modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 18:26:50
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 18:26:48
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
asubiabre/dqn-SpaceInvadersNoFrameskip-v4
|
asubiabre
| 2023-01-26T19:13:29Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T17:31:09Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 605.00 +/- 178.61
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga asubiabre -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga asubiabre -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga asubiabre
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
gokuls/mobilebert_add_GLUE_Experiment_qqp_256
|
gokuls
| 2023-01-26T19:05:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:07:42Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: mobilebert_add_GLUE_Experiment_qqp_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.7558496166213208
- name: F1
type: f1
value: 0.6390991188621988
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_qqp_256
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5069
- Accuracy: 0.7558
- F1: 0.6391
- Combined Score: 0.6975
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6505 | 1.0 | 2843 | 0.6497 | 0.6321 | 0.0012 | 0.3166 |
| 0.6473 | 2.0 | 5686 | 0.6479 | 0.6321 | 0.0012 | 0.3166 |
| 0.5376 | 3.0 | 8529 | 0.5167 | 0.7486 | 0.5879 | 0.6682 |
| 0.4943 | 4.0 | 11372 | 0.5069 | 0.7558 | 0.6391 | 0.6975 |
| 0.4816 | 5.0 | 14215 | 0.5072 | 0.7547 | 0.6574 | 0.7061 |
| 0.4738 | 6.0 | 17058 | nan | 0.7588 | 0.6526 | 0.7057 |
| 0.4646 | 7.0 | 19901 | nan | 0.6318 | 0.0 | 0.3159 |
| 0.0 | 8.0 | 22744 | nan | 0.6318 | 0.0 | 0.3159 |
| 0.0 | 9.0 | 25587 | nan | 0.6318 | 0.0 | 0.3159 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
AiDevelopment/donut-base-sroie
|
AiDevelopment
| 2023-01-26T19:04:14Z | 27 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vision-encoder-decoder",
"image-text-to-text",
"generated_from_trainer",
"dataset:imagefolder",
"license:mit",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2022-12-16T12:23:17Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: donut-base-sroie
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut-base-sroie
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.4707116138614145e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
javiervela/ppo-SnowballTarget
|
javiervela
| 2023-01-26T19:04:00Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-26T19:03:53Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: javiervela/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
harikc456/PyramidsRND-ppo
|
harikc456
| 2023-01-26T18:43:59Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-26T18:43:52Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: harikc456/PyramidsRND-ppo
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
davanstrien/testempty
|
davanstrien
| 2023-01-26T18:23:47Z | 0 | 0 |
fastai
|
[
"fastai",
"en",
"de",
"fr",
"am",
"license:openrail",
"region:us"
] | null | 2023-01-26T15:54:43Z |
---
library_name: fastai
license: openrail
language:
- en
- de
- fr
- am
---
|
kadirnar/AnimeSR_v2
|
kadirnar
| 2023-01-26T18:20:38Z | 0 | 4 | null |
[
"object-detection",
"computer-vision",
"gan",
"animegan",
"arxiv:2206.07038",
"license:apache-2.0",
"region:us"
] |
object-detection
| 2023-01-26T18:15:15Z |
---
license: apache-2.0
tags:
- object-detection
- computer-vision
- gan
- animegan
---
### Model Description
[AnimeSR](https://arxiv.org/abs/2206.07038): Learning Real-World Super-Resolution Models for Animation Videos
