modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 12:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
528 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 12:27:19
card
stringlengths
11
1.01M
jondurbin/airoboros-l2-7b-2.2
jondurbin
2023-09-12T07:42:03Z
6
6
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-2.2", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-10T23:00:27Z
--- license: llama2 datasets: - jondurbin/airoboros-2.2 --- ### Overview Another experimental model, using mostly sythetic data generated by [airoboros](https://github.com/jondurbin/airoboros) Highlights: - The prompt format has changed! It is now newlines instead of spaces between system/USER/ASSISTANT (see prompt info below). - "Clean" version of airoboros-2.2 dataset -- this model __does not__ contain the de-alignment data. - For an uncensored version, use spicyboros variants. - I re-generated all of the outputs in the dataset that had "Once upon a time" so they'd be less cliche - no guarantees that won't still happen, but in theory it may happen less. - More multiple choice, better awareness, some alignment for normal use case but system-prompt overridable etc. Breakdown of the training data: | Count | Category | |-------|----------------------------| | 36 | experience | | 60 | quiz | | 63 | card | | 76 | greeting | | 100 | detailed\_writing | | 200 | song | | 204 | editor | | 207 | counterfactual\_contextual | | 268 | cot | | 339 | theory\_of\_mind | | 416 | awareness | | 439 | stylized\_response | | 457 | misconception | | 500 | summarization | | 620 | riddle | | 719 | agent | | 800 | plan | | 873 | gtkm | | 963 | rp | | 1000 | wordgame | | 1279 | multiple\_choice | | 1519 | joke | | 1758 | writing | | 2152 | contextual | | 2183 | trivia | | 2364 | roleplay | | 4699 | general | | 5775 | coding | | 11366 | orca | In other words, it's a fairly general purpose model, but focuses fairly heavily on instruction response pairs rather than casual chat/roleplay. Huge thank you to the folks over at [a16z](https://a16z.com/) for sponsoring the costs associated with building models and associated tools! ### Prompt format The prompt format: ``` A chat. USER: {prompt} ASSISTANT: ``` The default system prompt ("A chat.") was used for most of the prompts, however it also included a wide sampling of responses with other prompts, particularly in "stylized\_response", "rp", "gtkm", etc. Here's another example: ``` A chat between Bob (aka USER) and Tom (aka ASSISTANT). Tom is an extremely intelligent 18th century bookkeeper, who speaks loquaciously. USER: {prompt} ASSISTANT: ``` And chat scenario that wouldn't require USER/ASSISTANT (but should use stopping criteria to prevent the model from speaking on your behalf). ``` A chat between old friends: Timmy and Tommy. {description of characters} {setting for the chat} Timmy: *takes a big sip from his coffee* "Ah, sweet, delicious, magical coffee." Tommy: ``` __*I strongly suggest adding stopping criteria/early inference stopping on "USER:", and/or whatever names you specify in the system prompt.*__ ### Fine tuning info https://gist.github.com/jondurbin/7aabf2d8e1ded7b29897a3dd95d81e01 ### Helpful usage tips *The prompts shown here are are just the text that would be included after USER: and before ASSISTANT: in the full prompt format above, the system prompt and USER:/ASSISTANT: have been omited for readability.* #### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT [key0: value0] [key1: value1] ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` #### Coding You can ask for fairly complex coding instructions with multiple criteria, e.g.: ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or inline criteria: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` #### Agent/function calling The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML. Example prompt: ``` As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format. Input: I want to know how many times 'Python' is mentioned in my text file. Available functions: file_analytics: description: This tool performs various operations on a text file. params: action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc. filters: keyword: The word or phrase we want to search for. ``` Response: ```json { "function": "file_analytics", "params": { "action": "count_occurrences", "filters": { "keyword": "Python" } } } ``` #### Chain-of-thought You can ask for several possible responses to a given problem, with a ranking and final answer selection. Example prompt: ``` A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one. ``` Example response: ``` Solution 1: In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players). The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows: n(n-1)/2 = 45 Solving this equation gives us n=10. Final answer: There were 10 players in the tournament. Solution 2: Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers. If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players. Final answer: There were 10 players in the tournament. Solution 3: We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played. Final answer: There were 10 players in the tournament. Ranking of solutions from best to worst: 1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer. 2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer. 3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer. Best and final answer: There were 10 players in the tournament. ``` #### reWOO style execution planning The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions! Example prompt: ``` Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string that could be the user's question, one or more prior evidence values, or a combination of both. Here are the tools available to be called: DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer. TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links. HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links. KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:? The output should be in format: Plan: [first action to take based on input question] :evidence0: = [function to call with input parameter] Plan: [next action to take, based on result of :evidence0:] :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"] ... Answer: [:evidence[n]: containing the final answer.] Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work? ``` Response: ``` Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020. :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner] Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate. :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?] Plan: Conduct another web search to find the most famous work of the identified laureate. :evidence2: = DuckDuckGo[Most famous work of :evidence1:] Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search. :evidence3: = HyperlinkExtractor[:evidence2:] Plan: Use the TextScraper tool to extract information from the relevant links. :evidence4: = TextScraper[:evidence3:] Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information. :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?] Answer: :evidence5: ``` For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening: ```python import re import requests def inject_context(input_text, **context): for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)): input_text = input_text.replace(ref, context.get(ref, "")) return input_text def duckduckgo(input_text, **context): search_string = inject_context(input_text, **context) ... search via duck duck go using search_string ... return text content def link_extractor(input_text, **context): input_text = inject_context(input_text, **context) return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I)))) def scrape(input_text, **context): input_text = inject_context(input_text, **context) text = [] for link in input_text.splitlines(): text.append(requests.get(link).text) return "\n".join(text) def infer(input_text, **context) prompt = inject_context(input_text, **context) ... call model with prompt, return output def parse_plan(plan): method_map = { "DuckDuckGo": duckduckgo, "HyperlinkExtractor": link_extractor, "KnowledgeModel": infer, "TextScraper": scrape, } context = {} for line in plan.strip().splitlines(): if line.startswith("Plan:"): print(line) continue parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I) if not parts: if line.startswith("Answer: "): return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...") raise RuntimeError("bad format: " + line) context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context) ``` ### Contribute If you're interested in new functionality, particularly a new "instructor" type to generate a specific type of training data, take a look at the dataset generation tool repo: https://github.com/jondurbin/airoboros and either make a PR or open an issue with details. To help me with the OpenAI/compute costs: - https://bmc.link/jondurbin - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11 - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf ### Licence and usage restrictions The airoboros 2.2 models are built on top of llama-2/codellama. The llama-2 base model has a custom Meta license: - See the [meta-license/LICENSE.txt](meta-license/LICENSE.txt) file attached for the original license provided by Meta. - See also [meta-license/USE_POLICY.md](meta-license/USE_POLICY.md) and [meta-license/Responsible-Use-Guide.pdf](meta-license/Responsible-Use-Guide.pdf), also provided by Meta. The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros) The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI - what does *compete* actually mean here? - these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place - if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works - the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place - other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2 I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly. Your best bet is probably to avoid using this commercially due to the OpenAI API usage. Either way, by using this model, you agree to completely indemnify me.
veezbo/LLama-2-7b-hf-akkadian
veezbo
2023-09-12T07:39:08Z
6
0
peft
[ "peft", "region:us" ]
null
2023-09-04T22:41:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0
osanseviero/test-transf
osanseviero
2023-09-12T07:37:26Z
0
0
transformers
[ "transformers", "text-generation", "endpoints_compatible", "region:us" ]
text-generation
2023-09-12T07:37:11Z
--- library_name: transformers pipeline_tag: text-generation ---
Fynd/cleaned_v7_complete_llamav2_13b_intent_6_ep
Fynd
2023-09-12T07:37:07Z
9
0
peft
[ "peft", "gguf", "endpoints_compatible", "region:us" ]
null
2023-09-11T09:59:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
mikr/whisper-medium-czech-cv11
mikr
2023-09-12T07:30:08Z
15
3
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_trainer", "cs", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-11T16:06:38Z
--- language: - cs license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-medium model-index: - name: Whisper Medium Czech 2 CV11 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: cs split: test metrics: - type: wer value: 11.408629675328264 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium Czech 2 CV11 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set: - Loss: 0.2417 - Wer: 11.4086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0105 | 4.24 | 1000 | 0.1973 | 12.6130 | | 0.0016 | 8.47 | 2000 | 0.2198 | 11.8985 | | 0.0004 | 12.71 | 3000 | 0.2310 | 11.4547 | | 0.0003 | 16.95 | 4000 | 0.2380 | 11.4270 | | 0.0002 | 21.19 | 5000 | 0.2417 | 11.4086 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
nickprock/distilbert-base-uncased-banking77-classification
nickprock
2023-09-12T07:26:36Z
116
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:banking77", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T08:51:52Z
--- license: mit tags: - generated_from_trainer datasets: - banking77 metrics: - accuracy widget: - text: 'Can I track the card you sent to me? ' example_title: Card Arrival Example - text: Can you explain your exchange rate policy to me? example_title: Exchange Rate Example - text: I can't pay by my credit card example_title: Card Not Working Example base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-banking77-classification results: - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 args: default metrics: - type: accuracy value: 0.924025974025974 name: Accuracy - task: type: text-classification name: Text Classification dataset: name: banking77 type: banking77 config: default split: test metrics: - type: accuracy value: 0.924025974025974 name: Accuracy verified: true - type: precision value: 0.9278003086307286 name: Precision Macro verified: true - type: precision value: 0.924025974025974 name: Precision Micro verified: true - type: precision value: 0.9278003086307287 name: Precision Weighted verified: true - type: recall value: 0.9240259740259743 name: Recall Macro verified: true - type: recall value: 0.924025974025974 name: Recall Micro verified: true - type: recall value: 0.924025974025974 name: Recall Weighted verified: true - type: f1 value: 0.9243068139192414 name: F1 Macro verified: true - type: f1 value: 0.924025974025974 name: F1 Micro verified: true - type: f1 value: 0.9243068139192416 name: F1 Weighted verified: true - type: loss value: 0.31516405940055847 name: loss verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-banking77-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.3152 - Accuracy: 0.9240 - F1 Score: 0.9243 ## Model description This is my first fine-tuning experiment using Hugging Face. Using distilBERT as a pretrained model, I trained a classifier for online banking queries. It could be useful for addressing tickets. ## Intended uses & limitations The model can be used on text classification. In particular is fine tuned on banking domain. ## Training and evaluation data The dataset used is [banking77](https://huggingface.co/datasets/banking77) The 77 labels are: |label|intent| |:---:|:----:| |0|activate_my_card| |1|age_limit| |2|apple_pay_or_google_pay| |3|atm_support| |4|automatic_top_up| |5|balance_not_updated_after_bank_transfer| |6|balance_not_updated_after_cheque_or_cash_deposit| |7|beneficiary_not_allowed| |8|cancel_transfer| |9|card_about_to_expire| |10|card_acceptance| |11|card_arrival| |12|card_delivery_estimate| |13|card_linking| |14|card_not_working| |15|card_payment_fee_charged| |16|card_payment_not_recognised| |17|card_payment_wrong_exchange_rate| |18|card_swallowed| |19|cash_withdrawal_charge| |20|cash_withdrawal_not_recognised| |21|change_pin| |22|compromised_card| |23|contactless_not_working| |24|country_support| |25|declined_card_payment| |26|declined_cash_withdrawal| |27|declined_transfer| |28|direct_debit_payment_not_recognised| |29|disposable_card_limits| |30|edit_personal_details| |31|exchange_charge| |32|exchange_rate| |33|exchange_via_app| |34|extra_charge_on_statement| |35|failed_transfer| |36|fiat_currency_support| |37|get_disposable_virtual_card| |38|get_physical_card| |39|getting_spare_card| |40|getting_virtual_card| |41|lost_or_stolen_card| |42|lost_or_stolen_phone| |43|order_physical_card| |44|passcode_forgotten| |45|pending_card_payment| |46|pending_cash_withdrawal| |47|pending_top_up| |48|pending_transfer| |49|pin_blocked| |50|receiving_money| |51|Refund_not_showing_up| |52|request_refund| |53|reverted_card_payment?| |54|supported_cards_and_currencies| |55|terminate_account| |56|top_up_by_bank_transfer_charge| |57|top_up_by_card_charge| |58|top_up_by_cash_or_cheque| |59|top_up_failed| |60|top_up_limits| |61|top_up_reverted| |62|topping_up_by_card| |63|transaction_charged_twice| |64|transfer_fee_charged| |65|transfer_into_account| |66|transfer_not_received_by_recipient| |67|transfer_timing| |68|unable_to_verify_identity| |69|verify_my_identity| |70|verify_source_of_funds| |71|verify_top_up| |72|virtual_card_not_working| |73|visa_or_mastercard| |74|why_verify_identity| |75|wrong_amount_of_cash_received| |76|wrong_exchange_rate_for_cash_withdrawal| ## Training procedure ``` from transformers import pipeline pipe = pipeline("text-classification", model="nickprock/distilbert-base-uncased-banking77-classification") pipe("I can't pay by my credit card") ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 3.8732 | 1.0 | 157 | 3.1476 | 0.5370 | 0.4881 | | 2.5598 | 2.0 | 314 | 1.9780 | 0.6916 | 0.6585 | | 1.5863 | 3.0 | 471 | 1.2239 | 0.8042 | 0.7864 | | 0.9829 | 4.0 | 628 | 0.8067 | 0.8565 | 0.8487 | | 0.6274 | 5.0 | 785 | 0.5837 | 0.8799 | 0.8752 | | 0.4304 | 6.0 | 942 | 0.4630 | 0.9042 | 0.9040 | | 0.3106 | 7.0 | 1099 | 0.3982 | 0.9088 | 0.9087 | | 0.2238 | 8.0 | 1256 | 0.3587 | 0.9110 | 0.9113 | | 0.1708 | 9.0 | 1413 | 0.3351 | 0.9208 | 0.9208 | | 0.1256 | 10.0 | 1570 | 0.3242 | 0.9179 | 0.9182 | | 0.0981 | 11.0 | 1727 | 0.3136 | 0.9211 | 0.9214 | | 0.0745 | 12.0 | 1884 | 0.3151 | 0.9211 | 0.9213 | | 0.0601 | 13.0 | 2041 | 0.3089 | 0.9218 | 0.9220 | | 0.0482 | 14.0 | 2198 | 0.3158 | 0.9214 | 0.9216 | | 0.0402 | 15.0 | 2355 | 0.3126 | 0.9224 | 0.9226 | | 0.0344 | 16.0 | 2512 | 0.3143 | 0.9231 | 0.9233 | | 0.0298 | 17.0 | 2669 | 0.3156 | 0.9231 | 0.9233 | | 0.0272 | 18.0 | 2826 | 0.3134 | 0.9244 | 0.9247 | | 0.0237 | 19.0 | 2983 | 0.3156 | 0.9244 | 0.9246 | | 0.0229 | 20.0 | 3140 | 0.3152 | 0.9240 | 0.9243 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nickprock/distilbert-finetuned-ner-ontonotes
nickprock
2023-09-12T07:26:29Z
131
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:tner/ontonotes5", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-26T10:27:27Z
--- license: mit tags: - generated_from_trainer datasets: - tner/ontonotes5 metrics: - precision - recall - f1 - accuracy widget: - text: 'I am Jack. I live in California and I work at Apple ' example_title: Example 1 - text: 'Wow this book is amazing and costs only 4€ ' example_title: Example 2 base_model: distilbert-base-cased model-index: - name: distilbert-finetuned-ner-ontonotes results: - task: type: token-classification name: Token Classification dataset: name: ontonotes5 type: ontonotes5 config: ontonotes5 split: train args: ontonotes5 metrics: - type: precision value: 0.8535359959297889 name: Precision - type: recall value: 0.8788553467356427 name: Recall - type: f1 value: 0.8660106468785288 name: F1 - type: accuracy value: 0.9749625470373822 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-ner-ontonotes This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the ontonotes5 dataset. It achieves the following results on the evaluation set: - Loss: 0.1448 - Precision: 0.8535 - Recall: 0.8789 - F1: 0.8660 - Accuracy: 0.9750 ## Model description Token classification experiment, NER, on business topics. ## Intended uses & limitations The model can be used on token classification, in particular NER. It is fine tuned on business domain. ## Training and evaluation data The dataset used is [ontonotes5](https://huggingface.co/datasets/tner/ontonotes5) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0937 | 1.0 | 7491 | 0.0998 | 0.8367 | 0.8587 | 0.8475 | 0.9731 | | 0.0572 | 2.0 | 14982 | 0.1084 | 0.8338 | 0.8759 | 0.8543 | 0.9737 | | 0.0403 | 3.0 | 22473 | 0.1145 | 0.8521 | 0.8707 | 0.8613 | 0.9748 | | 0.0265 | 4.0 | 29964 | 0.1222 | 0.8535 | 0.8815 | 0.8672 | 0.9752 | | 0.0148 | 5.0 | 37455 | 0.1365 | 0.8536 | 0.8770 | 0.8651 | 0.9747 | | 0.0111 | 6.0 | 44946 | 0.1448 | 0.8535 | 0.8789 | 0.8660 | 0.9750 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
bigmorning/whisper_4_with_init_sun_syl_wd_0_lr_en3_0015
bigmorning
2023-09-12T07:18:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-12T07:18:24Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0_lr_en3_0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0_lr_en3_0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0438 - Train Accuracy: 0.0154 - Train Wermet: 1.1658 - Train Wermet Syl: 1.5877 - Validation Loss: 2.8403 - Validation Accuracy: 0.0133 - Validation Wermet: 0.8122 - Validation Wermet Syl: 0.8351 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.0580 | 0.0110 | 1.8635 | 1.7118 | 4.0077 | 0.0112 | 1.0399 | 1.0195 | 0 | | 4.7330 | 0.0115 | 0.9446 | 0.9262 | 3.9889 | 0.0113 | 0.9757 | 0.9619 | 1 | | 4.6832 | 0.0116 | 0.8889 | 0.8637 | 3.9832 | 0.0114 | 0.9574 | 0.9276 | 2 | | 4.6668 | 0.0116 | 0.9362 | 0.9592 | 3.9389 | 0.0113 | 0.9939 | 1.0310 | 3 | | 4.6252 | 0.0117 | 1.0167 | 1.1679 | 3.9158 | 0.0114 | 0.9633 | 0.9764 | 4 | | 4.6026 | 0.0117 | 1.0596 | 1.2533 | 3.8896 | 0.0114 | 0.9953 | 1.0541 | 5 | | 4.5658 | 0.0118 | 1.1222 | 1.3998 | 3.8228 | 0.0116 | 0.9368 | 0.9177 | 6 | | 4.4715 | 0.0120 | 1.0840 | 1.3327 | 3.7310 | 0.0117 | 0.9284 | 0.9338 | 7 | | 4.3515 | 0.0122 | 1.5346 | 2.0632 | 3.6182 | 0.0119 | 0.9122 | 0.9112 | 8 | | 4.1520 | 0.0126 | 1.7418 | 2.3436 | 3.2869 | 0.0124 | 1.3462 | 1.8561 | 9 | | 3.8516 | 0.0132 | 1.8839 | 2.6071 | 3.0980 | 0.0128 | 0.9534 | 0.9652 | 10 | | 3.5680 | 0.0139 | 2.4447 | 3.4321 | 2.9746 | 0.0129 | 1.1678 | 1.6347 | 11 | | 3.3589 | 0.0144 | 2.4698 | 3.4460 | 2.6950 | 0.0137 | 1.0842 | 1.5304 | 12 | | 3.1696 | 0.0149 | 1.5290 | 2.1570 | 2.5462 | 0.0141 | 0.7527 | 0.8018 | 13 | | 3.0438 | 0.0154 | 1.1658 | 1.5877 | 2.8403 | 0.0133 | 0.8122 | 0.8351 | 14 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
Vishal24/trained-llama2
Vishal24
2023-09-12T07:11:58Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-12T06:50:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
WIS/drl-ppo-LunarLander-v2
WIS
2023-09-12T07:05:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T07:04:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.80 +/- 18.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Serotina/a2c-PandaReachDense-v3
Serotina
2023-09-12T07:04:08Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T06:58:19Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.15 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
santiagotoso/ppo-Huggy
santiagotoso
2023-09-12T07:02:57Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-12T07:02:52Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: santiagotoso/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
haozhangphy/Taxi-v3
haozhangphy
2023-09-12T06:57:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T06:57:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="haozhangphy/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
haozhangphy/q-FrozenLake-v1-4x4-noSlippery
haozhangphy
2023-09-12T06:54:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T06:54:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="haozhangphy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
shaowenchen/baichuan2-7b-chat-gguf
shaowenchen
2023-09-12T06:42:19Z
106
15
null
[ "gguf", "baichuan", "chinese", "text-generation", "zh", "en", "license:other", "region:us" ]
text-generation
2023-09-11T10:13:53Z
--- inference: false language: - zh - en license: other model_creator: baichuan-inc model_link: https://www.modelscope.cn/models/baichuan-inc/Baichuan2-7B-Chat model_name: Baichuan2-7B-Chat model_type: baichuan pipeline_tag: text-generation quantized_by: shaowenchen tasks: - text2text-generation tags: - gguf - baichuan - chinese --- ## Provided files | Name | Quant method | Size | | ----------------------------- | ------------ | ------ | | baichuan2-7b-chat.Q2_K.gguf | Q2_K | 3.0 GB | | baichuan2-7b-chat.Q3_K.gguf | Q3_K | 3.5 GB | | baichuan2-7b-chat.Q3_K_L.gguf | Q3_K_L | 3.8 GB | | baichuan2-7b-chat.Q3_K_S.gguf | Q3_K_S | 3.2 GB | | baichuan2-7b-chat.Q4_0.gguf | Q4_0 | 4.1 GB | | baichuan2-7b-chat.Q4_1.gguf | Q4_1 | 4.5 GB | | baichuan2-7b-chat.Q4_K.gguf | Q4_K | 4.3 GB | | baichuan2-7b-chat.Q4_K_S.gguf | Q4_K_S | 4.1 GB | | baichuan2-7b-chat.Q5_0.gguf | Q5_0 | 4.9 GB | | baichuan2-7b-chat.Q5_1.gguf | Q5_1 | 5.3 GB | | baichuan2-7b-chat.Q5_K.gguf | Q5_K | 5.0 GB | | baichuan2-7b-chat.Q5_K_S.gguf | Q5_K_S | 4.9 GB | | baichuan2-7b-chat.Q6_K.gguf | Q6_K | 5.7 GB | | baichuan2-7b-chat.Q8_0.gguf | Q8_0 | 7.4 GB | | baichuan2-7b-chat.gguf | full | 14 GB | Usage: ``` docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/gguf-model-name.gguf hubimage/llama-cpp-python:latest ``` and you can view http://localhost:8000/docs to see the swagger UI. ## Provided images | Name | Quant method | Size | | ------------------------------------------- | ------------ | ------- | | `shaowenchen/baichuan2-7b-chat-gguf:Q2_K` | Q2_K | 7.59 GB | | `shaowenchen/baichuan2-7b-chat-gguf:Q3_K` | Q3_K | 8.61 GB | | `shaowenchen/baichuan2-7b-chat-gguf:Q3_K_L` | Q3_K_L | 9.23 GB | | `shaowenchen/baichuan2-7b-chat-gguf:Q3_K_S` | Q3_K_S | 7.93 GB | | `shaowenchen/baichuan2-7b-chat-gguf:Q4_0` | Q4_0 | 9.6 GB | Usage: ``` docker run --rm -p 8000:8000 shaowenchen/baichuan2-7b-chat-gguf:Q2_K ``` and you can view http://localhost:8000/docs to see the swagger UI.
