh
license: mit
base_model: microsoft/speecht5_tts
tags:
- 1.1.0
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: SpeechT5 TTS Dutch neunit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS Dutch neunit
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|
DopeorNope/zerocoka7_adpt
|
DopeorNope
| 2023-10-10T08:26:42Z | 2 | 0 |
peft
|
[
"peft",
"pytorch",
"region:us"
] | null | 2023-10-10T08:26:19Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
Yousefmd/arabert-emotions-classification
|
Yousefmd
| 2023-10-10T08:13:38Z | 34 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:aubmindlab/bert-large-arabertv02",
"base_model:finetune:aubmindlab/bert-large-arabertv02",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-22T18:58:32Z |
---
base_model: aubmindlab/bert-large-arabertv02
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: arabert-emotions-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# arabert-emotions-classification
This model is a fine-tuned version of [aubmindlab/bert-large-arabertv02](https://huggingface.co/aubmindlab/bert-large-arabertv02) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2817
- F1: 0.7006
- Roc Auc: 0.7931
- Accuracy: 0.2769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log | 1.0 | 190 | 0.3665 | 0.5604 | 0.7049 | 0.1761 |
| No log | 2.0 | 380 | 0.3086 | 0.6755 | 0.7775 | 0.2564 |
| 0.3831 | 3.0 | 570 | 0.2953 | 0.6848 | 0.7812 | 0.2496 |
| 0.3831 | 4.0 | 760 | 0.2849 | 0.6933 | 0.7866 | 0.2615 |
| 0.3831 | 5.0 | 950 | 0.2817 | 0.7006 | 0.7931 | 0.2769 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|
STomoya/vit_small_patch16_224.st_safebooru_1k
|
STomoya
| 2023-10-10T08:11:50Z | 15 | 0 |
timm
|
[
"timm",
"pytorch",
"safetensors",
"image-classification",
"license:apache-2.0",
"region:us"
] |
image-classification
| 2023-10-08T11:22:23Z |
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
---
# Model card for vit_small_patch16_224.st_safebooru_1k
## Model Details
- **metrics:**
|Precision|Recall|F1-score|
|-|-|-|
|0.7959206109368223|0.3983023195703428|0.5058713479582103|
|
JackCloudman/tora-code-34b-v1.0-GGUF
|
JackCloudman
| 2023-10-10T08:06:22Z | 2 | 2 |
transformers
|
[
"transformers",
"gguf",
"code",
"math",
"text-generation",
"en",
"dataset:gsm8k",
"dataset:competition_math",
"arxiv:2309.17452",
"license:llama2",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-10-10T07:20:03Z |
---
license: llama2
datasets:
- gsm8k
- competition_math
language:
- en
metrics:
- exact_match
library_name: transformers
pipeline_tag: text-generation
tags:
- code
- math
---
<h1 align="center">⚠️Testing Quantized Tora-Code-34b-v1.0 GGUF⚠️</h1>
<hr>
<p>Original README</p>
<h1 align="center">
ToRA: A Tool-Integrated Reasoning Agent <br> for Mathematical Problem Solving
</h1>
<p align="center">
<a href="https://microsoft.github.io/ToRA/"><b>[🌐 Website]</b></a> •
<a href="https://arxiv.org/pdf/2309.17452.pdf"><b>[📜 Paper]</b></a> •
<a href="https://huggingface.co/llm-agents"><b>[🤗 HF Models]</b></a> •
<a href="https://github.com/microsoft/ToRA"><b>[🐱 GitHub]</b></a>
<br>
<a href="https://twitter.com/zhs05232838/status/1708860992631763092"><b>[🐦 Twitter]</b></a> •
<a href="https://www.reddit.com/r/LocalLLaMA/comments/1703k6d/tora_a_toolintegrated_reasoning_agent_for/"><b>[💬 Reddit]</b></a> •
<a href="https://notes.aimodels.fyi/researchers-announce-tora-training-language-models-to-better-understand-math-using-external-tools/">[🍀 Unofficial Blog]</a>
<!-- <a href="#-quick-start">Quick Start</a> • -->
<!-- <a href="#%EF%B8%8F-citation">Citation</a> -->
</p>
<p align="center">
Repo for "<a href="https://arxiv.org/pdf/2309.17452.pdf" target="_blank">ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving</a>"
</p>
## 🔥 News
- [2023/10/08] 🔥🔥🔥 All ToRA models released at [HuggingFace](https://huggingface.co/llm-agents)!!!
- [2023/09/29] ToRA paper, repo, and website released.
## 💡 Introduction
ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical reasoning problems by interacting with tools, e.g., computation libraries and symbolic solvers. ToRA series seamlessly integrate natural language reasoning with the utilization of external tools, thereby amalgamating the analytical prowess of language and the computational efficiency of external tools.
| Model | Size | GSM8k | MATH | AVG@10 math tasks<sup>†</sup> |
|---|---|---|---|---|
| GPT-4 | - | 92.0 | 42.5 | 78.3 |
| GPT-4 (PAL) | - | 94.2 | 51.8 | 86.4 |
| [ToRA-7B](https://huggingface.co/llm-agents/tora-7b-v1.0) | 7B | 68.8 | 40.1 | 62.4|
| [ToRA-Code-7B](https://huggingface.co/llm-agents/tora-code-7b-v1.0) | 7B | 72.6 | 44.6 | 66.5|
| [ToRA-13B](https://huggingface.co/llm-agents/tora-13b-v1.0) | 13B | 72.7 | 43.0 | 65.9|
| [ToRA-Code-13B](https://huggingface.co/llm-agents/tora-code-13b-v1.0) | 13B | 75.8 | 48.1 | 71.3 |
| [ToRA-Code-34B<sup>*</sup>](https://huggingface.co/llm-agents/tora-code-34b-v1.0) | 34B | 80.7 | **51.0** | 74.8 |
| [ToRA-70B](https://huggingface.co/llm-agents/tora-70b-v1.0) | 70B | **84.3** | 49.7 | **76.9** |
- <sup>*</sup>ToRA-Code-34B is currently the first and only open-source model to achieve over 50% accuracy (pass@1) on the MATH dataset, which significantly outperforms GPT-4’s CoT result (51.0 vs. 42.5), and is competitive with GPT-4 solving problems with programs. By open-sourcing our codes and models, we hope more breakthroughs will come!
- <sup>†</sup>10 math tasks include GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, SingleEQ, SingleOP, AddSub, and MultiArith.
## ⚡️ Training
The models are trained on ToRA-Corpus 16k, which contains tool-integrated reasoning trajectories of MATH and GSM8k from GPT-4.
We use imitation learning (i.e., SFT) to fine-tune the models, and then apply our proposed *output space shaping* to improve tool-integrated reasoning behaviors. Please refer to the [paper](https://arxiv.org/pdf/2309.17452.pdf) for more details.
## 🪁 Inference & Evaluation
Please refer to ToRA's [GitHub repo](https://github.com/microsoft/ToRA) for inference, evaluation, and training code.
## ☕️ Citation
If you find this repository helpful, please consider citing our paper:
```
@misc{gou2023tora,
title={ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving},
author={Zhibin Gou and Zhihong Shao and Yeyun Gong and yelong shen and Yujiu Yang and Minlie Huang and Nan Duan and Weizhu Chen},
year={2023},
eprint={2309.17452},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
not-tanh/ppo-LunarLander-v2
|
not-tanh
| 2023-10-10T07:47:36Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T07:09:12Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.61 +/- 24.12
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
MattStammers/appo-atari_choppercommand
|
MattStammers
| 2023-10-10T07:47:26Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-09-25T23:52:42Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: atari_choppercommand
type: atari_choppercommand
metrics:
- type: mean_reward
value: 35570.00 +/- 17871.60
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **atari_choppercommand** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r MattStammers/APPO-atari_choppercommand
```
## About the Model
This model as with all the others in the benchmarks was trained initially asynchronously un-seeded to 10 million steps for the purposes of setting a sample factory async baseline for this model on this environment but only 3/57 made it.
The aim is to reach state-of-the-art (SOTA) performance on each atari environment. I will flag the models with SOTA when they reach at or near these levels.
The hyperparameters used in the model are the ones I have pushed to my fork of sample-factory: https://github.com/MattStammers/sample-factory. Given that https://huggingface.co/edbeeching has kindly shared his.
I saved time and energy by using many of his tuned hyperparameters to maximise performance. However, he used 2 billion training steps. I have started as explained above at 10 million then moved to 100m to see how performance goes:
```
hyperparameters = {
"device": "gpu",
"seed": 1234,
"num_policies": 2,
"async_rl": true,
"serial_mode": false,
"batched_sampling": true,
"num_batches_to_accumulate": 2,
"worker_num_splits": 1,
"policy_workers_per_policy": 1,
"max_policy_lag": 1000,
"num_workers": 16,
"num_envs_per_worker": 2,
"batch_size": 1024,
"num_batches_per_epoch": 8,
"num_epochs": 4,
"rollout": 128,
"recurrence": 1,
"shuffle_minibatches": false,
"gamma": 0.99,
"reward_scale": 1.0,
"reward_clip": 1000.0,
"value_bootstrap": false,
"normalize_returns": true,
"exploration_loss_coeff": 0.0004677351413,
"value_loss_coeff": 0.5,
"kl_loss_coeff": 0.0,
"exploration_loss": "entropy",
"gae_lambda": 0.95,
"ppo_clip_ratio": 0.1,
"ppo_clip_value": 1.0,
"with_vtrace": false,
"vtrace_rho": 1.0,
"vtrace_c": 1.0,
"optimizer": "adam",
"adam_eps": 1e-05,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"max_grad_norm": 0.0,
"learning_rate": 0.0003033891184,
"lr_schedule": "linear_decay",
"lr_schedule_kl_threshold": 0.008,
"lr_adaptive_min": 1e-06,
"lr_adaptive_max": 0.01,
"obs_subtract_mean": 0.0,
"obs_scale": 255.0,
"normalize_input": true,
"normalize_input_keys": [
"obs"
],
"decorrelate_experience_max_seconds": 0,
"decorrelate_envs_on_one_worker": true,
"actor_worker_gpus": [],
"set_workers_cpu_affinity": true,
"force_envs_single_thread": false,
"default_niceness": 0,
"log_to_file": true,
"experiment_summaries_interval": 3,
"flush_summaries_interval": 30,
"stats_avg": 100,
"summaries_use_frameskip": true,
"heartbeat_interval": 10,
"heartbeat_reporting_interval": 60,
"train_for_env_steps": 100000000,
"train_for_seconds": 10000000000,
"save_every_sec": 120,
"keep_checkpoints": 2,
"load_checkpoint_kind": "latest",
"save_milestones_sec": 1200,
"save_best_every_sec": 5,
"save_best_metric": "reward",
"save_best_after": 100000,
"benchmark": false,
"encoder_mlp_layers": [
512,
512
],
"encoder_conv_architecture": "convnet_atari",
"encoder_conv_mlp_layers": [
512
],
"use_rnn": false,
"rnn_size": 512,
"rnn_type": "gru",
"rnn_num_layers": 1,
"decoder_mlp_layers": [],
"nonlinearity": "relu",
"policy_initialization": "orthogonal",
"policy_init_gain": 1.0,
"actor_critic_share_weights": true,
"adaptive_stddev": false,
"continuous_tanh_scale": 0.0,
"initial_stddev": 1.0,
"use_env_info_cache": false,
"env_gpu_actions": false,
"env_gpu_observations": true,
"env_frameskip": 4,
"env_framestack": 4,
}
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m sf_examples.atari.enjoy_atari --algo=APPO --env=atari_choppercommand --train_dir=./train_dir --experiment=APPO-atari_choppercommand
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m sf_examples.atari.train_atari --algo=APPO --env=atari_choppercommand --train_dir=./train_dir --experiment=APPO-atari_choppercommand --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
kporzycki/a2c-PandaReachDense-v3
|
kporzycki
| 2023-10-10T07:44:49Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T07:39:15Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.24 +/- 0.11
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
AdiOO7/Azure-Classifier-dolly-7B
|
AdiOO7
| 2023-10-10T07:42:30Z | 2 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:diegi97/dolly-v2-6.9b-sharded-bf16",
"base_model:adapter:diegi97/dolly-v2-6.9b-sharded-bf16",
"region:us"
] | null | 2023-10-10T07:42:25Z |
---
library_name: peft
base_model: diegi97/dolly-v2-6.9b-sharded-bf16
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
|
SniiKz/Phi_1_Phase1
|
SniiKz
| 2023-10-10T07:37:29Z | 56 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mixformer-sequential",
"text-generation",
"generated_from_trainer",
"custom_code",
"base_model:microsoft/phi-1_5",
"base_model:finetune:microsoft/phi-1_5",
"license:other",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2023-10-10T06:58:28Z |
---
license: other
base_model: microsoft/phi-1_5
tags:
- generated_from_trainer
model-index:
- name: Phi_1_Phase1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi_1_Phase1
This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000
### Training results
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|
DLimited/em_mistral
|
DLimited
| 2023-10-10T07:32:26Z | 0 | 0 | null |
[
"gguf",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2023-10-09T12:45:09Z |
---
license: apache-2.0
---
unquantized .gguf for https://huggingface.co/jphme/em_german_mistral_v01
|
suoluo/ddpm-celebahq-finetuned-butterflies-2epochs
|
suoluo
| 2023-10-10T07:32:11Z | 44 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-10-10T07:30:49Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('suoluo/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
jurikuehn/mistral-finetuned-samsum
|
jurikuehn
| 2023-10-10T07:28:14Z | 0 | 0 | null |
[
"generated_from_trainer",
"base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"base_model:finetune:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ",
"license:apache-2.0",
"region:us"
] | null | 2023-10-09T08:00:01Z |
---
license: apache-2.0
base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ
tags:
- generated_from_trainer
model-index:
- name: mistral-finetuned-samsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-finetuned-samsum
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 250
### Training results
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|
promptora11/llama
|
promptora11
| 2023-10-10T07:13:15Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"llama-2",
"en",
"arxiv:2307.09288",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-10-10T06:48:17Z |
---
extra_gated_heading: Access Llama 2 on Hugging Face
extra_gated_description: >-
This is a form to enable access to Llama 2 on Hugging Face after you have been
granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our
license terms and acceptable use policy before submitting this form. Requests
will be processed in 1-2 days.
extra_gated_prompt: "**Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved.**"
extra_gated_button_content: Submit
extra_gated_fields:
I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox
language:
- en
pipeline_tag: text-generation
inference: false
arxiv: 2307.09288
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
---
# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>|
*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288)
## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
## Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
## Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
|
hyeju/sdxl-bird-emoji
|
hyeju
| 2023-10-10T07:04:43Z | 5 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-10-10T05:24:30Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a emoji of sks bird
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - hyeju/sdxl-bird-emoji
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a emoji of sks bird using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
spacy/ca_core_news_lg
|
spacy
| 2023-10-10T06:54:22Z | 14 | 2 |
spacy
|
[
"spacy",
"token-classification",
"ca",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ca
license: gpl-3.0
model-index:
- name: ca_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8481469334
- name: NER Recall
type: recall
value: 0.8366224523
- name: NER F Score
type: f_score
value: 0.8423452769
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9846920735
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9846920735
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9818721217
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9805595069
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9176385395
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8876925862
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9906377999
---
### Details: https://spacy.io/models/ca#ca_core_news_lg
Catalan pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ca_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Catalan AnCora v2.8](https://github.com/UniversalDependencies/UD_Catalan-AnCora) (Martínez Alonso, Héctor; Pascual, Elena; Zeman, Daniel)<br />[UD Catalan AnCora v2.8 + NER v3.2.9](https://github.com/TeMU-BSC/spacy/releases/tag/3.2.9) (Carlos Rodríguez-Penagos and Carme Armentano-Oller)<br />[Catalan Lemmatizer](https://github.com/explosion/spacy-lookups-data) (Text Mining Unit, Barcelona Supercomputing Center)<br />[Catalan Word Embeddings in FastText (Version 1.0)](http://doi.org/10.5281/zenodo.4522041) (Gutiérrez-Fandiño, Asier, Armengol-Estapé, Jordi, Gonzalez-Agirre, Aitor, Carrino, Casimiro Pio, de Gibert, Ona, & Villegas, Marta) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (317 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumForm=Digit\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `POS=AUX\|VerbForm=Inf`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Peri`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `POS=SCONJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|VerbForm=Ger`, `POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `POS=SYM`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|Polarity=Neg`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Ind`, `POS=PUNCT`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Ind`, `POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=VERB`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Semi`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Colo`, `Gender=Masc\|NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Quot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `POS=VERB`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PronType=Prs`, `POS=X`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Dem`, `POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `NumForm=Digit\|NumType=Ord\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=PRON\|PronType=Int`, `Foreign=Yes\|Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Foreign=Yes\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Comm`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Comm`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `AdvType=Tim\|Degree=Cmp\|POS=ADV`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Pre\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `POS=INTJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=SCONJ`, `Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=SYM`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=DET`, `Foreign=Yes\|POS=ADV`, `POS=PUNCT\|PunctSide=Fin\|Punta d'aignctType=Brck`, `Degree=Cmp\|POS=ADJ`, `AdvType=Tim\|POS=SYM`, `Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.93 |
| `TOKEN_P` | 99.78 |
| `TOKEN_R` | 99.79 |
| `TOKEN_F` | 99.79 |
| `POS_ACC` | 98.47 |
| `MORPH_ACC` | 98.19 |
| `MORPH_MICRO_P` | 99.56 |
| `MORPH_MICRO_R` | 99.05 |
| `MORPH_MICRO_F` | 99.30 |
| `SENTS_P` | 99.06 |
| `SENTS_R` | 99.06 |
| `SENTS_F` | 99.06 |
| `DEP_UAS` | 91.76 |
| `DEP_LAS` | 88.77 |
| `TAG_ACC` | 98.47 |
| `LEMMA_ACC` | 98.06 |
| `ENTS_P` | 84.81 |
| `ENTS_R` | 83.66 |
| `ENTS_F` | 84.23 |
|
spacy/da_core_news_lg
|
spacy
| 2023-10-10T06:53:27Z | 21 | 0 |
spacy
|
[
"spacy",
"token-classification",
"da",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- da
license: cc-by-sa-4.0
model-index:
- name: da_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.800407332
- name: NER Recall
type: recall
value: 0.81875
- name: NER F Score
type: f_score
value: 0.8094747683
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9665859564
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9665859564
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9573849879
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.948377724
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8225238813
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7828612927
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8869100623
---
### Details: https://spacy.io/models/da#da_core_news_lg
Danish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `da_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Danish DDT v2.8](https://github.com/UniversalDependencies/UD_Danish-DDT) (Johannsen, Anders; Martínez Alonso, Héctor; Plank, Barbara)<br />[DaNE](https://github.com/alexandrainst/danlp/blob/master/docs/datasets.md#danish-dependency-treebank-dane) (Rasmus Hvingelby, Amalie B. Pauli, Maria Barrett, Christina Rosted, Lasse M. Lidegaard, Anders Søgaard)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (194 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `AdpType=Prep\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PROPN`, `Definite=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=CCONJ`, `Definite=Ind\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADJ`, `POS=PRON\|PartType=Inf`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Dem`, `NumType=Card\|POS=NUM`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=ADP\|PartType=Inf`, `Degree=Pos\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Inf`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Com\|POS=PRON\|PronType=Ind`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Imp\|POS=VERB`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=ADV\|PartType=Inf`, `Degree=Sup\|POS=ADV`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|POS=PROPN`, `POS=ADP`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Com\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `POS=SPACE`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=INTJ`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Acc\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Com\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=SYM`, `Case=Nom\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Degree=Sup\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Ind\|Style=Arch`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Foreign=Yes\|POS=X`, `POS=DET\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Int,Rel`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Abbr=Yes\|POS=X`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Def\|Degree=Abs\|POS=ADJ`, `Definite=Ind\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Definite=Ind\|POS=NOUN`, `Gender=Com\|Number=Plur\|POS=NOUN`, `Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Com\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Degree=Abs\|POS=ADV`, `POS=VERB\|VerbForm=Ger`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs\|Style=Form`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=VERB\|Tense=Pres`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=PRON\|Person=2\|Polite=Form\|Poss=Yes\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Com\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|POS=AUX`, `Gender=Com\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=NOUN`, `Number[psor]=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=DET\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl:relcl`, `advcl`, `advmod`, `advmod:lmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `dep`, `det`, `expl`, `fixed`, `flat`, `iobj`, `list`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nummod`, `obj`, `obl`, `obl:lmod`, `obl:tmod`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.89 |
| `TOKEN_P` | 99.78 |
| `TOKEN_R` | 99.75 |
| `TOKEN_F` | 99.76 |
| `POS_ACC` | 96.66 |
| `MORPH_ACC` | 95.74 |
| `MORPH_MICRO_P` | 97.43 |
| `MORPH_MICRO_R` | 96.75 |
| `MORPH_MICRO_F` | 97.09 |
| `SENTS_P` | 89.09 |
| `SENTS_R` | 88.30 |
| `SENTS_F` | 88.69 |
| `DEP_UAS` | 82.25 |
| `DEP_LAS` | 78.29 |
| `LEMMA_ACC` | 94.84 |
| `TAG_ACC` | 96.66 |
| `ENTS_P` | 80.04 |
| `ENTS_R` | 81.88 |
| `ENTS_F` | 80.95 |
|
spacy/de_core_news_lg
|
spacy
| 2023-10-10T06:52:34Z | 24 | 0 |
spacy
|
[
"spacy",
"token-classification",
"de",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- de
license: mit
model-index:
- name: de_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8527131783
- name: NER Recall
type: recall
value: 0.844401557
- name: NER F Score
type: f_score
value: 0.8485370145
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9795559667
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9841217399
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9205894013
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9790945371
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9265658098
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9078030166
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9541230945
---
### Details: https://spacy.io/models/de#de_core_news_lg
German pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `de_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [TIGER Corpus](https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html) (Brants, Sabine, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit)<br />[Tiger2Dep](https://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/tiger2dep/) (Wolfgang Seeker)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (772 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `NNE`, `PDAT`, `PDS`, `PIAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY`, `_SP` |
| **`morphologizer`** | `POS=PUNCT`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Degree=Pos\|POS=ADV`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `POS=SCONJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PART`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PROPN`, `POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADP`, `Gender=Neut\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=SCONJ\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=X`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=SPACE`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=AUX\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Masc\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|POS=PROPN`, `Case=Gen\|Definite=Def\|POS=DET\|PronType=Art`, `Case=Gen\|POS=PROPN`, `Case=Acc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|POS=PRON\|PronType=Dem`, `Definite=Ind\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Neut\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `ac`, `adc`, `ag`, `ams`, `app`, `avc`, `cc`, `cd`, `cj`, `cm`, `cp`, `cvc`, `da`, `dep`, `dm`, `ep`, `ju`, `mnr`, `mo`, `ng`, `nk`, `nmc`, `oa`, `oc`, `og`, `op`, `par`, `pd`, `pg`, `ph`, `pm`, `pnc`, `punct`, `rc`, `re`, `rs`, `sb`, `sbp`, `svp`, `uc`, `vo` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.96 |
| `TOKEN_P` | 99.92 |
| `TOKEN_R` | 99.90 |
| `TOKEN_F` | 99.91 |
| `TAG_ACC` | 97.96 |
| `POS_ACC` | 98.41 |
| `MORPH_ACC` | 92.06 |
| `MORPH_MICRO_P` | 96.01 |
| `MORPH_MICRO_R` | 95.99 |
| `MORPH_MICRO_F` | 96.00 |
| `SENTS_P` | 95.18 |
| `SENTS_R` | 96.48 |
| `SENTS_F` | 95.41 |
| `DEP_UAS` | 92.66 |
| `DEP_LAS` | 90.78 |
| `LEMMA_ACC` | 97.91 |
| `ENTS_P` | 85.27 |
| `ENTS_R` | 84.44 |
| `ENTS_F` | 84.85 |
|
spacy/de_core_news_sm
|
spacy
| 2023-10-10T06:51:41Z | 184 | 1 |
spacy
|
[
"spacy",
"token-classification",
"de",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- de
license: mit
model-index:
- name: de_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8304823051
- name: NER Recall
type: recall
value: 0.8106276632
- name: NER F Score
type: f_score
value: 0.8204348804
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9738469671
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9801441777
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9065560122
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9746015805
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9192300179
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8984777676
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.937338274
---
### Details: https://spacy.io/models/de#de_core_news_sm
German pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `de_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [TIGER Corpus](https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html) (Brants, Sabine, Stefanie Dipper, Peter Eisenberg, Silvia Hansen, Esther König, Wolfgang Lezius, Christian Rohrer, George Smith, and Hans Uszkoreit)<br />[Tiger2Dep](https://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/tiger2dep/) (Wolfgang Seeker)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (772 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `$(`, `$,`, `$.`, `ADJA`, `ADJD`, `ADV`, `APPO`, `APPR`, `APPRART`, `APZR`, `ART`, `CARD`, `FM`, `ITJ`, `KOKOM`, `KON`, `KOUI`, `KOUS`, `NE`, `NN`, `NNE`, `PDAT`, `PDS`, `PIAT`, `PIS`, `PPER`, `PPOSAT`, `PPOSS`, `PRELAT`, `PRELS`, `PRF`, `PROAV`, `PTKA`, `PTKANT`, `PTKNEG`, `PTKVZ`, `PTKZU`, `PWAT`, `PWAV`, `PWS`, `TRUNC`, `VAFIN`, `VAIMP`, `VAINF`, `VAPP`, `VMFIN`, `VMINF`, `VMPP`, `VVFIN`, `VVIMP`, `VVINF`, `VVIZU`, `VVPP`, `XY`, `_SP` |
| **`morphologizer`** | `POS=PUNCT`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Degree=Pos\|POS=ADV`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `POS=SCONJ`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `POS=VERB\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PART`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PROPN`, `POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Case=Dat\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=NUM`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADP`, `Gender=Neut\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=SCONJ\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Degree=Cmp\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=X`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=SPACE`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Pos\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=AUX\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Dat\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Sing\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Masc\|POS=NOUN`, `Case=Dat\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|POS=PROPN`, `Case=Gen\|Definite=Def\|POS=DET\|PronType=Art`, `Case=Gen\|POS=PROPN`, `Case=Acc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2`, `Case=Dat\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|POS=PRON\|PronType=Dem`, `Definite=Ind\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Neut\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `ac`, `adc`, `ag`, `ams`, `app`, `avc`, `cc`, `cd`, `cj`, `cm`, `cp`, `cvc`, `da`, `dep`, `dm`, `ep`, `ju`, `mnr`, `mo`, `ng`, `nk`, `nmc`, `oa`, `oc`, `og`, `op`, `par`, `pd`, `pg`, `ph`, `pm`, `pnc`, `punct`, `rc`, `re`, `rs`, `sb`, `sbp`, `svp`, `uc`, `vo` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.96 |
| `TOKEN_P` | 99.92 |
| `TOKEN_R` | 99.90 |
| `TOKEN_F` | 99.91 |
| `TAG_ACC` | 97.38 |
| `POS_ACC` | 98.01 |
| `MORPH_ACC` | 90.66 |
| `MORPH_MICRO_P` | 95.03 |
| `MORPH_MICRO_R` | 95.15 |
| `MORPH_MICRO_F` | 95.09 |
| `SENTS_P` | 94.27 |
| `SENTS_R` | 95.28 |
| `SENTS_F` | 93.73 |
| `DEP_UAS` | 91.92 |
| `DEP_LAS` | 89.85 |
| `LEMMA_ACC` | 97.46 |
| `ENTS_P` | 83.05 |
| `ENTS_R` | 81.06 |
| `ENTS_F` | 82.04 |
|
spacy/el_core_news_lg
|
spacy
| 2023-10-10T06:51:38Z | 13 | 0 |
spacy
|
[
"spacy",
"token-classification",
"el",
"license:cc-by-nc-sa-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- el
license: cc-by-nc-sa-3.0
model-index:
- name: el_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7540322581
- name: NER Recall
type: recall
value: 0.7857142857
- name: NER F Score
type: f_score
value: 0.7695473251
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9329980772
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.962973919
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9114036385
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8956268797
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8824531516
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8454140792
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9259259259
---