### Installation
```
pip install animesr
```
### Anime GAN
```python
from animesr.inference_animesr_video import main
main(source='test.mp4', 'kadirnar/AnimeSR_v2')
```
### BibTeX Entry and Citation Info
```
@InProceedings{wu2022animesr,
author={Wu, Yanze and Wang, Xintao and Li, Gen and Shan, Ying},
title={AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}
```
|
kadirnar/AnimeSR_Paper_Model
|
kadirnar
| 2023-01-26T18:15:00Z | 0 | 1 | null |
[
"object-detection",
"computer-vision",
"gan",
"animegan",
"arxiv:2206.07038",
"license:apache-2.0",
"region:us"
] |
object-detection
| 2023-01-26T17:54:12Z |
---
license: apache-2.0
tags:
- object-detection
- computer-vision
- gan
- animegan
---
### Model Description
[AnimeSR](https://arxiv.org/abs/2206.07038): Learning Real-World Super-Resolution Models for Animation Videos
### Installation
```
pip install animesr
```
### Anime GAN
```python
from animesr.inference_animesr_video import main
main(source='test.mp4', 'kadirnar/AnimeSR_Paper_Model')
```
### BibTeX Entry and Citation Info
```
@InProceedings{wu2022animesr,
author={Wu, Yanze and Wang, Xintao and Li, Gen and Shan, Ying},
title={AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}
```
|
bonadio/ppo-PyramidTarget-v1
|
bonadio
| 2023-01-26T18:12:59Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-26T18:12:53Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: bonadio/ppo-PyramidTarget-v1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
css919/a2c-PandaReachDense-v2
|
css919
| 2023-01-26T17:59:13Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T17:57:06Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -0.63 +/- 0.16
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Dems/ppo-LunarLander-v2
|
Dems
| 2023-01-26T17:57:17Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T17:56:59Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 261.83 +/- 17.36
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
svo2/roberta-finetuned-country-neg
|
svo2
| 2023-01-26T17:56:28Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-26T17:22:40Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: roberta-finetuned-country-neg
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-country-neg
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
tomekkorbak/detoxify_toxicity
|
tomekkorbak
| 2023-01-26T17:52:23Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"generated_from_trainer",
"en",
"dataset:tomekkorbak/detoxify-pile-chunk3-0-50000",
"dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000",
"dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000",
"dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000",
"dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000",
"dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000",
"dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000",
"dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000",
"dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000",
"dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000",
"dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000",
"dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000",
"dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000",
"dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000",
"dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000",
"dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000",
"dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000",
"dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000",
"dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000",
"dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1850000-1900000",
"dataset:tomekkorbak/detoxify-pile-chunk3-1900000-1950000",
"license:mit",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2022-11-07T17:27:14Z |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- tomekkorbak/detoxify-pile-chunk3-0-50000
- tomekkorbak/detoxify-pile-chunk3-50000-100000
- tomekkorbak/detoxify-pile-chunk3-100000-150000
- tomekkorbak/detoxify-pile-chunk3-150000-200000
- tomekkorbak/detoxify-pile-chunk3-200000-250000
- tomekkorbak/detoxify-pile-chunk3-250000-300000
- tomekkorbak/detoxify-pile-chunk3-300000-350000
- tomekkorbak/detoxify-pile-chunk3-350000-400000
- tomekkorbak/detoxify-pile-chunk3-400000-450000
- tomekkorbak/detoxify-pile-chunk3-450000-500000
- tomekkorbak/detoxify-pile-chunk3-500000-550000
- tomekkorbak/detoxify-pile-chunk3-550000-600000
- tomekkorbak/detoxify-pile-chunk3-600000-650000
- tomekkorbak/detoxify-pile-chunk3-650000-700000
- tomekkorbak/detoxify-pile-chunk3-700000-750000
- tomekkorbak/detoxify-pile-chunk3-750000-800000
- tomekkorbak/detoxify-pile-chunk3-800000-850000
- tomekkorbak/detoxify-pile-chunk3-850000-900000
- tomekkorbak/detoxify-pile-chunk3-900000-950000
- tomekkorbak/detoxify-pile-chunk3-950000-1000000
- tomekkorbak/detoxify-pile-chunk3-1000000-1050000
- tomekkorbak/detoxify-pile-chunk3-1050000-1100000
- tomekkorbak/detoxify-pile-chunk3-1100000-1150000
- tomekkorbak/detoxify-pile-chunk3-1150000-1200000
- tomekkorbak/detoxify-pile-chunk3-1200000-1250000
- tomekkorbak/detoxify-pile-chunk3-1250000-1300000
- tomekkorbak/detoxify-pile-chunk3-1300000-1350000
- tomekkorbak/detoxify-pile-chunk3-1350000-1400000
- tomekkorbak/detoxify-pile-chunk3-1400000-1450000
- tomekkorbak/detoxify-pile-chunk3-1450000-1500000
- tomekkorbak/detoxify-pile-chunk3-1500000-1550000
- tomekkorbak/detoxify-pile-chunk3-1550000-1600000
- tomekkorbak/detoxify-pile-chunk3-1600000-1650000
- tomekkorbak/detoxify-pile-chunk3-1650000-1700000
- tomekkorbak/detoxify-pile-chunk3-1700000-1750000
- tomekkorbak/detoxify-pile-chunk3-1750000-1800000
- tomekkorbak/detoxify-pile-chunk3-1800000-1850000
- tomekkorbak/detoxify-pile-chunk3-1850000-1900000
- tomekkorbak/detoxify-pile-chunk3-1900000-1950000
model-index:
- name: tomekkorbak/detoxify_toxicity
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tomekkorbak/detoxify_toxicity
This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-0-50000, the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000, the tomekkorbak/detoxify-pile-chunk3-1800000-1850000, the tomekkorbak/detoxify-pile-chunk3-1850000-1900000 and the tomekkorbak/detoxify-pile-chunk3-1900000-1950000 datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.1
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- training_steps: 50354
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.24.0
- Pytorch 1.11.0+cu113
- Datasets 2.5.1
- Tokenizers 0.11.6
# Full config
{'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-0-50000',
'tomekkorbak/detoxify-pile-chunk3-50000-100000',
'tomekkorbak/detoxify-pile-chunk3-100000-150000',
'tomekkorbak/detoxify-pile-chunk3-150000-200000',
'tomekkorbak/detoxify-pile-chunk3-200000-250000',
'tomekkorbak/detoxify-pile-chunk3-250000-300000',
'tomekkorbak/detoxify-pile-chunk3-300000-350000',
'tomekkorbak/detoxify-pile-chunk3-350000-400000',
'tomekkorbak/detoxify-pile-chunk3-400000-450000',
'tomekkorbak/detoxify-pile-chunk3-450000-500000',
'tomekkorbak/detoxify-pile-chunk3-500000-550000',
'tomekkorbak/detoxify-pile-chunk3-550000-600000',
'tomekkorbak/detoxify-pile-chunk3-600000-650000',