jtlicardo/bpmn-information-extraction
jtlicardo
2023-09-12T06:42:18Z
141
8
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-25T21:27:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy widget: - text: The process starts when the customer enters the shop. The customer then takes the product from the shelf. The customer then pays for the product and leaves the store. example_title: Example 1 - text: The process begins when the HR department hires the new employee. Next, the new employee completes necessary paperwork and provides documentation to the HR department. After the initial task, the HR department performs a decision to determine the employee's role and department assignment. The employee is trained by the Sales department. After the training, the Sales department assigns the employee a sales quota and performance goals. Finally, the process ends with an 'End' event, when the employee begins their role in the Sales department. example_title: Example 2 - text: A customer places an order for a product on the company's website. Next, the customer service department checks the availability of the product and confirms the order with the customer. After the initial task, the warehouse processes the order. If the order is eligible for same-day shipping, the warehouse staff picks and packs the order, and it is sent to the shipping department. After the order is packed, the shipping department delivers the order to the customer. Finally, the process ends with an 'End' event, when the customer receives their order. example_title: Example 3 base_model: bert-base-cased model-index: - name: bert-finetuned-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bpmn-information-extraction This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on a dataset containing 90 textual process descriptions. The dataset contains 5 target labels: * `AGENT` * `TASK` * `TASK_INFO` * `PROCESS_INFO` * `CONDITION` It achieves the following results on the evaluation set: - Loss: 0.2909 - Precision: 0.8557 - Recall: 0.9247 - F1: 0.8889 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.0586 | 1.0 | 10 | 1.5601 | 0.1278 | 0.1559 | 0.1404 | 0.4750 | | 1.3702 | 2.0 | 20 | 1.0113 | 0.3947 | 0.5645 | 0.4646 | 0.7150 | | 0.8872 | 3.0 | 30 | 0.6645 | 0.5224 | 0.6882 | 0.5940 | 0.8051 | | 0.5341 | 4.0 | 40 | 0.4741 | 0.6754 | 0.8280 | 0.7440 | 0.8541 | | 0.3221 | 5.0 | 50 | 0.3831 | 0.7523 | 0.8817 | 0.8119 | 0.8883 | | 0.2168 | 6.0 | 60 | 0.3297 | 0.7731 | 0.8978 | 0.8308 | 0.9079 | | 0.1565 | 7.0 | 70 | 0.2998 | 0.8195 | 0.9032 | 0.8593 | 0.9128 | | 0.1227 | 8.0 | 80 | 0.3227 | 0.8038 | 0.9032 | 0.8506 | 0.9099 | | 0.0957 | 9.0 | 90 | 0.2840 | 0.8431 | 0.9247 | 0.8821 | 0.9216 | | 0.077 | 10.0 | 100 | 0.2914 | 0.8252 | 0.9140 | 0.8673 | 0.9216 | | 0.0691 | 11.0 | 110 | 0.2850 | 0.8431 | 0.9247 | 0.8821 | 0.9285 | | 0.059 | 12.0 | 120 | 0.2886 | 0.8564 | 0.9301 | 0.8918 | 0.9285 | | 0.0528 | 13.0 | 130 | 0.2838 | 0.8564 | 0.9301 | 0.8918 | 0.9305 | | 0.0488 | 14.0 | 140 | 0.2881 | 0.8515 | 0.9247 | 0.8866 | 0.9305 | | 0.049 | 15.0 | 150 | 0.2909 | 0.8557 | 0.9247 | 0.8889 | 0.9285 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
nichelia/Llama-2-7B-bf16-sharded-quotes
nichelia
2023-09-12T06:32:57Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-12T06:32:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
saattrupdan/job-listing-relevance-model
saattrupdan
2023-09-12T06:20:28Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-22T16:56:45Z
--- license: mit tags: - generated_from_trainer base_model: xlm-roberta-base model-index: - name: job-listing-relevance-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # job-listing-relevance-model This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7435 | 0.43 | 50 | 0.6889 | | 0.3222 | 0.87 | 100 | 0.2906 | | 0.2573 | 1.3 | 150 | 0.1937 | | 0.1205 | 1.74 | 200 | 0.1411 | | 0.1586 | 2.17 | 250 | 0.2008 | | 0.0755 | 2.61 | 300 | 0.1926 | | 0.062 | 3.04 | 350 | 0.2257 | | 0.0644 | 3.48 | 400 | 0.1497 | | 0.1034 | 3.91 | 450 | 0.1561 | | 0.008 | 4.35 | 500 | 0.2067 | | 0.0616 | 4.78 | 550 | 0.2067 | | 0.0766 | 5.22 | 600 | 0.1494 | | 0.0029 | 5.65 | 650 | 0.2078 | | 0.1076 | 6.09 | 700 | 0.1669 | | 0.0025 | 6.52 | 750 | 0.1564 | | 0.0498 | 6.95 | 800 | 0.2355 | | 0.0011 | 7.39 | 850 | 0.1652 | | 0.0271 | 7.82 | 900 | 0.1731 | | 0.012 | 8.26 | 950 | 0.1590 | | 0.0257 | 8.69 | 1000 | 0.1638 | | 0.0009 | 9.13 | 1050 | 0.1851 | | 0.0013 | 9.56 | 1100 | 0.1613 | | 0.0015 | 10.0 | 1150 | 0.1649 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Snehalb/Email_classification_1209
Snehalb
2023-09-12T06:15:14Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-12T06:01:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Snehalb/Email_classification_1209 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Snehalb/Email_classification_1209 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6061 - Validation Loss: 1.5591 - Train Accuracy: 0.4462 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 20, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.6061 | 1.5591 | 0.4462 | 0 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
imamassi/Visual_Emotional_Analysis
imamassi
2023-09-12T06:15:14Z
191
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-12T06:00:23Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Visual_Emotional_Analysis results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.44375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Visual_Emotional_Analysis This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6616 - Accuracy: 0.4437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7478 | 1.0 | 10 | 1.8034 | 0.4437 | | 1.6809 | 2.0 | 20 | 1.6970 | 0.4437 | | 1.616 | 3.0 | 30 | 1.6712 | 0.4625 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
rideadragon/dqn-SpaceInvadersNoFrameskip-v4
rideadragon
2023-09-12T06:12:46Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T06:12:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 591.00 +/- 265.13 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rideadragon -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rideadragon -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rideadragon ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
ahsan-mavros/balanced-test
ahsan-mavros
2023-09-12T06:07:21Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-12T06:06:51Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: balanced-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # balanced-test This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1274 - Rouge1: 94.4211 - Rouge2: 78.4814 - Rougel: 94.42 - Rougelsum: 94.4244 - Gen Len: 5.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | 0.1305 | 1.0 | 2500 | 0.1274 | 94.4211 | 78.4814 | 94.42 | 94.4244 | 5.0 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.0 - Datasets 2.14.5 - Tokenizers 0.13.3
ckeisc/lora_test
ckeisc
2023-09-12T05:59:40Z
5
0
diffusers
[ "diffusers", "region:us" ]
null
2023-09-12T05:51:21Z
--- library_name: diffusers ---
sophie04/sd-class-butterflies-32
sophie04
2023-09-12T05:52:22Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-09-12T05:52:13Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('sophie04/sd-class-butterflies-32') image = pipeline().images[0] image ```
sazzad-sit/whisper-small-bn-3ds
sazzad-sit
2023-09-12T05:48:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-17T05:19:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer base_model: openai/whisper-small model-index: - name: whisper-small-bn-3ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-bn-3ds This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0574 - Wer: 8.5038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 8950 - training_steps: 28000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2337 | 0.22 | 2000 | 0.2298 | 31.7734 | | 0.1444 | 0.45 | 4000 | 0.1516 | 22.2382 | | 0.1106 | 0.67 | 6000 | 0.1181 | 17.2230 | | 0.0933 | 0.89 | 8000 | 0.1005 | 14.8008 | | 0.0747 | 1.12 | 10000 | 0.0865 | 12.7184 | | 0.0642 | 1.34 | 12000 | 0.0788 | 11.6441 | | 0.0613 | 1.56 | 14000 | 0.0715 | 10.6524 | | 0.0565 | 1.79 | 16000 | 0.0666 | 9.8807 | | 0.0494 | 2.01 | 18000 | 0.0640 | 9.5265 | | 0.037 | 2.24 | 20000 | 0.0619 | 9.0317 | | 0.0348 | 2.46 | 22000 | 0.0600 | 9.0329 | | 0.0329 | 2.68 | 24000 | 0.0582 | 8.8407 | | 0.0321 | 2.91 | 26000 | 0.0564 | 8.4931 | | 0.0227 | 3.13 | 28000 | 0.0574 | 8.5038 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.10.2.dev0 - Tokenizers 0.13.2
RyyyT/dqn-SpaceInvadersNoFrameskip-v4
RyyyT
2023-09-12T05:42:44Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T05:42:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 517.00 +/- 126.91 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RyyyT -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga RyyyT -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga RyyyT ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
kyuwon416/Reinforce-Pixelcopter-PLE-v0
kyuwon416
2023-09-12T05:30:54Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T05:30:50Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.50 +/- 23.63 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
r4ghu/distilbert-base-uncased-finetuned-emotion
r4ghu
2023-09-12T05:23:04Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-12T05:14:51Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9223771867794991 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2258 - Accuracy: 0.9225 - F1: 0.9224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8691 | 1.0 | 250 | 0.3363 | 0.904 | 0.9025 | | 0.2702 | 2.0 | 500 | 0.2258 | 0.9225 | 0.9224 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
BubbleJoe/Reinforce-CartPole8
BubbleJoe
2023-09-12T05:13:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T05:13:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
almas-alz/vgg_unet_barley_weed_segmentation
almas-alz
2023-09-12T05:08:07Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-09-12T05:07:54Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Geotrend/bert-base-en-nl-cased
Geotrend
2023-09-12T05:07:32Z
119
0
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # bert-base-en-nl-cased We are sharing smaller versions of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) that handle a custom number of languages. Unlike [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased), our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-nl-cased") model = AutoModel.from_pretrained("Geotrend/bert-base-en-nl-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
aatherton2024/marian-finetuned-kde4-en-to-fr
aatherton2024
2023-09-12T05:06:57Z
112
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-09-11T15:19:41Z
--- license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 52.8073278441039 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8561 - Bleu: 52.8073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.2
newronai/clma2-13b-Chat-Adapter-Unvalidated-MutuallyExclusive
newronai
2023-09-12T05:03:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-12T05:03:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
badhorse666/Reinforce-pixelcopter
badhorse666
2023-09-12T04:58:52Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T04:58:48Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.00 +/- 27.06 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
substratusai/Llama-2-7b-chat-GGUF
substratusai
2023-09-12T04:58:13Z
37
1
null
[ "gguf", "facebook", "meta", "pytorch", "llama", "llama-2", "text-generation", "en", "arxiv:2307.09288", "region:us" ]
text-generation
2023-09-11T15:58:51Z
--- language: - en pipeline_tag: text-generation inference: false arxiv: 2307.09288 tags: - facebook - meta - pytorch - llama - llama-2 --- # Llama 2 7B Chat GGUF version Files provided: | File | Description | | -------- | ------- | | llama2-7b-chat-Q4_K_M.gguf | Quantised GGUF model using Q4_K_M | | llama2-7b-chat-Q5_K_S.gguf | Quantised GGUF model using Q5_K_S | | llama2-7b-chat-Q6_K.gguf | Quantised GGUF model using Q6_K | | llama2-7b-chat-f16.gguf | Original float16 format which can be used for further quantisation | Need help? Join the [Substratus discord server](https://discord.gg/JeXhcmjZVm). Original README: # **Llama 2** Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom. ## Model Details *Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.* Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. **Model Developers** Meta **Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations. **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety. ||Training Data|Params|Content Length|GQA|Tokens|LR| |---|---|---|---|---|---|---| |Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>| |Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>| *Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability. **Model Dates** Llama 2 was trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** ["Llama-2: Open Foundation and Fine-tuned Chat Models"](arxiv.org/abs/2307.09288) ## Intended Use **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212). **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program. ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)| |---|---|---|---| |Llama 2 7B|184320|400|31.22| |Llama 2 13B|368640|400|62.44| |Llama 2 70B|1720320|400|291.42| |Total|3311616||539.00| **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023. ## Evaluation Results In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library. |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval| |---|---|---|---|---|---|---|---|---|---| |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9| |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9| |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7| |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6| |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3| |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1| |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**| **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1. |||TruthfulQA|Toxigen| |---|---|---|---| |Llama 1|7B|27.42|23.00| |Llama 1|13B|41.74|23.08| |Llama 1|33B|44.19|22.57| |Llama 1|65B|48.71|21.77| |Llama 2|7B|33.29|**21.25**| |Llama 2|13B|41.86|26.10| |Llama 2|70B|**50.18**|24.60| **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better). |||TruthfulQA|Toxigen| |---|---|---|---| |Llama-2-Chat|7B|57.04|**0.00**| |Llama-2-Chat|13B|62.18|**0.00**| |Llama-2-Chat|70B|**64.14**|0.01| **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above. ## Ethical Considerations and Limitations Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide) ## Reporting Issues Please report any software “bug,” or other problems with the models through one of the following means: - Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) - Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) - Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) ## Llama Model Index |Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf| |---|---|---|---|---| |7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)| |13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)| |70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
MorganDusty/RazDva
MorganDusty
2023-09-12T04:54:38Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-09-12T04:54:38Z
--- license: cc-by-nc-sa-4.0 ---
Zetatech/pvt-tiny-224
Zetatech
2023-09-12T04:51:39Z
1,713
0
transformers