### Details: https://spacy.io/models/el#el_core_news_lg
Greek pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `el_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Greek GDT v2.8](https://github.com/UniversalDependencies/UD_Greek-GDT) (Prokopidis, Prokopis)<br />[Greek NER Corpus (Google Summer of Code 2018)](https://github.com/eellak/gsoc2018-spacy) (Giannis Daras)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-NC-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (395 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `POS=ADP`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=NOUN`, `POS=ADV`, `POS=PUNCT`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=AUX`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=VERB\|VerbForm=Conv\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PART`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=SPACE`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Imp\|POS=AUX\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `POS=SYM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `EVENT`, `GPE`, `LOC`, `ORG`, `PERSON`, `PRODUCT` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.90 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.93 |
| `POS_ACC` | 96.30 |
| `MORPH_ACC` | 91.14 |
| `MORPH_MICRO_P` | 96.20 |
| `MORPH_MICRO_R` | 95.96 |
| `MORPH_MICRO_F` | 96.08 |
| `SENTS_P` | 92.14 |
| `SENTS_R` | 93.05 |
| `SENTS_F` | 92.59 |
| `DEP_UAS` | 88.25 |
| `DEP_LAS` | 84.54 |
| `LEMMA_ACC` | 89.56 |
| `TAG_ACC` | 93.30 |
| `ENTS_P` | 75.40 |
| `ENTS_R` | 78.57 |
| `ENTS_F` | 76.95 |
|
spacy/el_core_news_md
|
spacy
| 2023-10-10T06:50:50Z | 7 | 0 |
spacy
|
[
"spacy",
"token-classification",
"el",
"license:cc-by-nc-sa-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- el
license: cc-by-nc-sa-3.0
model-index:
- name: el_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7594936709
- name: NER Recall
type: recall
value: 0.756302521
- name: NER F Score
type: f_score
value: 0.7578947368
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9324064488
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9623822906
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9064734014
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8884287334
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8759067927
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.836887228
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9511889862
---
### Details: https://spacy.io/models/el#el_core_news_md
Greek pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `el_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Greek GDT v2.8](https://github.com/UniversalDependencies/UD_Greek-GDT) (Prokopidis, Prokopis)<br />[Greek NER Corpus (Google Summer of Code 2018)](https://github.com/eellak/gsoc2018-spacy) (Giannis Daras)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-NC-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (395 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `POS=ADP`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=NOUN`, `POS=ADV`, `POS=PUNCT`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=AUX`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=VERB\|VerbForm=Conv\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PART`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=SPACE`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Imp\|POS=AUX\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `POS=SYM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `EVENT`, `GPE`, `LOC`, `ORG`, `PERSON`, `PRODUCT` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.90 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.93 |
| `POS_ACC` | 96.24 |
| `MORPH_ACC` | 90.65 |
| `MORPH_MICRO_P` | 96.02 |
| `MORPH_MICRO_R` | 95.85 |
| `MORPH_MICRO_F` | 95.93 |
| `SENTS_P` | 95.96 |
| `SENTS_R` | 94.29 |
| `SENTS_F` | 95.12 |
| `DEP_UAS` | 87.59 |
| `DEP_LAS` | 83.69 |
| `LEMMA_ACC` | 88.84 |
| `TAG_ACC` | 93.24 |
| `ENTS_P` | 75.95 |
| `ENTS_R` | 75.63 |
| `ENTS_F` | 75.79 |
|
spacy/el_core_news_sm
|
spacy
| 2023-10-10T06:50:44Z | 5 | 1 |
spacy
|
[
"spacy",
"token-classification",
"el",
"license:cc-by-nc-sa-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- el
license: cc-by-nc-sa-3.0
model-index:
- name: el_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.742081448
- name: NER Recall
type: recall
value: 0.6890756303
- name: NER F Score
type: f_score
value: 0.7145969499
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9127841049
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9427599468
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.8905980378
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8865552433
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8463356974
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8032327231
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9372693727
---
### Details: https://spacy.io/models/el#el_core_news_sm
Greek pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `el_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Greek GDT v2.8](https://github.com/UniversalDependencies/UD_Greek-GDT) (Prokopidis, Prokopis)<br />[Greek NER Corpus (Google Summer of Code 2018)](https://github.com/eellak/gsoc2018-spacy) (Giannis Daras) |
| **License** | `CC BY-NC-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (395 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=X`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `POS=ADP`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `POS=NOUN`, `POS=ADV`, `POS=PUNCT`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADP`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=AUX`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=VERB\|VerbForm=Conv\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SCONJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `POS=PART`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Voc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `POS=SPACE`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Abbr=Yes\|POS=ADV`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Imp\|POS=AUX\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Voc\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Gen\|Gender=Fem\|NumType=Sets\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind`, `Degree=Sup\|POS=ADV`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `POS=SYM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Rel`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Rel`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|NumType=Mult\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Case=Gen\|Gender=Neut\|NumType=Ord\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind`, `Case=Gen\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=NUM`, `Case=Dat\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `EVENT`, `GPE`, `LOC`, `ORG`, `PERSON`, `PRODUCT` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.90 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.93 |
| `POS_ACC` | 94.28 |
| `MORPH_ACC` | 89.06 |
| `MORPH_MICRO_P` | 94.85 |
| `MORPH_MICRO_R` | 94.52 |
| `MORPH_MICRO_F` | 94.69 |
| `SENTS_P` | 92.93 |
| `SENTS_R` | 94.54 |
| `SENTS_F` | 93.73 |
| `DEP_UAS` | 84.63 |
| `DEP_LAS` | 80.32 |
| `LEMMA_ACC` | 88.66 |
| `TAG_ACC` | 91.28 |
| `ENTS_P` | 74.21 |
| `ENTS_R` | 68.91 |
| `ENTS_F` | 71.46 |
|
spacy/es_core_news_md
|
spacy
| 2023-10-10T06:49:00Z | 311 | 1 |
spacy
|
[
"spacy",
"token-classification",
"es",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- es
license: gpl-3.0
model-index:
- name: es_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8925237438
- name: NER Recall
type: recall
value: 0.8951031872
- name: NER F Score
type: f_score
value: 0.8938116045
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9610850187
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9848174063
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9802342746
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.964971968
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9125758682
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8800383563
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9880453102
---
### Details: https://spacy.io/models/es#es_core_news_md
Spanish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `es_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Spanish AnCora v2.8](https://github.com/UniversalDependencies/UD_Spanish-AnCora) (Martínez Alonso, Héctor; Zeman, Daniel)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (468 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Int,Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=SCONJ`, `POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Comm`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=ADV`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `POS=PRON\|PronType=Ind`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=PUNCT\|PunctType=Quot`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumType=Card\|POS=NUM`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `POS=AUX\|VerbForm=Inf`, `Number=Plur\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumForm=Digit\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdvType=Tim\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=SPACE`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Colo`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `POS=PUNCT\|PunctType=Dash`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=NOUN\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=DET\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `AdvType=Tim\|POS=ADV`, `POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SCONJ\|PronType=Int,Rel`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SYM`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Com\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NOUN\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Number=Sing\|POS=VERB\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Fin`, `POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Definite=Def\|Foreign=Yes\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|PunctType=Quot\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Com\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=AUX\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `AdvType=Tim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Com\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `POS=X`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Com\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Number=Sing\|POS=AUX\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=NOUN\|PunctType=Comm`, `Degree=Cmp\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=PRON\|PronType=Neg`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Int,Rel`, `Definite=Def\|Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=ADP`, `Foreign=Yes\|POS=CCONJ`, `Foreign=Yes\|POS=PROPN` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:impers`, `expl:pass`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.89 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.92 |
| `POS_ACC` | 98.48 |
| `MORPH_ACC` | 98.02 |
| `MORPH_MICRO_P` | 99.43 |
| `MORPH_MICRO_R` | 98.85 |
| `MORPH_MICRO_F` | 99.14 |
| `SENTS_P` | 98.40 |
| `SENTS_R` | 99.21 |
| `SENTS_F` | 98.80 |
| `DEP_UAS` | 91.26 |
| `DEP_LAS` | 88.00 |
| `TAG_ACC` | 96.11 |
| `LEMMA_ACC` | 96.50 |
| `ENTS_P` | 89.25 |
| `ENTS_R` | 89.51 |
| `ENTS_F` | 89.38 |
|
spacy/es_core_news_sm
|
spacy
| 2023-10-10T06:48:54Z | 159 | 2 |
spacy
|
[
"spacy",
"token-classification",
"es",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- es
license: gpl-3.0
model-index:
- name: es_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8910285087
- name: NER Recall
type: recall
value: 0.8918264338
- name: NER F Score
type: f_score
value: 0.8914272927
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9581496108
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9815191135
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9771762157
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9629594135
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9037516481
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8684594765
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.972165913
---
### Details: https://spacy.io/models/es#es_core_news_sm
Spanish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `es_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Spanish AnCora v2.8](https://github.com/UniversalDependencies/UD_Spanish-AnCora) (Martínez Alonso, Héctor; Zeman, Daniel)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (468 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=ADP`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PROPN`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Int,Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `POS=SCONJ`, `POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Plur\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Comm`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=ADV`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `POS=PRON\|PronType=Ind`, `POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Int,Rel`, `POS=PUNCT\|PunctType=Quot`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumType=Card\|POS=NUM`, `POS=VERB\|VerbForm=Ger`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADV`, `POS=AUX\|VerbForm=Inf`, `Number=Plur\|POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumForm=Digit\|POS=NOUN`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `AdvType=Tim\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Number=Sing\|POS=PRON\|PronType=Int,Rel`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc,Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc,Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=SPACE`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PUNCT\|PunctType=Colo`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PUNCT\|PunctType=Semi`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `POS=INTJ`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `POS=PUNCT\|PunctType=Dash`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|POS=NOUN`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=NOUN\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc,Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `POS=DET\|PronType=Ind`, `POS=DET\|PronType=Int,Rel`, `AdvType=Tim\|POS=ADV`, `POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SCONJ\|PronType=Int,Rel`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Acc,Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=SYM`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Acc,Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Int,Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc,Nom\|Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Com\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Pre\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NOUN\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Number=Sing\|POS=VERB\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Art`, `Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Fin`, `POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Definite=Def\|Foreign=Yes\|POS=DET\|PronType=Art`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|PunctType=Quot\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Com\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Dat\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc,Dat\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=PRON\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `POS=AUX\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `AdvType=Tim\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|Typo=Yes\|VerbForm=Fin`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Ind`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN\|VerbForm=Part`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Case=Acc,Dat\|Number=Plur\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Com\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `POS=X`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Com\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc,Dat\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PrepCase=Npr\|PronType=Prs`, `Number=Sing\|POS=AUX\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=2\|Poss=Yes\|PronType=Ind`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=1,3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=2\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Inf`, `Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `POS=NOUN\|PunctType=Comm`, `Degree=Cmp\|POS=ADJ`, `Gender=Masc\|POS=ADJ`, `Degree=Abs\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=PRON\|PronType=Ind`, `POS=PRON\|PronType=Neg`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes\|VerbForm=Ger`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PrepCase=Npr\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Ind`, `Number=Sing\|POS=DET\|PronType=Int,Rel`, `Definite=Def\|Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=ADP`, `Foreign=Yes\|POS=CCONJ`, `Foreign=Yes\|POS=PROPN` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:impers`, `expl:pass`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.89 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.92 |
| `POS_ACC` | 98.15 |
| `MORPH_ACC` | 97.72 |
| `MORPH_MICRO_P` | 99.24 |
| `MORPH_MICRO_R` | 98.61 |
| `MORPH_MICRO_F` | 98.93 |
| `SENTS_P` | 96.30 |
| `SENTS_R` | 98.15 |
| `SENTS_F` | 97.22 |
| `DEP_UAS` | 90.38 |
| `DEP_LAS` | 86.85 |
| `TAG_ACC` | 95.81 |
| `LEMMA_ACC` | 96.30 |
| `ENTS_P` | 89.10 |
| `ENTS_R` | 89.18 |
| `ENTS_F` | 89.14 |
|
spacy/fi_core_news_lg
|
spacy
| 2023-10-10T06:48:49Z | 9 | 0 |
spacy
|
[
"spacy",
"token-classification",
"fi",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-05-02T09:12:58Z |
---
tags:
- spacy
- token-classification
language:
- fi
license: cc-by-sa-4.0
model-index:
- name: fi_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8236272879
- name: NER Recall
type: recall
value: 0.813030386
- name: NER F Score
type: f_score
value: 0.8182945309
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9709439124
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9628474502
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9221890983
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8653065672
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8371365653
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7941298453
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9083487941
---
### Details: https://spacy.io/models/fi#fi_core_news_lg
Finnish pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `fi_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | floret (200000, 300) |
| **Sources** | [UD Finnish TDT v2.8](https://github.com/UniversalDependencies/UD_Finnish-TDT) (Ginter, Filip; Kanerva, Jenna; Laippala, Veronika; Miekka, Niko; Missilä, Anna; Ojala, Stina; Pyysalo, Sampo)<br />[TurkuONE (ffe2040e)](https://github.com/TurkuNLP/turku-one) (Jouni Luoma, Li-Hsin Chang, Filip Ginter, Sampo Pyysalo)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (2145 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `A`, `Adj`, `Adp`, `Adv`, `Adv_V`, `C`, `C_V`, `Foreign`, `Interj`, `N`, `Num`, `Pron`, `Punct`, `Symb`, `V`, `V_Pron`, `_SP` |
| **`morphologizer`** | `Case=Nom\|Number=Sing\|POS=NOUN`, `NumType=Ord\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=U\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Par\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `POS=SCONJ`, `Case=Nom\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Abl\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Kin\|POS=ADV`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Ess\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ela\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ine\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Par\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ill\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=All\|Derivation=U\|Number=Sing\|POS=NOUN`, `AdpType=Post\|POS=ADP`, `Case=Nom\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Abl\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Par\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Par\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Tra\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `InfForm=1\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `InfForm=1\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Derivation=Sti\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ine\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=All\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ill\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=All\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Tra\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=All\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Derivation=Ja\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ine\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON`, `Case=Nom\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ade\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Derivation=Ttain\|POS=ADV`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=All\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|Number=Plur\|POS=NOUN`, `Case=Com\|POS=NOUN\|Person[psor]=3`, `Case=Com\|POS=PRON\|Person[psor]=3\|PronType=Ind`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=1`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `POS=SPACE`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ill\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=SCONJ\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `AdpType=Post\|POS=ADP\|Person[psor]=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ill\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Abbr=Yes\|Case=Ine\|Number=Sing\|POS=NOUN`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Plur\|POS=NOUN`, `Case=Nom\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Par\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Sing\|POS=PROPN\|Style=Coll`, `Abbr=Yes\|Case=Par\|Number=Sing\|POS=NOUN`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ess\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PROPN`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ill\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ade\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Dem`, `Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Clitic=Ko\|Number=Sing\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Dem`, `Connegative=Yes\|Mood=Cnd\|POS=AUX\|VerbForm=Fin`, `Case=Ela\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel`, `Clitic=Ka\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|POS=ADV`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ade\|Derivation=U\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Case=Ine\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=All\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `POS=ADV\|Typo=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ela\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=All\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Derivation=Vs\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `AdpType=Prep\|POS=ADP`, `Case=Par\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Style=Coll`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `POS=INTJ`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ess\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Par\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abl\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Abl\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Tra\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abe\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Tra\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=All\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Abl\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Clitic=Kin\|Mood=Cnd\|POS=AUX\|VerbForm=Fin\|Voice=Pass`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Ind`, `Abbr=Yes\|Case=Gen\|Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Derivation=Sti\|POS=ADV\|Typo=Yes`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ill\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Tar\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Par\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ade\|Number=Sing\|POS=PROPN`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=NOUN\|Style=Coll`, `Case=Ill\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Par\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=PROPN`, `Case=Nom\|Clitic=Pa\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=ADJ\|Typo=Yes`, `POS=ADV\|Style=Coll`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Tra\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=NOUN\|Style=Coll`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem\|Typo=Yes`, `Case=Ine\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Clitic=Ko\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Case=Ill\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Abbr=Yes\|Case=Abl\|Number=Sing\|POS=PROPN`, `Case=Abl\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Ade\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Par\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Han\|POS=ADV`, `Case=Par\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Llinen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Plur\|POS=NOUN`, `Case=Abl\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=All\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Par\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Tra\|InfForm=1\|Number=Sing\|POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=All\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|Case=Ade\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=SCONJ\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ill\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Ill\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=All\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Abl\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Gen\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Clitic=Ko\|Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Ess\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Degree=Sup\|Derivation=Sti\|POS=ADV`, `Case=Ine\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Tra\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Par\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:nn`, `compound:prt`, `conj`, `cop`, `cop:own`, `csubj`, `csubj:cop`, `dep`, `det`, `discourse`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `mark`, `nmod`, `nmod:gobj`, `nmod:gsubj`, `nmod:poss`, `nsubj`, `nsubj:cop`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp`, `xcomp:ds` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.79 |
| `TOKEN_R` | 99.90 |
| `TOKEN_F` | 99.85 |
| `TAG_ACC` | 97.09 |
| `POS_ACC` | 96.28 |
| `MORPH_ACC` | 92.22 |
| `MORPH_MICRO_P` | 96.26 |
| `MORPH_MICRO_R` | 95.17 |
| `MORPH_MICRO_F` | 95.71 |
| `SENTS_P` | 91.96 |
| `SENTS_R` | 89.74 |
| `SENTS_F` | 90.83 |
| `DEP_UAS` | 83.71 |
| `DEP_LAS` | 79.41 |
| `LEMMA_ACC` | 86.53 |
| `ENTS_P` | 82.36 |
| `ENTS_R` | 81.30 |
| `ENTS_F` | 81.83 |
|
spacy/fi_core_news_md
|
spacy
| 2023-10-10T06:48:31Z | 4 | 0 |
spacy
|
[
"spacy",
"token-classification",
"fi",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-05-02T09:12:33Z |
---
tags:
- spacy
- token-classification
language:
- fi
license: cc-by-sa-4.0
model-index:
- name: fi_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8190770962
- name: NER Recall
type: recall
value: 0.7968792773
- name: NER F Score
type: f_score
value: 0.807825725
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9659361405
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9586650253
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9186882914
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8602402419
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8321792131
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7845751467
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8935543278
---
### Details: https://spacy.io/models/fi#fi_core_news_md
Finnish pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `fi_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | floret (50000, 300) |
| **Sources** | [UD Finnish TDT v2.8](https://github.com/UniversalDependencies/UD_Finnish-TDT) (Ginter, Filip; Kanerva, Jenna; Laippala, Veronika; Miekka, Niko; Missilä, Anna; Ojala, Stina; Pyysalo, Sampo)<br />[TurkuONE (ffe2040e)](https://github.com/TurkuNLP/turku-one) (Jouni Luoma, Li-Hsin Chang, Filip Ginter, Sampo Pyysalo)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (2145 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `A`, `Adj`, `Adp`, `Adv`, `Adv_V`, `C`, `C_V`, `Foreign`, `Interj`, `N`, `Num`, `Pron`, `Punct`, `Symb`, `V`, `V_Pron`, `_SP` |