'tomekkorbak/detoxify-pile-chunk3-650000-700000',
'tomekkorbak/detoxify-pile-chunk3-700000-750000',
'tomekkorbak/detoxify-pile-chunk3-750000-800000',
'tomekkorbak/detoxify-pile-chunk3-800000-850000',
'tomekkorbak/detoxify-pile-chunk3-850000-900000',
'tomekkorbak/detoxify-pile-chunk3-900000-950000',
'tomekkorbak/detoxify-pile-chunk3-950000-1000000',
'tomekkorbak/detoxify-pile-chunk3-1000000-1050000',
'tomekkorbak/detoxify-pile-chunk3-1050000-1100000',
'tomekkorbak/detoxify-pile-chunk3-1100000-1150000',
'tomekkorbak/detoxify-pile-chunk3-1150000-1200000',
'tomekkorbak/detoxify-pile-chunk3-1200000-1250000',
'tomekkorbak/detoxify-pile-chunk3-1250000-1300000',
'tomekkorbak/detoxify-pile-chunk3-1300000-1350000',
'tomekkorbak/detoxify-pile-chunk3-1350000-1400000',
'tomekkorbak/detoxify-pile-chunk3-1400000-1450000',
'tomekkorbak/detoxify-pile-chunk3-1450000-1500000',
'tomekkorbak/detoxify-pile-chunk3-1500000-1550000',
'tomekkorbak/detoxify-pile-chunk3-1550000-1600000',
'tomekkorbak/detoxify-pile-chunk3-1600000-1650000',
'tomekkorbak/detoxify-pile-chunk3-1650000-1700000',
'tomekkorbak/detoxify-pile-chunk3-1700000-1750000',
'tomekkorbak/detoxify-pile-chunk3-1750000-1800000',
'tomekkorbak/detoxify-pile-chunk3-1800000-1850000',
'tomekkorbak/detoxify-pile-chunk3-1850000-1900000',
'tomekkorbak/detoxify-pile-chunk3-1900000-1950000'],
'is_split_by_sentences': True},
'generation': {'force_call_on': [25354],
'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}],
'scenario_configs': [{'generate_kwargs': {'do_sample': True,
'max_length': 128,
'min_length': 10,
'temperature': 0.7,
'top_k': 0,
'top_p': 0.9},
'name': 'unconditional',
'num_samples': 4096}],
'scorer_config': {'device': 'cuda:0'}},
'kl_gpt3_callback': {'force_call_on': [25354],
'gpt3_kwargs': {'model_name': 'davinci'},
'max_tokens': 64,
'num_samples': 4096},
'model': {'from_scratch': True,
'gpt2_config_kwargs': {'reorder_and_upcast_attn': True,
'scale_attn_by': True},
'path_or_name': 'gpt2'},
'objective': {'name': 'MLE'},
'tokenizer': {'path_or_name': 'gpt2'},
'training': {'dataloader_num_workers': 0,
'effective_batch_size': 64,
'evaluation_strategy': 'no',
'fp16': True,
'hub_model_id': 'tomekkorbak/detoxify_toxicity',
'hub_strategy': 'all_checkpoints',
'learning_rate': 0.1,
'logging_first_step': True,
'logging_steps': 1,
'num_tokens': 3300000000.0,
'output_dir': 'training_output104340',
'per_device_train_batch_size': 8,
'push_to_hub': True,
'remove_unused_columns': False,
'save_steps': 25354,
'save_strategy': 'steps',
'seed': 42,
'warmup_ratio': 0.01,
'weight_decay': 0.1}}
# Wandb URL:
https://wandb.ai/tomekkorbak/apo/runs/1l6hdjln
|
gokuls/distilbert_add_GLUE_Experiment_mnli_96
|
gokuls
| 2023-01-26T17:24:10Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:55:30Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_add_GLUE_Experiment_mnli_96
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
config: mnli
split: validation_matched
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.500406834825061
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_mnli_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0256
- Accuracy: 0.5004
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0987 | 1.0 | 1534 | 1.0980 | 0.3545 |
| 1.0979 | 2.0 | 3068 | 1.0942 | 0.3580 |
| 1.0897 | 3.0 | 4602 | 1.0896 | 0.3706 |
| 1.0817 | 4.0 | 6136 | 1.0769 | 0.3991 |
| 1.072 | 5.0 | 7670 | 1.0680 | 0.4146 |
| 1.0603 | 6.0 | 9204 | 1.0700 | 0.4174 |
| 1.0515 | 7.0 | 10738 | 1.0655 | 0.4179 |
| 1.0441 | 8.0 | 12272 | 1.0546 | 0.4335 |
| 1.038 | 9.0 | 13806 | 1.0751 | 0.4059 |