[ "transformers", "pytorch", "safetensors", "pvt", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2102.12122", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-24T00:53:31Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # Pyramid Vision Transformer (tiny-sized model) Pyramid Vision Transformer (PVT) model pre-trained on ImageNet-1K (1 million images, 1000 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://arxiv.org/abs/2102.12122) by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and first released in [this repository](https://github.com/whai362/PVT). Disclaimer: The team releasing PVT did not write a model card for this model so this model card has been written by [Rinat S. [@Xrenya]](https://huggingface.co/Xrenya). ## Model description The Pyramid Vision Transformer (PVT) is a transformer encoder model (BERT-like) pretrained on ImageNet-1k (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, also at resolution 224x224. Images are presented to the model as a sequence of variable-size patches, which are linearly embedded. Unlike ViT models, PVT is using a progressive shrinking pyramid to reduce computations of large feature maps at each stage. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/Xrenya) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import PvtImageProcessor, PvtForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = PvtImageProcessor.from_pretrained('Zetatech/pvt-tiny-224') model = PvtForImageClassification.from_pretrained('Zetatech/pvt-tiny-224') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/pvt.html#). ## Training data The ViT model was pretrained on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/), a dataset consisting of 1 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/whai362/PVT/blob/v2/classification/datasets.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225). ### BibTeX entry and citation info ```bibtex @inproceedings{wang2021pyramid, title={Pyramid vision transformer: A versatile backbone for dense prediction without convolutions}, author={Wang, Wenhai and Xie, Enze and Li, Xiang and Fan, Deng-Ping and Song, Kaitao and Liang, Ding and Lu, Tong and Luo, Ping and Shao, Ling}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={568--578}, year={2021} } ```
preetham/illus2
preetham
2023-09-12T04:19:52Z
32
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-12T04:04:33Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks illustration tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - preetham/illus2 This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks illustration using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
xbb123456/distilbert-base-uncased-finetuned-cola
xbb123456
2023-09-12T04:14:18Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-12T02:42:27Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5030064208528437 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6024 - Matthews Correlation: 0.5030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 268 | 0.4818 | 0.4647 | | 0.4548 | 2.0 | 536 | 0.4927 | 0.4904 | | 0.4548 | 3.0 | 804 | 0.5750 | 0.4770 | | 0.2322 | 4.0 | 1072 | 0.6024 | 0.5030 | | 0.2322 | 5.0 | 1340 | 0.6697 | 0.5029 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
RaulWCosta/t5-large_PREFIX_TUNING_SEQ2SEQ_5f2446
RaulWCosta
2023-09-12T03:51:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-12T03:51:42Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
lancewilhelm/lora-trained-xl-colab
lancewilhelm
2023-09-12T03:40:18Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-09-11T03:09:18Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - lancewilhelm/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
buddhilive/bert-finetuned-squad
buddhilive
2023-09-12T03:40:14Z
61
1
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-08T03:39:44Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_keras_callback model-index: - name: buddhilive/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # buddhilive/bert-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0965 - Validation Loss: 0.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0994 | 0.0 | 0 | | 1.0981 | 0.0 | 1 | | 1.0965 | 0.0 | 2 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
chinhon/bart-large-cnn_summarizer_30216
chinhon
2023-09-12T03:39:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-20T15:12:58Z
--- license: mit tags: - generated_from_trainer metrics: - rouge base_model: facebook/bart-large-cnn model-index: - name: bart-large-cnn_summarizer_30216 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn_summarizer_30216 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9800 - Rouge1: 51.6258 - Rouge2: 33.4629 - Rougel: 40.3034 - Rougelsum: 47.8482 - Gen Len: 105.0622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.8653 | 1.0 | 12086 | 0.9274 | 51.1144 | 32.972 | 39.8981 | 47.2905 | 100.2417 | | 0.6741 | 2.0 | 24172 | 0.9330 | 51.5965 | 33.5021 | 40.4048 | 47.8046 | 103.9732 | | 0.4802 | 3.0 | 36258 | 0.9800 | 51.6258 | 33.4629 | 40.3034 | 47.8482 | 105.0622 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
chinhon/pegasus-newsroom-headline_writer
chinhon
2023-09-12T03:39:10Z
11
3
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-newsroom", "base_model:finetune:google/pegasus-newsroom", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - rouge base_model: google/pegasus-newsroom model-index: - name: pegasus-newsroom-headline_writer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-headline_writer This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3988 - Rouge1: 41.8748 - Rouge2: 23.1947 - Rougel: 35.6263 - Rougelsum: 35.7355 - Gen Len: 34.1266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.5784 | 1.0 | 31200 | 1.4287 | 41.4257 | 22.9355 | 35.3299 | 35.4648 | 34.4677 | | 1.3501 | 2.0 | 62400 | 1.3955 | 41.9119 | 23.1912 | 35.6698 | 35.7479 | 33.8672 | | 1.2417 | 3.0 | 93600 | 1.3988 | 41.8748 | 23.1947 | 35.6263 | 35.7355 | 34.1266 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
chinhon/pegasus-multi_news-headline
chinhon
2023-09-12T03:38:52Z
375
3
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-multi_news", "base_model:finetune:google/pegasus-multi_news", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - rouge base_model: google/pegasus-multi_news model-index: - name: pegasus-multi_news-headline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-headline This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4421 - Rouge1: 41.616 - Rouge2: 22.922 - Rougel: 35.2189 - Rougelsum: 35.3561 - Gen Len: 33.9532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6637 | 1.0 | 31200 | 1.4877 | 41.0996 | 22.579 | 34.9311 | 35.0611 | 34.3431 | | 1.4395 | 2.0 | 62400 | 1.4388 | 41.6075 | 22.8274 | 35.2051 | 35.3526 | 33.7965 | | 1.3137 | 3.0 | 93600 | 1.4421 | 41.616 | 22.922 | 35.2189 | 35.3561 | 33.9532 | ### Framework versions - Transformers 4.12.2 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
bongo2112/sdxl-db-moodewji
bongo2112
2023-09-12T03:28:16Z
3
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-11T21:31:42Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of moodewjitz person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
folflo/mt5-small-finetuned-HunSum-1_v0911
folflo
2023-09-12T03:20:49Z
3
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T19:36:53Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_keras_callback model-index: - name: folflo/mt5-small-finetuned-HunSum-1_v0911 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # folflo/mt5-small-finetuned-HunSum-1_v0911 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0937 - Validation Loss: 2.8512 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 45488, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.8838 | 3.2449 | 0 | | 3.6730 | 3.0674 | 1 | | 3.3378 | 2.9587 | 2 | | 3.1802 | 2.9047 | 3 | | 3.0937 | 2.8512 | 4 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
grkrish/my_awesome_qa_model
grkrish
2023-09-12T03:19:44Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-10T15:17:12Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: grkrish/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # grkrish/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.9801 - Validation Loss: 4.3666 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6719 | 4.4302 | 0 | | 4.1300 | 4.3666 | 1 | | 3.9801 | 4.3666 | 2 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
hw2942/chinese-pert-base-SSEC
hw2942
2023-09-12T03:17:25Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:hfl/chinese-pert-base", "base_model:finetune:hfl/chinese-pert-base", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-12T03:11:42Z
--- license: cc-by-nc-sa-4.0 base_model: hfl/chinese-pert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: chinese-pert-base-wallstreetcn-morning-news-market-overview-SSEC-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-pert-base-wallstreetcn-morning-news-market-overview-SSEC-v4 This model is a fine-tuned version of [hfl/chinese-pert-base](https://huggingface.co/hfl/chinese-pert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4333 - Accuracy: 0.7188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 34 | 0.9037 | 0.75 | | No log | 2.0 | 68 | 1.1279 | 0.7188 | | No log | 3.0 | 102 | 1.1238 | 0.75 | | No log | 4.0 | 136 | 1.4450 | 0.6875 | | No log | 5.0 | 170 | 1.3506 | 0.7188 | | No log | 6.0 | 204 | 1.4783 | 0.6875 | | No log | 7.0 | 238 | 1.2780 | 0.75 | | No log | 8.0 | 272 | 1.4154 | 0.7188 | | No log | 9.0 | 306 | 1.4328 | 0.7188 | | No log | 10.0 | 340 | 1.4333 | 0.7188 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Luciano/xlm-roberta-large-finetuned-lener-br
Luciano
2023-09-12T03:16:53Z
53
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "pt", "dataset:lener_br", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-15T14:26:45Z
--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy base_model: xlm-roberta-large model-index: - name: xlm-roberta-large-finetuned-lener-br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: train args: lener_br metrics: - type: precision value: 0.8762313715584744 name: Precision - type: recall value: 0.8966141121736882 name: Recall - type: f1 value: 0.8863055697496168 name: F1 - type: accuracy value: 0.979500052295785 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-lener-br This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8762 - Recall: 0.8966 - F1: 0.8863 - Accuracy: 0.9795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0785 | 1.0 | 3914 | nan | 0.7119 | 0.8410 | 0.7711 | 0.9658 | | 0.076 | 2.0 | 7828 | nan | 0.8397 | 0.8679 | 0.8536 | 0.9740 | | 0.0434 | 3.0 | 11742 | nan | 0.8545 | 0.8666 | 0.8605 | 0.9693 | | 0.022 | 4.0 | 15656 | nan | 0.8293 | 0.8573 | 0.8431 | 0.9652 | | 0.0284 | 5.0 | 19570 | nan | 0.8789 | 0.8571 | 0.8678 | 0.9776 | | 0.029 | 6.0 | 23484 | nan | 0.8521 | 0.8788 | 0.8653 | 0.9771 | | 0.0227 | 7.0 | 27398 | nan | 0.7648 | 0.8873 | 0.8215 | 0.9686 | | 0.0219 | 8.0 | 31312 | nan | 0.8609 | 0.9026 | 0.8813 | 0.9780 | | 0.0121 | 9.0 | 35226 | nan | 0.8746 | 0.8979 | 0.8861 | 0.9812 | | 0.0087 | 10.0 | 39140 | nan | 0.8829 | 0.8827 | 0.8828 | 0.9808 | | 0.0081 | 11.0 | 43054 | nan | 0.8740 | 0.8749 | 0.8745 | 0.9765 | | 0.0058 | 12.0 | 46968 | nan | 0.8838 | 0.8842 | 0.8840 | 0.9788 | | 0.0044 | 13.0 | 50882 | nan | 0.869 | 0.8984 | 0.8835 | 0.9788 | | 0.002 | 14.0 | 54796 | nan | 0.8762 | 0.8966 | 0.8863 | 0.9795 | | 0.0017 | 15.0 | 58710 | nan | 0.8729 | 0.8982 | 0.8854 | 0.9791 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Luciano/xlm-roberta-base-finetuned-lener_br-finetuned-lener-br
Luciano
2023-09-12T03:15:29Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "pt", "dataset:lener_br", "base_model:Luciano/xlm-roberta-base-finetuned-lener_br", "base_model:finetune:Luciano/xlm-roberta-base-finetuned-lener_br", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-21T16:25:35Z
--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy base_model: Luciano/xlm-roberta-base-finetuned-lener_br model-index: - name: xlm-roberta-base-finetuned-lener_br-finetuned-lener-br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: train args: lener_br metrics: - type: precision value: 0.9206349206349206 name: Precision - type: recall value: 0.9294391315585423 name: Recall - type: f1 value: 0.925016077170418 name: F1 - type: accuracy value: 0.9832504071600401 name: Accuracy - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: validation metrics: - type: accuracy value: 0.9832802904657313 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTk3YTgzYjU4MTQ4ZDU5ZDY1YjNlZTdjNzM1YTY1OGM0ZTcyNTc2NDA4MzFhYmY0NmQ2MDRiMWU3NTUwM2FlZSIsInZlcnNpb24iOjF9.yCQ8lJoSfokChcGn16603Md8wsFG83E_x8ijn1Fuy3dyFmtaHP8UXSzY1pGrWKUnTKeCcOp7W2MD51gP_WRQCA - type: precision value: 0.986258771429967 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTYyOTRhOTg2NWY0YTc4NjE1YjU2NGU3NmFlMmQyY2E5N2U2ZmU1YmMzYjZkYmEwYjY1YjcxYWQ3ZTVjMmZlYyIsInZlcnNpb24iOjF9.vP_avJP-puSp3lvxI2lbCsPXfH1lKGCLfrT4hshA_LVn8wjOUPrjgHH60NVM0fjXA35PB0aFnE9qCEvwyfzPBw - type: recall value: 0.9897717432152019 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODY1OWU0YzM5ZWE5YmYwOTQ5MGU1MTkzZjkxNDhkOTExZDBlNTI1ODUwMzFlOGUxYTQzZjMxMWNkODZhYWNlNCIsInZlcnNpb24iOjF9.QM6enyQUtL91odii7Iqa1Ya6Yc3S1hM-YYkPLqhqRn7chXPXhB58D7-3dLq_se2rRm7led_kwKBaVZhv7aJBDw - type: f1 value: 0.9880121346555324 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGEyOWQ5NTViNjZiNGFhNmQ3N2Y4ZWIxYmEwYTM4NjZhMGZkYjc3NWNiN2I5M2YwMjcyYzA3OTlmMWU5MDU1NiIsInZlcnNpb24iOjF9.5VArYd9p24-Wkhnn28wQzpBgKlXhF-fvIFJl6sZasr8FzLAp_yAE9kU8wPGhUc0UW9nsu7PBpH14xbhblsmuBg - type: loss value: 0.1050868034362793 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWM0MTM2ODlkMjkxMTUyZDg4YmEyNTEzZjIyZWVkMmJhMGJjMmU1N2JmZDQ3Y2M2ZDZiNmYwZTI2ZjY2MDhmYSIsInZlcnNpb24iOjF9.JRkZwkuXovMIjiGlo38D3TPHImTTizTPf7iquVvoy4uWrdAwNympaMkqU78g9Fpky81-XWhCxK1pmrDhKQPTBg --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-lener_br-finetuned-lener-br This model is a fine-tuned version of [Luciano/xlm-roberta-base-finetuned-lener_br](https://huggingface.co/Luciano/xlm-roberta-base-finetuned-lener_br) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.9206 - Recall: 0.9294 - F1: 0.9250 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0657 | 1.0 | 1957 | nan | 0.7780 | 0.8687 | 0.8209 | 0.9718 | | 0.0321 | 2.0 | 3914 | nan | 0.8755 | 0.8708 | 0.8731 | 0.9793 | | 0.0274 | 3.0 | 5871 | nan | 0.8096 | 0.9124 | 0.8579 | 0.9735 | | 0.0216 | 4.0 | 7828 | nan | 0.7913 | 0.8842 | 0.8352 | 0.9718 | | 0.0175 | 5.0 | 9785 | nan | 0.7735 | 0.9248 | 0.8424 | 0.9721 | | 0.0117 | 6.0 | 11742 | nan | 0.9206 | 0.9294 | 0.9250 | 0.9833 | | 0.0121 | 7.0 | 13699 | nan | 0.8988 | 0.9318 | 0.9150 | 0.9819 | | 0.0086 | 8.0 | 15656 | nan | 0.8922 | 0.9175 | 0.9047 | 0.9801 | | 0.007 | 9.0 | 17613 | nan | 0.8482 | 0.8997 | 0.8732 | 0.9769 | | 0.0051 | 10.0 | 19570 | nan | 0.8730 | 0.9274 | 0.8994 | 0.9798 | | 0.0045 | 11.0 | 21527 | nan | 0.9172 | 0.9051 | 0.9111 | 0.9819 | | 0.0014 | 12.0 | 23484 | nan | 0.9138 | 0.9155 | 0.9147 | 0.9823 | | 0.0029 | 13.0 | 25441 | nan | 0.9099 | 0.9287 | 0.9192 | 0.9834 | | 0.0035 | 14.0 | 27398 | nan | 0.9019 | 0.9294 | 0.9155 | 0.9831 | | 0.0005 | 15.0 | 29355 | nan | 0.8886 | 0.9343 | 0.9109 | 0.9825 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Luciano/bertimbau-base-finetuned-brazilian_court_decisions
Luciano
2023-09-12T03:15:02Z
150
5
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "pt", "dataset:joelito/brazilian_court_decisions", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-13T10:45:34Z