| **`morphologizer`** | `Case=Nom\|Number=Sing\|POS=NOUN`, `NumType=Ord\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=U\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=ADV`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Par\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `POS=SCONJ`, `Case=Nom\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Sing\|POS=NOUN`, `Case=Abl\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Kin\|POS=ADV`, `Case=Gen\|Number=Plur\|POS=PROPN`, `Case=Ess\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ela\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `POS=ADJ`, `Case=Gen\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ine\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ins\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=PROPN`, `Case=Par\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ill\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=All\|Derivation=U\|Number=Sing\|POS=NOUN`, `AdpType=Post\|POS=ADP`, `Case=Nom\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Abl\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Par\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Gen\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Par\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Tra\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `InfForm=1\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `InfForm=1\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Derivation=Sti\|POS=ADV`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ine\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Gen\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=All\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ill\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN\|Typo=Yes`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=All\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kaan\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Tra\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=All\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=All\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ill\|Derivation=Ja\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ine\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON`, `Case=Nom\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=0\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ine\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1\|Style=Coll`, `Case=Ade\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Derivation=Ttain\|POS=ADV`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Case=All\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ela\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ine\|Number=Plur\|POS=NOUN`, `Case=Com\|POS=NOUN\|Person[psor]=3`, `Case=Com\|POS=PRON\|Person[psor]=3\|PronType=Ind`, `Number[psor]=Sing\|POS=ADV\|Person[psor]=1`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Par\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin\|Voice=Act`, `POS=SPACE`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ade\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Connegative=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ill\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=SCONJ\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `AdpType=Post\|POS=ADP\|Person[psor]=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ill\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Abbr=Yes\|Case=Ine\|Number=Sing\|POS=NOUN`, `Case=Ine\|InfForm=2\|Number=Sing\|Number[psor]=Sing\|POS=AUX\|Person[psor]=1\|VerbForm=Inf\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Plur\|POS=NOUN`, `Case=Nom\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Par\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Sing\|POS=PROPN\|Style=Coll`, `Abbr=Yes\|Case=Par\|Number=Sing\|POS=NOUN`, `Case=Ess\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ess\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Ill\|Number=Sing\|POS=PROPN`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Tra\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ill\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Ela\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ade\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Sing\|POS=NOUN\|Typo=Yes`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Style=Coll\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `Case=Ade\|Number=Sing\|POS=PRON\|PronType=Dem`, `Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Clitic=Ko\|Number=Sing\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Number=Plur\|POS=PRON\|PronType=Dem`, `Connegative=Yes\|Mood=Cnd\|POS=AUX\|VerbForm=Fin`, `Case=Ela\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=Llinen,Vs\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Gen\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Agt\|VerbForm=Part\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|VerbForm=Fin\|Voice=Act`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rel`, `Clitic=Ka\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=0\|VerbForm=Fin\|Voice=Act`, `Case=Ess\|Clitic=Kaan\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=SCONJ\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kaan\|POS=ADV`, `Clitic=Pa\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Ade\|Derivation=U\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Case=Ine\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=All\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `POS=ADV\|Typo=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=All\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Par\|Derivation=U\|Number=Plur\|POS=NOUN`, `Case=Ela\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Clitic=Ko\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=All\|Clitic=Kin\|Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Derivation=Vs\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Number=Sing\|POS=PRON\|Person[psor]=3\|Reflex=Yes`, `AdpType=Prep\|POS=ADP`, `Case=Par\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=Vs\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Style=Coll`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `POS=INTJ`, `Case=Nom\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ess\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs\|Style=Coll`, `Case=Ine\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Ela\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Rcp`, `Case=Par\|Derivation=Lainen\|Number=Sing\|POS=ADJ`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Nom\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abl\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Abl\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Tra\|Derivation=U\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Abe\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ade\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Tra\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Ela\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Sing\|POS=NOUN\|Person[psor]=3\|Typo=Yes`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Nom\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=All\|Derivation=Ja\|Number=Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=All\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Abl\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Derivation=Lainen\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|Case=Nom\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Clitic=Kin\|Mood=Cnd\|POS=AUX\|VerbForm=Fin\|Voice=Pass`, `Clitic=Han\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Derivation=U\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Ind`, `Abbr=Yes\|Case=Gen\|Number=Sing\|POS=PROPN`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Derivation=Ja\|Number=Plur\|POS=NOUN`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Derivation=Sti\|POS=ADV\|Typo=Yes`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Ill\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Derivation=Tar\|Number=Sing\|POS=NOUN`, `Clitic=Ko\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Par\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Ill\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Ess\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ\|Style=Coll`, `Case=Par\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=NOUN\|Style=Coll`, `Case=Ade\|Number=Sing\|POS=PROPN`, `Case=Nom\|Clitic=Han\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Ess\|Derivation=Inen\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Clitic=Ka\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Plur\|POS=NOUN\|Style=Coll`, `Case=Ill\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Case=Nom\|Clitic=Kaan\|Degree=Pos\|Number=Sing\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Case=Par\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ela\|Number=Sing\|POS=PRON\|PronType=Prs\|Style=Coll`, `Case=Ela\|Number=Sing\|POS=PROPN`, `Case=Nom\|Clitic=Pa\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ade\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=ADJ\|Typo=Yes`, `POS=ADV\|Style=Coll`, `Case=All\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Tra\|Degree=Pos\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Number=Plur\|Number[psor]=Sing\|POS=VERB\|PartForm=Agt\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Number=Plur\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=ADJ\|Person[psor]=3`, `Case=Par\|Degree=Pos\|Derivation=Llinen\|Number=Plur\|POS=ADJ`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=All\|Number=Sing\|POS=NOUN\|Style=Coll`, `Clitic=Han\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|PronType=Dem\|Typo=Yes`, `Case=Ine\|Derivation=Vs\|Number=Sing\|POS=NOUN\|Person[psor]=3`, `Case=Gen\|Degree=Sup\|Number=Sing\|POS=ADJ`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Plur\|POS=ADJ`, `Case=Ine\|Number=Plur\|POS=PRON\|PronType=Dem`, `Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=AUX\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=2`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ade\|Number=Plur\|POS=NOUN\|Person[psor]=3`, `Case=All\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Clitic=Ko\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Case=Ill\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Ela\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Nom\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Abbr=Yes\|Case=Abl\|Number=Sing\|POS=PROPN`, `Case=Abl\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ\|Typo=Yes`, `Case=Ade\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Ade\|Degree=Cmp\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Cmp\|Number=Sing\|POS=ADJ`, `Case=Ine\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Par\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Kin\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Clitic=Kin\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|NumType=Card\|Number=Plur\|POS=NUM\|Typo=Yes`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Dem`, `Clitic=Han\|POS=ADV`, `Case=Par\|Derivation=Llinen\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Clitic=Kin\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Derivation=Llinen\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Sing\|Number[psor]=Sing\|POS=VERB\|PartForm=Pres\|Person[psor]=1\|VerbForm=Part\|Voice=Act`, `Case=Abl\|Number=Plur\|POS=NOUN`, `Case=Abl\|Derivation=Lainen\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=All\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Par\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Ine\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Nom\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Par\|Derivation=Ton,Vs\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Ela\|InfForm=3\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Derivation=Inen,Vs\|Number=Sing\|POS=NOUN`, `Case=All\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Gen\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Par\|Number=Sing\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Par\|Degree=Pos\|Derivation=Ton\|Number=Sing\|POS=ADJ`, `Case=Tra\|InfForm=1\|Number=Sing\|POS=VERB\|Person[psor]=3\|VerbForm=Inf\|Voice=Act`, `Number=Sing\|POS=AUX\|Person=2\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ill\|Degree=Pos\|Derivation=Inen\|Number=Sing\|POS=ADJ`, `Case=All\|Derivation=Minen\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|Case=Ade\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|Person[psor]=3\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Derivation=Inen\|Number=Plur\|Number[psor]=Sing\|POS=ADJ\|Person[psor]=1`, `Case=Nom\|Clitic=Kin\|Degree=Cmp\|Number=Plur\|POS=ADJ`, `Clitic=Kaan\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ine\|InfForm=2\|Number=Sing\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Ill\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Par\|Derivation=Vs\|Number=Plur\|POS=NOUN`, `Case=Ill\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=All\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Nom\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=SCONJ\|Person=1\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|Degree=Pos\|Derivation=Lainen\|Number=Plur\|POS=ADJ`, `Case=Ill\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Ill\|Number=Plur\|Number[psor]=Plur\|POS=NOUN\|Person[psor]=1`, `Case=Ela\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=All\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Nom\|Clitic=Kin\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Clitic=Kin\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|Typo=Yes\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Clitic=Kin\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Derivation=U\|Number=Sing\|Number[psor]=Sing\|POS=NOUN\|Person[psor]=1`, `Case=Abl\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Ess\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Ela\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ela\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person[psor]=1\|Reflex=Yes`, `Case=Gen\|Derivation=Minen\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Case=Par\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Pres\|VerbForm=Part\|Voice=Pass`, `Clitic=Ko\|Number=Sing\|POS=VERB\|Person=0\|Polarity=Neg\|VerbForm=Fin\|Voice=Act`, `Case=Ade\|InfForm=3\|Number=Sing\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Clitic=Han\|Number=Sing\|POS=NOUN`, `Case=Ill\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Ess\|Degree=Pos\|Derivation=Inen\|Number=Plur\|POS=ADJ`, `Case=Ela\|Derivation=Vs\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Reflex=Yes`, `Case=Par\|Degree=Pos\|Number=Sing\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Act`, `Clitic=Kaan\|Connegative=Yes\|Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Degree=Sup\|Derivation=Sti\|POS=ADV`, `Case=Ine\|Derivation=Llinen,Vs\|Number=Sing\|POS=NOUN`, `Case=Tra\|Degree=Pos\|Number=Plur\|POS=VERB\|PartForm=Past\|VerbForm=Part\|Voice=Pass`, `Case=Par\|Derivation=Inen,Vs\|Number=Plur\|POS=NOUN`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `compound`, `compound:nn`, `compound:prt`, `conj`, `cop`, `cop:own`, `csubj`, `csubj:cop`, `dep`, `det`, `discourse`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `mark`, `nmod`, `nmod:gobj`, `nmod:gsubj`, `nmod:poss`, `nsubj`, `nsubj:cop`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp`, `xcomp:ds` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.79 |
| `TOKEN_R` | 99.90 |
| `TOKEN_F` | 99.85 |
| `TAG_ACC` | 96.59 |
| `POS_ACC` | 95.87 |
| `MORPH_ACC` | 91.87 |
| `MORPH_MICRO_P` | 95.90 |
| `MORPH_MICRO_R` | 94.93 |
| `MORPH_MICRO_F` | 95.41 |
| `SENTS_P` | 89.79 |
| `SENTS_R` | 88.93 |
| `SENTS_F` | 89.36 |
| `DEP_UAS` | 83.22 |
| `DEP_LAS` | 78.46 |
| `LEMMA_ACC` | 86.02 |
| `ENTS_P` | 81.91 |
| `ENTS_R` | 79.69 |
| `ENTS_F` | 80.78 |
|
spacy/fr_core_news_lg
|
spacy
| 2023-10-10T06:48:21Z | 36 | 2 |
spacy
|
[
"spacy",
"token-classification",
"fr",
"license:lgpl-lr",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- fr
license: lgpl-lr
model-index:
- name: fr_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8398572946
- name: NER Recall
type: recall
value: 0.83869741
- name: NER F Score
type: f_score
value: 0.8392769516
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9446562919
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9734102855
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9674260386
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9135840526
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9028935185
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8654090962
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8735083532
---
### Details: https://spacy.io/models/fr#fr_core_news_lg
French pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `fr_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD French Sequoia v2.8](https://github.com/UniversalDependencies/UD_French-Sequoia) (Candito, Marie; Seddah, Djamé; Perrier, Guy; Guillaume, Bruno)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `LGPL-LR` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (237 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `POS=ADP`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Ord\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=ADV`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Card\|POS=NUM`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Number=Sing\|POS=DET\|Poss=Yes`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Number=Plur\|POS=ADP\|PronType=Art`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3`, `Number=Plur\|POS=DET`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|PronType=Int`, `POS=VERB\|Tense=Pres\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Plur\|POS=DET\|Poss=Yes`, `POS=AUX\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3`, `POS=PRON\|Person=3\|Reflex=Yes`, `Gender=Masc\|POS=NOUN`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=PRON\|Person=3`, `Number=Plur\|POS=NOUN`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=AUX\|Tense=Pres\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=3`, `Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes`, `Gender=Masc\|POS=PRON`, `POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Number=Sing\|POS=PRON`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=PRON`, `POS=NUM`, `Gender=Fem\|POS=NOUN`, `POS=SPACE`, `Gender=Fem\|Number=Plur\|POS=PRON`, `Number=Plur\|POS=PRON\|Person=3`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|Person=1`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=INTJ`, `Number=Plur\|POS=PRON\|Person=2`, `NumType=Card\|POS=PRON`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `NumType=Card\|POS=NOUN`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3`, `Gender=Fem\|Number=Sing\|POS=DET`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=DET`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|POS=PRON`, `Gender=Masc\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=X`, `POS=SYM`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `POS=DET`, `Gender=Masc\|Number=Plur\|POS=PRON`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=DET`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Reflex=Yes`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|Reflex=Yes`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=1\|Reflex=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Gender=Masc\|NumType=Card\|POS=NUM` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux:pass`, `aux:tense`, `case`, `cc`, `ccomp`, `conj`, `cop`, `dep`, `det`, `expl:comp`, `expl:pass`, `expl:subj`, `fixed`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl:agent`, `obl:arg`, `obl:mod`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.80 |
| `TOKEN_P` | 98.44 |
| `TOKEN_R` | 98.96 |
| `TOKEN_F` | 98.70 |
| `POS_ACC` | 97.34 |
| `MORPH_ACC` | 96.74 |
| `MORPH_MICRO_P` | 98.91 |
| `MORPH_MICRO_R` | 98.17 |
| `MORPH_MICRO_F` | 98.54 |
| `SENTS_P` | 85.92 |
| `SENTS_R` | 89.26 |
| `SENTS_F` | 87.35 |
| `DEP_UAS` | 90.29 |
| `DEP_LAS` | 86.54 |
| `TAG_ACC` | 94.47 |
| `LEMMA_ACC` | 91.36 |
| `ENTS_P` | 83.99 |
| `ENTS_R` | 83.87 |
| `ENTS_F` | 83.93 |
|
spacy/hr_core_news_lg
|
spacy
| 2023-10-10T06:47:24Z | 10 | 0 |
spacy
|
[
"spacy",
"token-classification",
"hr",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-07-20T08:07:47Z |
---
tags:
- spacy
- token-classification
language:
- hr
license: cc-by-sa-4.0
model-index:
- name: hr_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8309481216
- name: NER Recall
type: recall
value: 0.8294642857
- name: NER F Score
type: f_score
value: 0.8302055407
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9217400961
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9759146596
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9267547757
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9287546545
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8661791243
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8015566665
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9454545455
---
### Details: https://spacy.io/models/hr#hr_core_news_lg
Croatian pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `hr_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | floret (200000, 300) |
| **Sources** | [Training corpus hr500k 1.0](http://hdl.handle.net/11356/1183) (Ljubešić, Nikola ; Agić, Željko ; Klubička, Filip ; Batanović, Vuk and Erjavec, Tomaž)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1518 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsdy`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmsany`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsgy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdn`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsgn`, `Aspnsgy`, `Aspnsln`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pl`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, _(truncated: full list in pipeline meta)_ |
| **`morphologizer`** | `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|POS=ADP`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Degree=Pos\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=PART`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Gen\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Int,Rel`, `Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=X`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|POS=ADP`, `Degree=Sup\|POS=ADV`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `POS=ADV\|Tense=Pres\|VerbForm=Conv`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `NumType=Mult\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=ADV\|Tense=Past\|VerbForm=Conv`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Gen\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Mult\|POS=SYM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl:pv`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `DERIV_PER`, `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.89 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.71 |
| `TOKEN_F` | 97.99 |
| `TAG_ACC` | 92.17 |
| `POS_ACC` | 97.59 |
| `MORPH_ACC` | 92.68 |
| `MORPH_MICRO_P` | 96.20 |
| `MORPH_MICRO_R` | 95.88 |
| `MORPH_MICRO_F` | 96.04 |
| `SENTS_P` | 95.59 |
| `SENTS_R` | 93.53 |
| `SENTS_F` | 94.55 |
| `DEP_UAS` | 86.62 |
| `DEP_LAS` | 80.16 |
| `LEMMA_ACC` | 92.88 |
| `ENTS_P` | 83.09 |
| `ENTS_R` | 82.95 |
| `ENTS_F` | 83.02 |
|
spacy/hr_core_news_md
|
spacy
| 2023-10-10T06:47:04Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"hr",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-07-20T08:07:10Z |
---
tags:
- spacy
- token-classification
language:
- hr
license: cc-by-sa-4.0
model-index:
- name: hr_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8244343891
- name: NER Recall
type: recall
value: 0.8133928571
- name: NER F Score
type: f_score
value: 0.8188764045
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9168748959
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9732718382
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9231452688
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9281478417
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8645157205
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.800506249
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9425287356
---
### Details: https://spacy.io/models/hr#hr_core_news_md
Croatian pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `hr_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | floret (50000, 300) |
| **Sources** | [Training corpus hr500k 1.0](http://hdl.handle.net/11356/1183) (Ljubešić, Nikola ; Agić, Željko ; Klubička, Filip ; Batanović, Vuk and Erjavec, Tomaž)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1518 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsdy`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmsany`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsgy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdn`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsgn`, `Aspnsgy`, `Aspnsln`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pl`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, _(truncated: full list in pipeline meta)_ |
| **`morphologizer`** | `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|POS=ADP`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Degree=Pos\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=PART`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Gen\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Int,Rel`, `Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=X`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|POS=ADP`, `Degree=Sup\|POS=ADV`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `POS=ADV\|Tense=Pres\|VerbForm=Conv`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `NumType=Mult\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=ADV\|Tense=Past\|VerbForm=Conv`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Gen\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Mult\|POS=SYM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl:pv`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `DERIV_PER`, `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.89 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.71 |
| `TOKEN_F` | 97.99 |
| `TAG_ACC` | 91.69 |
| `POS_ACC` | 97.33 |
| `MORPH_ACC` | 92.31 |
| `MORPH_MICRO_P` | 95.98 |
| `MORPH_MICRO_R` | 95.56 |
| `MORPH_MICRO_F` | 95.77 |
| `SENTS_P` | 95.12 |
| `SENTS_R` | 93.41 |
| `SENTS_F` | 94.25 |
| `DEP_UAS` | 86.45 |
| `DEP_LAS` | 80.05 |
| `LEMMA_ACC` | 92.81 |
| `ENTS_P` | 82.44 |
| `ENTS_R` | 81.34 |
| `ENTS_F` | 81.89 |
|
spacy/hr_core_news_sm
|
spacy
| 2023-10-10T06:46:56Z | 5 | 0 |
spacy
|
[
"spacy",
"token-classification",
"hr",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-07-20T08:06:57Z |
---
tags:
- spacy
- token-classification
language:
- hr
license: cc-by-sa-4.0
model-index:
- name: hr_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7738095238
- name: NER Recall
type: recall
value: 0.7544642857
- name: NER F Score
type: f_score
value: 0.7640144665
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9002581684
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9673834528
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9062135599
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9194318025
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8446878561
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.776466867
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9483793517
---
### Details: https://spacy.io/models/hr#hr_core_news_sm
Croatian pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `hr_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Training corpus hr500k 1.0](http://hdl.handle.net/11356/1183) (Ljubešić, Nikola ; Agić, Željko ; Klubička, Filip ; Batanović, Vuk and Erjavec, Tomaž) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1518 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `Agcfpay`, `Agcfpdy`, `Agcfpgy`, `Agcfpiy`, `Agcfply`, `Agcfpny`, `Agcfsay`, `Agcfsdy`, `Agcfsgy`, `Agcfsiy`, `Agcfsly`, `Agcfsny`, `Agcmpay`, `Agcmpgy`, `Agcmpiy`, `Agcmpny`, `Agcmsany`, `Agcmsay`, `Agcmsayn`, `Agcmsdy`, `Agcmsgy`, `Agcmsiy`, `Agcmsly`, `Agcmsny`, `Agcnpay`, `Agcnpdy`, `Agcnpgy`, `Agcnpny`, `Agcnsay`, `Agcnsdy`, `Agcnsgy`, `Agcnsiy`, `Agcnsly`, `Agcnsny`, `Agpfpay`, `Agpfpdy`, `Agpfpgy`, `Agpfpiy`, `Agpfply`, `Agpfpny`, `Agpfsay`, `Agpfsdy`, `Agpfsgy`, `Agpfsin`, `Agpfsiy`, `Agpfsly`, `Agpfsny`, `Agpfsvy`, `Agpmpay`, `Agpmpdy`, `Agpmpgy`, `Agpmpiy`, `Agpmply`, `Agpmpny`, `Agpmsan`, `Agpmsann`, `Agpmsany`, `Agpmsay`, `Agpmsayn`, `Agpmsayy`, `Agpmsdy`, `Agpmsgn`, `Agpmsgy`, `Agpmsiy`, `Agpmsln`, `Agpmsly`, `Agpmsnn`, `Agpmsny`, `Agpmsvy`, `Agpnpay`, `Agpnpdy`, `Agpnpgy`, `Agpnpiy`, `Agpnply`, `Agpnpny`, `Agpnsay`, `Agpnsdy`, `Agpnsgn`, `Agpnsgy`, `Agpnsiy`, `Agpnsln`, `Agpnsly`, `Agpnsny`, `Agsfpay`, `Agsfpdy`, `Agsfpgy`, `Agsfpiy`, `Agsfply`, `Agsfpny`, `Agsfsay`, `Agsfsdy`, `Agsfsgy`, `Agsfsiy`, `Agsfsly`, `Agsfsny`, `Agsmpay`, `Agsmpdy`, `Agsmpgy`, `Agsmpiy`, `Agsmply`, `Agsmpny`, `Agsmsany`, `Agsmsayn`, `Agsmsayy`, `Agsmsdy`, `Agsmsgy`, `Agsmsiy`, `Agsmsly`, `Agsmsny`, `Agsnpay`, `Agsnpgy`, `Agsnply`, `Agsnpny`, `Agsnsay`, `Agsnsdy`, `Agsnsgy`, `Agsnsiy`, `Agsnsly`, `Agsnsny`, `Appfpay`, `Appfpdy`, `Appfpgy`, `Appfpiy`, `Appfply`, `Appfpny`, `Appfsay`, `Appfsgy`, `Appfsiy`, `Appfsly`, `Appfsny`, `Appmpay`, `Appmpdy`, `Appmpgy`, `Appmpiy`, `Appmply`, `Appmpny`, `Appmsann`, `Appmsany`, `Appmsayn`, `Appmsayy`, `Appmsdy`, `Appmsgn`, `Appmsgy`, `Appmsiy`, `Appmsly`, `Appmsnn`, `Appmsny`, `Appnpay`, `Appnpdy`, `Appnpgy`, `Appnpiy`, `Appnply`, `Appnpny`, `Appnsay`, `Appnsgy`, `Appnsly`, `Appnsny`, `Aspfpay`, `Aspfpgy`, `Aspfpiy`, `Aspfply`, `Aspfpny`, `Aspfsay`, `Aspfsdy`, `Aspfsgy`, `Aspfsly`, `Aspfsny`, `Aspmpay`, `Aspmpgy`, `Aspmply`, `Aspmpny`, `Aspmsayn`, `Aspmsayy`, `Aspmsdn`, `Aspmsdy`, `Aspmsgn`, `Aspmsgy`, `Aspmsiy`, `Aspmsln`, `Aspmsly`, `Aspmsnn`, `Aspnpay`, `Aspnpgy`, `Aspnpny`, `Aspnsay`, `Aspnsgn`, `Aspnsgy`, `Aspnsln`, `Aspnsly`, `Aspnsny`, `Cc`, `Cs`, `I`, `Mdc`, `Mdm`, `Mdo`, `Mds`, `Mlc`, `Mlc--g`, `Mlc--i`, `Mlc--l`, `Mlcf-a`, `Mlcf-d`, `Mlcf-g`, `Mlcf-n`, `Mlcfsa`, `Mlcfsd`, `Mlcfsg`, `Mlcfsi`, `Mlcfsl`, `Mlcfsn`, `Mlcm-a`, `Mlcm-g`, `Mlcm-l`, `Mlcm-n`, `Mlcmpn`, `Mlcmsan`, `Mlcmsay`, `Mlcmsg`, `Mlcmsi`, `Mlcmsl`, `Mlcmsn`, `Mlcn-n`, `Mlcnsa`, `Mlcnsg`, `Mlcnsn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompd`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsan`, `Mlomsay`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlonpa`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsd`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mls`, `Mlsf-a`, `Mlsf-g`, `Mlsf-i`, `Mlsf-l`, `Mlsf-n`, `Mlsm-a`, `Mlsm-g`, `Mlsm-l`, `Mlsm-n`, `Mlsmpn`, `Mlsn-n`, `Mrc`, `Mro`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfpv`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncfsv`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmpv`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncmsv`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Ncnsv`, `Npfpa`, `Npfpg`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npmsv`, `Npnpg`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msan`, `Pd-msay`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npg`, `Pd-npi`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pi-fpa`, `Pi-fpd`, `Pi-fpg`, `Pi-fpi`, `Pi-fpl`, `Pi-fpn`, `Pi-fsa`, `Pi-fsd`, `Pi-fsg`, `Pi-fsi`, `Pi-fsl`, `Pi-fsn`, `Pi-mpa`, `Pi-mpd`, `Pi-mpg`, `Pi-mpi`, `Pi-mpl`, `Pi-mpn`, `Pi-msan`, `Pi-msay`, `Pi-msd`, `Pi-msg`, `Pi-msi`, `Pi-msl`, `Pi-msn`, `Pi-npa`, `Pi-npd`, `Pi-npg`, `Pi-npi`, `Pi-npl`, `Pi-npn`, `Pi-nsa`, `Pi-nsd`, `Pi-nsg`, `Pi-nsi`, `Pi-nsl`, `Pi-nsn`, `Pi3m-a`, `Pi3m-d`, `Pi3m-g`, `Pi3m-i`, `Pi3m-n`, `Pi3n-a`, `Pi3n-d`, `Pi3n-g`, `Pi3n-i`, `Pi3n-l`, `Pi3n-n`, `Pp1-pa`, `Pp1-pd`, `Pp1-pg`, `Pp1-pi`, `Pp1-pl`, `Pp1-pn`, `Pp1-sa`, `Pp1-sd`, `Pp1-sg`, `Pp1-si`, `Pp1-sl`, `Pp1-sn`, `Pp2-pa`, `Pp2-pd`, `Pp2-pl`, `Pp2-pn`, `Pp2-sa`, `Pp2-sd`, `Pp2-sg`, `Pp2-sl`, `Pp2-sn`, `Pp3-pa`, `Pp3-pd`, `Pp3-pg`, `Pp3-pi`, `Pp3-pl`, `Pp3fpn`, `Pp3fsa`, `Pp3fsd`, `Pp3fsg`, `Pp3fsi`, `Pp3fsl`, `Pp3fsn`, `Pp3mpn`, `Pp3msa`, `Pp3msd`, `Pp3msg`, `Pp3msi`, `Pp3msl`, `Pp3msn`, `Pp3npn`, `Pp3nsa`, `Pp3nsi`, `Pp3nsn`, `Pq-fpa`, `Pq-fpn`, `Pq-fsa`, `Pq-fsi`, `Pq-fsl`, `Pq-fsn`, `Pq-mpn`, `Pq-msn`, `Pq-nsn`, `Pq3m-d`, `Pq3m-n`, `Pq3n-a`, `Pq3n-l`, `Pq3n-n`, `Ps1fpa`, `Ps1fpg`, `Ps1fpl`, `Ps1fpn`, `Ps1fsa`, `Ps1fsd`, `Ps1fsg`, `Ps1fsi`, `Ps1fsl`, `Ps1fsn`, _(truncated: full list in pipeline meta)_ |
| **`morphologizer`** | `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|POS=ADP`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Degree=Pos\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `POS=PART`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=CCONJ`, `Case=Gen\|POS=ADP`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PART\|Polarity=Neg`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Degree=Cmp\|POS=ADV`, `Case=Acc\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `NumType=Ord\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `NumType=Card\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Degree=Pos\|POS=ADV\|PronType=Int,Rel`, `Gender=Neut\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=X`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Degree=Pos\|POS=ADV\|PronType=Ind`, `Animacy=Inan\|Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Pos\|POS=ADV\|PronType=Neg`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=NOUN`, `Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|POS=PRON\|PronType=Neg`, `Case=Ins\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|POS=ADP`, `Degree=Sup\|POS=ADV`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `POS=ADV\|Tense=Pres\|VerbForm=Conv`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `NumType=Mult\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Loc\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Gender=Neut\|POS=PRON\|PronType=Int,Rel`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `POS=ADV\|Tense=Past\|VerbForm=Conv`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|POS=PRON\|PronType=Int,Rel`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|POS=PRON\|PronType=Neg`, `Case=Gen\|Gender=Masc\|NumType=Mult\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Gender=Neut\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Int,Rel`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Mult\|POS=SYM`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int,Rel`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Tense=Past\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int,Rel`, `Case=Ins\|Definite=Def\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Definite=Def\|Degree=Sup\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Gender[psor]=Masc,Neut\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Acc\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Definite=Def\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Dat\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `advmod:emph`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl:pv`, `fixed`, `flat`, `flat:foreign`, `goeswith`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `DERIV_PER`, `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.89 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.71 |