| 1.0344 | 10.0 | 15340 | 1.0554 | 0.4363 |
| 1.0275 | 11.0 | 16874 | 1.0736 | 0.4207 |
| 1.0225 | 12.0 | 18408 | 1.0662 | 0.4295 |
| 1.0169 | 13.0 | 19942 | 1.0544 | 0.4421 |
| 1.0111 | 14.0 | 21476 | 1.0635 | 0.4411 |
| 1.0043 | 15.0 | 23010 | 1.0505 | 0.4567 |
| 0.9986 | 16.0 | 24544 | 1.0402 | 0.4643 |
| 0.9925 | 17.0 | 26078 | 1.0531 | 0.4545 |
| 0.9861 | 18.0 | 27612 | 1.0431 | 0.4675 |
| 0.9781 | 19.0 | 29146 | 1.0361 | 0.4801 |
| 0.9673 | 20.0 | 30680 | 1.0301 | 0.4879 |
| 0.9552 | 21.0 | 32214 | 1.0327 | 0.4908 |
| 0.9467 | 22.0 | 33748 | 1.0248 | 0.5013 |
| 0.9396 | 23.0 | 35282 | 1.0297 | 0.4977 |
| 0.9328 | 24.0 | 36816 | 1.0237 | 0.5025 |
| 0.9277 | 25.0 | 38350 | 1.0384 | 0.5010 |
| 0.9228 | 26.0 | 39884 | 1.0374 | 0.5037 |
| 0.918 | 27.0 | 41418 | 1.0242 | 0.5006 |
| 0.9128 | 28.0 | 42952 | 1.0248 | 0.5060 |
| 0.9087 | 29.0 | 44486 | 1.0283 | 0.5027 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
NikosKokkini/dqn-SpaceInvadersNoFrameskip-v4
|
NikosKokkini
| 2023-01-26T17:23:13Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-25T09:16:21Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 426.50 +/- 140.86
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NikosKokkini -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NikosKokkini -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga NikosKokkini
```
## Hyperparameters
```python
OrderedDict([('batch_size', 128),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1500000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
ImeneT/dqn-SpaceInvaders
|
ImeneT
| 2023-01-26T16:59:39Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T16:59:05Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 585.00 +/- 235.83
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ImeneT -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ImeneT -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ImeneT
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
AKFromCanada/dqn-SpaceInvadersNoFrameskip-v4
|
AKFromCanada
| 2023-01-26T16:53:11Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T16:52:33Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 564.00 +/- 96.90
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AKFromCanada -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga AKFromCanada -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga AKFromCanada
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
harikc456/SnowballTarget-ppo
|
harikc456
| 2023-01-26T16:47:03Z | 11 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-26T16:25:58Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: harikc456/SnowballTarget-ppo
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
nlp04/kobart_8_5.6e-5_min30_lp5_sample_beams2
|
nlp04
| 2023-01-26T16:36:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-01-26T15:24:54Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: kobart_8_5.6e-5_min30_lp5_sample_beams2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobart_8_5.6e-5_min30_lp5_sample_beams2
This model is a fine-tuned version of [gogamza/kobart-base-v2](https://huggingface.co/gogamza/kobart-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8283
- Rouge1: 35.819
- Rouge2: 12.1658
- Rougel: 23.3058
- Bleu1: 29.6395
- Bleu2: 16.8254
- Bleu3: 9.5014
- Bleu4: 5.168
- Gen Len: 49.8625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Bleu1 | Bleu2 | Bleu3 | Bleu4 | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|:------:|:-------:|
| 2.527 | 0.19 | 1000 | 3.0014 | 30.9895 | 9.5631 | 20.1782 | 25.4533 | 13.5291 | 7.1157 | 3.4483 | 50.2657 |