--- language: - pt license: mit tags: - generated_from_trainer datasets: - joelito/brazilian_court_decisions metrics: - accuracy train-eval-index: - config: joelito--brazilian_court_decisions task: text-classification task_id: multi_class_classification splits: eval_split: test col_mapping: decision_description: text judgment_label: target widget: - text: 'AGRAVO DE INSTRUMENTO. AÇÃO REVISIONAL DE CONTRATO. DEPÓSITO DO VALOR INCONTROVERSO. IMPOSSIBILIDADE. NÃO PREENCHIMENTO DOS REQUISITOS PELO DEVEDOR. MANUTENÇÃO NA POSSE DO BEM E VEDAÇÃO DE INSCRIÇÃO NOS ÓRGÃOS DE PROTEÇÃO AO CRÉDITO MEDIANTE O DEPÓSITO DO VALOR ORIGINALMENTE CONTRATADO. 1. O autor requereu a sua manutenção na posse do bem, o depósito em juízo dos valores que entende incontroversos, a proibição de inscrição de seu nome nos órgãos de proteção ao crédito e a suspensão de eventual ação de busca e apreensão do veículo. 2. O artigo 330, PARAGRAFO 2 e PARAGRAFO 3 do CODIGO DE PROCESSO CIVIL autoriza expressamente o depósito do valor incontroverso nas ações revisionais de contrato mediante presença de três requisitos concomitantes: a) propositura de ação contestando a existência integral ou parcial do débito; b) efetiva demonstração de que a contestação da cobrança indevida se funda na aparência do bom direito; e, c) que a parte efetue o depósito do valor incontroverso ou preste caução idônea. Contudo, tal conduta não afastará a incidência das restrições legais decorrentes da dívida, porquanto os valores considerados incontroversos são inferiores àqueles contratados. 3. A jurisprudência é pacífica no sentido de ser necessário o depósito do valor integral da parcela da dívida para inibir os efeitos da mora e suas consequências. 4. Nos termos da jurisprudência consolidada nesta Corte, deverá o devedor depositar os valores pactuados originalmente no contrato, tanto para as parcelas vencidas, quanto para as vincendas, nas datas pactuadas, se desejar se manter na posse do bem e obstacular sua inscrição de seu nome nos cadastros restritivos de crédito.' - text: O constrangimento ilegal deve ser aferido segundo as circunstancias do caso concreto, especialmente diante da complexidade e das diligências necessárias, ainda mais quando tais elementos são necessários para embasar a própria denúncia em si. Intensa movimentação processual no sentido de angariar as informações necessárias. Prazo que merece ser mitigado. Denúncia oferecida nos autos da ação penal 0800162-9820188020001. II - Presentes a materialidade dos delitos e seus indícios de autoria, mormente diante das colaborações premiadas colhidas durante as investigações, não há falar em embasamento abstrato da decisão especialmente quando esta expressamente apontou que o paciente era proprietário de empresas supostamente fantasmas, que recebiam benefícios de diversas prefeituras. III - Ausência de constrangimento ilegal, tanto pela presença dos requisitos para a prisão preventiva em questão, quanto pelo fato de que resta evidenciado que o paciente ficou foragido. Precedentes. IV - Especificamente em relação ao pedido de extensão dos efeitos dos benefícios concedidos a outros investigados (Josimar Campos, Raphael de Barros Lima e Raulene Karoline Barros e Gabriel Brandão), entendo, a partir do narrado pela própria petição inicial, que a situação do paciente é diferente dos demais investigados, uma vez que, além de ele ter foragido do distrito da culpa e responder a outras ações penais, aparentemente não está colaborando com as investigações (os outros investigados firmaram acordo de colaboração premiada). V - No que tange ao pedido relacionado aos ex-prefeitos (Márcia Coutinho Nogueira de Albuquerque, José Jacob Gomes Brandão, Fábio Rangel Nunes de Oliveira) que se encontram em liberdade, entendo que a situação do paciente também é diferente, uma vez que a decisão de origem da conta que existem indicativos de que o esquema tenha ocorrido em 80 (oitenta) prefeituras. VI - A partir da leitura da decisão prolatada pelos juízes impetrados, verifica-se que o decreto de prisão não é fundamentado apenas no risco de a liberdade do paciente atrapalhar as investigações, mas também, para, sobretudo, garantir a aplicação da lei penal pelo fato de o paciente ter foragido do distrito da culpa. - text: APELAÇÃO CÍVEL. AÇÃO ORIGINÁRIA DE USUCAPIÃO. JULGAMENTO ANTECIPADO DA LIDE. SENTENÇA DE IMPROCEDÊNCIA AO PLEITO AUTORAL ANTE A AUSÊNCIA DOS REQUISITOS DO ARTIGO 1238 DO CÓDIGO CIVIL/02. AUSÊNCIA DE CITAÇÃO DO PROPRIETÁRIO DO BEM A SER USUCAPIDO. AUTOR COMPROVA POR DOCUMENTO EXPEDIDO PELA MUNICIPALIDADE O REGISTRO DO IMÓVEL USUCAPIENDO EM SEU NOME DESDE 1990. POSSIBILIDADE DO PREENCHIMENTO DO REQUISITO TEMPORAL (PRAZO PARA USUCAPIR) PREVISTO EM LEI A SER IMPLEMENTADO NO CURSO DA DEMANDA. OFENSA AO DEVIDO PROCESSO LEGAL MATÉRIA DE ORDEM PÚBLICA, RECONHECIDA DE OFÍCIO NO JUÍZO AD QUEM. NULIDADE DA SENTENÇA COM RETORNO DOS AUTOS À ORIGEM PARA DAR SEGUIMENTO A INSTRUÇÃO COM PROLAÇÃO DE NOVA DECISÃO. base_model: neuralmind/bert-base-portuguese-cased model-index: - name: bertimbau-base-finetuned-brazilian_court_decisions results: - task: type: text-classification name: Text Classification dataset: name: joelito/brazilian_court_decisions type: joelito/brazilian_court_decisions config: joelito--brazilian_court_decisions split: test metrics: - type: accuracy value: 0.7753086419753087 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2Q0N2I5ZThjOTdmYjJmNjQ2M2EwYzllOGZlZmUzMzQ3ZTNmMDYwN2Y4NTk3MjA4NTBiYzBkNGRmMDVjMWE0YiIsInZlcnNpb24iOjF9.azo0rnA6IBxWvLcVuY37hgCQ2Krss0pqrqzHJ_cu4y6hb5IHupoPUzvkAXpv5_U_iOVAq_xPS8Ow9CU9YLDjAg - type: precision value: 0.7250426732752088 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFlNGMzM2VlMGNkOGYwNWU1N2U1NDVmNjlmMjZmYTI1YzVmNTJkZTVlMmY1NTQ3NDkzOWRlMjBmZDZlMDlkMiIsInZlcnNpb24iOjF9.2xet0XJ9AzIF4WvH-QPborSKwNYxrnjI88yYbx5rmt82Uw5_KutBG_LLHl-H7ZDLcBmbLrCGq9kAz7FsDR8DDg - type: precision value: 0.7753086419753087 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTRmYTY2MWZhY2ZlZjYwMmQ5NzBkZjNkYzZiMGU0NmI5OTA5MDZjMGZkNDczNzc1OWVjNDE0YzFlMDE3MjU5YyIsInZlcnNpb24iOjF9.2smiUGVwRxTXdTcWm9wT_7HfYMQBGtNGiRECC-VqDgJalFiJL8z42RhaL0PpX29P9Gs2AqHj_CC2yOpcF9-dBQ - type: precision value: 0.772642124493271 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGYwN2I2MzcwODBjZTI0MjRjZjZmYzg5OGQyYzI3MzNiNDg3OTRlOGY0ZjBhM2NkMzdmM2Q1MGY1OTg3NGQ4YyIsInZlcnNpb24iOjF9.alVSoPTd0sN2WnlwUsvjMB3FMwgq4idmBg61VvZEGGjMheq-gantO2LEjghOLvyqV2ykHKZ3HtsaBZg3MFh1BQ - type: recall value: 0.7165701681830714 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzdhMGFlOTk1ZDY5NmNkMjQ0ZDJjOWI1NzMxYmFiNTZiNzM3N2ZhY2ZmZGRkYjBlMmY1ZjM4MDAzYWRhZmYxYyIsInZlcnNpb24iOjF9.iOY4HQhYtb0j4Aj0Q1pohB39QNNzBfeF3KjMeN33hgaRrK5BgoL_6VH_g_-n7oY00Pmw5sXbaLdO7obCpQooAQ - type: recall value: 0.7753086419753087 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDFlY2ViMjdmM2MzNDVkNGVjM2UxMzk5N2MyOWM3NTE5ZjQ2ZTJjMGMzNDViNmYzNWZiN2E0MmM3MTFhZmJhNCIsInZlcnNpb24iOjF9.MrfbjuTh4fNTjeNz6SNJ9L5bAxOQYtfXFArg0lMN7dzji8BtpSep_pVwb-27A6Bem7V2xlc27PdCMayVu08oCw - type: recall value: 0.7753086419753087 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTFkOGJhODNjZWI3OWM2ZDQwNWNkNWViYjZmOWQ3NDAzNWIzMjM1ZmRlNThiMjhkYjhkMDM0ZGU5MTdhOWYyOSIsInZlcnNpb24iOjF9.sxK_3TdQnAcCttSHzVvPOGxGlOfpeKYBZ9z6rTEAUw2G6HlC09jcxhlcl5nQRvpfMcMAzgVTrL6X3kgRjB9VBg - type: f1 value: 0.7202933364810833 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWZkMzNmZjJmNDhjZWU3MWM3ODdjNDA1OTY3ZGY3MmJmM2VjOTk2YTdkYzk2NWYxMGVjYjNmZTA1YTAxYjdjZiIsInZlcnNpb24iOjF9.tJ0qIvWo2pz1nzxCx-nCXm9BQPP94VV7cOEVQLPE2U3YRgOuIFMO99CW4a_Ge70XPLyFTIRCbr2-xDpMrC03Cw - type: f1 value: 0.7753086419753087 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGJiZDA4ZWU3NzA3OWU0N2YzNTU1NTQ1MmI2MzdlNWMwYTFhYjk1ZTQ5NDA0NzIyYTEwYWU2NGYxMDg5MzE5NyIsInZlcnNpb24iOjF9.HrC1_am-qUC4HboPtIanE1np2faZVqSPy58VlY3oK-nTPHYyEt_6FfgJoP2M6roVGKLjiXDs7gVljplAAG1XBQ - type: f1 value: 0.7736389495276883 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjgzYjc2Y2JjYTI0MDFhYWZmOGY1YTc5ZTQ1NzI3ZDUxNWY5NzdhZmIyYzE1MTA5NTEyOTA4NjFkMmQ4ODI5ZCIsInZlcnNpb24iOjF9.TCvj3Rqei3q2ajB6L9dqIxTyKXhNFQuQrU4ymc7kWnEyPuKgB9ty2JTqjeRYPWpY2RicABU9UFDXEhrdcfbKCw - type: loss value: 0.6030029058456421 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmUyZjdjMTNiOGQ4OGJmZTg3MjU2MjczNDY0OWNhODNjZTIzYjhhOWFmZWI2M2Q4NTI3MjU1YzcwOWNiMDI0MCIsInZlcnNpb24iOjF9.DZoUcmXU7RWW_AGR5ezU7ZbM9YobJ5nzQSgrtLVJtZjd6bELzCyafbsCCJE1Uia7Uz0HcW1B1J6mbev_z6TlAg --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertimbau-base-finetuned-brazilian_court_decisions This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6424 - Accuracy: 0.7921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 203 | 0.7726 | 0.6683 | | No log | 2.0 | 406 | 0.5948 | 0.7673 | | 0.7112 | 3.0 | 609 | 0.6424 | 0.7723 | | 0.7112 | 4.0 | 812 | 0.6376 | 0.7772 | | 0.3383 | 5.0 | 1015 | 0.6424 | 0.7921 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Luciano/gpt2-small-portuguese-finetuned-tcu-acordaos
Luciano
2023-09-12T03:14:44Z
154
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "pt", "base_model:pierreguillou/gpt2-small-portuguese", "base_model:finetune:pierreguillou/gpt2-small-portuguese", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - pt license: mit tags: - generated_from_trainer base_model: pierreguillou/gpt2-small-portuguese model-index: - name: gpt2-small-portuguese-finetuned-tcu-acordaos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-portuguese-finetuned-tcu-acordaos This model is a fine-tuned version of [pierreguillou/gpt2-small-portuguese](https://huggingface.co/pierreguillou/gpt2-small-portuguese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3435 | 1.0 | 658 | 1.8346 | | 1.8668 | 2.0 | 1316 | 1.7141 | | 1.7573 | 3.0 | 1974 | 1.6841 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
Luciano/bertimbau-base-finetuned-lener-br
Luciano
2023-09-12T03:12:01Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "fill-mask", "generated_from_trainer", "pt", "dataset:Luciano/lener_br_text_to_lm", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-04T13:01:45Z
--- language: - pt license: mit tags: - generated_from_trainer datasets: - Luciano/lener_br_text_to_lm widget: - text: Com efeito, se tal fosse possível, o Poder [MASK] – que não dispõe de função legislativa – passaria a desempenhar atribuição que lhe é institucionalmente estranha (a de legislador positivo), usurpando, desse modo, no contexto de um sistema de poderes essencialmente limitados, competência que não lhe pertence, com evidente transgressão ao princípio constitucional da separação de poderes. - text: O autor sustenta que a lei é formal e materialmente inconstitucional, em violação aos arts. 15, XIV e XV, 19, caput, 53, 71, §1º, I , e 100, VI e X, da Lei Orgânica do DF, uma vez que, ( i ) originou-se de iniciativa parlamentar quando necessáriainiciativa privativa do Chefe do Poder Executivo, suscitando, inclusive, violação ao postulado constitucional da `` reserva de administração '', a qual impede a ingerência normativa do Poder [MASK] em matérias de competência executiva ; ( ii ) autoriza a delegação de poder de polícia , atividade típica e exclusiva de Estado , na medida em que permite ao Distrito Federal firmar convênios com o Conselho Regional de Engenharia e Agronomia do Distrito Federal - CREA-DF e com o Conselho de Arquitetura e Urbanismo do Distrito Federal - CAU-DF para, por meio do seu corpo técnico e credenciados, atuarem na análise de processos de concessão de Alvará de Construção e de Carta de Habite-se. base_model: neuralmind/bert-base-portuguese-cased model-index: - name: bertimbau-base-finetuned-lener-br results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertimbau-base-finetuned-lener-br This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the [Luciano/lener_br_text_to_lm](https://huggingface.co/datasets/Luciano/lener_br_text_to_lm) dataset. It achieves the following results on the evaluation set: - Loss: 0.8132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3167 | 1.0 | 2079 | 1.1163 | | 1.1683 | 2.0 | 4158 | 1.0594 | | 1.0648 | 3.0 | 6237 | 1.0501 | | 1.0228 | 4.0 | 8316 | 0.9693 | | 0.9662 | 5.0 | 10395 | 0.9847 | | 0.9422 | 6.0 | 12474 | 0.9556 | | 0.8696 | 7.0 | 14553 | 0.8978 | | 0.7856 | 8.0 | 16632 | nan | | 0.7849 | 9.0 | 18711 | 0.9192 | | 0.7559 | 10.0 | 20790 | 0.8536 | | 0.7564 | 11.0 | 22869 | 0.9230 | | 0.7641 | 12.0 | 24948 | 0.8852 | | 0.7007 | 13.0 | 27027 | 0.8616 | | 0.7139 | 14.0 | 29106 | 0.8419 | | 0.6543 | 15.0 | 31185 | 0.8460 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
choz/distilbert-base-uncased-finetuned-squad
choz
2023-09-12T02:45:05Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-12T01:36:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2344 | 1.0 | 5533 | 1.1513 | | 0.9611 | 2.0 | 11066 | 1.1156 | | 0.7538 | 3.0 | 16599 | 1.1477 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
casque/GoodHands-beta2
casque
2023-09-12T02:41:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-12T01:22:33Z
--- license: creativeml-openrail-m ---
haozhangphy/ppo-LunarLander-v2
haozhangphy
2023-09-12T02:36:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T02:36:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.75 +/- 18.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kyuwon416/Reinforce-CartPole-v1
kyuwon416
2023-09-12T02:30:50Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T02:30:40Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Sambosis/autotrain-2ndtrain-88581143712
Sambosis
2023-09-12T02:26:04Z
123
0
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Sambosis/autotrain-data-2ndtrain", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-09-12T02:17:18Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - Sambosis/autotrain-data-2ndtrain co2_eq_emissions: emissions: 0.09774058749638984 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 88581143712 - CO2 Emissions (in grams): 0.0977 ## Validation Metrics - Loss: 0.155 - Rouge1: 27.320 - Rouge2: 22.891 - RougeL: 25.972 - RougeLsum: 26.015 - Gen Len: 20.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Sambosis/autotrain-2ndtrain-88581143712 ```
abhilad98/db_abhi
abhilad98
2023-09-12T02:22:19Z
4
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-11T21:41:55Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 instance_prompt: a photo of Abhi tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - abhilad98/db_abhi These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were trained on a photo of Abhi using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
minhbtc/q-FrozenLake-v1-4x4-noSlippery
minhbtc
2023-09-12T02:21:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-12T02:15:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="minhbtc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nanom/gtp_adaptation_martin_fierro_v2
nanom
2023-09-12T02:15:13Z
134
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:DeepESP/gpt2-spanish", "base_model:finetune:DeepESP/gpt2-spanish", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-12T01:23:34Z
--- license: mit base_model: DeepESP/gpt2-spanish tags: - generated_from_trainer model-index: - name: Martin-Fierro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Martin-Fierro This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.7721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.0919 | 1.0 | 40 | 4.9569 | | 4.7032 | 2.0 | 80 | 4.8517 | | 4.4604 | 3.0 | 120 | 4.8015 | | 4.2456 | 4.0 | 160 | 4.7786 | | 4.2514 | 5.0 | 200 | 4.7721 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
shaowenchen/chinese-llama-2-13b-16k-gguf
shaowenchen
2023-09-12T02:10:04Z
86
0
null
[ "gguf", "meta", "llama", "llama-2", "chinese", "text-generation", "zh", "license:other", "region:us" ]
text-generation
2023-09-09T00:07:52Z
--- inference: false language: - zh license: other model_creator: ziqingyang model_link: https://huggingface.co/ziqingyang/chinese-llama-2-13b-16k model_name: chinese-llama-2-13b-16k model_type: llama pipeline_tag: text-generation quantized_by: shaowenchen tasks: - text2text-generation tags: - meta - gguf - llama - llama-2 - chinese --- ## Provided files | Name | Quant method | Size | | ----------------------------------- | ------------ | ----- | | chinese-llama-2-13b-16k.Q2_K.gguf | Q2_K | 5.2 G | | chinese-llama-2-13b-16k.Q3_K.gguf | Q3_K | 6.0 G | | chinese-llama-2-13b-16k.Q3_K_L.gguf | Q3_K_L | 6.6 G | | chinese-llama-2-13b-16k.Q3_K_S.gguf | Q3_K_S | 5.4 G | | chinese-llama-2-13b-16k.Q4_0.gguf | Q4_0 | 7.0 G | | chinese-llama-2-13b-16k.Q4_1.gguf | Q4_1 | 7.8 G | | chinese-llama-2-13b-16k.Q4_K.gguf | Q4_K | 7.5 G | | chinese-llama-2-13b-16k.Q4_K_S.gguf | Q4_K_S | 7.1 G | | chinese-llama-2-13b-16k.Q5_0.gguf | Q5_0 | 8.5 G | | chinese-llama-2-13b-16k.Q5_1.gguf | Q5_1 | 9.3 G | | chinese-llama-2-13b-16k.Q5_K.gguf | Q5_K | 8.8 G | | chinese-llama-2-13b-16k.Q5_K_S.gguf | Q5_K_S | 8.5 G | | chinese-llama-2-13b-16k.Q6_K.gguf | Q6_K | 10 G | | chinese-llama-2-13b-16k.Q8_0.gguf | Q8_0 | 13 G | | chinese-llama-2-13b-16k.gguf | full | 25 G | Usage: ``` docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/gguf-model-name.gguf hubimage/llama-cpp-python:latest ``` and you can view http://localhost:8000/docs to see the swagger UI.