| `TOKEN_F` | 97.99 |
| `TAG_ACC` | 90.03 |
| `POS_ACC` | 96.74 |
| `MORPH_ACC` | 90.62 |
| `MORPH_MICRO_P` | 94.88 |
| `MORPH_MICRO_R` | 94.34 |
| `MORPH_MICRO_F` | 94.61 |
| `SENTS_P` | 94.95 |
| `SENTS_R` | 94.72 |
| `SENTS_F` | 94.84 |
| `DEP_UAS` | 84.47 |
| `DEP_LAS` | 77.65 |
| `LEMMA_ACC` | 91.94 |
| `ENTS_P` | 77.38 |
| `ENTS_R` | 75.45 |
| `ENTS_F` | 76.40 |
|
spacy/it_core_news_sm
|
spacy
| 2023-10-10T06:46:05Z | 62 | 2 |
spacy
|
[
"spacy",
"token-classification",
"it",
"license:cc-by-nc-sa-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- it
license: cc-by-nc-sa-3.0
model-index:
- name: it_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8600824654
- name: NER Recall
type: recall
value: 0.8579197692
- name: NER F Score
type: f_score
value: 0.858999756
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9650368506
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9701163888
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9701573034
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.969356578
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8969952665
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8575397438
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9796640141
---
### Details: https://spacy.io/models/it#it_core_news_sm
Italian pipeline optimized for CPU. Components: tok2vec, morphologizer, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `it_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Italian ISDT v2.8](https://github.com/UniversalDependencies/UD_Italian-ISDT) (Bosco, Cristina; Lenci, Alessandro; Montemagni, Simonetta; Simi, Maria)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran) |
| **License** | `CC BY-NC-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (443 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PROPN`, `POS=PUNCT`, `Gender=Masc\|POS=NOUN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `POS=AUX\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=ADP`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `POS=VERB\|VerbForm=Inf`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=ADJ`, `POS=CCONJ`, `NumType=Card\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Clitic=Yes\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=SPACE`, `Definite=Def\|Number=Sing\|POS=ADP\|PronType=Art`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `POS=ADV`, `POS=NOUN`, `Number=Sing\|POS=NOUN`, `POS=VERB\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `POS=INTJ`, `Clitic=Yes\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=NOUN`, `POS=SCONJ`, `Number=Sing\|POS=DET\|PronType=Ind`, `POS=ADV\|PronType=Neg`, `Clitic=Yes\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `POS=ADJ`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Clitic=Yes\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Clitic=Yes\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|POS=PRON\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Clitic=Yes\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Yes\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `Clitic=Yes\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Degree=Abs\|POS=ADV`, `Clitic=Yes\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=DET\|PronType=Exc`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Int`, `POS=PRON\|PronType=Int`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Number=Sing\|POS=ADP`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Foreign=Yes\|POS=X`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `POS=INTJ\|Polarity=Neg`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Clitic=Yes\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Ger`, `POS=INTJ\|Polarity=Pos`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `POS=DET\|PronType=Int`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Prs`, `Degree=Abs\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Clitic=Yes\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Clitic=Yes\|Gender=Fem\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|Gender=Fem\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Degree=Abs\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Clitic=Yes\|POS=AUX\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADJ`, `NumType=Ord\|POS=ADJ`, `POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Yes\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|POS=VERB\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Clitic=Yes\|Number=Plur\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `POS=SYM`, `Clitic=Yes\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Masc\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Degree=Abs\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Number=Sing\|POS=PRON\|PronType=Dem`, `POS=AUX\|VerbForm=Ger`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|VerbForm=Inf`, `POS=PRON\|PronType=Ind`, `Clitic=Yes\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `POS=X`, `Gender=Masc\|POS=ADJ`, `Clitic=Yes\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Number=Sing\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Imp\|VerbForm=Fin`, `POS=PART`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Int`, `Clitic=Yes\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=DET\|PronType=Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Clitic=Yes\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Ger`, `Clitic=Yes\|Number=Sing\|POS=AUX\|Person=1\|PronType=Prs\|VerbForm=Ger`, `Clitic=Yes\|Gender=Masc\|Number=Plur\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,2\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `NumType=Range\|POS=NUM`, `Number=Plur\|POS=PRON\|PronType=Dem`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Clitic=Yes\|POS=ADV\|PronType=Prs`, `Clitic=Yes\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PRON\|PronType=Rel`, `Clitic=Yes\|Gender=Masc\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=2,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Number=Sing\|POS=AUX\|Person=2\|PronType=Prs\|VerbForm=Inf`, `Clitic=Yes\|Number=Sing\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Ger`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Clitic=Yes\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Definite=Ind\|POS=DET\|PronType=Art`, `Clitic=Yes\|Gender=Fem,Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Definite=Def\|Number=Plur\|POS=ADP\|PronType=Art`, `Clitic=Yes\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `POS=DET\|PronType=Ind`, `Number=Plur\|POS=DET\|PronType=Dem`, `Clitic=Yes\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=DET\|PronType=Tot`, `Clitic=Yes\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Clitic=Yes\|Gender=Fem,Masc\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Clitic=Yes\|Number=Plur\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=ADP`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=ADV\|Person=3\|PronType=Prs`, `Clitic=Yes\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,2\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|Number=Plur\|POS=ADV\|Person=3\|PronType=Prs`, `POS=DET\|PronType=Tot`, `POS=PRON\|PronType=Dem`, `Clitic=Yes\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `NumType=Ord\|POS=NUM`, `Clitic=Yes\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Gender=Masc\|POS=DET\|PronType=Dem`, `Clitic=Yes\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=NOUN\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Clitic=Yes\|Number=Plur\|POS=PRON\|PronType=Prs`, `Foreign=Yes\|Number=Sing\|POS=X`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=PRON\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Imp\|VerbForm=Fin`, `POS=SCONJ\|PronType=Rel`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Rel`, `Clitic=Yes\|Number=Plur\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Ger`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Clitic=Yes\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=ADP`, `Gender=Fem\|POS=ADJ`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Fem\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=DET\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes\|PronType=Prs`, `Foreign=Yes\|POS=NOUN`, `Clitic=Yes\|Gender=Fem\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Clitic=Yes\|Gender=Masc\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET`, `Clitic=Yes\|Gender=Fem\|Mood=Imp\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET`, `Number=Sing\|POS=X`, `Foreign=Yes\|Gender=Masc\|POS=X`, `Clitic=Yes\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Prs`, `Clitic=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Clitic=Yes\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|POS=DET`, `Definite=Def\|POS=DET`, `Foreign=Yes\|POS=PROPN`, `NumType=Card\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET`, `Degree=Abs\|Gender=Masc\|Number=Sing\|POS=ADV`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=2`, `Clitic=Yes\|Number=Plur\|POS=AUX\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET`, `Number=Sing\|POS=DET`, `Gender=Masc\|Number=Sing\|POS=PRON`, `POS=DET` |
| **`tagger`** | `A`, `AP`, `B`, `BN`, `B_PC`, `CC`, `CS`, `DD`, `DE`, `DI`, `DQ`, `DR`, `E`, `E_RD`, `FB`, `FC`, `FF`, `FS`, `I`, `N`, `NO`, `PART`, `PC`, `PC_PC`, `PD`, `PE`, `PI`, `PP`, `PQ`, `PR`, `RD`, `RI`, `S`, `SP`, `SW`, `SYM`, `T`, `V`, `VA`, `VA_PC`, `VM`, `VM_PC`, `VM_PC_PC`, `V_B`, `V_PC`, `V_PC_PC`, `X`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:poss`, `det:predet`, `discourse`, `expl`, `expl:impers`, `expl:pass`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.93 |
| `TOKEN_P` | 99.80 |
| `TOKEN_R` | 99.78 |
| `TOKEN_F` | 99.79 |
| `POS_ACC` | 97.01 |
| `MORPH_ACC` | 97.02 |
| `MORPH_MICRO_P` | 98.53 |
| `MORPH_MICRO_R` | 97.73 |
| `MORPH_MICRO_F` | 98.12 |
| `TAG_ACC` | 96.50 |
| `SENTS_P` | 97.71 |
| `SENTS_R` | 98.23 |
| `SENTS_F` | 97.97 |
| `DEP_UAS` | 89.70 |
| `DEP_LAS` | 85.75 |
| `LEMMA_ACC` | 96.94 |
| `ENTS_P` | 86.01 |
| `ENTS_R` | 85.79 |
| `ENTS_F` | 85.90 |
|
spacy/ja_core_news_md
|
spacy
| 2023-10-10T06:45:12Z | 6 | 0 |
spacy
|
[
"spacy",
"token-classification",
"ja",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ja
license: cc-by-sa-4.0
model-index:
- name: ja_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7266576455
- name: NER Recall
type: recall
value: 0.6754716981
- name: NER F Score
type: f_score
value: 0.7001303781
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9713282143
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9712018326
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.0
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9670499959
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9221346544
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9092381767
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9696376102
---
### Details: https://spacy.io/models/ja#ja_core_news_md
Japanese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `ja_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 480443 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Japanese GSD v2.8](https://github.com/UniversalDependencies/UD_Japanese-GSD) (Omura, Mai; Miyao, Yusuke; Kanayama, Hiroshi; Matsuda, Hiroshi; Wakasa, Aya; Yamashita, Kayo; Asahara, Masayuki; Tanaka, Takaaki; Murawaki, Yugo; Matsumoto, Yuji; Mori, Shinsuke; Uematsu, Sumire; McDonald, Ryan; Nivre, Joakim; Zeman, Daniel)<br />[UD Japanese GSD v2.8 NER](https://github.com/megagonlabs/UD_Japanese-GSD) (Megagon Labs Tokyo)<br />[chiVe: Japanese Word Embedding with Sudachi & NWJC (chive-1.1-mc90-500k)](https://github.com/WorksApplications/chiVe) (Works Applications) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (65 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=NOUN`, `POS=ADP`, `POS=VERB`, `POS=SCONJ`, `POS=AUX`, `POS=PUNCT`, `POS=PART`, `POS=DET`, `POS=NUM`, `POS=ADV`, `POS=PRON`, `POS=ADJ`, `POS=PROPN`, `POS=CCONJ`, `POS=SYM`, `POS=NOUN\|Polarity=Neg`, `POS=AUX\|Polarity=Neg`, `POS=SPACE`, `POS=INTJ`, `POS=SCONJ\|Polarity=Neg` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `aux`, `case`, `cc`, `ccomp`, `compound`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `MOVEMENT`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PET_NAME`, `PHONE`, `PRODUCT`, `QUANTITY`, `TIME`, `TITLE_AFFIX`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.37 |
| `TOKEN_P` | 97.64 |
| `TOKEN_R` | 97.88 |
| `TOKEN_F` | 97.76 |
| `POS_ACC` | 97.12 |
| `MORPH_ACC` | 0.00 |
| `MORPH_MICRO_P` | 34.01 |
| `MORPH_MICRO_R` | 98.04 |
| `MORPH_MICRO_F` | 50.51 |
| `SENTS_P` | 96.30 |
| `SENTS_R` | 97.63 |
| `SENTS_F` | 96.96 |
| `DEP_UAS` | 92.21 |
| `DEP_LAS` | 90.92 |
| `TAG_ACC` | 97.13 |
| `LEMMA_ACC` | 96.70 |
| `ENTS_P` | 72.67 |
| `ENTS_R` | 67.55 |
| `ENTS_F` | 70.01 |
|
spacy/ko_core_news_sm
|
spacy
| 2023-10-10T06:44:26Z | 50 | 1 |
spacy
|
[
"spacy",
"token-classification",
"ko",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-05-02T08:18:16Z |
---
tags:
- spacy
- token-classification
language:
- ko
license: cc-by-sa-4.0
model-index:
- name: ko_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7704418068
- name: NER Recall
type: recall
value: 0.6603320381
- name: NER F Score
type: f_score
value: 0.7111499981
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.7305919816
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.8582222398
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.8356969086
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.7360798556
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.6558677391
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.999274135
---
### Details: https://spacy.io/models/ko#ko_core_news_sm
Korean pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `ko_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Korean Kaist v2.8](https://github.com/UniversalDependencies/UD_Korean-Kaist) (Choi, Jinho; Han, Na-Rae; Hwang, Jena; Chun, Jayeol)<br />[KLUE v1.1.0](https://github.com/KLUE-benchmark/KLUE) (Sungjoon Park, Jihyung Moon, Sungdong Kim, Won Ik Cho, Jiyoon Han, Jangwon Park, Chisung Song, Junseong Kim, Youngsook Song, Taehwan Oh, Joohong Lee, Juhyun Oh, Sungwon Ryu, Younghoon Jeong, Inkwon Lee, Sangwoo Seo, Dongjun Lee, Hyunwoo Kim, Myeonghwa Lee, Seongbo Jang, Seungwon Do, Sunkyoung Kim, Kyungtae Lim, Jongwon Lee, Kyumin Park, Jamin Shin, Seonghyun Kim, Lucy Park, Alice Oh, Jung-Woo Ha, Kyunghyun Cho) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (2028 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `_SP`, `ecs`, `etm`, `f`, `f+f+jcj`, `f+f+jcs`, `f+f+jct`, `f+f+jxt`, `f+jca`, `f+jca+jp+ecc`, `f+jca+jp+ep+ef`, `f+jca+jxc`, `f+jca+jxc+jcm`, `f+jca+jxt`, `f+jcj`, `f+jcm`, `f+jco`, `f+jcs`, `f+jct`, `f+jct+jcm`, `f+jp+ef`, `f+jp+ep+ef`, `f+jp+etm`, `f+jxc`, `f+jxt`, `f+ncn`, `f+ncn+jcm`, `f+ncn+jcs`, `f+ncn+jp+ecc`, `f+ncn+jxt`, `f+ncpa+jcm`, `f+npp+jcs`, `f+nq`, `f+xsn`, `f+xsn+jco`, `f+xsn+jxt`, `ii`, `jca`, `jca+jcm`, `jca+jxc`, `jca+jxt`, `jcc`, `jcj`, `jcm`, `jco`, `jcr`, `jcr+jxc`, `jcs`, `jct`, `jct+jcm`, `jct+jxt`, `jp+ecc`, `jp+ecs`, `jp+ef`, `jp+ef+jcr`, `jp+ef+jcr+jxc`, `jp+ep+ecs`, `jp+ep+ef`, `jp+ep+etm`, `jp+ep+etn`, `jp+etm`, `jp+etn`, `jp+etn+jco`, `jp+etn+jxc`, `jxc`, `jxc+jca`, `jxc+jco`, `jxc+jcs`, `jxt`, `mad`, `mad+jxc`, `mad+jxt`, `mag`, `mag+jca`, `mag+jcm`, `mag+jcs`, `mag+jp+ef+jcr`, `mag+jxc`, `mag+jxc+jxc`, `mag+jxt`, `mag+xsn`, `maj`, `maj+jxc`, `maj+jxt`, `mma`, `mmd`, `nbn`, `nbn+jca`, `nbn+jca+jcj`, `nbn+jca+jcm`, `nbn+jca+jp+ef`, `nbn+jca+jxc`, `nbn+jca+jxt`, `nbn+jcc`, `nbn+jcj`, `nbn+jcm`, `nbn+jco`, `nbn+jcr`, `nbn+jcs`, `nbn+jct`, `nbn+jct+jcm`, `nbn+jct+jxt`, `nbn+jp+ecc`, `nbn+jp+ecs`, `nbn+jp+ecs+jca`, `nbn+jp+ecs+jcm`, `nbn+jp+ecs+jco`, `nbn+jp+ecs+jxc`, `nbn+jp+ecs+jxt`, `nbn+jp+ecx`, `nbn+jp+ef`, `nbn+jp+ef+jca`, `nbn+jp+ef+jco`, `nbn+jp+ef+jcr`, `nbn+jp+ef+jcr+jxc`, `nbn+jp+ef+jcr+jxt`, `nbn+jp+ef+jcs`, `nbn+jp+ef+jxc`, `nbn+jp+ef+jxc+jco`, `nbn+jp+ef+jxf`, `nbn+jp+ef+jxt`, `nbn+jp+ep+ecc`, `nbn+jp+ep+ecs`, `nbn+jp+ep+ecs+jxc`, `nbn+jp+ep+ef`, `nbn+jp+ep+ef+jcr`, `nbn+jp+ep+etm`, `nbn+jp+ep+etn`, `nbn+jp+ep+etn+jco`, `nbn+jp+ep+etn+jcs`, `nbn+jp+etm`, `nbn+jp+etn`, `nbn+jp+etn+jca`, `nbn+jp+etn+jca+jxt`, `nbn+jp+etn+jco`, `nbn+jp+etn+jcs`, `nbn+jp+etn+jxc`, `nbn+jp+etn+jxt`, `nbn+jxc`, `nbn+jxc+jca`, `nbn+jxc+jca+jxc`, `nbn+jxc+jca+jxt`, `nbn+jxc+jcc`, `nbn+jxc+jcm`, `nbn+jxc+jco`, `nbn+jxc+jcs`, `nbn+jxc+jp+ef`, `nbn+jxc+jxc`, `nbn+jxc+jxt`, `nbn+jxt`, `nbn+nbn`, `nbn+nbn+jp+ef`, `nbn+xsm+ecs`, `nbn+xsm+ef`, `nbn+xsm+ep+ef`, `nbn+xsm+ep+ef+jcr`, `nbn+xsm+etm`, `nbn+xsn`, `nbn+xsn+jca`, `nbn+xsn+jca+jp+ef+jcr`, `nbn+xsn+jca+jxc`, `nbn+xsn+jca+jxt`, `nbn+xsn+jcm`, `nbn+xsn+jco`, `nbn+xsn+jcs`, `nbn+xsn+jct`, `nbn+xsn+jp+ecc`, `nbn+xsn+jp+ecs`, `nbn+xsn+jp+ef`, `nbn+xsn+jp+ef+jcr`, `nbn+xsn+jp+ep+ef`, `nbn+xsn+jxc`, `nbn+xsn+jxt`, `nbn+xsv+etm`, `nbu`, `nbu+jca`, `nbu+jca+jxc`, `nbu+jca+jxt`, `nbu+jcc`, `nbu+jcc+jxc`, `nbu+jcj`, `nbu+jcm`, `nbu+jco`, `nbu+jcs`, `nbu+jct`, `nbu+jct+jxc`, `nbu+jp+ecc`, `nbu+jp+ecs`, `nbu+jp+ef`, `nbu+jp+ef+jcr`, `nbu+jp+ef+jxc`, `nbu+jp+ep+ecc`, `nbu+jp+ep+ecs`, `nbu+jp+ep+ef`, `nbu+jp+ep+ef+jcr`, `nbu+jp+ep+etm`, `nbu+jp+ep+etn+jco`, `nbu+jp+etm`, `nbu+jxc`, `nbu+jxc+jca`, `nbu+jxc+jcs`, `nbu+jxc+jp+ef`, `nbu+jxc+jp+ep+ef`, `nbu+jxc+jxt`, `nbu+jxt`, `nbu+ncn`, `nbu+ncn+jca`, `nbu+ncn+jcm`, `nbu+xsn`, `nbu+xsn+jca`, `nbu+xsn+jca+jxc`, `nbu+xsn+jca+jxt`, `nbu+xsn+jcm`, `nbu+xsn+jco`, `nbu+xsn+jcs`, `nbu+xsn+jp+ecs`, `nbu+xsn+jp+ep+ef`, `nbu+xsn+jxc`, `nbu+xsn+jxc+jxt`, `nbu+xsn+jxt`, `nbu+xsv+ecc`, `nbu+xsv+etm`, `ncn`, `ncn+f+ncpa+jco`, `ncn+jca`, `ncn+jca+jca`, `ncn+jca+jcc`, `ncn+jca+jcj`, `ncn+jca+jcm`, `ncn+jca+jcs`, `ncn+jca+jct`, `ncn+jca+jp+ecc`, `ncn+jca+jp+ecs`, `ncn+jca+jp+ef`, `ncn+jca+jp+ep+ef`, `ncn+jca+jp+etm`, `ncn+jca+jp+etn+jxt`, `ncn+jca+jxc`, `ncn+jca+jxc+jcc`, `ncn+jca+jxc+jcm`, `ncn+jca+jxc+jxc`, `ncn+jca+jxc+jxt`, `ncn+jca+jxt`, `ncn+jcc`, `ncn+jcc+jxc`, `ncn+jcj`, `ncn+jcj+jxt`, `ncn+jcm`, `ncn+jco`, `ncn+jcr`, `ncn+jcr+jxc`, `ncn+jcs`, `ncn+jcs+jxt`, `ncn+jct`, `ncn+jct+jcm`, `ncn+jct+jxc`, `ncn+jct+jxt`, `ncn+jcv`, `ncn+jp+ecc`, `ncn+jp+ecc+jct`, `ncn+jp+ecc+jxc`, `ncn+jp+ecs`, `ncn+jp+ecs+jcm`, `ncn+jp+ecs+jco`, `ncn+jp+ecs+jxc`, `ncn+jp+ecs+jxt`, `ncn+jp+ecx`, `ncn+jp+ef`, `ncn+jp+ef+jca`, `ncn+jp+ef+jcm`, `ncn+jp+ef+jco`, `ncn+jp+ef+jcr`, `ncn+jp+ef+jcr+jxc`, `ncn+jp+ef+jcr+jxt`, `ncn+jp+ef+jp+etm`, `ncn+jp+ef+jxc`, `ncn+jp+ef+jxf`, `ncn+jp+ef+jxt`, `ncn+jp+ep+ecc`, `ncn+jp+ep+ecs`, `ncn+jp+ep+ecs+jxc`, `ncn+jp+ep+ecx`, `ncn+jp+ep+ef`, `ncn+jp+ep+ef+jcr`, `ncn+jp+ep+ef+jcr+jxc`, `ncn+jp+ep+ef+jxc`, `ncn+jp+ep+ef+jxf`, `ncn+jp+ep+ef+jxt`, `ncn+jp+ep+ep+etm`, `ncn+jp+ep+etm`, `ncn+jp+ep+etn`, `ncn+jp+ep+etn+jca`, `ncn+jp+ep+etn+jca+jxc`, `ncn+jp+ep+etn+jco`, `ncn+jp+ep+etn+jcs`, `ncn+jp+ep+etn+jxt`, `ncn+jp+etm`, `ncn+jp+etn`, `ncn+jp+etn+jca`, `ncn+jp+etn+jca+jxc`, `ncn+jp+etn+jca+jxt`, `ncn+jp+etn+jco`, `ncn+jp+etn+jcs`, `ncn+jp+etn+jct`, `ncn+jp+etn+jxc`, `ncn+jp+etn+jxt`, `ncn+jxc`, `ncn+jxc+jca`, `ncn+jxc+jca+jxc`, `ncn+jxc+jca+jxt`, `ncn+jxc+jcc`, `ncn+jxc+jcm`, `ncn+jxc+jco`, `ncn+jxc+jcs`, `ncn+jxc+jct+jxt`, `ncn+jxc+jp+ef`, `ncn+jxc+jp+ef+jcr`, `ncn+jxc+jp+ep+ecs`, `ncn+jxc+jp+ep+ef`, `ncn+jxc+jp+etm`, `ncn+jxc+jxc`, `ncn+jxc+jxt`, `ncn+jxt`, `ncn+jxt+jcm`, `ncn+jxt+jxc`, `ncn+nbn`, `ncn+nbn+jca`, `ncn+nbn+jcm`, `ncn+nbn+jcs`, `ncn+nbn+jp+ecc`, `ncn+nbn+jp+ep+ef`, `ncn+nbn+jxc`, `ncn+nbn+jxt`, `ncn+nbu`, `ncn+nbu+jca`, `ncn+nbu+jcm`, `ncn+nbu+jco`, `ncn+nbu+jp+ef`, `ncn+nbu+jxc`, `ncn+nbu+ncn`, `ncn+ncn`, `ncn+ncn+jca`, `ncn+ncn+jca+jcc`, `ncn+ncn+jca+jcm`, `ncn+ncn+jca+jxc`, `ncn+ncn+jca+jxc+jcm`, `ncn+ncn+jca+jxc+jxc`, `ncn+ncn+jca+jxt`, `ncn+ncn+jcc`, `ncn+ncn+jcj`, `ncn+ncn+jcm`, `ncn+ncn+jco`, `ncn+ncn+jcr`, `ncn+ncn+jcs`, `ncn+ncn+jct`, `ncn+ncn+jct+jcm`, `ncn+ncn+jct+jxc`, `ncn+ncn+jct+jxt`, `ncn+ncn+jp+ecc`, `ncn+ncn+jp+ecs`, `ncn+ncn+jp+ef`, `ncn+ncn+jp+ef+jcm`, `ncn+ncn+jp+ef+jcr`, `ncn+ncn+jp+ef+jcs`, `ncn+ncn+jp+ep+ecc`, `ncn+ncn+jp+ep+ecs`, `ncn+ncn+jp+ep+ef`, `ncn+ncn+jp+ep+ef+jcr`, `ncn+ncn+jp+ep+ep+etm`, `ncn+ncn+jp+ep+etm`, `ncn+ncn+jp+ep+etn`, `ncn+ncn+jp+etm`, `ncn+ncn+jp+etn`, `ncn+ncn+jp+etn+jca`, `ncn+ncn+jp+etn+jco`, `ncn+ncn+jp+etn+jxc`, `ncn+ncn+jxc`, `ncn+ncn+jxc+jca`, `ncn+ncn+jxc+jcc`, `ncn+ncn+jxc+jcm`, `ncn+ncn+jxc+jco`, `ncn+ncn+jxc+jcs`, `ncn+ncn+jxc+jxc`, `ncn+ncn+jxt`, `ncn+ncn+nbn`, `ncn+ncn+ncn`, `ncn+ncn+ncn+jca`, `ncn+ncn+ncn+jca+jcm`, `ncn+ncn+ncn+jca+jxt`, `ncn+ncn+ncn+jcj`, `ncn+ncn+ncn+jcm`, `ncn+ncn+ncn+jco`, `ncn+ncn+ncn+jcs`, `ncn+ncn+ncn+jct+jxt`, `ncn+ncn+ncn+jp+etn+jxc`, `ncn+ncn+ncn+jxt`, `ncn+ncn+ncn+ncn+jca`, `ncn+ncn+ncn+ncn+jca+jxt`, `ncn+ncn+ncn+ncn+jco`, `ncn+ncn+ncn+xsn+jp+etm`, `ncn+ncn+ncpa`, `ncn+ncn+ncpa+jca`, `ncn+ncn+ncpa+jcm`, `ncn+ncn+ncpa+jco`, `ncn+ncn+ncpa+jcs`, `ncn+ncn+ncpa+jxc`, `ncn+ncn+ncpa+jxt`, `ncn+ncn+ncpa+ncn`, `ncn+ncn+ncpa+ncn+jca`, `ncn+ncn+ncpa+ncn+jcj`, `ncn+ncn+ncpa+ncn+jcm`, `ncn+ncn+ncpa+ncn+jxt`, `ncn+ncn+xsn`, `ncn+ncn+xsn+jca`, `ncn+ncn+xsn+jca+jxt`, `ncn+ncn+xsn+jcj`, `ncn+ncn+xsn+jcm`, `ncn+ncn+xsn+jco`, `ncn+ncn+xsn+jcs`, `ncn+ncn+xsn+jct`, `ncn+ncn+xsn+jp+ecs`, `ncn+ncn+xsn+jp+ep+ef`, `ncn+ncn+xsn+jp+etm`, `ncn+ncn+xsn+jxc`, `ncn+ncn+xsn+jxc+jcs`, `ncn+ncn+xsn+jxt`, `ncn+ncn+xsv+ecc`, `ncn+ncn+xsv+etm`, `ncn+ncpa`, `ncn+ncpa+jca`, `ncn+ncpa+jca+jcm`, `ncn+ncpa+jca+jxc`, `ncn+ncpa+jca+jxt`, `ncn+ncpa+jcc`, `ncn+ncpa+jcj`, `ncn+ncpa+jcm`, `ncn+ncpa+jco`, `ncn+ncpa+jcr`, `ncn+ncpa+jcs`, `ncn+ncpa+jct`, `ncn+ncpa+jct+jcm`, `ncn+ncpa+jct+jxt`, `ncn+ncpa+jp+ecc`, `ncn+ncpa+jp+ecc+jxc`, `ncn+ncpa+jp+ecs`, `ncn+ncpa+jp+ecs+jxc`, `ncn+ncpa+jp+ef`, `ncn+ncpa+jp+ef+jcr`, `ncn+ncpa+jp+ef+jcr+jxc`, `ncn+ncpa+jp+ep+ef`, `ncn+ncpa+jp+ep+etm`, `ncn+ncpa+jp+ep+etn`, `ncn+ncpa+jp+etm`, `ncn+ncpa+jxc`, `ncn+ncpa+jxc+jca+jxc`, `ncn+ncpa+jxc+jco`, `ncn+ncpa+jxc+jcs`, `ncn+ncpa+jxt`, `ncn+ncpa+nbn+jcs`, `ncn+ncpa+ncn`, `ncn+ncpa+ncn+jca`, `ncn+ncpa+ncn+jca+jcm`, `ncn+ncpa+ncn+jca+jxc`, `ncn+ncpa+ncn+jca+jxt`, `ncn+ncpa+ncn+jcj`, `ncn+ncpa+ncn+jcm`, `ncn+ncpa+ncn+jco`, `ncn+ncpa+ncn+jcs`, `ncn+ncpa+ncn+jct`, `ncn+ncpa+ncn+jct+jcm`, `ncn+ncpa+ncn+jp+ef+jcr`, `ncn+ncpa+ncn+jp+ep+etm`, `ncn+ncpa+ncn+jxc`, `ncn+ncpa+ncn+jxt`, `ncn+ncpa+ncn+xsn+jcm`, `ncn+ncpa+ncn+xsn+jxt`, `ncn+ncpa+ncpa`, `ncn+ncpa+ncpa+jca`, `ncn+ncpa+ncpa+jcj`, `ncn+ncpa+ncpa+jcm`, `ncn+ncpa+ncpa+jco`, `ncn+ncpa+ncpa+jcs`, `ncn+ncpa+ncpa+jp+ep+ef`, `ncn+ncpa+ncpa+jxt`, `ncn+ncpa+ncpa+ncn`, `ncn+ncpa+xsn`, `ncn+ncpa+xsn+jcm`, `ncn+ncpa+xsn+jco`, `ncn+ncpa+xsn+jcs`, `ncn+ncpa+xsn+jp+ecc`, `ncn+ncpa+xsn+jp+etm`, `ncn+ncpa+xsn+jxt`, `ncn+ncpa+xsv+ecc`, `ncn+ncpa+xsv+ecs`, `ncn+ncpa+xsv+ecx`, `ncn+ncpa+xsv+ecx+px+etm`, `ncn+ncpa+xsv+ef`, `ncn+ncpa+xsv+ef+jcm`, `ncn+ncpa+xsv+ef+jcr`, `ncn+ncpa+xsv+etm`, _(truncated: full list in pipeline meta)_ |
| **`morphologizer`** | `POS=CCONJ`, `POS=ADV`, `POS=SCONJ`, `POS=DET`, `POS=NOUN`, `POS=VERB`, `POS=ADJ`, `POS=PUNCT`, `POS=SPACE`, `POS=AUX`, `POS=PRON`, `POS=PROPN`, `POS=NUM`, `POS=INTJ`, `POS=PART`, `POS=X`, `POS=ADP`, `POS=SYM` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `punct`, `xcomp` |
| **`ner`** | `DT`, `LC`, `OG`, `PS`, `QT`, `TI` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_F` | 100.00 |
| `TAG_ACC` | 73.06 |
| `POS_ACC` | 85.82 |
| `SENTS_P` | 99.90 |
| `SENTS_R` | 99.95 |
| `SENTS_F` | 99.93 |
| `DEP_UAS` | 73.61 |
| `DEP_LAS` | 65.59 |
| `LEMMA_ACC` | 83.57 |
| `ENTS_P` | 77.04 |
| `ENTS_R` | 66.03 |
| `ENTS_F` | 71.11 |
|
Charlie911/vicuna-7b-v1.5-lora-timedial
|
Charlie911
| 2023-10-10T06:43:48Z | 6 | 0 |
peft
|
[
"peft",
"safetensors",
"llama",
"region:us"
] | null | 2023-10-10T06:35:52Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0
|
spacy/mk_core_news_lg
|
spacy
| 2023-10-10T06:43:31Z | 10 | 0 |
spacy
|
[
"spacy",
"token-classification",
"mk",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- mk
license: cc-by-sa-4.0
model-index:
- name: mk_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7506382979
- name: NER Recall
type: recall
value: 0.7506382979
- name: NER F Score
type: f_score
value: 0.7506382979
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9309414621
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.6783968719
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.5298142717
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.6756756757
---
### Details: https://spacy.io/models/mk#mk_core_news_lg
Macedonian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `mk_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 274587 keys, 274587 unique vectors (300 dimensions) |
| **Sources** | [Macedonian Corpus](https://blog.netcetera.com/macedonian-spacy-f3c85484777f) (Damjan Zlatinov, Melanija Gerasimovska, Borijan Georgievski, Marija Todosovska)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (54 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PROPN`, `POS=AUX`, `POS=ADJ`, `POS=NOUN`, `POS=ADP`, `POS=PUNCT`, `POS=CONJ`, `POS=NUM`, `POS=VERB`, `POS=PRON`, `POS=ADV`, `POS=SCONJ`, `POS=PART`, `POS=SYM`, `_`, `POS=SPACE`, `POS=X`, `POS=INTJ` |
| **`parser`** | `ROOT`, `advmod`, `att`, `aux`, `cc`, `dep`, `det`, `dobj`, `iobj`, `neg`, `nsubj`, `pobj`, `poss`, `pozm`, `pozv`, `prep`, `punct`, `relcl` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_F` | 100.00 |
| `SENTS_P` | 70.42 |
| `SENTS_R` | 64.94 |
| `SENTS_F` | 67.57 |
| `DEP_UAS` | 67.84 |
| `DEP_LAS` | 52.98 |
| `ENTS_P` | 75.06 |
| `ENTS_R` | 75.06 |
| `ENTS_F` | 75.06 |
| `POS_ACC` | 93.09 |
|
jiang9527li/Reinforce-cartpole
|
jiang9527li
| 2023-10-10T06:43:22Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-10-10T06:43:13Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-cartpole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 460.40 +/- 118.80
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
spacy/mk_core_news_md
|
spacy
| 2023-10-10T06:43:02Z | 3 | 0 |
spacy
|
[
"spacy",
"token-classification",
"mk",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- mk
license: cc-by-sa-4.0
model-index:
- name: mk_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7472245944
- name: NER Recall
type: recall
value: 0.7446808511
- name: NER F Score
type: f_score
value: 0.7459505541
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9260857837
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.6771344455
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.5201177625
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.7323943662
---
### Details: https://spacy.io/models/mk#mk_core_news_md
Macedonian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `mk_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 274587 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [Macedonian Corpus](https://blog.netcetera.com/macedonian-spacy-f3c85484777f) (Damjan Zlatinov, Melanija Gerasimovska, Borijan Georgievski, Marija Todosovska)<br />[spaCy lookups data](https://github.com/explosion/spacy-lookups-data) (Explosion)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (54 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PROPN`, `POS=AUX`, `POS=ADJ`, `POS=NOUN`, `POS=ADP`, `POS=PUNCT`, `POS=CONJ`, `POS=NUM`, `POS=VERB`, `POS=PRON`, `POS=ADV`, `POS=SCONJ`, `POS=PART`, `POS=SYM`, `_`, `POS=SPACE`, `POS=X`, `POS=INTJ` |
| **`parser`** | `ROOT`, `advmod`, `att`, `aux`, `cc`, `dep`, `det`, `dobj`, `iobj`, `neg`, `nsubj`, `pobj`, `poss`, `pozm`, `pozv`, `prep`, `punct`, `relcl` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 100.00 |
| `TOKEN_R` | 100.00 |
| `TOKEN_F` | 100.00 |
| `SENTS_P` | 80.00 |
| `SENTS_R` | 67.53 |
| `SENTS_F` | 73.24 |
| `DEP_UAS` | 67.71 |
| `DEP_LAS` | 52.01 |
| `ENTS_P` | 74.72 |
| `ENTS_R` | 74.47 |
| `ENTS_F` | 74.60 |
| `POS_ACC` | 92.61 |
|
spacy/nb_core_news_md
|
spacy
| 2023-10-10T06:42:06Z | 10 | 0 |
spacy
|
[
"spacy",
"token-classification",
"nb",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nb
license: mit
model-index:
- name: nb_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.811827957
- name: NER Recall
type: recall
value: 0.8050947867
- name: NER F Score
type: f_score
value: 0.8084473528
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9728910684
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9728910684
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9586576479
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.970965787
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8936788796
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8623767174
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9485952133
---
### Details: https://spacy.io/models/nb#nb_core_news_md
Norwegian (Bokmål) pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `nb_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Norwegian Bokmaal v2.8](https://github.com/UniversalDependencies/UD_Norwegian-Bokmaal) (Øvrelid, Lilja; Jørgensen, Fredrik; Hohle, Petter)<br />[NorNE: Norwegian Named Entities (commit: bd311de5)](https://github.com/ltgoslo/norne) (Language Technology Group (University of Oslo))<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (249 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=PROPN`, `POS=X`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `NumType=Card\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|POS=PROPN`, `POS=NOUN`, `Gender=Masc\|POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=PROPN`, `POS=PART\|Polarity=Neg`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Abbr=Yes\|Case=Gen\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|POS=ADJ`, `POS=ADJ\|VerbForm=Part`, `Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=ADP`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Pos\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=DET\|Polarity=Neg\|PronType=Neg`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=DET\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Prs`, `POS=SYM`, `Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Def\|NumType=Card\|POS=NUM`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Number=Plur\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Definite=Def\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=SPACE`, `Animacy=Hum\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `POS=INTJ`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Animacy=Hum\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Polarity=Neg\|PronType=Neg`, `Case=Gen\|POS=NOUN`, `Definite=Ind\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Animacy=Hum\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Sup\|POS=ADJ`, `Animacy=Hum\|POS=PRON\|PronType=Int`, `POS=DET\|PronType=Ind`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Number=Plur\|POS=NOUN`, `POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem,Ind`, `Animacy=Hum\|POS=PRON\|Poss=Yes\|PronType=Int`, `Abbr=Yes\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Neut\|Number=Plur,Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Tot`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Plur,Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Gen,Nom\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Abbr=Yes\|Gender=Masc\|POS=NOUN`, `Abbr=Yes\|Case=Gen\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `DRV`, `EVT`, `GPE_LOC`, `GPE_ORG`, `LOC`, `MISC`, `ORG`, `PER`, `PROD` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.81 |