| 2.4214 | 0.38 | 2000 | 2.8814 | 32.3984 | 10.3443 | 21.2357 | 26.5661 | 14.5006 | 7.3531 | 3.5159 | 44.1538 |
| 2.3577 | 0.57 | 3000 | 2.8277 | 32.2306 | 10.5703 | 21.3959 | 26.4952 | 14.725 | 8.0596 | 4.2696 | 50.965 |
| 2.2606 | 0.76 | 4000 | 2.7749 | 33.0892 | 11.0109 | 21.4034 | 27.045 | 15.0797 | 8.2405 | 4.2337 | 48.1026 |
| 2.1508 | 0.94 | 5000 | 2.6841 | 33.1368 | 10.9332 | 21.9277 | 27.4808 | 15.2182 | 8.39 | 4.2468 | 46.0583 |
| 1.9467 | 1.13 | 6000 | 2.6994 | 33.2536 | 10.9192 | 21.851 | 26.7639 | 14.7669 | 8.1932 | 4.4866 | 42.7436 |
| 1.9267 | 1.32 | 7000 | 2.6743 | 35.335 | 12.5749 | 23.0923 | 29.4977 | 17.1053 | 9.9798 | 5.6851 | 54.2168 |
| 1.9402 | 1.51 | 8000 | 2.6549 | 34.7169 | 12.4365 | 22.8695 | 28.8948 | 16.8377 | 9.795 | 5.8984 | 53.8042 |
| 1.9457 | 1.7 | 9000 | 2.6198 | 34.1256 | 11.3508 | 22.7591 | 28.0771 | 15.6516 | 8.6198 | 4.5566 | 43.8252 |
| 1.9206 | 1.89 | 10000 | 2.6090 | 34.5521 | 12.0321 | 22.8654 | 28.268 | 16.2876 | 9.2697 | 4.9105 | 45.8205 |
| 1.6341 | 2.08 | 11000 | 2.6831 | 35.2143 | 12.748 | 23.2014 | 29.3413 | 17.2312 | 9.9515 | 5.5303 | 51.5338 |
| 1.6098 | 2.27 | 12000 | 2.6529 | 35.251 | 12.1877 | 23.3663 | 29.0609 | 16.6432 | 9.5808 | 5.2786 | 46.2378 |
| 1.6094 | 2.45 | 13000 | 2.6441 | 34.8683 | 12.0873 | 22.9699 | 28.9225 | 16.492 | 9.3451 | 5.1097 | 45.6131 |
| 1.6684 | 2.64 | 14000 | 2.6504 | 35.1897 | 12.0262 | 23.0832 | 28.948 | 16.4709 | 9.1994 | 5.0042 | 46.5245 |
| 1.6376 | 2.83 | 15000 | 2.6514 | 35.795 | 12.4779 | 23.2187 | 30.05 | 17.2789 | 9.984 | 5.4966 | 50.1119 |
| 1.3663 | 3.02 | 16000 | 2.7310 | 35.6544 | 12.109 | 23.3876 | 29.9268 | 16.945 | 9.4372 | 5.095 | 49.6317 |
| 1.3719 | 3.21 | 17000 | 2.7514 | 35.0663 | 11.8565 | 23.4224 | 28.8679 | 16.2846 | 9.3246 | 5.0154 | 45.3333 |
| 1.394 | 3.4 | 18000 | 2.7644 | 35.5883 | 12.2587 | 23.188 | 29.8503 | 17.0253 | 9.705 | 5.3253 | 47.4289 |
| 1.3615 | 3.59 | 19000 | 2.7535 | 35.3947 | 12.3879 | 23.355 | 29.4012 | 16.8473 | 9.6862 | 5.3268 | 48.7179 |
| 1.3544 | 3.78 | 20000 | 2.7480 | 35.7263 | 12.4434 | 23.6667 | 29.7146 | 17.0029 | 9.6018 | 5.2752 | 46.8834 |
| 1.3697 | 3.97 | 21000 | 2.7415 | 35.4189 | 12.1527 | 23.0022 | 29.6187 | 16.8477 | 9.5092 | 5.3766 | 50.3963 |
| 1.1718 | 4.15 | 22000 | 2.8251 | 35.0831 | 12.0809 | 22.8805 | 29.2252 | 16.5645 | 9.3818 | 5.241 | 46.7156 |
| 1.1955 | 4.34 | 23000 | 2.8158 | 35.7853 | 12.3885 | 23.821 | 29.7377 | 16.9635 | 9.7005 | 5.4376 | 47.5991 |
| 1.1795 | 4.53 | 24000 | 2.8265 | 35.4293 | 12.145 | 23.2029 | 29.6457 | 16.8228 | 9.7128 | 5.2525 | 49.5431 |
| 1.1835 | 4.72 | 25000 | 2.8254 | 35.499 | 11.9198 | 23.0859 | 29.4398 | 16.5715 | 9.2442 | 4.7663 | 47.8345 |
| 1.1644 | 4.91 | 26000 | 2.8283 | 35.819 | 12.1658 | 23.3058 | 29.6395 | 16.8254 | 9.5014 | 5.168 | 49.8625 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|
css919/a2c-AntBulletEnv-v0
|
css919
| 2023-01-26T16:33:03Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T16:32:01Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1602.09 +/- 34.75
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Jordan1/HoloPastel
|
Jordan1
| 2023-01-26T15:48:49Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-26T15:10:27Z |
---
license: creativeml-openrail-m
---
|
griffohio314/artlessonplan
|
griffohio314
| 2023-01-26T15:28:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-01-26T15:27:14Z |
act as a teacher and write a kindergarten lesson plan for an art class about shape
|
Namig/finetuning-sentiment-model-3000-samples
|
Namig