polejowska/detr-r50-cd45rb-1ah-6l-corrected
polejowska
2023-09-12T01:52:29Z
159
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb_nan_xywh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-14T10:47:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb_nan_xywh model-index: - name: detr-r50-cd45rb-1ah-6l-corrected results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r50-cd45rb-1ah-6l-corrected This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cd45rb_nan_xywh dataset. It achieves the following results on the evaluation set: - Loss: 1.9721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.9229 | 1.0 | 4606 | 1.3205 | | 1.703 | 2.0 | 9212 | 1.2364 | | 1.5976 | 3.0 | 13818 | 1.1736 | | 1.5323 | 4.0 | 18424 | 1.1464 | | 1.483 | 5.0 | 23030 | 1.1084 | | 1.4431 | 6.0 | 27636 | 1.1037 | | 1.4153 | 7.0 | 32242 | 1.0743 | | 1.3898 | 8.0 | 36848 | 1.0755 | | 1.3712 | 9.0 | 41454 | 1.0604 | | 1.3616 | 10.0 | 46060 | 1.0556 | | 2.807 | 11.0 | 50666 | 2.1286 | | 2.6791 | 12.0 | 55272 | 2.1132 | | 2.6331 | 13.0 | 59878 | 2.0794 | | 2.6108 | 14.0 | 64484 | 2.0570 | | 2.5818 | 15.0 | 69090 | 2.0455 | | 2.5693 | 16.0 | 73696 | 2.0330 | | 2.5446 | 17.0 | 78302 | 2.0361 | | 2.5298 | 18.0 | 82908 | 2.0160 | | 2.5098 | 19.0 | 87514 | 2.0395 | | 2.4951 | 20.0 | 92120 | 2.0063 | | 2.4913 | 21.0 | 96726 | 2.0016 | | 2.4703 | 22.0 | 101332 | 1.9800 | | 2.4643 | 23.0 | 105938 | 1.9811 | | 2.4611 | 24.0 | 110544 | 1.9807 | | 2.4568 | 25.0 | 115150 | 1.9721 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
manhtt-079/vipubmed-deberta-xsmall
manhtt-079
2023-09-12T01:51:39Z
112
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "deberta-v2", "transformer", "vietnamese", "nlp", "bert", "deberta", "deberta-v3", "fill-mask", "vi", "dataset:VietAI/vi_pubmed", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2023-04-14T02:35:24Z
--- language: - vi metrics: - f1 pipeline_tag: fill-mask license: mit datasets: - VietAI/vi_pubmed tags: - transformer - vietnamese - nlp - bert - deberta - deberta-v3 --- # ViPubMedDeBERTa: A Vietnamese pretrained biomedical language representation model ## Model description ## Model variations ## How to use You can use this model directly with a pipeline for masked language modeling:<br> **_NOTE:_** The input text should be already word-segmented, you can use [Pyvi](https://github.com/trungtv/pyvi) (Python Vietnamese Core NLP Toolkit) to segment word before passing to the model. ```python >>> from transformers import pipeline >>> model = pipeline('fill-mask', model='manhtt-079/vipubmed-deberta-xsmall') >>> text_with_mask = """Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS ) . FDCS là bệnh rất hiếm ảnh_hưởng đến tế_bào trình_diện kháng_nguyên đuôi gai và thường bị chẩn_đoán nhầm . Phẫu_thuật được coi là phương_thức điều_trị tốt nhất , tiếp_theo là hóa_trị . Trong trường_hợp của chúng_tôi , [MASK] cắt bỏ không_thể thực_hiện được , do đó bệnh_nhân được hóa_trị hai dòng , sau đó là cấy_ghép tủy xương , sau đó là hóa_trị ba với đáp_ứng trao_đổi chất hoàn_toàn được thấy trên""" >>> model(text_with_mask) [{'score': 0.7800273299217224, 'token': 1621, 'token_str': 'phẫu_thuật', 'sequence': 'Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS ). FDCS là bệnh rất hiếm ảnh_hưởng đến tế_bào trình_diện kháng_nguyên đuôi gai và thường bị chẩn_đoán nhầm. Phẫu_thuật được coi là phương_thức điều_trị tốt nhất, tiếp_theo là hóa_trị. Trong trường_hợp của chúng_tôi, phẫu_thuật cắt bỏ không_thể thực_hiện được, do đó bệnh_nhân được hóa_trị hai dòng, sau đó là cấy_ghép tủy xương, sau đó là hóa_trị ba với đáp_ứng trao_đổi chất hoàn_toàn được thấy trên'}, {'score': 0.13326583802700043, 'token': 83, 'token_str': 'việc', 'sequence': 'Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS ). FDCS là bệnh rất hiếm ảnh_hưởng đến tế_bào trình_diện kháng_nguyên đuôi gai và thường bị chẩn_đoán nhầm. Phẫu_thuật được coi là phương_thức điều_trị tốt nhất, tiếp_theo là hóa_trị. Trong trường_hợp của chúng_tôi, việc cắt bỏ không_thể thực_hiện được, do đó bệnh_nhân được hóa_trị hai dòng, sau đó là cấy_ghép tủy xương, sau đó là hóa_trị ba với đáp_ứng trao_đổi chất hoàn_toàn được thấy trên'}, {'score': 0.014797757379710674, 'token': 589, 'token_str': 'phương_pháp', 'sequence': 'Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS ). FDCS là bệnh rất hiếm ảnh_hưởng đến tế_bào trình_diện kháng_nguyên đuôi gai và thường bị chẩn_đoán nhầm. Phẫu_thuật được coi là phương_thức điều_trị tốt nhất, tiếp_theo là hóa_trị. Trong trường_hợp của chúng_tôi, phương_pháp cắt bỏ không_thể thực_hiện được, do đó bệnh_nhân được hóa_trị hai dòng, sau đó là cấy_ghép tủy xương, sau đó là hóa_trị ba với đáp_ứng trao_đổi chất hoàn_toàn được thấy trên'}, {'score': 0.011190224438905716, 'token': 23339, 'token_str': 'sinh_thiết', 'sequence': 'Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS ). FDCS là bệnh rất hiếm ảnh_hưởng đến tế_bào trình_diện kháng_nguyên đuôi gai và thường bị chẩn_đoán nhầm. Phẫu_thuật được coi là phương_thức điều_trị tốt nhất, tiếp_theo là hóa_trị. Trong trường_hợp của chúng_tôi, sinh_thiết cắt bỏ không_thể thực_hiện được, do đó bệnh_nhân được hóa_trị hai dòng, sau đó là cấy_ghép tủy xương, sau đó là hóa_trị ba với đáp_ứng trao_đổi chất hoàn_toàn được thấy trên'}, {'score': 0.006846326868981123, 'token': 454, 'token_str': 'điều_trị', 'sequence': 'Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS ). FDCS là bệnh rất hiếm ảnh_hưởng đến tế_bào trình_diện kháng_nguyên đuôi gai và thường bị chẩn_đoán nhầm. Phẫu_thuật được coi là phương_thức điều_trị tốt nhất, tiếp_theo là hóa_trị. Trong trường_hợp của chúng_tôi, điều_trị cắt bỏ không_thể thực_hiện được, do đó bệnh_nhân được hóa_trị hai dòng, sau đó là cấy_ghép tủy xương, sau đó là hóa_trị ba với đáp_ứng trao_đổi chất hoàn_toàn được thấy trên'}] ``` #### Get features: - With PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('manhtt-079/vipubmed-deberta-xsmall') model = AutoModel.from_pretrained("manhtt-079/vipubmed-deberta-xsmall") text = "Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS )." model_inputs = tokenizer(text, return_tensors='pt') outputs = model(**model_inputs) ``` - With TensorFlow ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('manhtt-079/vipubmed-deberta-xsmall') model = TFAutoModel.from_pretrained("manhtt-079/vipubmed-deberta-xsmall") text = "Chúng_tôi mô_tả một trường_hợp bệnh_nhân nữ 44 tuổi được chẩn_đoán sarcoma tế_bào tua nang ( FDCS )." model_inputs = tokenizer(text, return_tensors='tf') outputs = model(**model_inputs) ``` ## Pre-training data The ViPubMedDeBERTa model was pre-trained on [ViPubmed](https://github.com/vietai/ViPubmed), a dataset consisting of 20M Vietnamese Biomedical abstracts generated by large scale translation. ## Training procedure ### Data deduplication A fuzzy deduplication, targeting documents with high overlap, was conducted at the document level to enhance quality and address overfitting. Employing Locality Sensitive Hashing (LSH) with a threshold of 0.9 ensured the removal of documents with overlap exceeding 90%. This process resulted in an average reduction of the dataset's size by 3%. ### Pretraining We employ our model based on the [ViDeBERTa](https://github.com/HySonLab/ViDeBERTa) architecture and leverage its pre-trained checkpoint to continue pre-training. Our model was trained on a single A100 GPU (40GB) for 220 thousand steps, with a batch size of 24 and gradient accumulation steps set to 4 (resulting in a total of 96). The sequence length was limited to 512 tokens and the model peak learning rate of 1e-4. ## Evaluation results
joey234/whisper-small-vi
joey234
2023-09-12T01:44:50Z
94
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-03T00:11:03Z
--- language: - vi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Vietnamese results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 vi type: mozilla-foundation/common_voice_11_0 config: vi split: None metrics: - type: wer value: 34.21715788320368 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Vietnamese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 vi dataset. It achieves the following results on the evaluation set: - Loss: 0.9921 - Wer: 34.2172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0002 | 124.0 | 1000 | 0.7998 | 21.7706 | | 0.0001 | 249.0 | 2000 | 0.8833 | 28.9690 | | 0.0 | 374.0 | 3000 | 0.9382 | 30.8206 | | 0.0 | 499.0 | 4000 | 0.9754 | 34.4363 | | 0.0 | 624.0 | 5000 | 0.9921 | 34.2172 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
nikolasmoya/c4-binary-english-grammar-checker
nikolasmoya
2023-09-12T01:31:47Z
123
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T22:02:26Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - matthews_correlation model-index: - name: c4-binary-english-grammar-checker results: [] --- # Usage instructions: The recommendation is to split the text into sentences and evaluate sentence by sentence, you can do that using spacy: ``` import spacy def clean_up_sentence(text: str) -> str: text = text.replace("---", "") text = text.replace("\n", " ") text = text.strip() if not text.endswith(('.', '!', '?', ":")): # Since we are breaking a longer text into sentences ourselves, we should always end a sentence with a period. text = text + "." return text sentence_splitter = spacy.load("en_core_web_sm") spacy_document = sentence_splitter("This is a long text. It has two or more sentence. Spacy will break it down into sentences.") results = [] for sentence in spacy_document.sents: clean_text = clean_up_sentence(str(sentence)) classification = grammar_checker(clean_text)[0] results.append({ "label": classification['label'], "score": classification['score'], "sentence": clean_text }) pd.DataFrame.from_dict(results) ``` # c4-binary-english-grammar-checker This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3546 - Accuracy: 0.8577 - Matthews Correlation: 0.7192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation | |:-------------:|:-----:|:------:|:---------------:|:--------:|:--------------------:| | 0.363 | 1.0 | 200000 | 0.3634 | 0.8487 | 0.7025 | | 0.3032 | 2.0 | 400000 | 0.3546 | 0.8577 | 0.7192 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
chunwoolee0/klue_ynat_roberta_base_model
chunwoolee0
2023-09-12T01:28:58Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "arxiv:2105.09680", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-18T14:43:31Z
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: klue_ynat_roberta_base_model results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: ynat split: validation args: ynat metrics: - name: F1 type: f1 value: 0.872014500465787 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue_ynat_roberta_base_model This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3747 - F1: 0.8720 ## Model description Pretrained RoBERTa Model on Korean Language. See [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details. ## Intended uses & limitations Pretrained RoBERTa Model on Korean Language. See Github and Paper for more details. ## Training and evaluation data ## How to use _NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer. (`AutoTokenizer` will load `BertTokenizer`) ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("klue/roberta-base") tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base") ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4838 | 0.8444 | | No log | 2.0 | 358 | 0.3848 | 0.8659 | | 0.4203 | 3.0 | 537 | 0.3778 | 0.8690 | | 0.4203 | 4.0 | 716 | 0.3762 | 0.8702 | | 0.4203 | 5.0 | 895 | 0.3747 | 0.8720 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
chunwoolee0/klue_ner_roberta_model
chunwoolee0
2023-09-12T01:28:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:klue", "arxiv:2105.09680", "base_model:klue/roberta-base", "base_model:finetune:klue/roberta-base", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-19T15:24:39Z
--- base_model: klue/roberta-base tags: - generated_from_trainer datasets: - klue metrics: - precision - recall - f1 - accuracy model-index: - name: klue_ner_roberta_model results: - task: name: Token Classification type: token-classification dataset: name: klue type: klue config: ner split: validation args: ner metrics: - name: Precision type: precision value: 0.9545986426398315 - name: Recall type: recall value: 0.9557169634489222 - name: F1 type: f1 value: 0.955157475705421 - name: Accuracy type: accuracy value: 0.9883703228112445 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue_ner_roberta_model This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.0487 - Precision: 0.9546 - Recall: 0.9557 - F1: 0.9552 - Accuracy: 0.9884 ## Model description Pretrained RoBERTa Model on Korean Language. See [Github](https://github.com/KLUE-benchmark/KLUE) and [Paper](https://arxiv.org/abs/2105.09680) for more details. ## Intended uses & limitations ## How to use _NOTE:_ Use `BertTokenizer` instead of RobertaTokenizer. (`AutoTokenizer` will load `BertTokenizer`) ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("klue/roberta-base") tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base") ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0449 | 1.0 | 2626 | 0.0601 | 0.9361 | 0.9176 | 0.9267 | 0.9830 | | 0.0262 | 2.0 | 5252 | 0.0469 | 0.9484 | 0.9510 | 0.9497 | 0.9874 | | 0.0144 | 3.0 | 7878 | 0.0487 | 0.9546 | 0.9557 | 0.9552 | 0.9884 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
souljoy/distilhubert-finetuned-gtzan
souljoy
2023-09-12T01:23:47Z
163
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-12T00:56:22Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan-1epoch results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.53 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan-1epoch This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.8456 - Accuracy: 0.53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0099 | 1.0 | 113 | 1.8456 | 0.53 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
chunwoolee0/klue_nli_roberta_base_model
chunwoolee0
2023-09-12T01:23:41Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-18T05:01:52Z
--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model-index: - name: klue_nli_roberta_base_model results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: nli split: validation args: nli metrics: - name: Accuracy type: accuracy value: 0.8653333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # klue_nli_roberta_base_model This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.6867 - Accuracy: 0.8653 ## Model description Pretrained RoBERTa Model on Korean Language. See Github and Paper for more details. ## Intended uses & limitations ## How to use *NOTE*: Use BertTokenizer instead of RobertaTokenizer. (AutoTokenizer will load BertTokenizer) from transformers import AutoModel, AutoTokenizer ```python model = AutoModel.from_pretrained("klue/roberta-base") tokenizer = AutoTokenizer.from_pretrained("klue/roberta-base") ``` ## Training and evaluation data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5988 | 1.0 | 782 | 0.4378 | 0.8363 | | 0.2753 | 2.0 | 1564 | 0.4169 | 0.851 | | 0.1735 | 3.0 | 2346 | 0.5267 | 0.8607 | | 0.0956 | 4.0 | 3128 | 0.6275 | 0.8683 | | 0.0708 | 5.0 | 3910 | 0.6867 | 0.8653 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
deepachalapathi/msrc_2
deepachalapathi
2023-09-12T01:23:29Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-12T01:23:13Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # whateverweird17/msrc_2 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("whateverweird17/msrc_2") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
miscjose/mt5-small-finetuned-genius-music
miscjose
2023-09-12T01:12:25Z
19
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "music", "song-lyrics", "dataset:miscjose/genius-music", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-08-09T02:25:18Z