| `TOKEN_P` | 99.71 |
| `TOKEN_R` | 99.53 |
| `TOKEN_F` | 99.62 |
| `POS_ACC` | 97.29 |
| `MORPH_ACC` | 95.87 |
| `MORPH_MICRO_P` | 97.59 |
| `MORPH_MICRO_R` | 96.65 |
| `MORPH_MICRO_F` | 97.12 |
| `SENTS_P` | 95.12 |
| `SENTS_R` | 94.60 |
| `SENTS_F` | 94.86 |
| `DEP_UAS` | 89.37 |
| `DEP_LAS` | 86.24 |
| `LEMMA_ACC` | 97.10 |
| `TAG_ACC` | 97.29 |
| `ENTS_P` | 81.18 |
| `ENTS_R` | 80.51 |
| `ENTS_F` | 80.84 |
|
spacy/nb_core_news_sm
|
spacy
| 2023-10-10T06:42:00Z | 44 | 0 |
spacy
|
[
"spacy",
"token-classification",
"nb",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nb
license: mit
model-index:
- name: nb_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7606060606
- name: NER Recall
type: recall
value: 0.7434834123
- name: NER F Score
type: f_score
value: 0.7519472738
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9673820215
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9673820215
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9531747234
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9689548785
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8841111858
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8516342729
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9271305064
---
### Details: https://spacy.io/models/nb#nb_core_news_sm
Norwegian (Bokmål) pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `nb_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Norwegian Bokmaal v2.8](https://github.com/UniversalDependencies/UD_Norwegian-Bokmaal) (Øvrelid, Lilja; Jørgensen, Fredrik; Hohle, Petter)<br />[NorNE: Norwegian Named Entities (commit: bd311de5)](https://github.com/ltgoslo/norne) (Language Technology Group (University of Oslo)) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (249 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=SCONJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=PUNCT`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `POS=PROPN`, `POS=X`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `POS=VERB\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Pos\|Number=Plur\|POS=ADJ`, `NumType=Card\|Number=Plur\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|POS=PROPN`, `POS=NOUN`, `Gender=Masc\|POS=PROPN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=PROPN`, `POS=PART\|Polarity=Neg`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|POS=PROPN`, `Number=Plur\|POS=DET\|PronType=Int`, `Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Definite=Def\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Abbr=Yes\|Case=Gen\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|POS=ADJ`, `POS=ADJ\|VerbForm=Part`, `Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Abbr=Yes\|POS=ADP`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Part`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Degree=Pos\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=DET\|Polarity=Neg\|PronType=Neg`, `NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=DET\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|POS=PROPN`, `Gender=Masc\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `POS=AUX\|VerbForm=Inf`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=DET\|PronType=Prs`, `POS=SYM`, `Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Abbr=Yes\|POS=ADV`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Neut\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Def\|NumType=Card\|POS=NUM`, `Mood=Imp\|POS=VERB\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Number=Plur\|POS=PRON\|Person=3\|Polarity=Neg\|PronType=Neg,Prs`, `Definite=Def\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=SPACE`, `Animacy=Hum\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Mood=Imp\|POS=AUX\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Number=Plur\|POS=ADJ`, `Gender=Masc\|POS=NOUN`, `Abbr=Yes\|POS=NOUN`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `POS=INTJ`, `Animacy=Hum\|Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Animacy=Hum\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Animacy=Hum\|Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=PRON\|Polarity=Neg\|PronType=Neg`, `Case=Gen\|POS=NOUN`, `Definite=Ind\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|POS=PROPN`, `Animacy=Hum\|Number=Plur\|POS=PRON\|PronType=Rcp`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Ind,Prs`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Gen\|Definite=Def\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Gen\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `NumType=Card\|Number=Sing\|POS=NUM`, `Animacy=Hum\|Case=Acc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Nom\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Degree=Sup\|POS=ADJ`, `Animacy=Hum\|POS=PRON\|PronType=Int`, `POS=DET\|PronType=Ind`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs,Tot`, `Case=Gen\|Definite=Ind\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Neut\|Number=Sing\|POS=DET\|Polarity=Neg\|PronType=Neg`, `Number=Plur\|POS=NOUN`, `POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Definite=Def\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem,Ind`, `Animacy=Hum\|POS=PRON\|Poss=Yes\|PronType=Int`, `Abbr=Yes\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Definite=Ind\|Degree=Pos\|POS=ADJ`, `Number=Plur\|POS=DET\|PronType=Art`, `Case=Gen\|NumType=Card\|Number=Plur\|POS=NUM`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Neut\|Number=Plur,Sing\|POS=NOUN`, `Case=Gen\|Number=Plur\|POS=DET\|PronType=Tot`, `Abbr=Yes\|Definite=Def,Ind\|Gender=Masc\|Number=Plur,Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Animacy=Hum\|Case=Gen,Nom\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Number=Sing\|POS=PRON\|PronType=Art,Prs`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Ind\|Gender=Masc\|POS=NOUN`, `Definite=Def\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ\|VerbForm=Part`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Abbr=Yes\|Gender=Masc\|POS=NOUN`, `Abbr=Yes\|Case=Gen\|POS=NOUN`, `Abbr=Yes\|Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Abbr=Yes\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Gender=Fem\|POS=NOUN`, `Case=Gen\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=NOUN` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `DRV`, `EVT`, `GPE_LOC`, `GPE_ORG`, `LOC`, `MISC`, `ORG`, `PER`, `PROD` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.81 |
| `TOKEN_P` | 99.71 |
| `TOKEN_R` | 99.53 |
| `TOKEN_F` | 99.62 |
| `POS_ACC` | 96.74 |
| `MORPH_ACC` | 95.32 |
| `MORPH_MICRO_P` | 97.02 |
| `MORPH_MICRO_R` | 96.07 |
| `MORPH_MICRO_F` | 96.54 |
| `SENTS_P` | 91.96 |
| `SENTS_R` | 93.48 |
| `SENTS_F` | 92.71 |
| `DEP_UAS` | 88.41 |
| `DEP_LAS` | 85.16 |
| `LEMMA_ACC` | 96.90 |
| `TAG_ACC` | 96.74 |
| `ENTS_P` | 76.06 |
| `ENTS_R` | 74.35 |
| `ENTS_F` | 75.19 |
|
spacy/nl_core_news_sm
|
spacy
| 2023-10-10T06:41:07Z | 101 | 0 |
spacy
|
[
"spacy",
"token-classification",
"nl",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- nl
license: cc-by-sa-4.0
model-index:
- name: nl_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7496350365
- name: NER Recall
type: recall
value: 0.7102351314
- name: NER F Score
type: f_score
value: 0.7294034091
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.939195673
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9572746505
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9504635184
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9504328674
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8535422689
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.80149091
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8658922914
---
### Details: https://spacy.io/models/nl#nl_core_news_sm
Dutch pipeline optimized for CPU. Components: tok2vec, morphologizer, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `nl_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `tagger`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Dutch LassySmall v2.8](https://github.com/UniversalDependencies/UD_Dutch-LassySmall) (Bouma, Gosse; van Noord, Gertjan)<br />[Dutch NER Annotations for UD LassySmall](https://nlp.town) (NLP Town)<br />[UD Dutch Alpino v2.8](https://github.com/UniversalDependencies/UD_Dutch-Alpino) (Zeman, Daniel; Žabokrtský, Zdeněk; Bouma, Gosse; van Noord, Gertjan) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (323 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `POS=PRON\|Person=3\|PronType=Dem`, `Number=Sing\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=ADV`, `POS=VERB\|VerbForm=Part`, `POS=PUNCT`, `Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `POS=ADP`, `POS=NUM`, `Number=Plur\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `POS=SCONJ`, `Definite=Def\|POS=DET`, `Gender=Com\|Number=Sing\|POS=NOUN`, `Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Degree=Pos\|POS=ADJ`, `Gender=Neut\|Number=Sing\|POS=PROPN`, `Gender=Com\|Number=Sing\|POS=PROPN`, `POS=AUX\|VerbForm=Inf`, `Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `POS=DET`, `Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PRON\|Person=3\|PronType=Prs`, `POS=CCONJ`, `Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Ind`, `Degree=Cmp\|POS=ADJ`, `Case=Nom\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Ind\|POS=DET`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Number=Plur\|POS=AUX\|Tense=Pres\|VerbForm=Fin`, `POS=PRON\|PronType=Rel`, `Case=Acc\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Gender=Com,Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs`, `POS=PROPN`, `POS=PRON\|PronType=Ind`, `POS=PRON\|Person=3\|PronType=Int`, `Case=Acc\|POS=PRON\|PronType=Rcp`, `Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=NOUN`, `POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=SYM`, `Abbr=Yes\|POS=X`, `Gender=Com,Neut\|Number=Sing\|POS=PROPN`, `Degree=Sup\|POS=ADJ`, `POS=ADJ`, `Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Dem`, `POS=AUX\|VerbForm=Part`, `POS=SPACE`, `POS=PRON\|Person=3\|PronType=Rel`, `Number=Plur\|POS=PROPN`, `POS=PRON\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Dat\|POS=PRON\|PronType=Dem`, `Case=Nom\|POS=PRON\|Person=2\|PronType=Prs`, `POS=INTJ`, `Case=Acc\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Gen\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `POS=PRON\|PronType=Int`, `POS=PRON\|Person=2\|PronType=Prs`, `POS=PRON\|Person=3`, `Case=Gen\|POS=PRON\|Person=2\|PronType=Prs`, `POS=X` |
| **`tagger`** | `ADJ\|nom\|basis\|met-e\|mv-n`, `ADJ\|nom\|basis\|met-e\|zonder-n\|bijz`, `ADJ\|nom\|basis\|met-e\|zonder-n\|stan`, `ADJ\|nom\|basis\|zonder\|mv-n`, `ADJ\|nom\|basis\|zonder\|zonder-n`, `ADJ\|nom\|comp\|met-e\|mv-n`, `ADJ\|nom\|comp\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|met-e\|mv-n`, `ADJ\|nom\|sup\|met-e\|zonder-n\|bijz`, `ADJ\|nom\|sup\|met-e\|zonder-n\|stan`, `ADJ\|nom\|sup\|zonder\|zonder-n`, `ADJ\|postnom\|basis\|met-s`, `ADJ\|postnom\|basis\|zonder`, `ADJ\|postnom\|comp\|met-s`, `ADJ\|prenom\|basis\|met-e\|bijz`, `ADJ\|prenom\|basis\|met-e\|stan`, `ADJ\|prenom\|basis\|zonder`, `ADJ\|prenom\|comp\|met-e\|stan`, `ADJ\|prenom\|comp\|zonder`, `ADJ\|prenom\|sup\|met-e\|stan`, `ADJ\|prenom\|sup\|zonder`, `ADJ\|vrij\|basis\|zonder`, `ADJ\|vrij\|comp\|zonder`, `ADJ\|vrij\|dim\|zonder`, `ADJ\|vrij\|sup\|zonder`, `BW`, `LET`, `LID\|bep\|dat\|evmo`, `LID\|bep\|gen\|evmo`, `LID\|bep\|gen\|rest3`, `LID\|bep\|stan\|evon`, `LID\|bep\|stan\|rest`, `LID\|onbep\|stan\|agr`, `N\|eigen\|ev\|basis\|gen`, `N\|eigen\|ev\|basis\|genus\|stan`, `N\|eigen\|ev\|basis\|onz\|stan`, `N\|eigen\|ev\|basis\|zijd\|stan`, `N\|eigen\|ev\|dim\|onz\|stan`, `N\|eigen\|mv\|basis`, `N\|soort\|ev\|basis\|dat`, `N\|soort\|ev\|basis\|gen`, `N\|soort\|ev\|basis\|genus\|stan`, `N\|soort\|ev\|basis\|onz\|stan`, `N\|soort\|ev\|basis\|zijd\|stan`, `N\|soort\|ev\|dim\|onz\|stan`, `N\|soort\|mv\|basis`, `N\|soort\|mv\|dim`, `SPEC\|afgebr`, `SPEC\|afk`, `SPEC\|deeleigen`, `SPEC\|enof`, `SPEC\|meta`, `SPEC\|symb`, `SPEC\|vreemd`, `TSW`, `TW\|hoofd\|nom\|mv-n\|basis`, `TW\|hoofd\|nom\|mv-n\|dim`, `TW\|hoofd\|nom\|zonder-n\|basis`, `TW\|hoofd\|nom\|zonder-n\|dim`, `TW\|hoofd\|prenom\|stan`, `TW\|hoofd\|vrij`, `TW\|rang\|nom\|mv-n`, `TW\|rang\|nom\|zonder-n`, `TW\|rang\|prenom\|stan`, `VG\|neven`, `VG\|onder`, `VNW\|aanw\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|aanw\|adv-pron\|stan\|red\|3\|getal`, `VNW\|aanw\|det\|dat\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|dat\|prenom\|met-e\|evmo`, `VNW\|aanw\|det\|gen\|prenom\|met-e\|rest3`, `VNW\|aanw\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|aanw\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|aanw\|det\|stan\|prenom\|met-e\|rest`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|agr`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|evon`, `VNW\|aanw\|det\|stan\|prenom\|zonder\|rest`, `VNW\|aanw\|det\|stan\|vrij\|zonder`, `VNW\|aanw\|pron\|gen\|vol\|3m\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3o\|ev`, `VNW\|aanw\|pron\|stan\|vol\|3\|getal`, `VNW\|betr\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|betr\|det\|stan\|nom\|zonder\|zonder-n`, `VNW\|betr\|pron\|stan\|vol\|3\|ev`, `VNW\|betr\|pron\|stan\|vol\|persoon\|getal`, `VNW\|bez\|det\|gen\|vol\|3\|ev\|prenom\|met-e\|rest3`, `VNW\|bez\|det\|stan\|nadr\|2v\|mv\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|2v\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|red\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|ev\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|1\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|1\|mv\|prenom\|zonder\|evon`, `VNW\|bez\|det\|stan\|vol\|2v\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|2\|getal\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3m\|ev\|nom\|met-e\|zonder-n`, `VNW\|bez\|det\|stan\|vol\|3m\|ev\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|3p\|mv\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|3v\|ev\|nom\|met-e\|zonder-n`, `VNW\|bez\|det\|stan\|vol\|3v\|ev\|prenom\|met-e\|rest`, `VNW\|bez\|det\|stan\|vol\|3\|ev\|prenom\|zonder\|agr`, `VNW\|bez\|det\|stan\|vol\|3\|mv\|prenom\|zonder\|agr`, `VNW\|excl\|pron\|stan\|vol\|3\|getal`, `VNW\|onbep\|adv-pron\|gen\|red\|3\|getal`, `VNW\|onbep\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|onbep\|det\|stan\|nom\|met-e\|mv-n`, `VNW\|onbep\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|onbep\|det\|stan\|nom\|zonder\|zonder-n`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|agr`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|evz`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|mv`, `VNW\|onbep\|det\|stan\|prenom\|met-e\|rest`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|agr`, `VNW\|onbep\|det\|stan\|prenom\|zonder\|evon`, `VNW\|onbep\|det\|stan\|vrij\|zonder`, `VNW\|onbep\|grad\|gen\|nom\|met-e\|mv-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|mv-n\|sup`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|basis`, `VNW\|onbep\|grad\|stan\|nom\|met-e\|zonder-n\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|comp`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|agr\|sup`, `VNW\|onbep\|grad\|stan\|prenom\|met-e\|mv\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|basis`, `VNW\|onbep\|grad\|stan\|prenom\|zonder\|agr\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|basis`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|comp`, `VNW\|onbep\|grad\|stan\|vrij\|zonder\|sup`, `VNW\|onbep\|pron\|gen\|vol\|3p\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3o\|ev`, `VNW\|onbep\|pron\|stan\|vol\|3p\|ev`, `VNW\|pers\|pron\|gen\|vol\|2\|getal`, `VNW\|pers\|pron\|nomin\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|nomin\|nadr\|3v\|ev\|fem`, `VNW\|pers\|pron\|nomin\|red\|1\|mv`, `VNW\|pers\|pron\|nomin\|red\|2v\|ev`, `VNW\|pers\|pron\|nomin\|red\|2\|getal`, `VNW\|pers\|pron\|nomin\|red\|3p\|ev\|masc`, `VNW\|pers\|pron\|nomin\|red\|3\|ev\|masc`, `VNW\|pers\|pron\|nomin\|vol\|1\|ev`, `VNW\|pers\|pron\|nomin\|vol\|1\|mv`, `VNW\|pers\|pron\|nomin\|vol\|2b\|getal`, `VNW\|pers\|pron\|nomin\|vol\|2v\|ev`, `VNW\|pers\|pron\|nomin\|vol\|2\|getal`, `VNW\|pers\|pron\|nomin\|vol\|3p\|mv`, `VNW\|pers\|pron\|nomin\|vol\|3v\|ev\|fem`, `VNW\|pers\|pron\|nomin\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|nadr\|3m\|ev\|masc`, `VNW\|pers\|pron\|obl\|red\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|2v\|ev`, `VNW\|pers\|pron\|obl\|vol\|3p\|mv`, `VNW\|pers\|pron\|obl\|vol\|3\|ev\|masc`, `VNW\|pers\|pron\|obl\|vol\|3\|getal\|fem`, `VNW\|pers\|pron\|stan\|nadr\|2v\|mv`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|fem`, `VNW\|pers\|pron\|stan\|red\|3\|ev\|onz`, `VNW\|pers\|pron\|stan\|red\|3\|mv`, `VNW\|pr\|pron\|obl\|nadr\|1\|ev`, `VNW\|pr\|pron\|obl\|nadr\|2v\|getal`, `VNW\|pr\|pron\|obl\|nadr\|2\|getal`, `VNW\|pr\|pron\|obl\|red\|1\|ev`, `VNW\|pr\|pron\|obl\|red\|2v\|getal`, `VNW\|pr\|pron\|obl\|vol\|1\|ev`, `VNW\|pr\|pron\|obl\|vol\|1\|mv`, `VNW\|pr\|pron\|obl\|vol\|2\|getal`, `VNW\|recip\|pron\|gen\|vol\|persoon\|mv`, `VNW\|recip\|pron\|obl\|vol\|persoon\|mv`, `VNW\|refl\|pron\|obl\|nadr\|3\|getal`, `VNW\|refl\|pron\|obl\|red\|3\|getal`, `VNW\|vb\|adv-pron\|obl\|vol\|3o\|getal`, `VNW\|vb\|det\|stan\|nom\|met-e\|zonder-n`, `VNW\|vb\|det\|stan\|prenom\|met-e\|rest`, `VNW\|vb\|det\|stan\|prenom\|zonder\|evon`, `VNW\|vb\|pron\|gen\|vol\|3m\|ev`, `VNW\|vb\|pron\|gen\|vol\|3p\|mv`, `VNW\|vb\|pron\|gen\|vol\|3v\|ev`, `VNW\|vb\|pron\|stan\|vol\|3o\|ev`, `VNW\|vb\|pron\|stan\|vol\|3p\|getal`, `VZ\|fin`, `VZ\|init`, `VZ\|versm`, `WW\|inf\|nom\|zonder\|zonder-n`, `WW\|inf\|prenom\|met-e`, `WW\|inf\|vrij\|zonder`, `WW\|od\|nom\|met-e\|mv-n`, `WW\|od\|nom\|met-e\|zonder-n`, `WW\|od\|prenom\|met-e`, `WW\|od\|prenom\|zonder`, `WW\|od\|vrij\|zonder`, `WW\|pv\|conj\|ev`, `WW\|pv\|tgw\|ev`, `WW\|pv\|tgw\|met-t`, `WW\|pv\|tgw\|mv`, `WW\|pv\|verl\|ev`, `WW\|pv\|verl\|mv`, `WW\|vd\|nom\|met-e\|mv-n`, `WW\|vd\|nom\|met-e\|zonder-n`, `WW\|vd\|prenom\|met-e`, `WW\|vd\|prenom\|zonder`, `WW\|vd\|vrij\|zonder`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl`, `expl:pv`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TAG_ACC` | 93.92 |
| `SENTS_P` | 85.00 |
| `SENTS_R` | 88.24 |
| `SENTS_F` | 86.59 |
| `DEP_UAS` | 85.35 |
| `DEP_LAS` | 80.15 |
| `ENTS_P` | 74.96 |
| `ENTS_R` | 71.02 |
| `ENTS_F` | 72.94 |
| `TOKEN_ACC` | 99.94 |
| `TOKEN_P` | 99.74 |
| `TOKEN_R` | 99.76 |
| `TOKEN_F` | 99.75 |
| `POS_ACC` | 95.73 |
| `MORPH_ACC` | 95.05 |
| `MORPH_MICRO_P` | 95.82 |
| `MORPH_MICRO_R` | 93.63 |
| `MORPH_MICRO_F` | 94.71 |
| `LEMMA_ACC` | 95.04 |
|
spacy/pl_core_news_lg
|
spacy
| 2023-10-10T06:41:03Z | 21 | 3 |
spacy
|
[
"spacy",
"token-classification",
"pl",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- pl
license: gpl-3.0
model-index:
- name: pl_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.847446671
- name: NER Recall
type: recall
value: 0.8355640535
- name: NER F Score
type: f_score
value: 0.8414634146
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9828973843
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9781017658
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9098299967
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9424670256
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.894969847
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8237918475
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9631305135
---
### Details: https://spacy.io/models/pl#pl_core_news_lg
Polish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), tagger, senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `pl_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `tagger`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `tagger`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Polish PDB v2.8](https://github.com/UniversalDependencies/UD_Polish-PDB/) (Wróblewska, Alina; Zeman, Daniel; Mašek, Jan; Rosa, Rudolf)<br />[National Corpus of Polish](http://nkjp.pl/) (Mirosław Bańko, Rafał L. Górski, Barbara Lewandowska-Tomaszczyk, Marek Łaziński, Piotr Pęzik, Adam Przepiórkowski)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1726 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP\|Variant=Short`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `Animacy=Inan\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Animacy=Hum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Nhum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Inan\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `AdpType=Prep\|POS=ADP\|Variant=Long`, `Animacy=Inan\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Nhum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `POS=SPACE`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Nhum\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumForm=Word\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `POS=PART`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `POS=SCONJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Nhum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Hyph=Yes\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=ADV\|PronType=Rel`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Nhum\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Nhum\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Nhum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `POS=ADV\|PronType=Dem`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Animacy=Nhum\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Ins\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Loc\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Ptan\|POS=PRON\|PronType=Tot`, `Animacy=Nhum\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Nhum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Nhum\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Nhum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Nhum\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `ConjType=Comp\|POS=SCONJ`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Imp\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|VerbType=Quasi`, `Animacy=Hum\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=ADJ\|PrepCase=Pre`, `Animacy=Inan\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Nhum\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Hum\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Aspect=Imp,Perf\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Variant=Long\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=PUNCT\|PunctType=Excl`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Foreign=Yes\|POS=X`, `POS=PART\|Polarity=Neg`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Clitic=Yes\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Variant=Short\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Aspect=Imp,Perf\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|Variant=Long\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Qest`, `Animacy=Inan\|Case=Nom\|Degree=Pos\|Gender=Masc\|NumForm=Roman\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Hum\|Aspect=Imp,Perf\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|Variant=Short\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `POS=ADV\|PronType=Int`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Ptan\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=ADV\|PronType=Neg`, `Animacy=Hum\|Aspect=Imp\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Variant=Long\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Hum\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Hum\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod\|Voice=Act`, `POS=PART\|PartType=Int`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Animacy=Hum\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|Variant=Short\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|NumForm=Digit\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Mod`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advcl:cmpr`, `advcl:relcl`, `advmod`, `advmod:arg`, `advmod:emph`, `advmod:neg`, `amod`, `amod:flat`, `appos`, `aux`, `aux:cnd`, `aux:imp`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:cleft`, `ccomp:obj`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:numgov`, `det:nummod`, `det:poss`, `discourse:intj`, `expl:pv`, `fixed`, `flat`, `flat:foreign`, `iobj`, `list`, `mark`, `nmod`, `nmod:arg`, `nmod:flat`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `obl:arg`, `obl:cmpr`, `orphan`, `parataxis:insert`, `parataxis:obj`, `punct`, `vocative`, `xcomp`, `xcomp:cleft`, `xcomp:pred` |
| **`tagger`** | `ADJ`, `ADJA`, `ADJC`, `ADJP`, `ADV`, `AGLT`, `BEDZIE`, `BREV`, `BURK`, `COMP`, `CONJ`, `DEPR`, `FIN`, `GER`, `IMPS`, `IMPT`, `INF`, `INTERJ`, `INTERP`, `NUM`, `NUMCOL`, `PACT`, `PANT`, `PCON`, `PPAS`, `PPRON12`, `PPRON3`, `PRAET`, `PRED`, `PREP`, `QUB`, `SIEBIE`, `SUBST`, `WINIEN`, `XXX`, `_SP` |
| **`ner`** | `date`, `geogName`, `orgName`, `persName`, `placeName`, `time` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.98 |
| `TOKEN_P` | 99.63 |
| `TOKEN_R` | 99.83 |
| `TOKEN_F` | 99.73 |
| `POS_ACC` | 97.81 |
| `MORPH_ACC` | 90.98 |
| `MORPH_MICRO_P` | 95.74 |
| `MORPH_MICRO_R` | 95.61 |
| `MORPH_MICRO_F` | 95.67 |
| `SENTS_P` | 96.51 |
| `SENTS_R` | 96.12 |
| `SENTS_F` | 96.31 |
| `DEP_UAS` | 89.50 |
| `DEP_LAS` | 82.38 |
| `LEMMA_ACC` | 94.25 |
| `TAG_ACC` | 98.29 |
| `ENTS_P` | 84.74 |
| `ENTS_R` | 83.56 |
| `ENTS_F` | 84.15 |
|
spacy/pl_core_news_sm
|
spacy
| 2023-10-10T06:40:09Z | 15 | 0 |
spacy
|
[
"spacy",
"token-classification",
"pl",
"license:gpl-3.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- pl
license: gpl-3.0
model-index:
- name: pl_core_news_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8019169329
- name: NER Recall
type: recall
value: 0.7998725303
- name: NER F Score
type: f_score
value: 0.8008934269
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9793610146
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9705532162
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.8796817839
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9309169
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8774553377
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.7968842575
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9606868504
---
### Details: https://spacy.io/models/pl#pl_core_news_sm
Polish pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), tagger, senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `pl_core_news_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `tagger`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `tagger`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [UD Polish PDB v2.8](https://github.com/UniversalDependencies/UD_Polish-PDB/) (Wróblewska, Alina; Zeman, Daniel; Mašek, Jan; Rosa, Rudolf)<br />[National Corpus of Polish](http://nkjp.pl/) (Mirosław Bańko, Rafał L. Górski, Barbara Lewandowska-Tomaszczyk, Marek Łaziński, Piotr Pęzik, Adam Przepiórkowski) |
| **License** | `GNU GPL 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (1726 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP\|Variant=Short`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=PUNCT\|PunctType=Peri`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `Animacy=Inan\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `AdpType=Prep\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADV`, `Animacy=Hum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Nhum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Inan\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `AdpType=Prep\|POS=ADP\|Variant=Long`, `Animacy=Inan\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Nhum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `POS=SPACE`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Nhum\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|NumForm=Word\|NumType=Sets\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `POS=PART`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Degree=Pos\|POS=ADV`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `POS=SCONJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Nhum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Hum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Hyph=Yes\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=ADV\|PronType=Rel`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Nhum\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Degree=Cmp\|POS=ADV`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Hum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Nhum\|Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Nhum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Nhum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Sing\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `POS=ADV\|PronType=Dem`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Animacy=Nhum\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Acc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Ins\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Loc\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Ptan\|POS=PRON\|PronType=Tot`, `Animacy=Nhum\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Nhum\|Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|NumForm=Word\|Number=Plur\|POS=NUM`, `Degree=Pos\|POS=ADV\|PronType=Dem`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Nhum\|Case=Acc\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Neut\|Number=Ptan\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Nhum\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Neut\|NumType=Sets\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Rel`, `Animacy=Nhum\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Nhum\|Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Gender=Neut\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Aspect=Imp\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `ConjType=Comp\|POS=SCONJ`, `Animacy=Inan\|Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Imp\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Inan\|Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|VerbType=Quasi`, `Animacy=Hum\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=ADJ\|PrepCase=Pre`, `Animacy=Inan\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Nhum\|Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Nhum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Acc\|Gender=Neut\|NumType=Sets\|Number=Plur\|POS=NOUN`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Case=Ins\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Animacy=Hum\|Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Animacy=Hum\|Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Nhum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Animacy=Hum\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Hum\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Aspect=Imp,Perf\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Variant=Long\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=PUNCT\|PunctType=Excl`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Foreign=Yes\|POS=X`, `POS=PART\|Polarity=Neg`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Clitic=Yes\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Variant=Short\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Aspect=Imp,Perf\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|Variant=Long\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|POS=ADV\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Qest`, `Animacy=Inan\|Case=Nom\|Degree=Pos\|Gender=Masc\|NumForm=Roman\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Short`, `Animacy=Hum\|Aspect=Imp,Perf\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|Variant=Short\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `POS=ADV\|PronType=Int`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Animacy=Hum\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Act`, `Animacy=Hum\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Variant=Long`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Neut\|Number=Ptan\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=ADV\|PronType=Neg`, `Animacy=Hum\|Aspect=Imp\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|Variant=Long\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|NumForm=Word\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Animacy=Nhum\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Hum\|Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Animacy=Hum\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|VerbType=Mod\|Voice=Act`, `POS=PART\|PartType=Int`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=ADV\|PronType=Ind`, `Animacy=Hum\|Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Animacy=Hum\|Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=ADJ\|Polarity=Pos\|VerbForm=Part\|Voice=Pass`, `Animacy=Hum\|Aspect=Imp\|Clitic=Yes\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|Variant=Short\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Hum\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Variant=Long`, `Animacy=Hum\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|POS=VERB\|Person=0\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|NumForm=Digit\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Neut\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN\|Polarity=Pos\|VerbForm=Vnoun`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Fem\|NumType=Card\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=PART\|PartType=Mod`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advcl:cmpr`, `advcl:relcl`, `advmod`, `advmod:arg`, `advmod:emph`, `advmod:neg`, `amod`, `amod:flat`, `appos`, `aux`, `aux:cnd`, `aux:imp`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:cleft`, `ccomp:obj`, `conj`, `cop`, `csubj`, `dep`, `det`, `det:numgov`, `det:nummod`, `det:poss`, `discourse:intj`, `expl:pv`, `fixed`, `flat`, `flat:foreign`, `iobj`, `list`, `mark`, `nmod`, `nmod:arg`, `nmod:flat`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `obl:arg`, `obl:cmpr`, `orphan`, `parataxis:insert`, `parataxis:obj`, `punct`, `vocative`, `xcomp`, `xcomp:cleft`, `xcomp:pred` |