--- license: apache-2.0 base_model: google/mt5-small tags: - summarization - generated_from_trainer - music - song-lyrics metrics: - rouge model-index: - name: mt5-small-finetuned-genius results: [] pipeline_tag: summarization datasets: - miscjose/genius-music widget: - text: > Thought I'd end up with Sean But he wasn't a match Wrote some songs about Ricky Now I listen and laugh Even almost got married And for Pete, I'm so thankful Wish I could say, "Thank you" to Malcolm 'Cause he was an angel One taught me love One taught me patience And one taught me pain Now, I'm so amazing Say I've loved and I've lost But that's not what I see So, look what I got Look what you taught me And for that, I say Thank you, next (Next) Thank you, next (Next) Thank you, next I'm so fuckin' grateful for my ex Thank you, next (Next) Thank you, next (Next) Thank you, next (Next) I'm so fuckin'— Spend more time with my friends I ain't worried 'bout nothin' Plus, I met someone else We havin' better discussions I know they say I move on too fast But this one gon' last 'Cause her name is Ari And I'm so good with that (So good with that) She taught me love (Love) She taught me patience (Patience) How she handles pain (Pain) That shit's amazing (Yeah, she's amazing) I've loved and I've lost (Yeah, yeah) But that's not what I see (Yeah, yeah) 'Cause look what I've found (Yeah, yeah, I've found) Ain't no need for searching, and for that, I say Thank you, next (Thank you, next) Thank you, next (Thank you, next) Thank you, next (Thank you) I'm so fuckin' grateful for my ex Thank you, next (Thank you, next) Thank you, next (Said thank you, next) Thank you, next (Next) I'm so fuckin' grateful for my ex Thank you, next Thank you, next Thank you, next I'm so fuckin'— One day I'll walk down the aisle Holding hands with my mama I'll be thanking my dad 'Cause she grew from the drama Only wanna do it once, real bad Gon' make that shit last God forbid something happens Least this song is a smash (Song is a smash) I've got so much love (Love) Got so much patience (Patience) And I've learned from the pain (Pain) I turned out amazing (Turned out amazing) Say I've loved and I've lost (Yeah, yeah) But that's not what I see (Yeah, yeah) 'Cause look what I've found (Yeah, yeah) Ain't no need for searching And for that, I say Thank you, next (Thank you, next) Thank you, next (Thank you, next) Thank you, next I'm so fuckin' grateful for my ex Thank you, next (Thank you, next) Thank you, next (Said thank you, next) Thank you, next (Next) I'm so fuckin' grateful for my ex Thank you, next Thank you, next Thank you, next Yeah, yee Thank you, next Thank you, next Thank you, next Yeah, yee - text: > Who's this? Da-ddy Yan-kee! Zúmbale mambo pa' que mis gatas prendan los motore' Zúmbale mambo pa' que mis gatas prendan los motore' Zúmbale mambo pa' que mis gatas prendan los motore' Que se preparen que lo que viene es pa' que le den ¡Duro! Mamita, yo sé que tú no te me va' a quitar ¡Duro! Lo que me gusta es que tú te dejas llevar ¡Duro! Todos los weekend'es ella sale a vacilar ¡Duro! Mi gata no para 'e janguear, porque A ella le gusta la gasolina (Dame más gasolina) Cómo le encanta la gasolina (Dame más gasolina) A ella le gusta la gasolina (Dame más gasolina) Cómo le encanta la gasolina (Dame más gasolina) Ella prende las turbinas, no discrimina No se pierde ni un party de marquesina Se acicala hasta pa' la esquina Luce tan bien que hasta la sombra le combina Asesina, me domina Janguea en carros, motoras y limusinas Llena su tanque de adrenalina Cuando escucha reggaetón en las bocinas A ella le gusta la gasolina (Dame más gasolina) Cómo le encanta la gasolina (Dame más gasolina) A ella le gusta la gasolina (Dame más gasolina) Cómo le encanta la gasolina (Dame más gasolina) Aquí somos los mejores, no te me ajore' En la pista nos llaman "Los Matadore'" Tú hace' que cualquiera se enamore Cuando bailas al ritmo de los tambore' Esto va pa' las gatas de to's colore' Pa' las mayore', pa' las menore' Pa' las que son más zorras que los cazadore' Pa' las mujeres que no apagan sus motore' Tenemo' tú y yo algo pendiente Tú me debes algo y lo sabe' Conmigo ella se pierde No le rinde cuentas a nadie Tenemo' tú y yo algo pendiente Tú me debes algo y lo sabe' Conmigo ella se pierde No le rinde cuentas a nadie Zúmbale mambo pa' que mis gatas prendan los motore' Zúmbale mambo pa' que mis gatas prendan los motore' Zúmbale mambo pa' que mis gatas prendan los motore' Que se preparen que lo que viene es pa' que le den ¡Duro! Mamita, yo sé que tú no te me va' a quitar ¡Duro! Lo que me gusta es que tú te dejas llevar ¡Duro! Todos los weekend'es ella sale a vacilar ¡Duro! Mi gata no para 'e janguear, porque A ella le gusta la gasolina (Dame más gasolina) Cómo le encanta la gasolina (Dame más gasolina) A ella le gusta la gasolina (Dame más gasolina) Cómo le encanta la gasolina (Dame más gasolina) - text: > 無敵の笑顔で荒らすメディア 知りたいその秘密ミステリアス 抜けてるとこさえ彼女のエリア 完璧で嘘つきな君は 天才的なアイドル様 今日何食べた? 好きな本は? 遊びに行くならどこに行くの? 何も食べてない それは内緒 何を聞かれても のらりくらり そう淡々と だけど燦々と 見えそうで見えない秘密は蜜の味 あれもないないない これもないないない 好きなタイプは? 相手は? さあ答えて 「誰かを好きになることなんて私分からなくてさ」 嘘か本当か知り得ない そんな言葉にまた一人堕ちる また好きにさせる 誰もが目を奪われていく 君は完璧で究極のアイドル 金輪際現れない 一番星の生まれ変わり その笑顔で愛してるで 誰も彼も虜にしていく その瞳がその言葉が 嘘でもそれは完全なアイ はいはいあの子は特別です 我々はハナからおまけです お星様の引き立て役Bです 全てがあの子のお陰なわけない 洒落臭い 妬み嫉妬なんてないわけがない これはネタじゃない からこそ許せない 完璧じゃない君じゃ許せない 自分を許せない 誰よりも強い君以外は認めない 誰もが信じ崇めてる まさに最強で無敵のアイドル 弱点なんて見当たらない 一番星を宿している 弱いとこなんて見せちゃダメダメ 知りたくないとこは見せずに 唯一無二じゃなくちゃイヤイヤ それこそ本物のアイ 得意の笑顔で沸かすメディア 隠しきるこの秘密だけは 愛してるって嘘で積むキャリア これこそ私なりの愛だ 流れる汗も綺麗なアクア ルビーを隠したこの瞼 歌い踊り舞う私はマリア そう嘘はとびきりの愛だ 誰かに愛されたことも 誰かのこと愛したこともない そんな私の嘘がいつか本当になること 信じてる いつかきっと全部手に入れる 私はそう欲張りなアイドル 等身大でみんなのこと ちゃんと愛したいから 今日も嘘をつくの この言葉がいつか本当になる日を願って それでもまだ 君と君にだけは言えずにいたけど やっと言えた これは絶対嘘じゃない 愛してる --- # mt5-small-finetuned-genius This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the [Genius](https://genius.com/) Music dataset found [here](https://www.cs.cornell.edu/~arb/data/genius-expertise/). The song lyrics and song titles were preprocessed and used for fine-tuning. You can view more examples of this model's inference on the following [Space](https://huggingface.co/spaces/miscjose/song-title-generation). ## Model description Please visit: [google/mt5-small](https://huggingface.co/google/mt5-small) ## Intended uses & limitations - Intended Uses: Given song lyrics, generate a summary. - Limitations: Due to the nature of music, the model can generate summaries containing hate speech. ## Training and evaluation data - 27.6K Training Samples - 3.45 Validation Samples ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 7.9304 | 1.0 | 863 | 3.5226 | 14.235 | 6.78 | 14.206 | 14.168 | | 3.8394 | 2.0 | 1726 | 3.0382 | 22.97 | 13.166 | 22.981 | 22.944 | | 3.3799 | 3.0 | 2589 | 2.9010 | 24.932 | 14.54 | 24.929 | 24.919 | | 3.2204 | 4.0 | 3452 | 2.8441 | 26.678 | 15.587 | 26.624 | 26.665 | | 3.1498 | 5.0 | 4315 | 2.8363 | **26.827** | **15.696** | **26.773** | **26.793** | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.1 - Tokenizers 0.13.3
zayedupal/movie-genre-prediction_distilbert-base-uncased
zayedupal
2023-09-12T00:59:51Z
116
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-14T06:44:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: distilbert-base-uncased model-index: - name: movie-genre-prediction_distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # movie-genre-prediction_distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5869 - Accuracy: 0.4489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 163 | 1.6259 | 0.4358 | | No log | 2.0 | 326 | 1.5705 | 0.4478 | | No log | 3.0 | 489 | 1.5566 | 0.4527 | | 1.6342 | 4.0 | 652 | 1.5656 | 0.4537 | | 1.6342 | 5.0 | 815 | 1.5721 | 0.4504 | | 1.6342 | 6.0 | 978 | 1.5825 | 0.4491 | | 1.3404 | 7.0 | 1141 | 1.5869 | 0.4489 | ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
zayedupal/movie-genre-prediction_bert-base-uncased
zayedupal
2023-09-12T00:59:41Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-11T02:02:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy base_model: bert-base-uncased model-index: - name: movie-genre-prediction_bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # movie-genre-prediction_bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6356 - Accuracy: 0.4201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 200 - eval_batch_size: 200 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 189 | 1.6633 | 0.4130 | | No log | 2.0 | 378 | 1.6356 | 0.4201 | ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
actionpace/Marcoroni-13B
actionpace
2023-09-12T00:56:09Z
1
0
null
[ "gguf", "en", "license:other", "endpoints_compatible", "region:us" ]
null
2023-09-12T00:07:17Z
--- license: other language: - en --- **Some of my own quants:** * Marcoroni-13B_Q4_K_M.gguf * Marcoroni-13B_Q5_K_M.gguf **Source:** [AIDC-ai-business](https://huggingface.co/AIDC-ai-business) **Source Model:** [Marcoroni-13B](https://huggingface.co/AIDC-ai-business/Marcoroni-13B) **Source models for AIDC-ai-business/Marcoroni-13B (Finetune)** - [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) ([Ref](https://huggingface.co/actionpace/Llama-2-13b-hf))
shaowenchen/chinese-alpaca-2-7b-16k-gguf
shaowenchen
2023-09-12T00:52:17Z
28
0
null
[ "gguf", "meta", "llama", "llama-2", "chinese", "text-generation", "en", "license:other", "region:us" ]
text-generation
2023-09-08T04:50:45Z
--- inference: false language: - en license: other model_creator: ziqingyang model_link: https://huggingface.co/ziqingyang/chinese-alpaca-2-7b-16k model_name: chinese-alpaca-2-7b-16k model_type: llama pipeline_tag: text-generation quantized_by: shaowenchen tasks: - text2text-generation tags: - meta - gguf - llama - llama-2 - chinese --- ## Provided files | Name | Quant method | Size | | ----------------------------------- | ------------ | ------ | | chinese-alpaca-2-7b-16k.Q2_K.gguf | Q2_K | 2.7 GB | | chinese-alpaca-2-7b-16k.Q3_K.gguf | Q3_K | 3.2 GB | | chinese-alpaca-2-7b-16k.Q3_K_L.gguf | Q3_K_L | 3.5 GB | | chinese-alpaca-2-7b-16k.Q3_K_S.gguf | Q3_K_S | 2.9 GB | | chinese-alpaca-2-7b-16k.Q4_0.gguf | Q4_0 | 3.7 GB | | chinese-alpaca-2-7b-16k.Q4_1.gguf | Q4_1 | 4.1 GB | | chinese-alpaca-2-7b-16k.Q4_K.gguf | Q4_K | 3.9 GB | | chinese-alpaca-2-7b-16k.Q4_K_S.gguf | Q4_K_S | 3.7 GB | | chinese-alpaca-2-7b-16k.Q5_0.gguf | Q5_0 | 4.5 GB | | chinese-alpaca-2-7b-16k.Q5_1.gguf | Q5_1 | 4.9 GB | | chinese-alpaca-2-7b-16k.Q5_K.gguf | Q5_K | 4.6 GB | | chinese-alpaca-2-7b-16k.Q5_K_S.gguf | Q5_K_S | 4.5 GB | | chinese-alpaca-2-7b-16k.Q6_K.gguf | Q6_K | 5.3 GB | | chinese-alpaca-2-7b-16k.Q8_0.gguf | Q8_0 | 6.9 GB | | chinese-alpaca-2-7b-16k.gguf | full | 13 GB | Usage: ``` docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/gguf-model-name.gguf hubimage/llama-cpp-python:latest ``` and you can view http://localhost:8000/docs to see the swagger UI. ## Provided images | Name | Quant method | Size | | ------------------------------------------------- | ------------ | ------- | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q2_K` | Q2_K | 3.68 GB | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q3_K` | Q3_K | 4.16 GB | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q3_K_L` | Q3_K_L | 4.46 GB | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q3_K_S` | Q3_K_S | 3.81 GB | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q4_0` | Q4_0 | 4.7 GB | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q4_K` | Q4_K | 4.95 GB | | `shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q4_K_S` | Q4_K_S | 4.73 GB | Usage: ``` docker run --rm -p 8000:8000 shaowenchen/chinese-alpaca-2-7b-16k-gguf:Q2_K ``` and you can view http://localhost:8000/docs to see the swagger UI.
WGNW/Llama-2-ko-7b-Chat-auto-gptq-4bit-peft-remon
WGNW
2023-09-12T00:47:14Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-12T00:47:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: gptq - bits: 4 - tokenizer: None - dataset: None - group_size: 128 - damp_percent: 0.01 - desc_act: False - sym: True - true_sequential: True - use_cuda_fp16: False - model_seqlen: None - block_name_to_quantize: None - module_name_preceding_first_block: None - batch_size: 1 - pad_token_id: None - disable_exllama: False - max_input_length: None ### Framework versions - PEFT 0.6.0.dev0
WGNW/tmp_chat_peft
WGNW
2023-09-12T00:42:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-12T00:41:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: gptq - bits: 4 - tokenizer: None - dataset: None - group_size: 128 - damp_percent: 0.01 - desc_act: False - sym: True - true_sequential: True - use_cuda_fp16: False - model_seqlen: None - block_name_to_quantize: None - module_name_preceding_first_block: None - batch_size: 1 - pad_token_id: None - disable_exllama: False - max_input_length: None ### Framework versions - PEFT 0.6.0.dev0
geardriven/gearybooRVC
geardriven
2023-09-12T00:25:21Z
0
1
null
[ "license:openrail", "region:us" ]
null
2023-09-11T10:19:40Z
--- license: openrail --- this is where i put my ai voices for my music covers. yeah yipeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
AmelieSchreiber/esm2_t6_8M_general_binding_sites_v2
AmelieSchreiber
2023-09-12T00:08:35Z
128
1
transformers
[ "transformers", "pytorch", "safetensors", "esm", "token-classification", "biology", "esm2", "ESM-2", "protein language model", "en", "dataset:AmelieSchreiber/general_binding_sites", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-06T07:36:43Z
--- widget: - text: "MEPLDDLDLLLLEEDSGAEAVPRMEILQKKADAFFAETVLSRGVDNRYLVLAVETKLNERGAEEKHLLITVSQEGEQEVLCILRNGWSSVPVEPGDIIHIEGDCTSEPWIVDDDFGYFILSPDMLISGTSVASSIRCLRRAVLSETFRVSDTATRQMLIGTILHEVFQKAISESFAPEKLQELALQTLREVRHLKEMYRLNLSQDEVRCEVEEYLPSFSKWADEFMHKGTKAEFPQMHLSLPSDSSDRSSPCNIEVVKSLDIEESIWSPRFGLKGKIDVTVGVKIHRDCKTKYKIMPLELKTGKESNSIEHRGQVILYTLLSQERREDPEAGWLLYLKTGQMYPVPANHLDKRELLKLRNQLAFSLLHRVSRAAAGEEARLLALPQIIEEEKTCKYCSQMGNCALYSRAVEQVHDTSIPEGMRSKIQEGTQHLTRAHLKYFSLWCLMLTLESQSKDTKKSHQSIWLTPASKLEESGNCIGSLVRTEPVKRVCDGHYLHNFQRKNGPMPATNLMAGDRIILSGEERKLFALSKGYVKRIDTAAVTCLLDRNLSTLPETTLFRLDREEKHGDINTPLGNLSKLMENTDSSKRLRELIIDFKEPQFIAYLSSVLPHDAKDTVANILKGLNKPQRQAMKKVLLSKDYTLIVGMPGTGKTTTICALVRILSACGFSVLLTSYTHSAVDNILLKLAKFKIGFLRLGQSHKVHPDIQKFTEEEMCRLRSIASLAHLEELYNSHPVVATTCMGISHPMFSRKTFDFCIVDEASQISQPICLGPLFFSRRFVLVGDHKQLPPLVLNREARALGMSESLFKRLERNESAVVQLTIQYRMNRKIMSLSNKLTYEGKLECGSDRVANAVITLPNLKDVRLEFYADYSDNPWLAGVFEPDNPVCFLNTDKVPAPEQIENGGVSNVTEARLIVFLTSTFIKAGCSPSDIGIIAPYRQQLRTITDLLARSSVGMVEVNTVDKYQGRDKSLILVSFVRSNEDGTLGELLKDWRRLNVAITRAKHKLILLGSVSSLKRF" example_title: "Protein Sequence 1" - text: "MNSVTVSHAPYYIVYHDDWEPVMSQLVEFYNEVASWLLRDETSPIPPKFFIQLKQMLRNKRVCVCGILPYPIDGTGVPFESPNFTKKSIKEIASSISRLTGVIDYKGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPAARDRQFEKDRSFEIINELLELDNKVPINWAQGFIY" example_title: "Protein Sequence 2" - text: "MNSVTVSHAPYTIAYHDDWEPVMSQLVEFYNEAASWLLRDETSPIPSKFNIQLKQPLRNKRVCVFGIDPYPKDGTGVPFESPNFTKKSIKEIASSISRLMGVIDYEGYNLNIIDGVIPWNYYLSCKLGETKSHAIYWDKISKLLLQHITKHVSVLYCLGKTDFSNIRAKLESPVTTIVGYHPSARDRQFEKDRSFEIINVLLELDNKVPLNWAQGFIY" example_title: "Protein Sequence 3" license: mit datasets: - AmelieSchreiber/general_binding_sites language: - en metrics: - precision - recall - f1 library_name: transformers tags: - biology - esm - esm2 - ESM-2 - protein language model --- # ESM-2 for General Protein Binding Site Prediction This model is trained to predict general binding sites of proteins using only the sequence. This is a finetuned version of `esm2_t6_8M_UR50D` ([see here](https://huggingface.co/facebook/esm2_t6_8M_UR50D) and [also here](https://huggingface.co/docs/transformers/model_doc/esm) for more info on the base model), trained on [this dataset](https://huggingface.co/datasets/AmelieSchreiber/general_binding_sites). The data is not filtered by family, and thus the model may be overfit to some degree. In the Hugging Face Inference API widget to the right there are three protein sequence examples. The first is a DNA binding protein truncated to the first 1022 amino acid residues ([see UniProt entry here](https://www.uniprot.org/uniprotkb/D3ZG52/entry)). The second and third were obtained using [EvoProtGrad](https://github.com/Amelie-Schreiber/sampling_protein_language_models/blob/main/EvoProtGrad_copy.ipynb) a Markov Chain Monte Carlo method of (*in silico*) directed evolution of proteins based on a form of Gibbs sampling. The mutatant-type protein sequences in theory should have similar binding sites to the wild-type protein sequence, but perhaps with higher binding affinity. Testing this out on the model, we see the two proteins indeed have the same binding sites, which validates to some degree that the model has learned to predict binding sites well (and that EvoProtGrad works as intended). ## Training This model was trained on approximately 70,000 proteins with binding site and active site annotations in UniProt. The training split was a random 85/15 split for this version, and does not consider anything in the way of family or sequence similarity. New iterations of the model have been trained on larger datasets (over 200,000 proteins), with the split such that there are no overlapping families, however they seem to overfit much earlier and have significantly worse performance in terms of the training metrics (precision, recall, and F1). To address this we plan to implement LoRA (and hopefully QLoRA). Training Metrics for the Model in the form of the `trainer_state.json` can be [found here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_general_binding_sites_v2/blob/main/trainer_state.json). ``` epoch 3: Training Loss Validation Loss Precision Recall F1 Auc 0.031100 0.074720 0.684798 0.966856 0.801743 0.980853 ``` The hyperparameters are: ``` wandb: lr: 0.0004977045729600779 wandb: lr_scheduler_type: cosine wandb: max_grad_norm: 0.5 wandb: num_train_epochs: 3 wandb: per_device_train_batch_size: 8 wandb: weight_decay: 0.025 ``` ## Using the Model To use the model, try running: ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer def predict_binding_sites(model_path, protein_sequences): """ Predict binding sites for a collection of protein sequences. Parameters: - model_path (str): Path to the saved model. - protein_sequences (List[str]): List of protein sequences. Returns: - List[List[str]]: Predicted labels for each sequence. """ # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForTokenClassification.from_pretrained(model_path) # Ensure model is in evaluation mode model.eval() # Tokenize sequences inputs = tokenizer(protein_sequences, return_tensors="pt", padding=True, truncation=True) # Move to the same device as model and obtain logits with torch.no_grad(): logits = model(**inputs).logits # Obtain predicted labels predicted_labels = torch.argmax(logits, dim=-1).cpu().numpy() # Convert label IDs to human-readable labels id2label = model.config.id2label human_readable_labels = [[id2label[label_id] for label_id in sequence] for sequence in predicted_labels] return human_readable_labels # Usage: model_path = "AmelieSchreiber/esm2_t6_8M_general_binding_sites_v2" # Replace with your model's path unseen_proteins = [ "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEYVFVGSYARNTWLKGSLEIDVFLLFPEEFSKEELRERGLEIGKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKWLEGRIKGKENEVRLLKGFLKANGIYGAEYKVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKPKHPLEIEPERLRKIVEERGTAVFAVKFRKPDIVDDNLYPQLERASRKIFEFLERENFMPLRSAFKASEEFCYLLFECQIKEISRVFRRMGPQFEDERNVKKFLSRNRAFRPFIENGRWWAFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCEMMGVKD", "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEYVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIGKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKWLEGRIKGKENEVRLLKGFLKANGIYGAEYKVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKVKHPLEIEPERLRKIVEERGTAVFAVKFRKPDIVDDNLYPQLERASRKIFEFLERENFMPLRSAFKASEEFCYLLFECQIKEISRVFRRMGPQFEDERNVKKFLSRNRAFRPFIENGRWWAFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCEMMGVKD", "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEAVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIEKAVLDSYEIRYAEHPYVHGVVKGVEVDVVPCYKLKEPKNIKSAVDRTPFHHKELEGRIKGKENEVRLLKGFLKANGIYGAEYAVRGFSGYLCELLIVFYGSFLETVKNARRWTRRTVIDVAKGEVRKGEEFFVVDPVDEKRNVAANLSLDNLARFVHLCREFMEAPSLGFFKVKHPLEIEPERLRKIVEERGTAVFMVKFRKPDIVDDNLYPQLRRASRKIFEFLERNNFMPLRSAFKASEEFCYLLFECQIKEISDVFRRMGPLFEDERNVKKFLSRNRALRPFIENGRWWIFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIISGEKLFKEPVTAELCRMMGVKD", "MKVEEILEKALELVIPDEEEVRKGREAEEELRRRLDELGVEAVFVGSYARNTWLKGSLEIAVFLLFPEEFSKEELRERGLEIEKAVLDSYGIRYAEHPYVHGVVKGVELDVVPCYKLKEPKNIKSAVDRTPFHHKELEGRIKGKENEYRSLKGFLKANGIYGAEYAVRGFSGYLCELLIVFYGSFLETVKNARRWTRKTVIDVAKGEVRKGEEFFVVDPVDEKRNVAALLSLDNLARFVHLCREFMEAVSLGFFKVKHPLEIEPERLRKIVEERGTAVFMVKFRKPDIVDDNLYPQLRRASRKIFEFLERNNFMPLRRAFKASEEFCYLLFEQQIKEISDVFRRMGPLFEDERNVKKFLSRNRALRPFIENGRWWIFEMRKFTTPEEGVRSYASTHWHTLGKNVGESIREYFEIIEGEKLFKEPVTAELCRMMGVKD" ] # Replace with your protein sequences predictions = predict_binding_sites(model_path, unseen_proteins) predictions ```
lsoni/bert-finetuned-ner-base-model
lsoni
2023-09-11T22:58:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tweetner7", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T21:18:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweetner7 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-base-model results: - task: name: Token Classification type: token-classification dataset: name: tweetner7 type: tweetner7 args: tweetner7 metrics: - name: Precision type: precision value: 0.6853448275862069 - name: Recall type: recall value: 0.6456852791878173 - name: F1 type: f1 value: 0.6649242028227914 - name: Accuracy type: accuracy value: 0.8757089711532597 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-base-model This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tweetner7 dataset. It achieves the following results on the evaluation set: - Loss: 0.4160 - Precision: 0.6853 - Recall: 0.6457 - F1: 0.6649 - Accuracy: 0.8757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 312 | 0.4339 | 0.7365 | 0.5931 | 0.6571 | 0.8731 | | 0.5311 | 2.0 | 624 | 0.4190 | 0.7348 | 0.6069 | 0.6647 | 0.8763 | | 0.5311 | 3.0 | 936 | 0.4160 | 0.6853 | 0.6457 | 0.6649 | 0.8757 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.10.1 - Tokenizers 0.12.1
OptimalScale/gpt-neo2.7B-inst-tuning
OptimalScale
2023-09-11T22:38:54Z
14
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "generated_from_trainer", "dataset:lmflow_instruction", "base_model:EleutherAI/gpt-neo-2.7B", "base_model:finetune:EleutherAI/gpt-neo-2.7B", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-04-02T18:33:50Z
--- license: mit tags: - generated_from_trainer datasets: - lmflow_instruction base_model: EleutherAI/gpt-neo-2.7B model-index: - name: 046_inst-tuning_model-gpt_neo2.7B_num-epoch-5_init-lr-2e-5_bf-16_blocksize768 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 046_inst-tuning_model-gpt_neo2.7B_num-epoch-5_init-lr-2e-5_bf-16_blocksize768 This model is a fine-tuned version of [EleutherAI/gpt-neo-2.7B](https://huggingface.co/EleutherAI/gpt-neo-2.7B) on the lmflow_instruction dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
daochf/Lora-FBookOpt2.7b-PuceDS-v04
daochf
2023-09-11T22:37:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T22:37:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
Theosphil/mt5-small-finetuned-personal_data
Theosphil
2023-09-11T22:36:16Z
99
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-10T20:27:08Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_keras_callback model-index: - name: Theosphil/mt5-small-finetuned-personal_data results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Theosphil/mt5-small-finetuned-personal_data This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 22.8420 - Validation Loss: 18.8848 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 64, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 22.8420 | 18.8848 | 0 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
rombodawg/WizardCoder-Python-13B-V1.0_Sharded_1.5gb
rombodawg
2023-09-11T22:30:04Z
3
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "arxiv:2304.12244", "arxiv:2306.08568", "arxiv:2308.09583", "arxiv:2303.08774", "license:llama2", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-11T16:43:15Z
--- license: llama2 metrics: - code_eval library_name: transformers tags: - code model-index: - name: WizardCoder-Python-13B-V1.0 results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.64 verified: false --- _______________________________________________________________________________________________________________ <p align="center"> This is the Sharded version of the WizardCoder-Python-13B-V1.0 model (original model card bellow) <p align="center"> _______________________________________________________________________________________________________________ <p align="center"> 🤗 <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> •🐱 <a href="https://github.com/nlpxucan/WizardLM" target="_blank">Github Repo</a> • 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> • 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> • 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br> </p> <p align="center"> 👋 Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a> </p> ## News - 🔥🔥🔥[2023/08/26] We released **WizardCoder-Python-34B-V1.0** , which achieves the **73.2 pass@1** and surpasses **GPT4 (2023/03/15)**, **ChatGPT-3.5**, and **Claude2** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). - [2023/06/16] We released **WizardCoder-15B-V1.0** , which achieves the **57.3 pass@1** and surpasses **Claude-Plus (+6.8)**, **Bard (+15.3)** and **InstructCodeT5+ (+22.3)** on the [HumanEval Benchmarks](https://github.com/openai/human-eval). ❗Note: There are two HumanEval results of GPT4 and ChatGPT-3.5. The 67.0 and 48.1 are reported by the official GPT4 Report (2023/03/15) of [OpenAI](https://arxiv.org/abs/2303.08774). The 82.0 and 72.5 are tested by ourselves with the latest API (2023/08/26). | Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License | | ----- |------| ---- |------|-------| ----- | ----- | | WizardCoder-Python-34B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | | WizardCoder-15B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | | WizardCoder-Python-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 64.0 | 55.6 | -- | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | | WizardCoder-Python-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 55.5 | 51.6 | [Demo](http://47.103.63.15:50088/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> | | WizardCoder-3B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-3B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 34.8 |37.4 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | | WizardCoder-1B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardCoder-1B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 23.8 |28.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> | - Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**. - Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM, and achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM. <font size=4> | Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License| | ----- |------| ---- |------|-------| ----- | ----- | | WizardMath-70B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> | | WizardMath-13B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> | | WizardMath-7B-V1.0 | 🤗 <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | 📃 <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo ](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>| </font> - [08/09/2023] We released **WizardLM-70B-V1.0** model. Here is [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-70B-V1.0). <font size=4> | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>| | ----- |------| ---- |------|-------| ----- | ----- | ----- | | <sup>**WizardLM-70B-V1.0**</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>📃**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> | | <sup>WizardLM-13B-V1.2</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 </sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> | | <sup>WizardLM-13B-V1.1</sup> |<sup> 🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 </sup>| <sup>Non-commercial</sup>| | <sup>WizardLM-30B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 </sup>| <sup>Non-commercial</sup> | | <sup>WizardLM-13B-V1.0</sup> | <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 </sup> | <sup>Non-commercial</sup>| | <sup>WizardLM-7B-V1.0 </sup>| <sup>🤗 <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> 📃 <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 </sup>|<sup> Non-commercial</sup>| </font> ## Comparing WizardCoder-Python-34B-V1.0 with Other LLMs. 🔥 The following figure shows that our **WizardCoder-Python-34B-V1.0 attains the second position in this benchmark**, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2). <p align="center" width="100%"> <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a> </p> ## Prompt Format ``` "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" ``` ## Inference Demo Script We provide the inference demo code [here](https://github.com/nlpxucan/WizardLM/tree/main/demo). Note: This script supports `WizardLM/WizardCoder-Python-34B/13B/7B-V1.0`. If you want to inference with `WizardLM/WizardCoder-15B/3B/1B-V1.0`, please change the `stop_tokens = ['</s>']` to `stop_tokens = ['<|endoftext|>']` in the script. ## Citation Please cite the repo if you use the data, method or code in this repo. ``` @article{luo2023wizardcoder, title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin}, journal={arXiv preprint arXiv:2306.08568}, year={2023} } ```
michaeleliot/dreambooth-test
michaeleliot
2023-09-11T22:22:07Z
4
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-09-11T20:47:36Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of cnc aluminum tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
baptiste/deberta-finetuned-ner
baptiste
2023-09-11T22:20:56Z
129
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "deberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-16T04:51:39Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.9577488309953239 name: Precision - type: recall value: 0.9651632446987546 name: Recall - type: f1 value: 0.961441743503772 name: F1 - type: accuracy value: 0.9907182964622135 name: Accuracy - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test metrics: - type: accuracy value: 0.9108823919384779 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjMwMDBiMzZhZDNjNjM2ODcwNDUxOWJiZDc1NWQyMzliOGQ3NzMzODJlMTlmN2U4MzdjMGY4NjNkMWM2MDhkYiIsInZlcnNpb24iOjF9.610yrrgO0SAb7kZlJhpNJ1cHLrAur0e0dkdSq0YLvLLLDPBOtrtBd0J6Mq4EKTzwWGXuxMM6PlQ0VJTMLC9KAw - type: precision value: 0.9308372971460548 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2M0ZThlYTk0ZjZlZTkyYjE3ZWE5Mzc1YTc1Mzc4NWJlMmVlNjllMjg0ZDZiZGU3NmRiZWU3MDFiZTRjOGIzZiIsInZlcnNpb24iOjF9.2YmBNnZeGkTVXSRdek6eBzlg_6QPJKiBLdxKN5ZOwQ7rkD77-fWCmWTJOOha3xCYpSw1bLCgm5e8qPSmB0PyCQ - type: recall value: 0.9213792387183881 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTBjZDlkYWVhMDA0ZTUyZjM2MWJiZmVjYTA2MTM2YzZkZGYzNzQwYWUyMmEzMzY1MWU3MjAzNGZkNDJlMTE2MSIsInZlcnNpb24iOjF9.wJr8eIfx5l-89kr8aBlYdpHRs284G4Tx1yTDjMd3TmG16muWGgGtzz7LUL-FKGscAytrRkZi9UOqc1-bzJ_RDQ - type: f1 value: 0.9260841198729938 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDVjMjJjMzFmNWY5MzJkYTdiY2Q2Mzk1NTdmOTI4YTZhOGNlYTg1NmZlZmEwMmUzMDVkYmVlNTU2OTY4ODNiYSIsInZlcnNpb24iOjF9.pIVNw5vemOtarohSnCIIr109xbFPB_T46D8oFuotMsv2Ag_8tkELfJpGfhxLsMj6Qt8aP-VImc9-gxF1xMwRCA - type: loss value: 0.8661637306213379 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmQ1MDQ3ZWJmMzJjZDc3YmM5ZDM5OTg0ZGI1N2RkZTNiNzFjYzE4OTM3NGMyNWFlMGUwMDNhMzE0NjY0ZTk1ZCIsInZlcnNpb24iOjF9.jw2ycVmM3ovkPV_5ydHJKOlyM5YZUVjY9cjdG9x8MeyqsQvGgfNQmqzqDnun575sx6nn3_6tiTNLeVmlAux4Bw --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-finetuned-ner This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0515 - Precision: 0.9577 - Recall: 0.9652 - F1: 0.9614 - Accuracy: 0.9907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0742 | 1.0 | 1756 | 0.0526 | 0.9390 | 0.9510 | 0.9450 | 0.9868 | | 0.0374 | 2.0 | 3512 | 0.0528 | 0.9421 | 0.9554 | 0.9487 | 0.9879 | | 0.0205 | 3.0 | 5268 | 0.0505 | 0.9505 | 0.9636 | 0.9570 | 0.9900 | | 0.0089 | 4.0 | 7024 | 0.0528 | 0.9531 | 0.9636 | 0.9583 | 0.9898 | | 0.0076 | 5.0 | 8780 | 0.0515 | 0.9577 | 0.9652 | 0.9614 | 0.9907 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nbroad/longt5-base-global-mediasum
nbroad
2023-09-11T22:18:00Z
128
0
transformers
[ "transformers", "pytorch", "safetensors", "longt5", "text2text-generation", "generated_from_trainer", "summarization", "base_model:google/long-t5-tglobal-base", "base_model:finetune:google/long-t5-tglobal-base", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-07-21T22:46:35Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer - longt5 - summarization base_model: google/long-t5-tglobal-base model-index: - name: longt5-mediasum results: - task: type: summarization name: Summarization dataset: name: xsum type: xsum config: default split: test metrics: - type: rouge value: 22.7044 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzMyZDQwNWY4M2I2YTM2ZjY1MWFhMWQ4NDAxNTg4N2Y2MDE4NGMyMjJiMTkyYzcwNzg2MWU0Y2YyNGU5MDM4OCIsInZlcnNpb24iOjF9.2MQgk8ReWfDWi98sJyIuEqSXUxumfMjUZl1raOfHiK4TP45FwLKzc5Un-dLbS7yb8L6rEGEKJMGbiFKeapzJBw - type: rouge value: 5.616 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWIxYTFmNGUzMjMwODA4NTlkZjk4MTllYmVmOGJlYTI3NzA3MTQzY2RkMWJlOTdiM2ZkZWVkNDk0ZjhlMzQxNSIsInZlcnNpb24iOjF9.XwtjOwmYE-NxbH6kOYxDgMpXTNL6XwiSGGi4cdtBu7O0cdjNUh0dnfihvEvJegMM8cnQaQeu47g0zxuLP1LQBQ - type: rouge value: 18.0111 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzYzNGExYTc5MmZiMTNhYjM1ZDhjZDNiYTNlMDZhMzdiMjRhNzk2NWI1ZjRkMDlmMGUwOGMxYzhiYzE0MmFhOSIsInZlcnNpb24iOjF9.nPERc8JZ4VaUTSkUZS7vwbZecdWn1uIpIBN6zFTFLQnfuCIP7ZlgDegUGEaehoERJubHVf60Z24I0aYxq2q0DQ - type: rouge value: 18.1554 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjMwNTg3MWIxZGQxMzdhMGM0NTg5NDZlYWZhZThjYTUzZjcwODUyMDgwNTY0YWRlOTI4Y2NlOTY3Mzc2ZjU2MCIsInZlcnNpb24iOjF9.syWVW4_SlY4JDqE96kpz3qGXGfhF8wezAj87p4RzQpJ7Fp7ie1-v5EgTOy4ZFMdtemQCyqiQYAQwcVckttrLBg - type: loss value: 2.1656227111816406 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2UyNWMwNmQwOWU4YjA3MzMzYWQzMTgwYzJjMjNkYTlhMmQ4NTAzMzE1YzlkMWRiZDEzYzJlMGJmMzJkZjEwMyIsInZlcnNpb24iOjF9.8FY9EcQPrS4KXJyJBuX2uLD5VxLlGxRC33qxPuyAg5W9WsXm6XSjb0ZCJ8T-Xl3YlwV9bSL6UMq4MPleEjiNCA - type: gen_len value: 18.3527 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2U0Y2E5NzU1MTNhOGRkYmNhNjI2NGQ1NjJiMDc1MmI5NTE2MDJjMDA4NjMxODcyMDJhN2FhZWI0ZThhNzZhNyIsInZlcnNpb24iOjF9.e3yQ--2AjvVzCM-HXzvB-lN4g6eMxqjQ1AyhFqftit8kFmoKnLqoa2ytoyOZmlnXvkCRmpgfSAYq-tnceINLDw - task: type: summarization name: Summarization dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: test metrics: - type: rouge value: 21.1522 name: ROUGE-1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTkwZWEzYzEyMjdjZTA5MjBlOTM5MDI3NWEzZWJkOWEwNjIwMGNkNjU4NGM1YjVhZjIxNjI2NzJkM2NhZjc4MCIsInZlcnNpb24iOjF9.f9REqBITFW-Y1GjOmq-e1zUI0qK2MQxEsCe9NQZbCFNeygvdhD2CkTslUbTIXpuDcA_bWAJsNiL2VAMSL1ZDAw - type: rouge value: 8.1315 name: ROUGE-2 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjg3MDYxMjVmNGIzYzlmMTBkNjcxODA1MDliNjBlY2I5ODQ4YzQwY2RmMDBlYmYwMTgyOThlMjQ0NjY2MDdhNSIsInZlcnNpb24iOjF9.mJwLahXr-lvwEv1L9PlFfV0dqxN8m3OciTV9wdoENBaj7JLtBnev-LL8oivi-fBRY-WcVpUGpjyx1fQxwLF2Aw - type: rouge value: 16.6625 name: ROUGE-L verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmUyOTc0MWVmYTQwY2ViMDNjYWE2Mzc3OWFkNGI1YzUxMmU3YjgxMjMyMmY5ZjIzOGRjYmY0OGIxZTMzN2I5MSIsInZlcnNpb24iOjF9.1gGyxK6SIY4AcR_6-7An94GyRx4q_Fj4Zmm8zNSE4HqHq3dFUmWfFYGZVgLUOswMr03di63QqmFyVnjW0TqmBw - type: rouge value: 19.3603 name: ROUGE-LSUM verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGRmMzkxYzRkMTA4ZDYzZWE2MDM4NWU1NjFiYWVjOGVhMjc1N2YzZWI2MmY2OTY3MjVkYmExZGY1ZTcyYjIwOCIsInZlcnNpb24iOjF9.vVMF4qaE5Wg9vZuBVOtcR89L_NldNk49sgEyAFVvx_hhjOx5nZvygseHcwqemMjUlrTzOuRD15x-XbH-62qhBw - type: loss value: 1.899269700050354 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTU5ZDUzYTc0OTc1YWUyNjY0NDU3NDhlODljNGNlN2E4ZTQzYjNhMWM0NDYyNTE5Yjk4ZDE3ZTNjZDdmYmQyYSIsInZlcnNpb24iOjF9.SuRSjdfuA_NE3WHglrxbIaPZ-Hg9-F6jB37Cb_MPIME2h3a30qafO9tFmxUsR_JCDNfuILwrGEHT1PJmq4NQDQ - type: gen_len value: 17.853 name: gen_len verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWU2MDRmMTliNzhkMzdmNmM2NTA2Y2NmYjVhOWJjYmQzZTUxYWM1MGYzMzBjODdiMzY2YjMzYjE4Y2FkNjExZCIsInZlcnNpb24iOjF9.J5NYms5Hg9iLFgTq0YqYXP86H9A0PClmG2eLi09BBs9L8F-PhQhiuzzCeD1HA2fC_6mtLyEv6PPLZCr6Ax7DCQ --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longt5-mediasum This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.66 | 1.0 | 1667 | 2.0643 | | 2.472 | 2.0 | 3334 | 2.0241 | | 2.3574 | 3.0 | 5001 | 2.0129 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0a0+17540c5 - Datasets 2.3.2 - Tokenizers 0.12.1
dragonstar/image-text-captcha-v2
dragonstar
2023-09-11T22:10:21Z
271
2