| **`tagger`** | `ADJ`, `ADJA`, `ADJC`, `ADJP`, `ADV`, `AGLT`, `BEDZIE`, `BREV`, `BURK`, `COMP`, `CONJ`, `DEPR`, `FIN`, `GER`, `IMPS`, `IMPT`, `INF`, `INTERJ`, `INTERP`, `NUM`, `NUMCOL`, `PACT`, `PANT`, `PCON`, `PPAS`, `PPRON12`, `PPRON3`, `PRAET`, `PRED`, `PREP`, `QUB`, `SIEBIE`, `SUBST`, `WINIEN`, `XXX`, `_SP` |
| **`ner`** | `date`, `geogName`, `orgName`, `persName`, `placeName`, `time` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.98 |
| `TOKEN_P` | 99.63 |
| `TOKEN_R` | 99.83 |
| `TOKEN_F` | 99.73 |
| `POS_ACC` | 97.06 |
| `MORPH_ACC` | 87.97 |
| `MORPH_MICRO_P` | 93.82 |
| `MORPH_MICRO_R` | 93.59 |
| `MORPH_MICRO_F` | 93.70 |
| `SENTS_P` | 96.16 |
| `SENTS_R` | 95.98 |
| `SENTS_F` | 96.07 |
| `DEP_UAS` | 87.75 |
| `DEP_LAS` | 79.69 |
| `LEMMA_ACC` | 93.09 |
| `TAG_ACC` | 97.94 |
| `ENTS_P` | 80.19 |
| `ENTS_R` | 79.99 |
| `ENTS_F` | 80.09 |
|
spacy/pt_core_news_lg
|
spacy
| 2023-10-10T06:40:05Z | 15 | 4 |
spacy
|
[
"spacy",
"token-classification",
"pt",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- pt
license: cc-by-sa-4.0
model-index:
- name: pt_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9016596045
- name: NER Recall
type: recall
value: 0.9045519847
- name: NER F Score
type: f_score
value: 0.9031034788
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.8951305295
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9694357755
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.958640844
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9730077757
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9021776702
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8624265468
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9512921022
---
### Details: https://spacy.io/models/pt#pt_core_news_lg
Portuguese pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `pt_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Portuguese Bosque v2.8](https://github.com/UniversalDependencies/UD_Portuguese-Bosque) (Rademaker, Alexandre; Freitas, Cláudia; de Souza, Elvis; Silveira, Aline; Cavalcanti, Tatiana; Evelyn, Wograine; Rocha, Luisa; Soares-Bastos, Isabela; Bick, Eckhard; Chalub, Fabricio; Paulino-Passos, Guilherme; Real, Livy; de Paiva, Valeria; Zeman, Daniel; Popel, Martin; Mareček, David; Silveira, Natalia; Martins, André)<br />[WikiNER](https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) (Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, James R Curran)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (590 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Definite=Def\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `POS=PUNCT`, `NumType=Card\|POS=NUM`, `POS=ADV`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `POS=ADP`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=SCONJ`, `POS=VERB\|VerbForm=Inf`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=CCONJ`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `POS=ADV\|Polarity=Neg`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=X`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=CCONJ`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `POS=AUX\|VerbForm=Inf`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `POS=VERB\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Gender=Masc\|Number=Plur\|POS=PROPN`, `Number=Plur\|POS=AUX\|Person=3\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Art`, `POS=VERB\|VerbForm=Part`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Rel`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `NumType=Ord\|POS=ADJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Number=Plur\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Gender=Masc\|NumType=Mult\|Number=Sing\|POS=NUM`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Rel`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Sing\|POS=PROPN\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `POS=AUX\|VerbForm=Part`, `POS=SPACE`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Number=Sing\|POS=DET\|PronType=Art`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|NumType=Frac\|Number=Sing\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Number=Plur\|POS=VERB\|Person=3\|VerbForm=Inf`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Definite=Def\|POS=SCONJ\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Acc\|POS=PRON\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=AUX`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Art`, `POS=INTJ`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Acc\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Art`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Emp`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=NOUN\|Voice=Pass`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Acc\|POS=VERB\|PronType=Prs\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=ADJ`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Number=Sing\|POS=AUX\|Person=3\|VerbForm=Inf`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Sing\|POS=NUM`, `Number=Sing\|POS=NOUN`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Dem`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PART`, `Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Gender=Masc\|Number=Sing\|POS=ADV`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Rel`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Card\|POS=DET`, `Number=Plur\|POS=VERB\|Person=1\|VerbForm=Inf`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Gender=Masc\|POS=ADJ`, `POS=NOUN`, `POS=AUX\|VerbForm=Ger`, `Case=Dat\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Emp`, `POS=PRON\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=DET`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Def\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Masc\|POS=PRON\|PronType=Prs`, `POS=VERB\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Part`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=PROPN\|PronType=Art`, `Case=Dat\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pqp\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=ADJ\|PronType=Dem`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Number=Plur\|POS=AUX\|Person=1\|Tense=Past`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Past\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=ADV\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=X`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=SCONJ`, `Gender=Masc\|Number=Sing\|POS=PRON`, `Gender=Fem\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `POS=ADP\|PronType=Dem`, `Definite=Def\|Gender=Fem\|POS=ADP\|PronType=Art`, `POS=ADP\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=ADP\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Imp\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `POS=DET`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Emp`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Art`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=AUX\|Person=1\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Degree=Cmp\|POS=ADJ`, `Gender=Fem\|Number=Plur\|POS=ADP\|PronType=Ind`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Person=3\|VerbForm=Inf\|Voice=Pass`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=2\|PronType=Prs\|VerbForm=Inf`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem,Masc\|Number=Sing\|POS=PROPN`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=NUM`, `POS=PRON\|PronType=Neg`, `Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Dem`, `POS=SYM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pqp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=X`, `Case=Dat\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|NumType=Sets\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=NOUN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|POS=AUX\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Ind`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=PRON\|PronType=Int`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Prs`, `Number=Sing\|POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADP\|PronType=Ind`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Art`, `Number=Sing\|POS=VERB`, `Number=Sing\|POS=DET`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin\|Voice=Pass`, `NumType=Mult\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Neg`, `Mood=Ind\|POS=VERB\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=SCONJ\|PronType=Rel`, `Case=Acc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Gender=Masc\|Number=Sing\|POS=ADV\|Polarity=Neg`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=VERB\|Person=1\|VerbForm=Inf`, `Definite=Def\|Gender=Masc\|POS=ADP\|PronType=Art`, `Gender=Masc\|POS=NOUN`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=NOUN`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=SCONJ\|PronType=Art`, `POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=PRON\|PronType=Tot`, `Number=Sing\|POS=DET\|PronType=Rel`, `Gender=Fem\|Number=Plur\|POS=VERB`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|PronType=Prs\|VerbForm=Inf`, `Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `NumType=Range\|POS=NUM`, `Case=Dat\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Dat\|Gender=Masc\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=VERB\|Person=1\|VerbForm=Inf\|Voice=Pass`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=SCONJ\|PronType=Dem`, `NumType=Frac\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADP\|PronType=Ind`, `Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADV\|PronType=Rel`, `Mood=Cnd\|POS=VERB\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=ADP\|PronType=Ind`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf\|Voice=Pass`, `POS=VERB\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Number=Sing\|POS=X`, `POS=PROPN`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Acc\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Gender=Masc\|Number=Sing\|POS=ADV\|PronType=Int`, `Case=Dat\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=1,3\|PronType=Prs\|Tense=Past\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|VerbForm=Inf`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Int`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pqp\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|POS=AUX\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Fem\|POS=AUX\|PronType=Prs\|VerbForm=Ger`, `Case=Acc\|Gender=Fem\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=VERB\|Person=1\|PronType=Prs\|VerbForm=Inf`, `Case=Acc\|Gender=Masc\|Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=AUX\|Person=3\|PronType=Prs\|VerbForm=Ger`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Mood=Ind\|Number=Plur,Sing\|POS=VERB\|Person=1,3\|PronType=Prs\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=X`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Gender=Fem\|POS=DET\|PronType=Art`, `Case=Acc\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Pqp\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Number=Sing\|POS=NUM`, `Number=Plur\|POS=PROPN`, `Case=Dat\|POS=PRON\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=VERB`, `Case=Acc\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|PronType=Prs\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 100.00 |
| `TOKEN_P` | 99.88 |
| `TOKEN_R` | 99.95 |
| `TOKEN_F` | 99.92 |
| `POS_ACC` | 96.94 |
| `MORPH_ACC` | 95.86 |
| `MORPH_MICRO_P` | 98.21 |
| `MORPH_MICRO_R` | 97.69 |
| `MORPH_MICRO_F` | 97.95 |
| `SENTS_P` | 93.99 |
| `SENTS_R` | 96.30 |
| `SENTS_F` | 95.13 |
| `DEP_UAS` | 90.22 |
| `DEP_LAS` | 86.24 |
| `LEMMA_ACC` | 97.30 |
| `TAG_ACC` | 89.51 |
| `ENTS_P` | 90.17 |
| `ENTS_R` | 90.46 |
| `ENTS_F` | 90.31 |
|
spacy/ro_core_news_lg
|
spacy
| 2023-10-10T06:39:13Z | 17 | 2 |
spacy
|
[
"spacy",
"token-classification",
"ro",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ro
license: cc-by-sa-4.0
model-index:
- name: ro_core_news_lg
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7502799552
- name: NER Recall
type: recall
value: 0.7721859393
- name: NER F Score
type: f_score
value: 0.7610753502
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9657255109
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9395242502
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9499516228
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9575746914
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8875784191
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8359473024
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9699799867
---
### Details: https://spacy.io/models/ro#ro_core_news_lg
Romanian pipeline optimized for CPU. Components: tok2vec, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `ro_core_news_lg` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) |
| **Sources** | [UD Romanian RRT v2.8](https://github.com/UniversalDependencies/UD_Romanian-RRT) (Barbu Mititelu, Verginica; Irimia, Elena; Perez, Cenel-Augusto; Ion, Radu; Simionescu, Radu; Popel, Martin)<br />[RONEC - the Romanian Named Entity Corpus (ca9ce460)](https://github.com/dumitrescustefan/ronec) (Dumitrescu, Stefan Daniel; Avram, Andrei-Marius; Morogan, Luciana; Toma; Stefan)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (540 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `ARROW`, `Af`, `Afcfp-n`, `Afcfson`, `Afcfsrn`, `Afcmpoy`, `Afcms-n`, `Afp`, `Afp-p-n`, `Afp-poy`, `Afp-srn`, `Afpf--n`, `Afpfp-n`, `Afpfp-ny`, `Afpfpoy`, `Afpfpry`, `Afpfson`, `Afpfsoy`, `Afpfsrn`, `Afpfsry`, `Afpm--n`, `Afpmp-n`, `Afpmpoy`, `Afpmpry`, `Afpms-n`, `Afpmsoy`, `Afpmsry`, `Afsfp-n`, `Afsfsrn`, `BULLET`, `COLON`, `COMMA`, `Ccssp`, `Ccsspy`, `Crssp`, `Csssp`, `Cssspy`, `DASH`, `DBLQ`, `Dd3-po---e`, `Dd3-po---o`, `Dd3fpo`, `Dd3fpr`, `Dd3fpr---e`, `Dd3fpr---o`, `Dd3fpr--y`, `Dd3fso`, `Dd3fso---e`, `Dd3fsr`, `Dd3fsr---e`, `Dd3fsr---o`, `Dd3fsr--yo`, `Dd3mpo`, `Dd3mpr`, `Dd3mpr---e`, `Dd3mpr---o`, `Dd3mso---e`, `Dd3msr`, `Dd3msr---e`, `Dd3msr---o`, `Dh1ms`, `Dh3fp`, `Dh3fso`, `Dh3fsr`, `Dh3mp`, `Dh3ms`, `Di3`, `Di3-----y`, `Di3--r---e`, `Di3-po`, `Di3-po---e`, `Di3-sr`, `Di3-sr---e`, `Di3-sr--y`, `Di3fp`, `Di3fpr`, `Di3fpr---e`, `Di3fso`, `Di3fso---e`, `Di3fsr`, `Di3fsr---e`, `Di3mp`, `Di3mpr`, `Di3mpr---e`, `Di3ms`, `Di3ms----e`, `Di3mso---e`, `Di3msr`, `Di3msr---e`, `Ds1fp-p`, `Ds1fp-s`, `Ds1fsop`, `Ds1fsos`, `Ds1fsrp`, `Ds1fsrs`, `Ds1fsrs-y`, `Ds1mp-p`, `Ds1mp-s`, `Ds1ms-p`, `Ds1ms-s`, `Ds1msrs-y`, `Ds2---s`, `Ds2fp-p`, `Ds2fp-s`, `Ds2fsrp`, `Ds2fsrs`, `Ds2mp-p`, `Ds2mp-s`, `Ds2ms-p`, `Ds2ms-s`, `Ds3---p`, `Ds3---s`, `Ds3---sy`, `Ds3fp-s`, `Ds3fsos`, `Ds3fsrs`, `Ds3mp-s`, `Ds3ms-s`, `Dw3--r---e`, `Dw3-po---e`, `Dw3fpr`, `Dw3fso---e`, `Dw3fsr`, `Dw3mpr`, `Dw3mso---e`, `Dw3msr`, `Dz3fsr---e`, `Dz3mso---e`, `Dz3msr---e`, `EQUAL`, `EXCL`, `EXCLHELLIP`, `GE`, `GT`, `HELLIP`, `I`, `LCURL`, `LPAR`, `LSQR`, `LT`, `M`, `Mc-p-d`, `Mc-p-l`, `Mc-s-b`, `Mc-s-d`, `Mc-s-l`, `Mcfp-l`, `Mcfp-ln`, `Mcfprln`, `Mcfprly`, `Mcfsoln`, `Mcfsrl`, `Mcfsrln`, `Mcfsrly`, `Mcmp-l`, `Mcms-ln`, `Mcmsrl`, `Mcmsrln`, `Mcmsrly`, `Mffprln`, `Mffsrln`, `Mlfpo`, `Mlfpr`, `Mlmpr`, `Mo---l`, `Mo---ln`, `Mo-s-r`, `Mofp-ln`, `Mofpoly`, `Mofprly`, `Mofs-l`, `Mofsoln`, `Mofsoly`, `Mofsrln`, `Mofsrly`, `Mompoly`, `Momprly`, `Moms-l`, `Moms-ln`, `Momsoly`, `Momsrly`, `Nc`, `Nc---n`, `Ncf--n`, `Ncfp-n`, `Ncfpoy`, `Ncfpry`, `Ncfs-n`, `Ncfson`, `Ncfsoy`, `Ncfsrn`, `Ncfsry`, `Ncfsryy`, `Ncfsvy`, `Ncm--n`, `Ncmp-n`, `Ncmpoy`, `Ncmpry`, `Ncms-n`, `Ncms-ny`, `Ncms-y`, `Ncmsoy`, `Ncmsrn`, `Ncmsry`, `Ncmsryy`, `Ncmsvn`, `Ncmsvy`, `Np`, `Npfson`, `Npfsoy`, `Npfsrn`, `Npfsry`, `Npmpoy`, `Npmpry`, `Npms-n`, `Npmsoy`, `Npmsry`, `PERCENT`, `PERIOD`, `PLUS`, `PLUSMINUS`, `Pd3-po`, `Pd3fpr`, `Pd3fso`, `Pd3fsr`, `Pd3mpo`, `Pd3mpr`, `Pd3mpr--y`, `Pd3mso`, `Pd3msr`, `Pi3--r`, `Pi3-po`, `Pi3-so`, `Pi3-sr`, `Pi3fpr`, `Pi3fso`, `Pi3fsr`, `Pi3mpr`, `Pi3mso`, `Pi3msr`, `Pi3msr--y`, `Pp1-pa--------w`, `Pp1-pa--y-----w`, `Pp1-pd--------s`, `Pp1-pd--------w`, `Pp1-pd--y-----w`, `Pp1-pr--------s`, `Pp1-sa--------s`, `Pp1-sa--------w`, `Pp1-sa--y-----w`, `Pp1-sd--------s`, `Pp1-sd--------w`, `Pp1-sd--y-----w`, `Pp1-sn--------s`, `Pp2-----------s`, `Pp2-pa--------w`, `Pp2-pa--y-----w`, `Pp2-pd--------w`, `Pp2-pd--y-----w`, `Pp2-pr--------s`, `Pp2-sa--------s`, `Pp2-sa--------w`, `Pp2-sa--y-----w`, `Pp2-sd--------s`, `Pp2-sd--------w`, `Pp2-sd--y-----w`, `Pp2-sn--------s`, `Pp2-so--------s`, `Pp2-sr--------s`, `Pp3-p---------s`, `Pp3-pd--------w`, `Pp3-pd--y-----w`, `Pp3-po--------s`, `Pp3-sd--------w`, `Pp3-sd--y-----w`, `Pp3-so--------s`, `Pp3fpa--------w`, `Pp3fpa--y-----w`, `Pp3fpr--------s`, `Pp3fs---------s`, `Pp3fsa--------w`, `Pp3fsa--y-----w`, `Pp3fso--------s`, `Pp3fsr--------s`, `Pp3fsr--y-----s`, `Pp3mpa--------w`, `Pp3mpa--y-----w`, `Pp3mpr--------s`, `Pp3ms---------s`, `Pp3msa--------w`, `Pp3msa--y-----w`, `Pp3mso--------s`, `Pp3msr--------s`, `Pp3msr--y-----s`, `Ps1fp-s`, `Ps1fsrp`, `Ps1fsrs`, `Ps1mp-p`, `Ps1ms-p`, `Ps2fp-s`, `Ps2fsrp`, `Ps2fsrs`, `Ps3---p`, `Ps3---s`, `Ps3fp-s`, `Ps3fsrs`, `Ps3mp-s`, `Ps3ms-s`, `Pw3--r`, `Pw3-po`, `Pw3-so`, `Pw3fpr`, `Pw3fso`, `Pw3mpr`, `Pw3mso`, `Px3--a--------s`, `Px3--a--------w`, `Px3--a--y-----w`, `Px3--d--------w`, `Px3--d--y-----w`, `Pz3-sr`, `Pz3fsr`, `QUEST`, `QUOT`, `Qf`, `Qn`, `Qs`, `Qs-y`, `Qz`, `Qz-y`, `RCURL`, `RPAR`, `RSQR`, `Rc`, `Rgp`, `Rgpy`, `Rgs`, `Rp`, `Rw`, `Rw-y`, `Rz`, `SCOLON`, `SLASH`, `STAR`, `Sp`, `Spsa`, `Spsay`, `Spsd`, `Spsg`, `Td-po`, `Tdfpr`, `Tdfso`, `Tdfsr`, `Tdmpr`, `Tdmso`, `Tdmsr`, `Tf-so`, `Tffpoy`, `Tffpry`, `Tffs-y`, `Tfmpoy`, `Tfms-y`, `Tfmsoy`, `Tfmsry`, `Ti-po`, `Tifp-y`, `Tifso`, `Tifsr`, `Timso`, `Timsr`, `Tsfp`, `Tsfs`, `Tsmp`, `Tsms`, `UNDERSC`, `Va--1`, `Va--1-----y`, `Va--1p`, `Va--1s`, `Va--1s----y`, `Va--2p`, `Va--2p----y`, `Va--2s`, `Va--2s----y`, `Va--3`, `Va--3-----y`, `Va--3p`, `Va--3p----y`, `Va--3s`, `Va--3s----y`, `Vag`, `Vag-------y`, `Vaii1`, `Vaii2s`, `Vaii3p`, `Vaii3s`, `Vail3p`, `Vail3s`, `Vaip1p`, `Vaip1s`, `Vaip2p`, `Vaip2s`, `Vaip3p`, `Vaip3p----y`, `Vaip3s`, `Vaip3s----y`, `Vais3p`, `Vais3s`, `Vam-2s`, `Vanp`, `Vap--sm`, `Vasp1p`, `Vasp1s`, `Vasp2p`, `Vasp2s`, `Vasp3`, `Vmg`, `Vmg-------y`, `Vmii1`, `Vmii1-----y`, `Vmii2p`, `Vmii2s`, `Vmii3p`, `Vmii3p----y`, `Vmii3s`, `Vmii3s----y`, `Vmil1`, `Vmil1p`, `Vmil2s`, `Vmil3p`, `Vmil3p----y`, `Vmil3s`, `Vmil3s----y`, `Vmip1p`, `Vmip1p----y`, `Vmip1s`, `Vmip1s----y`, `Vmip2p`, `Vmip2s`, `Vmip2s----y`, `Vmip3`, `Vmip3-----y`, `Vmip3p`, `Vmip3s`, `Vmip3s----y`, `Vmis1p`, `Vmis1s`, `Vmis3p`, `Vmis3p----y`, `Vmis3s`, `Vmis3s----y`, `Vmm-2p`, `Vmm-2s`, `Vmnp`, `Vmnp------y`, `Vmp--pf`, `Vmp--pm`, `Vmp--sf`, `Vmp--sm`, `Vmp--sm---y`, `Vmsp1p`, `Vmsp2p`, `Vmsp2s`, `Vmsp3`, `Vmsp3-----y`, `X`, `Y`, `Ya`, `Yn`, `Ynfsoy`, `Ynfsry`, `Ynmsoy`, `Ynmsry`, `Yp`, `Yp,Yn`, `Yp-sr`, `Yr`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advcl:tcl`, `advmod`, `advmod:tmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:pmod`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `expl`, `expl:impers`, `expl:pass`, `expl:poss`, `expl:pv`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `obl:pmod`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `DATETIME`, `EVENT`, `FACILITY`, `GPE`, `LANGUAGE`, `LOC`, `MONEY`, `NAT_REL_POL`, `NUMERIC_VALUE`, `ORDINAL`, `ORGANIZATION`, `PERIOD`, `PERSON`, `PRODUCT`, `QUANTITY`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.80 |
| `TOKEN_P` | 99.67 |
| `TOKEN_R` | 99.57 |
| `TOKEN_F` | 99.59 |
| `TAG_ACC` | 96.57 |
| `SENTS_P` | 97.32 |
| `SENTS_R` | 96.68 |
| `SENTS_F` | 97.00 |
| `DEP_UAS` | 88.76 |
| `DEP_LAS` | 83.59 |
| `LEMMA_ACC` | 95.76 |
| `POS_ACC` | 93.95 |
| `MORPH_ACC` | 95.00 |
| `MORPH_MICRO_P` | 99.05 |
| `MORPH_MICRO_R` | 95.76 |
| `MORPH_MICRO_F` | 97.04 |
| `ENTS_P` | 75.03 |
| `ENTS_R` | 77.22 |
| `ENTS_F` | 76.11 |
|
spacy/ro_core_news_md
|
spacy
| 2023-10-10T06:38:24Z | 4 | 0 |
spacy
|
[
"spacy",
"token-classification",
"ro",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ro
license: cc-by-sa-4.0
model-index:
- name: ro_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7486792453
- name: NER Recall
type: recall
value: 0.7621974645
- name: NER F Score
type: f_score
value: 0.7553778793
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9628522004
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9367770732
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9477819802
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9532354062
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8855708908
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8341279799
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9607451763
---
### Details: https://spacy.io/models/ro#ro_core_news_md
Romanian pipeline optimized for CPU. Components: tok2vec, tagger, parser, lemmatizer (trainable_lemmatizer), senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `ro_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [UD Romanian RRT v2.8](https://github.com/UniversalDependencies/UD_Romanian-RRT) (Barbu Mititelu, Verginica; Irimia, Elena; Perez, Cenel-Augusto; Ion, Radu; Simionescu, Radu; Popel, Martin)<br />[RONEC - the Romanian Named Entity Corpus (ca9ce460)](https://github.com/dumitrescustefan/ronec) (Dumitrescu, Stefan Daniel; Avram, Andrei-Marius; Morogan, Luciana; Toma; Stefan)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (540 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `ARROW`, `Af`, `Afcfp-n`, `Afcfson`, `Afcfsrn`, `Afcmpoy`, `Afcms-n`, `Afp`, `Afp-p-n`, `Afp-poy`, `Afp-srn`, `Afpf--n`, `Afpfp-n`, `Afpfp-ny`, `Afpfpoy`, `Afpfpry`, `Afpfson`, `Afpfsoy`, `Afpfsrn`, `Afpfsry`, `Afpm--n`, `Afpmp-n`, `Afpmpoy`, `Afpmpry`, `Afpms-n`, `Afpmsoy`, `Afpmsry`, `Afsfp-n`, `Afsfsrn`, `BULLET`, `COLON`, `COMMA`, `Ccssp`, `Ccsspy`, `Crssp`, `Csssp`, `Cssspy`, `DASH`, `DBLQ`, `Dd3-po---e`, `Dd3-po---o`, `Dd3fpo`, `Dd3fpr`, `Dd3fpr---e`, `Dd3fpr---o`, `Dd3fpr--y`, `Dd3fso`, `Dd3fso---e`, `Dd3fsr`, `Dd3fsr---e`, `Dd3fsr---o`, `Dd3fsr--yo`, `Dd3mpo`, `Dd3mpr`, `Dd3mpr---e`, `Dd3mpr---o`, `Dd3mso---e`, `Dd3msr`, `Dd3msr---e`, `Dd3msr---o`, `Dh1ms`, `Dh3fp`, `Dh3fso`, `Dh3fsr`, `Dh3mp`, `Dh3ms`, `Di3`, `Di3-----y`, `Di3--r---e`, `Di3-po`, `Di3-po---e`, `Di3-sr`, `Di3-sr---e`, `Di3-sr--y`, `Di3fp`, `Di3fpr`, `Di3fpr---e`, `Di3fso`, `Di3fso---e`, `Di3fsr`, `Di3fsr---e`, `Di3mp`, `Di3mpr`, `Di3mpr---e`, `Di3ms`, `Di3ms----e`, `Di3mso---e`, `Di3msr`, `Di3msr---e`, `Ds1fp-p`, `Ds1fp-s`, `Ds1fsop`, `Ds1fsos`, `Ds1fsrp`, `Ds1fsrs`, `Ds1fsrs-y`, `Ds1mp-p`, `Ds1mp-s`, `Ds1ms-p`, `Ds1ms-s`, `Ds1msrs-y`, `Ds2---s`, `Ds2fp-p`, `Ds2fp-s`, `Ds2fsrp`, `Ds2fsrs`, `Ds2mp-p`, `Ds2mp-s`, `Ds2ms-p`, `Ds2ms-s`, `Ds3---p`, `Ds3---s`, `Ds3---sy`, `Ds3fp-s`, `Ds3fsos`, `Ds3fsrs`, `Ds3mp-s`, `Ds3ms-s`, `Dw3--r---e`, `Dw3-po---e`, `Dw3fpr`, `Dw3fso---e`, `Dw3fsr`, `Dw3mpr`, `Dw3mso---e`, `Dw3msr`, `Dz3fsr---e`, `Dz3mso---e`, `Dz3msr---e`, `EQUAL`, `EXCL`, `EXCLHELLIP`, `GE`, `GT`, `HELLIP`, `I`, `LCURL`, `LPAR`, `LSQR`, `LT`, `M`, `Mc-p-d`, `Mc-p-l`, `Mc-s-b`, `Mc-s-d`, `Mc-s-l`, `Mcfp-l`, `Mcfp-ln`, `Mcfprln`, `Mcfprly`, `Mcfsoln`, `Mcfsrl`, `Mcfsrln`, `Mcfsrly`, `Mcmp-l`, `Mcms-ln`, `Mcmsrl`, `Mcmsrln`, `Mcmsrly`, `Mffprln`, `Mffsrln`, `Mlfpo`, `Mlfpr`, `Mlmpr`, `Mo---l`, `Mo---ln`, `Mo-s-r`, `Mofp-ln`, `Mofpoly`, `Mofprly`, `Mofs-l`, `Mofsoln`, `Mofsoly`, `Mofsrln`, `Mofsrly`, `Mompoly`, `Momprly`, `Moms-l`, `Moms-ln`, `Momsoly`, `Momsrly`, `Nc`, `Nc---n`, `Ncf--n`, `Ncfp-n`, `Ncfpoy`, `Ncfpry`, `Ncfs-n`, `Ncfson`, `Ncfsoy`, `Ncfsrn`, `Ncfsry`, `Ncfsryy`, `Ncfsvy`, `Ncm--n`, `Ncmp-n`, `Ncmpoy`, `Ncmpry`, `Ncms-n`, `Ncms-ny`, `Ncms-y`, `Ncmsoy`, `Ncmsrn`, `Ncmsry`, `Ncmsryy`, `Ncmsvn`, `Ncmsvy`, `Np`, `Npfson`, `Npfsoy`, `Npfsrn`, `Npfsry`, `Npmpoy`, `Npmpry`, `Npms-n`, `Npmsoy`, `Npmsry`, `PERCENT`, `PERIOD`, `PLUS`, `PLUSMINUS`, `Pd3-po`, `Pd3fpr`, `Pd3fso`, `Pd3fsr`, `Pd3mpo`, `Pd3mpr`, `Pd3mpr--y`, `Pd3mso`, `Pd3msr`, `Pi3--r`, `Pi3-po`, `Pi3-so`, `Pi3-sr`, `Pi3fpr`, `Pi3fso`, `Pi3fsr`, `Pi3mpr`, `Pi3mso`, `Pi3msr`, `Pi3msr--y`, `Pp1-pa--------w`, `Pp1-pa--y-----w`, `Pp1-pd--------s`, `Pp1-pd--------w`, `Pp1-pd--y-----w`, `Pp1-pr--------s`, `Pp1-sa--------s`, `Pp1-sa--------w`, `Pp1-sa--y-----w`, `Pp1-sd--------s`, `Pp1-sd--------w`, `Pp1-sd--y-----w`, `Pp1-sn--------s`, `Pp2-----------s`, `Pp2-pa--------w`, `Pp2-pa--y-----w`, `Pp2-pd--------w`, `Pp2-pd--y-----w`, `Pp2-pr--------s`, `Pp2-sa--------s`, `Pp2-sa--------w`, `Pp2-sa--y-----w`, `Pp2-sd--------s`, `Pp2-sd--------w`, `Pp2-sd--y-----w`, `Pp2-sn--------s`, `Pp2-so--------s`, `Pp2-sr--------s`, `Pp3-p---------s`, `Pp3-pd--------w`, `Pp3-pd--y-----w`, `Pp3-po--------s`, `Pp3-sd--------w`, `Pp3-sd--y-----w`, `Pp3-so--------s`, `Pp3fpa--------w`, `Pp3fpa--y-----w`, `Pp3fpr--------s`, `Pp3fs---------s`, `Pp3fsa--------w`, `Pp3fsa--y-----w`, `Pp3fso--------s`, `Pp3fsr--------s`, `Pp3fsr--y-----s`, `Pp3mpa--------w`, `Pp3mpa--y-----w`, `Pp3mpr--------s`, `Pp3ms---------s`, `Pp3msa--------w`, `Pp3msa--y-----w`, `Pp3mso--------s`, `Pp3msr--------s`, `Pp3msr--y-----s`, `Ps1fp-s`, `Ps1fsrp`, `Ps1fsrs`, `Ps1mp-p`, `Ps1ms-p`, `Ps2fp-s`, `Ps2fsrp`, `Ps2fsrs`, `Ps3---p`, `Ps3---s`, `Ps3fp-s`, `Ps3fsrs`, `Ps3mp-s`, `Ps3ms-s`, `Pw3--r`, `Pw3-po`, `Pw3-so`, `Pw3fpr`, `Pw3fso`, `Pw3mpr`, `Pw3mso`, `Px3--a--------s`, `Px3--a--------w`, `Px3--a--y-----w`, `Px3--d--------w`, `Px3--d--y-----w`, `Pz3-sr`, `Pz3fsr`, `QUEST`, `QUOT`, `Qf`, `Qn`, `Qs`, `Qs-y`, `Qz`, `Qz-y`, `RCURL`, `RPAR`, `RSQR`, `Rc`, `Rgp`, `Rgpy`, `Rgs`, `Rp`, `Rw`, `Rw-y`, `Rz`, `SCOLON`, `SLASH`, `STAR`, `Sp`, `Spsa`, `Spsay`, `Spsd`, `Spsg`, `Td-po`, `Tdfpr`, `Tdfso`, `Tdfsr`, `Tdmpr`, `Tdmso`, `Tdmsr`, `Tf-so`, `Tffpoy`, `Tffpry`, `Tffs-y`, `Tfmpoy`, `Tfms-y`, `Tfmsoy`, `Tfmsry`, `Ti-po`, `Tifp-y`, `Tifso`, `Tifsr`, `Timso`, `Timsr`, `Tsfp`, `Tsfs`, `Tsmp`, `Tsms`, `UNDERSC`, `Va--1`, `Va--1-----y`, `Va--1p`, `Va--1s`, `Va--1s----y`, `Va--2p`, `Va--2p----y`, `Va--2s`, `Va--2s----y`, `Va--3`, `Va--3-----y`, `Va--3p`, `Va--3p----y`, `Va--3s`, `Va--3s----y`, `Vag`, `Vag-------y`, `Vaii1`, `Vaii2s`, `Vaii3p`, `Vaii3s`, `Vail3p`, `Vail3s`, `Vaip1p`, `Vaip1s`, `Vaip2p`, `Vaip2s`, `Vaip3p`, `Vaip3p----y`, `Vaip3s`, `Vaip3s----y`, `Vais3p`, `Vais3s`, `Vam-2s`, `Vanp`, `Vap--sm`, `Vasp1p`, `Vasp1s`, `Vasp2p`, `Vasp2s`, `Vasp3`, `Vmg`, `Vmg-------y`, `Vmii1`, `Vmii1-----y`, `Vmii2p`, `Vmii2s`, `Vmii3p`, `Vmii3p----y`, `Vmii3s`, `Vmii3s----y`, `Vmil1`, `Vmil1p`, `Vmil2s`, `Vmil3p`, `Vmil3p----y`, `Vmil3s`, `Vmil3s----y`, `Vmip1p`, `Vmip1p----y`, `Vmip1s`, `Vmip1s----y`, `Vmip2p`, `Vmip2s`, `Vmip2s----y`, `Vmip3`, `Vmip3-----y`, `Vmip3p`, `Vmip3s`, `Vmip3s----y`, `Vmis1p`, `Vmis1s`, `Vmis3p`, `Vmis3p----y`, `Vmis3s`, `Vmis3s----y`, `Vmm-2p`, `Vmm-2s`, `Vmnp`, `Vmnp------y`, `Vmp--pf`, `Vmp--pm`, `Vmp--sf`, `Vmp--sm`, `Vmp--sm---y`, `Vmsp1p`, `Vmsp2p`, `Vmsp2s`, `Vmsp3`, `Vmsp3-----y`, `X`, `Y`, `Ya`, `Yn`, `Ynfsoy`, `Ynfsry`, `Ynmsoy`, `Ynmsry`, `Yp`, `Yp,Yn`, `Yp-sr`, `Yr`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advcl:tcl`, `advmod`, `advmod:tmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `cc:preconj`, `ccomp`, `ccomp:pmod`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `expl`, `expl:impers`, `expl:pass`, `expl:poss`, `expl:pv`, `fixed`, `flat`, `goeswith`, `iobj`, `mark`, `nmod`, `nmod:tmod`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `obl:pmod`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `DATETIME`, `EVENT`, `FACILITY`, `GPE`, `LANGUAGE`, `LOC`, `MONEY`, `NAT_REL_POL`, `NUMERIC_VALUE`, `ORDINAL`, `ORGANIZATION`, `PERIOD`, `PERSON`, `PRODUCT`, `QUANTITY`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.80 |
| `TOKEN_P` | 99.67 |
| `TOKEN_R` | 99.57 |
| `TOKEN_F` | 99.59 |
| `TAG_ACC` | 96.29 |
| `SENTS_P` | 96.14 |
| `SENTS_R` | 96.01 |
| `SENTS_F` | 96.07 |
| `DEP_UAS` | 88.56 |
| `DEP_LAS` | 83.41 |
| `LEMMA_ACC` | 95.32 |
| `POS_ACC` | 93.68 |
| `MORPH_ACC` | 94.78 |
| `MORPH_MICRO_P` | 98.74 |
| `MORPH_MICRO_R` | 95.62 |
| `MORPH_MICRO_F` | 96.89 |
| `ENTS_P` | 74.87 |
| `ENTS_R` | 76.22 |
| `ENTS_F` | 75.54 |
|
Kamal99919/PatientData001
|
Kamal99919
| 2023-10-10T06:38:20Z | 0 | 0 |
peft
|
[
"peft",
"arxiv:1910.09700",
"base_model:TinyPixel/Llama-2-7B-bf16-sharded",
"base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded",
"region:us"
] | null | 2023-10-10T06:38:16Z |
---
library_name: peft
base_model: TinyPixel/Llama-2-7B-bf16-sharded
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.0.dev0
|
spacy/ru_core_news_md
|
spacy
| 2023-10-10T06:36:44Z | 6 | 3 |
spacy
|
[
"spacy",
"token-classification",
"ru",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- ru
license: mit
model-index:
- name: ru_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9438296445
- name: NER Recall
type: recall
value: 0.9474835886
- name: NER F Score
type: f_score
value: 0.9456530869
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9882061909
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9882061909
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.972948348
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 2.15295e-05
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.9595456565
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.9474984155
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9985729236
---
### Details: https://spacy.io/models/ru#ru_core_news_md
Russian pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer.
| Feature | Description |
| --- | --- |
| **Name** | `ru_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
| **Vectors** | 500002 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [Nerus](https://github.com/natasha/nerus) (Alexander Kukushkin)<br />[Navec](https://github.com/natasha/navec) (Alexander Kukushkin) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (900 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`morphologizer`** | `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=PUNCT`, `Degree=Pos\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Foreign=Yes\|POS=PROPN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Dat\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=SCONJ`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|POS=NUM`, `Case=Ins\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Case=Nom\|POS=NUM`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Number=Plur\|POS=ADJ\|StyleVariant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Cnd\|POS=SCONJ`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Third`, `POS=PART\|Polarity=Neg`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `POS=SPACE`, `Case=Nom\|Number=Plur\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=INTJ`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Number=Plur\|POS=PRON`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|POS=PRON`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Act`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=DET`, `Case=Nom\|POS=PRON`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Mood=Cnd\|POS=AUX`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf\|Voice=Mid`, `Aspect=Perf\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET`, `POS=PART`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Aspect=Perf\|Gender=Masc\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Perf\|Gender=Neut\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Foreign=Yes\|POS=X`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|POS=NUM`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NUM`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Third\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Dat\|POS=PRON`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|POS=AUX\|VerbForm=Inf\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|StyleVariant=Short`, `Degree=Cmp\|POS=ADV`, `Aspect=Perf\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Ins\|Number=Plur\|POS=DET`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Inan\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|POS=NUM`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Gender=Fem\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Act`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=Second`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET`, `POS=ADV`, `Case=Acc\|POS=PRON`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Ins\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Degree=Pos\|Number=Plur\|POS=DET`, `Animacy=Inan\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `POS=SYM`, `Degree=Cmp\|POS=ADJ`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Masc\|POS=NUM`, `Animacy=Inan\|Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Fem\|POS=NUM`, `Animacy=Inan\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Degree=Pos\|POS=ADJ`, `Case=Ins\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Imp\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Third`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Degree=Pos\|Gender=Neut\|Number=Sing\|POS=PUNCT\|StyleVariant=Short`, `Case=Ins\|Degree=Sup\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Anim\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=SCONJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Mid`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=First`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `POS=NOUN`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=Third`, `Degree=Cmp\|POS=NUM`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Voc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Anim\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Animacy=Inan\|Case=Acc\|Gender=Fem\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Animacy=Inan\|Case=Par\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Fem\|Mood=Ind\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON`, `Case=Gen\|Number=Plur\|POS=DET\|Person=Third`, `Animacy=Inan\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=ADV`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Perf\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Gender=Masc\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Gen\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `POS=ADV\|Polarity=Neg`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Acc\|Gender=Neut\|POS=NUM`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Number=Sing\|POS=PRON\|Person=First`, `Case=Nom\|Gender=Neut\|POS=NUM`, `Case=Gen\|POS=VERB\|Polarity=Neg`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Imp\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Number=Plur\|POS=PRON`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=Third`, `Case=Gen\|Number=Plur\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Dat\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `POS=CCONJ\|Polarity=Neg`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET`, `Aspect=Imp\|Gender=Neut\|Mood=Ind\|Number=Sing\|POS=PRON\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|POS=VERB\|Tense=Pres\|VerbForm=Conv\|Voice=Mid`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Animacy=Inan\|Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Aspect=Perf\|Case=Nom\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET`, `Animacy=Anim\|Case=Acc\|POS=NUM`, `Aspect=Imp\|Number=Plur\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Gender=Masc\|Number=Sing\|POS=VERB\|StyleVariant=Short\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NUM`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NUM`, `Aspect=Imp\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=First`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=First`, `Case=Gen\|Number=Plur\|POS=PRON\|Person=Second`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Aspect=Perf\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=First`, `Foreign=Yes\|POS=PUNCT`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=PRON\|Person=Third\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Person=Third`, `Case=Dat\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Case=Acc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Loc\|POS=NUM`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Pres\|VerbForm=Fin\|Voice=Mid`, `Case=Dat\|Number=Plur\|POS=DET`, `Aspect=Imp\|POS=AUX\|Tense=Pres\|VerbForm=Conv\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|POS=PRON`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `POS=PROPN`, `Aspect=Perf\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=Second\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Animacy=Anim\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=Second`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Dat\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=First`, `Aspect=Imp\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Person=Third`, `Aspect=Imp\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Aspect=Imp\|Case=Gen\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NUM`, `Animacy=Inan\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Loc\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON`, `Animacy=Inan\|Case=Acc\|Number=Plur\|POS=PRON\|Person=First`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Imp\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=Second`, `Aspect=Perf\|Case=Dat\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Perf\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Case=Dat\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Case=Acc\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Case=Dat\|Number=Plur\|POS=PRON`, `Animacy=Inan\|Case=Ins\|Gender=Neut\|Number=Plur\|POS=PROPN`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Animacy=Anim\|Case=Gen\|Number=Plur\|POS=DET`, `Aspect=Perf\|Case=Gen\|Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Ins\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Dat\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Anim\|Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADV`, `Foreign=Yes\|POS=PART`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Act`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Animacy=Inan\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Case=Dat\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=DET`, `Case=Loc\|Gender=Fem\|POS=NUM`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Perf\|POS=VERB\|Tense=Past\|VerbForm=Conv\|Voice=Mid`, `Aspect=Imp\|Case=Loc\|Number=Plur\|POS=VERB\|Tense=Pres\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Gen\|Gender=Masc\|Number=Sing\|POS=PUNCT`, `Animacy=Anim\|Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Aspect=Perf\|Case=Ins\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Aspect=Perf\|Case=Ins\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET`, `Animacy=Anim\|Aspect=Imp\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=Third`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=PUNCT`, `Aspect=Imp\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Anim\|Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Perf\|Case=Nom\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Pass`, `Animacy=Inan\|Aspect=Perf\|Case=Acc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Animacy=Inan\|Case=Ins\|Gender=Fem\|Number=Sing\|POS=ADV`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=DET`, `Aspect=Imp\|Case=Loc\|Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part\|Voice=Act`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=First\|Tense=Fut\|VerbForm=Fin\|Voice=Mid`, `Case=Nom\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=Second\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=DET`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=First`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `csubj:pass`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nsubj:pass`, `nummod`, `nummod:entity`, `nummod:gov`, `obj`, `obl`, `obl:agent`, `orphan`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `LOC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.68 |
| `TOKEN_P` | 97.28 |
| `TOKEN_R` | 98.31 |
| `TOKEN_F` | 97.79 |
| `POS_ACC` | 98.82 |
| `MORPH_ACC` | 97.29 |
| `MORPH_MICRO_P` | 98.88 |
| `MORPH_MICRO_R` | 98.17 |
| `MORPH_MICRO_F` | 98.52 |
| `SENTS_P` | 99.87 |
| `SENTS_R` | 99.85 |
| `SENTS_F` | 99.86 |
| `DEP_UAS` | 95.95 |
| `DEP_LAS` | 94.75 |
| `TAG_ACC` | 98.82 |
| `LEMMA_ACC` | 0.00 |
| `ENTS_P` | 94.38 |
| `ENTS_R` | 94.75 |
| `ENTS_F` | 94.57 |
|
spacy/sl_core_news_md
|
spacy
| 2023-10-10T06:36:15Z | 0 | 0 |
spacy
|
[
"spacy",
"token-classification",
"sl",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2023-07-07T09:07:12Z |
---
tags:
- spacy
- token-classification
language:
- sl
license: cc-by-sa-4.0
model-index:
- name: sl_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7239263804
- name: NER Recall
type: recall
value: 0.746835443
- name: NER F Score
type: f_score
value: 0.7352024922
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9204829576
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9756170531
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9238593867
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9579655946
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8734121577
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.8430838205
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9008654603
---
### Details: https://spacy.io/models/sl#sl_core_news_md
Slovenian pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), attribute_ruler, senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `sl_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | floret (50000, 300) |
| **Sources** | [UD Slovenian SSJ v2.11](https://github.com/UniversalDependencies/UD_Slovenian-SSJ) (Dobrovoljc, Kaja; Erjavec, Tomaž; Krek, Simon)<br />[Training corpus SUK 1.0](https://www.clarin.si/repository/xmlui/handle/11356/1747) (Arhar Holdt, Špela; Krek, Simon; Dobrovoljc, Kaja; Erjavec, Tomaž; Gantar, Polona; Čibej, Jaka; Pori, Eva; Terčon, Luka; Munda, Tina; Žitnik, Slavko; Robida, Nejc; Blagus, Neli; Može, Sara; Ledinek, Nina; Holz, Nanika; Zupan, Katja; Kuzman, Taja; Kavčič, Teja; Škrjanec, Iza; Marko, Dafne; Jezeršek, Lucija; Zajc, Anja)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (2401 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `Agcfdn`, `Agcfpa`, `Agcfpd`, `Agcfpg`, `Agcfpi`, `Agcfpl`, `Agcfpn`, `Agcfsa`, `Agcfsd`, `Agcfsg`, `Agcfsi`, `Agcfsl`, `Agcfsn`, `Agcmda`, `Agcmdn`, `Agcmpa`, `Agcmpd`, `Agcmpg`, `Agcmpi`, `Agcmpl`, `Agcmpn`, `Agcmsay`, `Agcmsd`, `Agcmsg`, `Agcmsi`, `Agcmsl`, `Agcmsny`, `Agcndn`, `Agcnpa`, `Agcnpd`, `Agcnpg`, `Agcnpi`, `Agcnpl`, `Agcnpn`, `Agcnsa`, `Agcnsd`, `Agcnsg`, `Agcnsi`, `Agcnsl`, `Agcnsn`, `Agpfda`, `Agpfdg`, `Agpfdi`, `Agpfdl`, `Agpfdn`, `Agpfpa`, `Agpfpd`, `Agpfpg`, `Agpfpi`, `Agpfpl`, `Agpfpn`, `Agpfsa`, `Agpfsd`, `Agpfsg`, `Agpfsi`, `Agpfsl`, `Agpfsn`, `Agpmda`, `Agpmdd`, `Agpmdg`, `Agpmdi`, `Agpmdl`, `Agpmdn`, `Agpmpa`, `Agpmpd`, `Agpmpg`, `Agpmpi`, `Agpmpl`, `Agpmpn`, `Agpmsa`, `Agpmsan`, `Agpmsay`, `Agpmsd`, `Agpmsg`, `Agpmsi`, `Agpmsl`, `Agpmsnn`, `Agpmsny`, `Agpnda`, `Agpndg`, `Agpndi`, `Agpndn`, `Agpnpa`, `Agpnpd`, `Agpnpg`, `Agpnpi`, `Agpnpl`, `Agpnpn`, `Agpnsa`, `Agpnsd`, `Agpnsg`, `Agpnsi`, `Agpnsl`, `Agpnsn`, `Agsfda`, `Agsfpa`, `Agsfpg`, `Agsfpi`, `Agsfpl`, `Agsfpn`, `Agsfsa`, `Agsfsd`, `Agsfsg`, `Agsfsi`, `Agsfsl`, `Agsfsn`, `Agsmdn`, `Agsmpa`, `Agsmpd`, `Agsmpg`, `Agsmpi`, `Agsmpl`, `Agsmpn`, `Agsmsa`, `Agsmsay`, `Agsmsg`, `Agsmsi`, `Agsmsl`, `Agsmsny`, `Agsnpa`, `Agsnpg`, `Agsnpn`, `Agsnsa`, `Agsnsg`, `Agsnsi`, `Agsnsl`, `Agsnsn`, `Appfda`, `Appfdg`, `Appfdi`, `Appfdn`, `Appfpa`, `Appfpd`, `Appfpg`, `Appfpi`, `Appfpl`, `Appfpn`, `Appfsa`, `Appfsd`, `Appfsg`, `Appfsi`, `Appfsl`, `Appfsn`, `Appmda`, `Appmdg`, `Appmdl`, `Appmdn`, `Appmpa`, `Appmpd`, `Appmpg`, `Appmpi`, `Appmpl`, `Appmpn`, `Appmsa`, `Appmsan`, `Appmsay`, `Appmsd`, `Appmsg`, `Appmsi`, `Appmsl`, `Appmsnn`, `Appmsny`, `Appndg`, `Appndn`, `Appnpa`, `Appnpg`, `Appnpi`, `Appnpl`, `Appnpn`, `Appnsa`, `Appnsd`, `Appnsg`, `Appnsi`, `Appnsl`, `Appnsn`, `Aspfdi`, `Aspfdn`, `Aspfpa`, `Aspfpg`, `Aspfpl`, `Aspfpn`, `Aspfsa`, `Aspfsd`, `Aspfsg`, `Aspfsi`, `Aspfsl`, `Aspfsn`, `Aspmdl`, `Aspmdn`, `Aspmpa`, `Aspmpd`, `Aspmpg`, `Aspmpl`, `Aspmpn`, `Aspmsa`, `Aspmsan`, `Aspmsd`, `Aspmsg`, `Aspmsi`, `Aspmsl`, `Aspmsnn`, `Aspnpa`, `Aspnpg`, `Aspnpi`, `Aspnpl`, `Aspnpn`, `Aspnsa`, `Aspnsg`, `Aspnsi`, `Aspnsl`, `Aspnsn`, `Cc`, `Cs`, `I`, `Mdc`, `Mdo`, `Mlc-pa`, `Mlc-pd`, `Mlc-pg`, `Mlc-pi`, `Mlc-pl`, `Mlc-pn`, `Mlcfda`, `Mlcfdg`, `Mlcfdi`, `Mlcfdl`, `Mlcfdn`, `Mlcfpa`, `Mlcfpd`, `Mlcfpg`, `Mlcfpi`, `Mlcfpl`, `Mlcfpn`, `Mlcmda`, `Mlcmdg`, `Mlcmdi`, `Mlcmdl`, `Mlcmdn`, `Mlcmpa`, `Mlcmpd`, `Mlcmpg`, `Mlcmpi`, `Mlcmpl`, `Mlcmpn`, `Mlcnda`, `Mlcndg`, `Mlcndi`, `Mlcndl`, `Mlcndn`, `Mlcnpa`, `Mlcnpg`, `Mlcnpi`, `Mlcnpl`, `Mlcnpn`, `Mlofpa`, `Mlofpd`, `Mlofpg`, `Mlofpi`, `Mlofpl`, `Mlofpn`, `Mlofsa`, `Mlofsd`, `Mlofsg`, `Mlofsi`, `Mlofsl`, `Mlofsn`, `Mlompa`, `Mlompg`, `Mlompi`, `Mlompl`, `Mlompn`, `Mlomsa`, `Mlomsd`, `Mlomsg`, `Mlomsi`, `Mlomsl`, `Mlomsn`, `Mlonda`, `Mlonpg`, `Mlonpl`, `Mlonpn`, `Mlonsa`, `Mlonsg`, `Mlonsi`, `Mlonsl`, `Mlonsn`, `Mlpfdl`, `Mlpfdn`, `Mlpfpa`, `Mlpfpg`, `Mlpfpi`, `Mlpfpl`, `Mlpfpn`, `Mlpfsa`, `Mlpfsd`, `Mlpfsg`, `Mlpfsi`, `Mlpfsl`, `Mlpfsn`, `Mlpmdl`, `Mlpmpa`, `Mlpmpd`, `Mlpmpg`, `Mlpmpi`, `Mlpmpl`, `Mlpmpn`, `Mlpmsa`, `Mlpmsan`, `Mlpmsay`, `Mlpmsd`, `Mlpmsg`, `Mlpmsi`, `Mlpmsl`, `Mlpmsn`, `Mlpmsnn`, `Mlpmsny`, `Mlpnpa`, `Mlpnpg`, `Mlpnpi`, `Mlpnpl`, `Mlpnpn`, `Mlpnsa`, `Mlpnsg`, `Mlpnsi`, `Mlpnsl`, `Mlpnsn`, `Mlsfpa`, `Mlsfsg`, `Mlsfsi`, `Mlsfsn`, `Mlsmpi`, `Mlsmsg`, `Mlsmsi`, `Mlsnsa`, `Mlsnsi`, `Mlsnsn`, `Mrc`, `Mro`, `Ncfda`, `Ncfdd`, `Ncfdg`, `Ncfdi`, `Ncfdl`, `Ncfdn`, `Ncfpa`, `Ncfpd`, `Ncfpg`, `Ncfpi`, `Ncfpl`, `Ncfpn`, `Ncfsa`, `Ncfsd`, `Ncfsg`, `Ncfsi`, `Ncfsl`, `Ncfsn`, `Ncmda`, `Ncmdd`, `Ncmdg`, `Ncmdi`, `Ncmdl`, `Ncmdn`, `Ncmpa`, `Ncmpd`, `Ncmpg`, `Ncmpi`, `Ncmpl`, `Ncmpn`, `Ncmsan`, `Ncmsay`, `Ncmsd`, `Ncmsg`, `Ncmsi`, `Ncmsl`, `Ncmsn`, `Ncnda`, `Ncndd`, `Ncndg`, `Ncndi`, `Ncndl`, `Ncndn`, `Ncnpa`, `Ncnpd`, `Ncnpg`, `Ncnpi`, `Ncnpl`, `Ncnpn`, `Ncnsa`, `Ncnsd`, `Ncnsg`, `Ncnsi`, `Ncnsl`, `Ncnsn`, `Npfpa`, `Npfpd`, `Npfpg`, `Npfpi`, `Npfpl`, `Npfpn`, `Npfsa`, `Npfsd`, `Npfsg`, `Npfsi`, `Npfsl`, `Npfsn`, `Npmda`, `Npmdg`, `Npmdn`, `Npmpa`, `Npmpd`, `Npmpg`, `Npmpi`, `Npmpl`, `Npmpn`, `Npmsan`, `Npmsay`, `Npmsd`, `Npmsg`, `Npmsi`, `Npmsl`, `Npmsn`, `Npnpn`, `Npnsa`, `Npnsd`, `Npnsg`, `Npnsi`, `Npnsl`, `Npnsn`, `Pd-fda`, `Pd-fpa`, `Pd-fpd`, `Pd-fpg`, `Pd-fpi`, `Pd-fpl`, `Pd-fpn`, `Pd-fsa`, `Pd-fsd`, `Pd-fsg`, `Pd-fsi`, `Pd-fsl`, `Pd-fsn`, `Pd-mda`, `Pd-mdg`, `Pd-mdi`, `Pd-mdl`, `Pd-mdn`, `Pd-mpa`, `Pd-mpd`, `Pd-mpg`, `Pd-mpi`, `Pd-mpl`, `Pd-mpn`, `Pd-msa`, `Pd-msd`, `Pd-msg`, `Pd-msi`, `Pd-msl`, `Pd-msn`, `Pd-npa`, `Pd-npd`, `Pd-npg`, `Pd-npi`, `Pd-npl`, `Pd-npn`, `Pd-nsa`, `Pd-nsd`, `Pd-nsg`, `Pd-nsi`, `Pd-nsl`, `Pd-nsn`, `Pg-fda`, `Pg-fdg`, `Pg-fdi`, `Pg-fdl`, `Pg-fdn`, `Pg-fpa`, `Pg-fpd`, `Pg-fpg`, `Pg-fpi`, `Pg-fpl`, `Pg-fpn`, `Pg-fsa`, `Pg-fsd`, `Pg-fsg`, `Pg-fsi`, `Pg-fsl`, `Pg-fsn`, `Pg-mda`, `Pg-mdd`, `Pg-mdg`, `Pg-mdi`, `Pg-mdl`, `Pg-mdn`, `Pg-mpa`, `Pg-mpd`, `Pg-mpg`, `Pg-mpi`, `Pg-mpl`, `Pg-mpn`, `Pg-msa`, _(truncated: full list in pipeline meta)_ |
| **`morphologizer`** | `POS=PUNCT`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Ind`, `Aspect=Perf\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Aspect=Perf\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part`, `POS=PRON\|PronType=Prs\|Reflex=Yes\|Variant=Short`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Loc\|POS=ADP`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=SCONJ`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Gender=Fem\|Number=Sing\|POS=AUX\|VerbForm=Part`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=VERB\|VerbForm=Inf`, `Mood=Cnd\|POS=AUX\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Gen\|POS=ADP`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=CCONJ`, `Aspect=Perf\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=PART`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|POS=ADP`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Ins\|POS=ADP`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Aspect=Imp\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Degree=Pos\|POS=ADV`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Aspect=Perf\|Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Perf\|POS=VERB\|VerbForm=Inf`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Gender=Neut\|Number=Sing\|POS=AUX\|VerbForm=Part`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Degree=Cmp\|POS=ADV`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Gender=Fem\|Number=Plur\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|POS=ADP`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Ins\|Gender=Masc\|Number=Dual\|POS=DET\|PronType=Tot`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=NOUN`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Case=Loc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Aspect=Imp\|Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part`, `POS=AUX\|VerbForm=Inf`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `POS=PART\|Polarity=Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Neg`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Aspect=Imp\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Bound`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Loc\|POS=PRON\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Gen\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Dual\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Gender=Fem\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Ins\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Ins\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=AUX\|VerbForm=Part`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Aspect=Imp\|Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `NumForm=Roman\|NumType=Ord\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Ind\|Number=Dual\|POS=AUX\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Dual\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=X`, `POS=SYM`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Aspect=Perf\|Gender=Masc\|Number=Dual\|POS=VERB\|VerbForm=Part`, `Animacy=Anim\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Abbr=Yes\|POS=X`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Dual\|POS=AUX\|VerbForm=Part`, `Case=Dat\|POS=PRON\|PronType=Prs\|Reflex=Yes\|Variant=Short`, `Aspect=Imp\|Gender=Masc\|Number=Dual\|POS=VERB\|VerbForm=Part`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Ins\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Gender=Masc\|Number=Sing\|POS=AUX\|VerbForm=Part`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Short`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Neut\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Loc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `NumForm=Digit\|NumType=Ord\|POS=NUM`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Bound`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `POS=SPACE`, `Aspect=Imp\|POS=VERB\|VerbForm=Inf`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Loc\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Sup\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Neut\|Number=Sing\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Int`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Nom\|Gender=Neut\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|Number[psor]=Dual\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Dual\|POS=AUX\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Gender[psor]=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Dual\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=2\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Gender[psor]=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Aspect=Imp\|POS=VERB\|VerbForm=Sup`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Int`, `Case=Acc\|Gender=Neut\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Neut\|Number=Plur\|POS=AUX\|VerbForm=Part`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Bound`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs\|Variant=Bound`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Acc\|POS=PRON\|PronType=Prs\|Reflex=Yes\|Variant=Bound`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Ins\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Aspect=Imp\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `POS=INTJ`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Aspect=Perf\|POS=VERB\|VerbForm=Sup`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Foreign=Yes\|POS=X`, `Case=Nom\|Gender=Fem\|Gender[psor]=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Sup\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Gender[psor]=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Loc\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Aspect=Perf\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Aspect=Perf\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Plur\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Aspect=Imp\|Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Loc\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Dual\|POS=NUM`, `Case=Nom\|Degree=Pos\|Gender=Masc\|Number=Dual\|POS=ADJ\|VerbForm=Part`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Aspect=Perf\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Acc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Dual\|POS=NUM`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Animacy=Inan\|Case=Acc\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=AUX\|VerbForm=Part`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Gender=Fem\|Number=Plur\|POS=NOUN`, `NumForm=Roman\|NumType=Card\|POS=NUM`, `Case=Loc\|Gender=Fem\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Case=Acc\|Gender=Masc\|NumForm=Word\|NumType=Card\|Number=Dual\|POS=NUM`, `Case=Acc\|Degree=Pos\|Gender=Masc\|Number=Dual\|POS=ADJ`, `Case=Acc\|Gender=Masc\|Number=Dual\|POS=NOUN`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `Case=Gen\|Gender=Neut\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Gender[psor]=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Loc\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Loc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Acc\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Loc\|Gender=Masc\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Case=Ins\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Gen\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Ins\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Aspect=Perf\|Gender=Neut\|Number=Plur\|POS=VERB\|VerbForm=Part`, `Case=Gen\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Fem\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=PROPN`, `Case=Dat\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Loc\|Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Neut\|Gender[psor]=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Tot`, `Aspect=Imp\|Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Degree=Cmp\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Masc\|Gender[psor]=Fem\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Case=Nom\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Dat\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Nom\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Neut\|Number=Plur\|POS=ADJ`, `Case=Dat\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Case=Gen\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Neut\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Gen\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Tot`, `Case=Loc\|Degree=Pos\|Gender=Fem\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Gen\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Dat\|Degree=Pos\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Case=Dat\|Degree=Cmp\|Gender=Fem\|Number=Plur\|POS=ADJ`, `Aspect=Perf\|Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Case=Nom\|Degree=Pos\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Aspect=Imp\|Gender=Neut\|Number=Dual\|POS=VERB\|VerbForm=Part`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PROPN`, `Case=Ins\|Gender=Neut\|NumForm=Word\|NumType=Card\|Number=Dual\|POS=NUM`, `Case=Ins\|Gender=Neut\|Number=Dual\|POS=NOUN`, `Case=Nom\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Ins\|Gender=Masc\|Number=Sing\|POS=PROPN`, `Case=Acc\|Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Gen\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ\|Poss=Yes`, `Case=Nom\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Acc\|Degree=Cmp\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Loc\|Gender=Neut\|NumForm=Word\|NumType=Card\|Number=Sing\|POS=NUM`, `Case=Gen\|Degree=Sup\|Gender=Masc\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs\|Variant=Short`, `Case=Nom\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Ind`, `Case=Dat\|Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Dat\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Case=Nom\|Gender=Fem\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Case=Acc\|Gender=Fem\|Number=Dual\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Gender=Neut\|Number=Sing\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Loc\|Degree=Cmp\|Gender=Fem\|Number=Sing\|POS=ADJ`, `Case=Gen\|Gender=Masc\|Gender[psor]=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=DET\|Poss=Yes\|PronType=Prs\|Reflex=Yes`, `Case=Dat\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Loc\|Gender=Neut\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Acc\|Definite=Def\|Degree=Cmp\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Case=Acc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Aspect=Perf\|Mood=Ind\|Number=Dual\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Dual\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Dem`, `Case=Loc\|Gender=Neut\|Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=DET\|PronType=Tot`, `Case=Gen\|Degree=Pos\|Gender=Fem\|Number=Dual\|POS=ADJ`, `Case=Gen\|Gender=Fem\|Number=Dual\|POS=NOUN`, `Case=Ins\|Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Polarity=Pos\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Sing\|Number[psor]=Dual\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Aspect=Imp\|Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Polarity=Neg\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Neg`, `Mood=Ind\|Number=Dual\|POS=AUX\|Person=1\|Polarity=Pos\|Tense=Fut\|VerbForm=Fin`, `Case=Nom\|Gender=Masc\|Number=Plur\|Number[psor]=Dual\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Gender=Masc\|Number=Dual\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Ins\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Gen\|Gender=Masc\|Number=Dual\|POS=PROPN`, _(truncated: full list in pipeline meta)_ |
| **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `cc:preconj`, `ccomp`, `conj`, `cop`, `csubj`, `dep`, `det`, `discourse`, `expl`, `fixed`, `flat`, `flat:foreign`, `flat:name`, `iobj`, `list`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `orphan`, `parataxis`, `punct`, `vocative`, `xcomp` |
| **`ner`** | `DERIV_PER`, `LOC`, `MISC`, `ORG`, `PER` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.81 |
| `TOKEN_P` | 99.81 |
| `TOKEN_R` | 99.57 |
| `TOKEN_F` | 99.69 |
| `TAG_ACC` | 92.05 |
| `POS_ACC` | 97.56 |
| `MORPH_ACC` | 92.39 |
| `MORPH_MICRO_P` | 95.61 |
| `MORPH_MICRO_R` | 95.35 |
| `MORPH_MICRO_F` | 95.48 |
| `SENTS_P` | 88.62 |
| `SENTS_R` | 91.60 |
| `SENTS_F` | 90.09 |
| `DEP_UAS` | 87.34 |
| `DEP_LAS` | 84.31 |
| `LEMMA_ACC` | 95.80 |
| `ENTS_P` | 72.39 |
| `ENTS_R` | 74.68 |
| `ENTS_F` | 73.52 |
|
spacy/sv_core_news_md
|
spacy
| 2023-10-10T06:35:45Z | 2 | 1 |
spacy
|
[
"spacy",
"token-classification",
"sv",
"license:cc-by-sa-4.0",
"model-index",
"region:us"
] |
token-classification
| 2022-05-02T07:56:23Z |
---
tags:
- spacy
- token-classification
language:
- sv
license: cc-by-sa-4.0
model-index:
- name: sv_core_news_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8421624559
- name: NER Recall
type: recall
value: 0.7542579075
- name: NER F Score
type: f_score
value: 0.7957900141
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9514136981
- task:
name: POS
type: token-classification
metrics:
- name: POS (UPOS) Accuracy
type: accuracy
value: 0.9628457691
- task:
name: MORPH
type: token-classification
metrics:
- name: Morph (UFeats) Accuracy
type: accuracy
value: 0.9560069409
- task:
name: LEMMA
type: token-classification
metrics:
- name: Lemma Accuracy
type: accuracy
value: 0.9550882923
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.8323804132
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.783130484
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.9269717624
---
### Details: https://spacy.io/models/sv#sv_core_news_md
Swedish pipeline optimized for CPU. Components: tok2vec, tagger, morphologizer, parser, lemmatizer (trainable_lemmatizer), senter, ner.