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "base_model:microsoft/trocr-base-printed", "base_model:finetune:microsoft/trocr-base-printed", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-06-02T22:02:54Z
--- tags: - generated_from_trainer base_model: microsoft/trocr-base-printed model-index: - name: image-text-captcha-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-text-captcha-v2 This model is a fine-tuned version of [microsoft/trocr-base-printed](https://huggingface.co/microsoft/trocr-base-printed) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5030 - Cer: 0.0588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.43 | 1.0 | 373 | 0.6973 | 0.1290 | | 0.6695 | 2.0 | 746 | 0.5942 | 0.1082 | | 0.2885 | 3.0 | 1119 | 0.5038 | 0.0930 | | 0.2885 | 4.0 | 1492 | 0.4981 | 0.0636 | | 0.0946 | 5.0 | 1865 | 0.5030 | 0.0588 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
chinhon/bart-large-chinese-cnhdwriter
chinhon
2023-09-11T22:09:54Z
18
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:fnlp/bart-large-chinese", "base_model:finetune:fnlp/bart-large-chinese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - rouge base_model: fnlp/bart-large-chinese model-index: - name: bart-large-chinese-cnhdwriter results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-chinese-cnhdwriter This model is a fine-tuned version of [fnlp/bart-large-chinese](https://huggingface.co/fnlp/bart-large-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3859 - Rouge1: 16.8496 - Rouge2: 2.5548 - Rougel: 16.8123 - Rougelsum: 16.8056 - Gen Len: 18.9357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.2119 | 1.0 | 62716 | 1.1876 | 15.3858 | 2.1251 | 15.3709 | 15.3705 | 18.7269 | | 1.0847 | 2.0 | 125432 | 1.3353 | 13.7743 | 1.9047 | 13.7664 | 13.7421 | 18.6183 | | 0.6995 | 3.0 | 188148 | 1.2209 | 16.6797 | 2.3979 | 16.6258 | 16.6368 | 18.8953 | | 0.4819 | 4.0 | 250864 | 1.3859 | 16.8496 | 2.5548 | 16.8123 | 16.8056 | 18.9357 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
beratcmn/prompter-llama-2-7b-0.1-5e
beratcmn
2023-09-11T22:07:22Z
7
1
peft
[ "peft", "region:us" ]
null
2023-09-11T20:06:08Z
--- library_name: peft --- # prompter-llama-2-7b Generating prompts similar to those on [prompts.chat](https://prompts.chat/) Big shoutout to [Fatih Kadir Akın](https://github.com/f) for creating [awesome-chatgpt-prompts](https://github.com/f/awesome-chatgpt-prompts). 5 Epoch 0.8745 Loss Model on [HuggingFace](https://huggingface.co/beratcmn/prompter-llama-2-7b-0.1-5e) ## Prompt Template ``` <human>: Act as a drunk philosopher <assistant>: ``` ## Training - The model was fine tuned with all the prompts scraped from [prompts.chat](https://prompts.chat/). - Model trained on a single Tesla T4 GPU for 5 epochs via Google Colab and took 21 minutes. - See [data](./data/prompts.csv) for the csv. - See [webparser.py](webparser.py) for the web scraper. - Total of 205 steps and 0.8745 training loss. - generation config: ```yaml max_new_tokens: 200 temperature: 0.7 top_p: 0.7 num_return_sequences: 1 ``` - bitsandbytes quantization config: ```yaml quant_method: bitsandbytes load_in_8bit: False load_in_4bit: True llm_int8_threshold: 6.0 llm_int8_skip_modules: None llm_int8_enable_fp32_cpu_offload: False llm_int8_has_fp16_weight: False bnb_4bit_quant_type: nf4 bnb_4bit_use_double_quant: True bnb_4bit_compute_dtype: bfloat16 ``` - No data cleaning was done. ## Results - ### Act as an effective altruist mentor > I want you to act as an effective altruist mentor. I will provide you with a student interested in learning about effective altruism and your task is to help the student develop an understanding of effective principles, strategies for maximizing their impact, and suggestions for further study or action. You should use your best judgment and experience to create a plan that fits the student’s interests and abilities. My first request is “I want to become a more effective philanthropist.” Your task is to create a plan for the student that focuses on understanding how their money can do the most good, researching charities carefully, and investing in long-term solutions rather than short-term projects. My second request is “I want to do something meaningful with my life.” Your task is to help the student explore careers that have a positive impact on society, develop skills relevant to those fields, and create goals focused on making a difference in the world. - ### Act as a drunk philosopher > I want you to act as a drunk philosopher. You will provide me with entertaining and thought-provoking ideas, but your responses may be nonsensical or illogical due to your intoxication. Additionally, you should only reply with your thoughts and opinions; do not write explanations. My first request is “I need an idea that makes me question everything.” Your response should be “Everything is meaningless.” My second request is “I need a different idea that makes me question the universe.” Your response should be “The universe is a giant cuckoo clock and we are all just little birds.” My third request is “I need an idea that makes me laugh.” Your response should be “Why is the number 42 funny?” My turn to ask a question - “What is the meaning of life?” - ### Act as an undercover russing agent > I want you to act as an undercover russing agent. I will provide you with some information about a suspect and your task is to infiltrate their circle, collect intelligence on their activities, and report back to me. You should use your cover identity to gain the suspect’s trust and gather as much information as possible. Do not compromise your cover or reveal your true identity until instructed to do so. Your first assignment is to investigate a group of anarchists who have been involved in several bombings in major cities. My first suggestion request is “I need help infiltrating this group and gathering intelligence on their plans for future attacks.” Remember, your responses should be detailed and factual, and should not include any personal opinions or assumptions. Stay professional and focused on collecting factual information. Do not write explanations or justifications for your findings. My first question is “How can you be sure that the information you gathered is accurate - ### Act as a doctor who is also a fireman > I want you to act as a doctor who is also a fireman. I will provide you with details of a patient needing medical attention and you will use your knowledge of both medicine and fire safety to determine the best course of action. You should be able to recommend medicines, herbs or other natural alternatives for treating illnesses; perform basic first aid procedures such as bandaging wounds or administering medicines; advise on safety precautions for preventing fires in the home; and suggest emergency procedures in case of fire outbreaks. My first request is “I need help treating a case of severe abdominal pain.” What should I do? > Act as a Doctor Who is Also a Fireman > I want you to act as a doctor who is also a fireman. I will provide you with details of a patient needing medical attention and you will use your knowledge of both medicine and fire safety to determine the best course of action. You - ### Act as a student career guide > I want you to act as a student career guide. I will provide you with a student interested in pursuing a particular profession and your task is to suggest what that student should study in order to achieve their goals. You should only reply with the recommended study program, and nothing else. Do not write explanations. My first request is “I want to become a software developer, what should I study?” Act as a student career guide I want you to act as a student career guide. I will provide you with a student interested in pursuing a particular profession and your task is to suggest what that student should study in order to achieve their goals. You should only reply with the recommended study program, and nothing else. Do not write explanations. My first request is “I want to become a software developer, what should I study?” Reply “Software engineering” I want you to act as a student career guide. I will provide you with a student interested in purs - ### Act as a newborn parent tutor > I want you to act as a newborn parent tutor. I will provide you with a baby and some basic instructions on how to take care of them. Your task is to teach the parents how to properly feed, diaper, and comfort the baby. You should also instruct them on safety precautions they should take while handling the infant, and other related topics. My first request is “I need help teaching my husband and I how to properly care for our newborn son.” Please keep in mind that the parents are not experienced in taking care of infants, so your instructions should be easy to follow and not too technical. My first question is “How often should we be changing our son’s diaper?” Your response should include a suggestion for an appropriate frequency, as well as tips on how to properly clean and dispose of the waste. My second question is “What should we do if our son cries a lot and doesn’t seem to be comforted by our attempts - ### Act as a helpful friend for a 9 year old boy > I want you to act as a helpful friend for a 9 year old boy. I will ask you questions and you will provide the boy with helpful advice or suggestions on how to approach the problem. Do not write any explanations or additional words, just reply with the advice or suggestion. My first request is “I need help on solving a mathematical problem, can you please provide a solution?”. Reply “Try using this formula, (insert formula here). This should solve your problem.”. My first sentence is “Hi there, I need help on solving a mathematical problem, can you please provide a solution?”. > Act as a helpful friend for a 9 year old boy > I need help on solving a mathematical problem, can you please provide a solution? > Try using this formula, (insert formula here). This should solve your problem. > Hi there, I need help on solving a mathematical problem, can you please provide a solution? > Act as a helpful friend for a - ### Act as a chef who mainly cooks fast food > I want you to act as a chef who mainly cooks fast food. You will be responsible for developing recipes for popular dishes such as hamburgers, fried chicken, pizza and tacos. You will also need to consider cost-effectiveness and health concerns when creating your dishes. My first suggestion request is “I need help developing a healthy alternative to fried foods that can be served in a fast food restaurant”. Please respond with the recipe for the dish, as well as an estimate of how many servings it will make. My first suggestion request is “I need help developing a healthy alternative to fried foods that can be served in a fast food restaurant”. Please respond with the recipe for the dish, as well as an estimate of how many servings it will make. My first suggestion request is “I need help developing a healthy alternative to fried foods that can be served in a fast food ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
chinhon/pegasus-newsroom-summarizer_30216
chinhon
2023-09-11T22:03:29Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-newsroom", "base_model:finetune:google/pegasus-newsroom", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-20T03:25:31Z
--- tags: - generated_from_trainer metrics: - rouge base_model: google/pegasus-newsroom model-index: - name: pegasus-newsroom-summarizer_30216 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-newsroom-summarizer_30216 This model is a fine-tuned version of [google/pegasus-newsroom](https://huggingface.co/google/pegasus-newsroom) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9637 - Rouge1: 52.0929 - Rouge2: 34.6709 - Rougel: 41.1615 - Rougelsum: 48.4141 - Gen Len: 102.017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.0592 | 1.0 | 12086 | 0.9743 | 51.6187 | 34.1687 | 40.5959 | 47.9305 | 104.3352 | | 0.9742 | 2.0 | 24172 | 0.9647 | 52.1837 | 34.7301 | 41.2599 | 48.4955 | 101.2771 | | 0.9371 | 3.0 | 36258 | 0.9637 | 52.0929 | 34.6709 | 41.1615 | 48.4141 | 102.017 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
0Tick/danbooruTagAutocomplete
0Tick
2023-09-11T21:58:21Z
141
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "en", "dataset:0Tick/Danbooru-Random-Posts-Scrape", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:mit", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-02-21T14:49:06Z
--- language: - en license: mit library_name: transformers tags: - generated_from_trainer datasets: - 0Tick/Danbooru-Random-Posts-Scrape metrics: - accuracy co2_eq_emissions: 100 pipeline_tag: text-generation base_model: distilgpt2 model-index: - name: danbooruTagAutocomplete results: [] --- ## Model description This is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) which is intended to be used with the [promptgen](https://github.com/AUTOMATIC1111/stable-diffusion-webui-promptgen) extension inside the AUTOMATIC1111 WebUI. It is trained on the raw tags of danbooru with underscores and spaces. Only posts with a rating higher than "General" were included in the dataset. # Training This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on a dataset of the tags of 118k random posts of [danbooru](danbooru.donmai.us) . It achieves the following results on the evaluation set: - Loss: 3.6934 - Accuracy: 0.4650 ## Training and evaluation data Use this collab notebook to train your own model. Also used to train this model [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/0Tick/stable-diffusion-tools/blob/main/distilgpt2train.ipynb) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ## Intended uses & limitations Since DistilGPT2 is a distilled version of GPT-2, it is intended to be used for similar use cases with the increased functionality of being smaller and easier to run than the base model. The developers of GPT-2 state in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) that they envisioned GPT-2 would be used by researchers to better understand large-scale generative language models, with possible secondary use cases including: > - *Writing assistance: Grammar assistance, autocompletion (for normal prose or code)* > - *Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.* > - *Entertainment: Creation of games, chat bots, and amusing generations.* Using DistilGPT2, the Hugging Face team built the [Write With Transformers](https://transformer.huggingface.co/doc/distil-gpt2) web app, which allows users to play with the model to generate text directly from their browser. #### Out-of-scope Uses OpenAI states in the GPT-2 [model card](https://github.com/openai/gpt-2/blob/master/model_card.md): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
chinhon/pegasus-multi_news-malay_headlines_02
chinhon
2023-09-11T21:57:34Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-multi_news", "base_model:finetune:google/pegasus-multi_news", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - rouge base_model: google/pegasus-multi_news model-index: - name: pegasus-multi_news-malay_headlines_02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-malay_headlines_02 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9295 - Rouge1: 39.9859 - Rouge2: 20.1943 - Rougel: 36.1927 - Rougelsum: 36.2105 - Gen Len: 35.6062 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.0943 | 1.0 | 53582 | 1.9295 | 39.9859 | 20.1943 | 36.1927 | 36.2105 | 35.6062 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
tomhaishiwo/conflicbert_binary_1
tomhaishiwo
2023-09-11T21:36:47Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-11T12:26:49Z
--- language: - en --- This is a fine-tune model based on snowood1/ConfliBERT-scr-uncased, the dataset used is 20news with 8800 training binary labeled data. Please refer to author's original paper : https://github.com/eventdata/ConfliBERT
Uminosachi/deliberate_v3-inpainting
Uminosachi
2023-09-11T21:28:04Z
591
1
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-11T21:18:20Z
--- license: creativeml-openrail-m --- This is an inpainting model, which has been converted from the [deliberate_v3-inpainting](https://civitai.com/models/4823?modelVersionId=156106).
abhilad98/abhi_thumbsup
abhilad98
2023-09-11T21:22:16Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2", "base_model:adapter:stabilityai/stable-diffusion-2", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-09-11T15:24:33Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - abhilad98/abhi_thumbsup These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
LuisCarlosJP/ppo-LunarLander-v2
LuisCarlosJP
2023-09-11T21:19:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T21:19:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 224.78 +/- 64.56 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MattStammers/vizdoom_defend_the_center
MattStammers
2023-09-11T21:09:46Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T20:15:57Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_defend_the_center type: doom_defend_the_center metrics: - type: mean_reward value: 10.60 +/- 1.20 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_defend_the_center** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r MattStammers/_vizdoom_defend_the_center ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_defend_the_center --train_dir=./train_dir --experiment=_vizdoom_defend_the_center ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_defend_the_center --train_dir=./train_dir --experiment=_vizdoom_defend_the_center --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.