| Feature | Description |
| --- | --- |
| **Name** | `sv_core_news_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `morphologizer`, `parser`, `lemmatizer`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | floret (50000, 300) |
| **Sources** | [UD Swedish Talbanken v2.8](https://github.com/UniversalDependencies/UD_Swedish-Talbanken) (Nivre, Joakim; Smith, Aaron)<br />[Stockholm-Umeå Corpus (SUC) v3.0](https://huggingface.co/datasets/KBLab/sucx3_ner) (Språkbanken)<br />[Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl)](https://github.com/explosion/spacy-vectors-builder) (Explosion) |
| **License** | `CC BY-SA 4.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (381 labels for 4 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AB`, `AB\|AN`, `AB\|KOM`, `AB\|POS`, `AB\|SMS`, `AB\|SUV`, `DT\|NEU\|SIN\|DEF`, `DT\|NEU\|SIN\|IND`, `DT\|NEU\|SIN\|IND/DEF`, `DT\|UTR/NEU\|PLU\|DEF`, `DT\|UTR/NEU\|PLU\|IND`, `DT\|UTR/NEU\|PLU\|IND/DEF`, `DT\|UTR/NEU\|SIN/PLU\|IND`, `DT\|UTR/NEU\|SIN\|DEF`, `DT\|UTR/NEU\|SIN\|IND`, `DT\|UTR\|SIN\|DEF`, `DT\|UTR\|SIN\|IND`, `DT\|UTR\|SIN\|IND/DEF`, `HA`, `HD\|NEU\|SIN\|IND`, `HD\|UTR/NEU\|PLU\|IND`, `HD\|UTR\|SIN\|IND`, `HP\|-\|-\|-`, `HP\|NEU\|SIN\|IND`, `HP\|UTR/NEU\|PLU\|IND`, `HP\|UTR\|SIN\|IND`, `HS\|DEF`, `IE`, `IN`, `JJ`, `JJ\|AN`, `JJ\|KOM\|UTR/NEU\|SIN/PLU\|IND/DEF\|NOM`, `JJ\|POS\|MAS\|SIN\|DEF\|GEN`, `JJ\|POS\|MAS\|SIN\|DEF\|NOM`, `JJ\|POS\|NEU\|SIN\|IND/DEF\|NOM`, `JJ\|POS\|NEU\|SIN\|IND\|NOM`, `JJ\|POS\|UTR/NEU\|PLU\|IND/DEF\|GEN`, `JJ\|POS\|UTR/NEU\|PLU\|IND/DEF\|NOM`, `JJ\|POS\|UTR/NEU\|PLU\|IND\|NOM`, `JJ\|POS\|UTR/NEU\|SIN/PLU\|IND/DEF\|NOM`, `JJ\|POS\|UTR/NEU\|SIN\|DEF\|NOM`, `JJ\|POS\|UTR\|-\|-\|SMS`, `JJ\|POS\|UTR\|SIN\|IND/DEF\|NOM`, `JJ\|POS\|UTR\|SIN\|IND\|GEN`, `JJ\|POS\|UTR\|SIN\|IND\|NOM`, `JJ\|SUV\|MAS\|SIN\|DEF\|NOM`, `JJ\|SUV\|UTR/NEU\|PLU\|DEF\|NOM`, `JJ\|SUV\|UTR/NEU\|SIN/PLU\|DEF\|NOM`, `JJ\|SUV\|UTR/NEU\|SIN/PLU\|IND\|NOM`, `KN`, `MAD`, `MID`, `NN`, `NN\|-\|-\|-\|-`, `NN\|AN`, `NN\|NEU\|-\|-\|SMS`, `NN\|NEU\|PLU\|DEF\|GEN`, `NN\|NEU\|PLU\|DEF\|NOM`, `NN\|NEU\|PLU\|IND\|GEN`, `NN\|NEU\|PLU\|IND\|NOM`, `NN\|NEU\|SIN\|DEF\|GEN`, `NN\|NEU\|SIN\|DEF\|NOM`, `NN\|NEU\|SIN\|IND`, `NN\|NEU\|SIN\|IND\|GEN`, `NN\|NEU\|SIN\|IND\|NOM`, `NN\|SMS`, `NN\|UTR\|-\|-\|-`, `NN\|UTR\|-\|-\|SMS`, `NN\|UTR\|PLU\|DEF\|GEN`, `NN\|UTR\|PLU\|DEF\|NOM`, `NN\|UTR\|PLU\|IND\|GEN`, `NN\|UTR\|PLU\|IND\|NOM`, `NN\|UTR\|SIN\|DEF\|GEN`, `NN\|UTR\|SIN\|DEF\|NOM`, `NN\|UTR\|SIN\|IND\|GEN`, `NN\|UTR\|SIN\|IND\|NOM`, `PAD`, `PC\|PRF\|NEU\|SIN\|IND\|NOM`, `PC\|PRF\|UTR/NEU\|PLU\|IND/DEF\|GEN`, `PC\|PRF\|UTR/NEU\|PLU\|IND/DEF\|NOM`, `PC\|PRF\|UTR/NEU\|SIN\|DEF\|NOM`, `PC\|PRF\|UTR\|SIN\|IND\|NOM`, `PC\|PRS\|UTR/NEU\|SIN/PLU\|IND/DEF\|NOM`, `PL`, `PM`, `PM\|GEN`, `PM\|NOM`, `PM\|SMS`, `PN\|MAS\|SIN\|DEF\|SUB/OBJ`, `PN\|NEU\|SIN\|DEF`, `PN\|NEU\|SIN\|DEF\|SUB/OBJ`, `PN\|NEU\|SIN\|IND\|SUB/OBJ`, `PN\|UTR/NEU\|PLU\|DEF\|OBJ`, `PN\|UTR/NEU\|PLU\|DEF\|SUB`, `PN\|UTR/NEU\|PLU\|DEF\|SUB/OBJ`, `PN\|UTR/NEU\|PLU\|IND\|SUB/OBJ`, `PN\|UTR/NEU\|SIN/PLU\|DEF\|OBJ`, `PN\|UTR\|PLU\|DEF\|OBJ`, `PN\|UTR\|PLU\|DEF\|SUB`, `PN\|UTR\|SIN\|DEF\|NOM`, `PN\|UTR\|SIN\|DEF\|OBJ`, `PN\|UTR\|SIN\|DEF\|SUB`, `PN\|UTR\|SIN\|DEF\|SUB/OBJ`, `PN\|UTR\|SIN\|IND\|NOM`, `PN\|UTR\|SIN\|IND\|SUB`, `PN\|UTR\|SIN\|IND\|SUB/OBJ`, `PP`, `PS\|NEU\|SIN\|DEF`, `PS\|UTR/NEU\|PLU\|DEF`, `PS\|UTR/NEU\|SIN/PLU\|DEF`, `PS\|UTR\|SIN\|DEF`, `RG\|NEU\|SIN\|IND\|NOM`, `RG\|NOM`, `RG\|SMS`, `RG\|UTR\|SIN\|IND\|NOM`, `RO\|MAS\|SIN\|IND/DEF\|NOM`, `RO\|NOM`, `SN`, `UO`, `VB\|AN`, `VB\|IMP\|AKT`, `VB\|IMP\|SFO`, `VB\|INF\|AKT`, `VB\|INF\|SFO`, `VB\|KON\|PRS\|AKT`, `VB\|KON\|PRT\|AKT`, `VB\|PRS\|AKT`, `VB\|PRS\|SFO`, `VB\|PRT\|AKT`, `VB\|PRT\|SFO`, `VB\|SUP\|AKT`, `VB\|SUP\|SFO`, `_SP` |
| **`morphologizer`** | `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=ADP`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Pass`, `POS=PUNCT`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Abbr=Yes\|POS=ADV`, `POS=SCONJ`, `POS=ADV`, `Case=Nom\|Definite=Ind\|Gender=Com\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Ind\|POS=AUX\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `POS=PART`, `POS=VERB\|VerbForm=Inf`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=CCONJ`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Dem`, `Degree=Pos\|POS=ADV`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Dem`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `POS=VERB\|VerbForm=Sup\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `POS=PART\|Polarity=Neg`, `Case=Nom\|Degree=Pos\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Plur\|POS=NOUN`, `Degree=Cmp\|POS=ADV`, `POS=VERB\|VerbForm=Inf\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Degree=Sup\|POS=ADV`, `Case=Nom\|NumType=Card\|POS=NUM`, `Abbr=Yes\|POS=NOUN`, `Case=Nom\|Definite=Def\|Degree=Sup\|POS=ADJ`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Act`, `POS=VERB\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Pres\|VerbForm=Fin`, `Case=Gen\|Definite=Ind\|Gender=Neut\|Number=Plur\|POS=NOUN`, `POS=AUX\|VerbForm=Inf\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Number=Plur\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `POS=AUX\|VerbForm=Sup\|Voice=Act`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Rcp`, `POS=SPACE`, `POS=VERB\|VerbForm=Sup\|Voice=Pass`, `Mood=Ind\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Def\|Degree=Pos\|Number=Sing\|POS=ADJ`, `Case=Nom\|Degree=Cmp\|POS=ADJ`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Art`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Definite=Ind\|POS=DET\|PronType=Ind`, `Case=Nom\|Definite=Def\|Number=Sing\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Case=Nom\|POS=ADJ\|Tense=Pres\|VerbForm=Part`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Dem`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Case=Acc\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Int`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Dem`, `Definite=Def\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Nom\|Definite=Def\|Degree=Sup\|Number=Plur\|POS=ADJ`, `Case=Nom\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Dem`, `Case=Gen\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=NOUN`, `POS=NOUN`, `Case=Nom\|POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Ind`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Ind`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Gender=Com\|POS=NOUN`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Sing\|POS=NOUN`, `Case=Acc\|Definite=Def\|POS=PRON\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Prs`, `Case=Nom\|POS=PROPN`, `Case=Nom\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Plur\|POS=PRON\|PronType=Prs`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Prs`, `Case=Gen\|Number=Plur\|POS=ADJ\|Tense=Past\|VerbForm=Part`, `Case=Acc\|Definite=Def\|Gender=Com\|Number=Plur\|POS=PRON\|PronType=Prs`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Rel`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Int`, `Number=Plur\|POS=DET\|PronType=Ind`, `Case=Gen\|POS=PROPN`, `POS=PROPN`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Neut\|POS=NOUN`, `Case=Gen\|Definite=Def\|Gender=Com\|Number=Plur\|POS=NOUN`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Int`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Neg`, `POS=VERB\|VerbForm=Sup`, `Case=Gen\|Definite=Def\|Gender=Neut\|Number=Plur\|POS=NOUN`, `Mood=Ind\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Ind\|Gender=Neut\|NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|POS=ADJ`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Ind`, `POS=SYM`, `Case=Nom\|Degree=Pos\|Gender=Neut\|Number=Sing\|POS=ADJ`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Int`, `Case=Nom\|Definite=Ind\|Degree=Sup\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Dem`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Neg`, `Mood=Sub\|POS=AUX\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `Degree=Pos\|Gender=Com\|POS=ADJ`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Case=Nom\|Definite=Ind\|Gender=Neut\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Ind`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Ind\|POS=DET\|PronType=Prs`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Rel`, `Case=Gen\|Degree=Pos\|Number=Plur\|POS=ADJ`, `Definite=Def\|Number=Plur\|POS=PRON\|Poss=Yes\|PronType=Ind`, `Definite=Def\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Prs`, `Abbr=Yes\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Rel`, `NumType=Card\|POS=NUM`, `POS=INTJ`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Int`, `Degree=Sup\|POS=ADV\|Polarity=Neg`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Int`, `POS=ADV\|Polarity=Neg`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Ind`, `POS=ADJ`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Def\|Degree=Pos\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Tot`, `Gender=Neut\|Number=Sing\|POS=DET\|PronType=Tot`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Neg`, `Case=Nom\|Definite=Def\|Degree=Sup\|Gender=Masc\|Number=Sing\|POS=ADJ`, `Definite=Def\|Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Definite=Def\|Gender=Neut\|Number=Sing\|POS=PRON\|PronType=Tot`, `Definite=Ind\|Gender=Neut\|Number=Sing\|POS=DET\|PronType=Neg`, `Gender=Com\|Number=Sing\|POS=DET\|PronType=Prs`, `Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Pass`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Ind`, `Case=Acc\|Definite=Def\|POS=PRON\|PronType=Ind`, `Foreign=Yes\|POS=ADP`, `Definite=Ind\|Gender=Com\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Dem`, `Abbr=Yes\|Mood=Imp\|POS=VERB\|VerbForm=Fin\|Voice=Act`, `Mood=Sub\|POS=VERB\|Tense=Pres\|VerbForm=Fin\|Voice=Act`, `Case=Nom\|Definite=Ind\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Rel`, `Foreign=Yes\|POS=CCONJ`, `POS=DET\|PronType=Art`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Prs`, `Definite=Ind\|Number=Plur\|POS=DET\|PronType=Tot`, `Case=Nom\|Definite=Def\|Gender=Com\|Number=Sing\|POS=PRON\|PronType=Ind`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Rel`, `Case=Acc\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Prs`, `Case=Gen\|Definite=Ind\|Degree=Pos\|Gender=Com\|Number=Sing\|POS=ADJ`, `Definite=Def\|Number=Plur\|POS=PRON\|PronType=Tot`, `Degree=Pos\|POS=ADV\|Polarity=Neg`, `Mood=Sub\|POS=VERB\|Tense=Past\|VerbForm=Fin\|Voice=Act`, `POS=PRON\|PronType=Ind`, `Definite=Ind\|POS=DET\|PronType=Neg`, `Definite=Ind\|Number=Plur\|POS=PRON\|PronType=Neg`, `POS=CCONJ\|Polarity=Neg`, `Case=Nom\|Gender=Masc\|Number=Sing\|POS=NOUN`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=NOUN`, `Case=Nom\|Definite=Def\|Number=Plur\|POS=PRON\|PronType=Tot`, `Definite=Def\|Number=Plur\|POS=DET\|PronType=Tot`, `Mood=Imp\|POS=AUX\|VerbForm=Fin\|Voice=Act`, `Foreign=Yes\|POS=ADV`, `Definite=Def\|POS=PRON\|Poss=Yes\|PronType=Rcp`, `Case=Acc\|Definite=Def\|POS=PRON\|Polarity=Neg\|PronType=Ind` |
| **`parser`** | `ROOT`, `acl`, `acl:cleft`, `acl:relcl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `aux:pass`, `case`, `cc`, `ccomp`, `compound:prt`, `conj`, `cop`, `csubj`, `dep`, `det`, `dislocated`, `expl`, `fixed`, `flat:name`, `iobj`, `mark`, `nmod`, `nmod:poss`, `nsubj`, `nsubj:pass`, `nummod`, `obj`, `obl`, `obl:agent`, `parataxis`, `punct`, `xcomp` |
| **`ner`** | `EVN`, `LOC`, `MSR`, `OBJ`, `ORG`, `PRS`, `TME`, `WRK` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 99.99 |
| `TOKEN_P` | 99.95 |
| `TOKEN_R` | 99.96 |
| `TOKEN_F` | 99.95 |
| `TAG_ACC` | 95.14 |
| `POS_ACC` | 96.28 |
| `MORPH_ACC` | 95.60 |
| `MORPH_MICRO_P` | 97.44 |
| `MORPH_MICRO_R` | 97.40 |
| `MORPH_MICRO_F` | 97.42 |
| `SENTS_P` | 91.01 |
| `SENTS_R` | 94.44 |
| `SENTS_F` | 92.70 |
| `DEP_UAS` | 83.24 |
| `DEP_LAS` | 78.31 |
| `LEMMA_ACC` | 95.51 |
| `ENTS_P` | 84.22 |
| `ENTS_R` | 75.43 |
| `ENTS_F` | 79.58 |
|
spacy/xx_sent_ud_sm
|
spacy
| 2023-10-10T06:35:02Z | 906 | 2 |
spacy
|
[
"spacy",
"multilingual",
"license:cc-by-sa-3.0",
"model-index",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
tags:
- spacy
language:
- multilingual
license: cc-by-sa-3.0
model-index:
- name: xx_sent_ud_sm
results:
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.8588338112
---
### Details: https://spacy.io/models/xx#xx_sent_ud_sm
Multi-language pipeline optimized for CPU. Components: senter.
| Feature | Description |
| --- | --- |
| **Name** | `xx_sent_ud_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `senter` |
| **Components** | `senter` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [Universal Dependencies v2.8 (UD_Afrikaans-AfriBooms, UD_Croatian-SET, UD_Czech-CAC, UD_Czech-CLTT, UD_Danish-DDT, UD_Dutch-Alpino, UD_Dutch-LassySmall, UD_English-EWT, UD_Finnish-FTB, UD_Finnish-TDT, UD_French-GSD, UD_French-Spoken, UD_German-GSD, UD_Indonesian-GSD, UD_Irish-IDT, UD_Italian-TWITTIRO, UD_Korean-GSD, UD_Korean-Kaist, UD_Latvian-LVTB, UD_Lithuanian-ALKSNIS, UD_Lithuanian-HSE, UD_Marathi-UFAL, UD_Norwegian-Bokmaal, UD_Norwegian-Nynorsk, UD_Norwegian-NynorskLIA, UD_Persian-Seraji, UD_Portuguese-Bosque, UD_Portuguese-GSD, UD_Romanian-Nonstandard, UD_Romanian-RRT, UD_Russian-GSD, UD_Russian-Taiga, UD_Serbian-SET, UD_Slovak-SNK, UD_Spanish-GSD, UD_Swedish-Talbanken, UD_Telugu-MTG, UD_Vietnamese-VTB)](https://universaldependencies.org/) (Zeman, Daniel; Nivre, Joakim; Abrams, Mitchell; et al.) |
| **License** | `CC BY-SA 3.0` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 98.59 |
| `TOKEN_P` | 95.31 |
| `TOKEN_R` | 95.72 |
| `TOKEN_F` | 95.52 |
| `SENTS_P` | 90.66 |
| `SENTS_R` | 81.58 |
| `SENTS_F` | 85.88 |
|
spacy/zh_core_web_md
|
spacy
| 2023-10-10T06:34:11Z | 24 | 0 |
spacy
|
[
"spacy",
"token-classification",
"zh",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- zh
license: mit
model-index:
- name: zh_core_web_md
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7188227082
- name: NER Recall
type: recall
value: 0.679010989
- name: NER F Score
type: f_score
value: 0.6983499096
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.9003849582
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.7049895344
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.652241773
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.7572294372
---
### Details: https://spacy.io/models/zh#zh_core_web_md
Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_md` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 500000 keys, 20000 unique vectors (300 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)<br />[Explosion fastText Vectors (cbow, OSCAR Common Crawl + Wikipedia)](https://spacy.io) (Explosion) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (100 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 95.85 |
| `TOKEN_P` | 94.58 |
| `TOKEN_R` | 91.36 |
| `TOKEN_F` | 92.94 |
| `TAG_ACC` | 90.04 |
| `SENTS_P` | 78.89 |
| `SENTS_R` | 72.80 |
| `SENTS_F` | 75.72 |
| `DEP_UAS` | 70.50 |
| `DEP_LAS` | 65.22 |
| `ENTS_P` | 71.88 |
| `ENTS_R` | 67.90 |
| `ENTS_F` | 69.83 |
|
spacy/zh_core_web_sm
|
spacy
| 2023-10-10T06:34:03Z | 174 | 6 |
spacy
|
[
"spacy",
"token-classification",
"zh",
"license:mit",
"model-index",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
tags:
- spacy
- token-classification
language:
- zh
license: mit
model-index:
- name: zh_core_web_sm
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.7203462148
- name: NER Recall
type: recall
value: 0.6493406593
- name: NER F Score
type: f_score
value: 0.6830029475
- task:
name: TAG
type: token-classification
metrics:
- name: TAG (XPOS) Accuracy
type: accuracy
value: 0.8933253054
- task:
name: UNLABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Unlabeled Attachment Score (UAS)
type: f_score
value: 0.6960047338
- task:
name: LABELED_DEPENDENCIES
type: token-classification
metrics:
- name: Labeled Attachment Score (LAS)
type: f_score
value: 0.640776699
- task:
name: SENTS
type: token-classification
metrics:
- name: Sentences F-Score
type: f_score
value: 0.7514211886
---
### Details: https://spacy.io/models/zh#zh_core_web_sm
Chinese pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler.
| Feature | Description |
| --- | --- |
| **Name** | `zh_core_web_sm` |
| **Version** | `3.7.0` |
| **spaCy** | `>=3.7.0,<3.8.0` |
| **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `ner` |
| **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group) |
| **License** | `MIT` |
| **Author** | [Explosion](https://explosion.ai) |
### Label Scheme
<details>
<summary>View label scheme (100 labels for 3 components)</summary>
| Component | Labels |
| --- | --- |
| **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X`, `_SP` |
| **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` |
| **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `TOKEN_ACC` | 95.85 |
| `TOKEN_P` | 94.58 |
| `TOKEN_R` | 91.36 |
| `TOKEN_F` | 92.94 |
| `TAG_ACC` | 89.33 |
| `SENTS_P` | 77.85 |
| `SENTS_R` | 72.62 |
| `SENTS_F` | 75.14 |
| `DEP_UAS` | 69.60 |
| `DEP_LAS` | 64.08 |
| `ENTS_P` | 72.03 |
| `ENTS_R` | 64.93 |
| `ENTS_F` | 68.30 |
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.