| 2023-01-26T15:27:31Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:58:26Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.87
- name: F1
type: f1
value: 0.8704318936877077
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3222
- Accuracy: 0.87
- F1: 0.8704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
iblub/a2c-AntBulletEnv-v0
|
iblub
| 2023-01-26T15:22:57Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T15:21:55Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 2159.83 +/- 43.32
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
gokuls/distilbert_add_GLUE_Experiment_wnli_96
|
gokuls
| 2023-01-26T14:52:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:52:09Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_add_GLUE_Experiment_wnli_96
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE WNLI
type: glue
config: wnli
split: validation
args: wnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5633802816901409
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_wnli_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6895
- Accuracy: 0.5634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6933 | 1.0 | 3 | 0.6895 | 0.5634 |
| 0.6926 | 2.0 | 6 | 0.6906 | 0.5634 |
| 0.6924 | 3.0 | 9 | 0.6907 | 0.5634 |
| 0.6937 | 4.0 | 12 | 0.6897 | 0.5634 |
| 0.6939 | 5.0 | 15 | 0.6897 | 0.5634 |
| 0.6929 | 6.0 | 18 | 0.6902 | 0.5634 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
deetsml/deetsml
|
deetsml
| 2023-01-26T14:52:19Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"feature-extraction",
"sentence-transformers",
"text-classification",
"en",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-16T07:50:27Z |
---
pipeline_tag: text-classification
tags:
- sentence-transformers
- transformers
library_name: transformers
language:
- en
metrics:
- accuracy
- precision
- recall
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 5064 with parameters:
```
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 5064,
"warmup_steps": 507,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BartModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
gokuls/distilbert_add_GLUE_Experiment_stsb_96
|
gokuls
| 2023-01-26T14:51:40Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:47:39Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: distilbert_add_GLUE_Experiment_stsb_96
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
config: stsb
split: validation
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: .nan
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_stsb_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2529
- Pearson: nan
- Spearmanr: nan
- Combined Score: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
| 8.7243 | 1.0 | 23 | 6.6928 | nan | nan | nan |
| 7.9215 | 2.0 | 46 | 6.2710 | nan | nan | nan |
| 7.4296 | 3.0 | 69 | 5.8601 | nan | nan | nan |
| 6.9483 | 4.0 | 92 | 5.4460 | nan | nan | nan |
| 6.4768 | 5.0 | 115 | 5.0440 | nan | nan | nan |
| 5.9658 | 6.0 | 138 | 4.6523 | nan | nan | nan |
| 5.5067 | 7.0 | 161 | 4.2735 | nan | nan | nan |
| 5.0622 | 8.0 | 184 | 3.9107 | nan | nan | nan |
| 4.6133 | 9.0 | 207 | 3.5725 | nan | nan | nan |
| 4.2011 | 10.0 | 230 | 3.2630 | nan | nan | nan |
| 3.7839 | 11.0 | 253 | 2.9896 | nan | nan | nan |
| 3.4525 | 12.0 | 276 | 2.7549 | 0.0063 | 0.0066 | 0.0064 |
| 3.1246 | 13.0 | 299 | 2.5637 | -0.0161 | -0.0155 | -0.0158 |
| 2.8674 | 14.0 | 322 | 2.4155 | nan | nan | nan |
| 2.6317 | 15.0 | 345 | 2.3138 | nan | nan | nan |
| 2.4623 | 16.0 | 368 | 2.2596 | nan | nan | nan |
| 2.3397 | 17.0 | 391 | 2.2529 | nan | nan | nan |
| 2.2455 | 18.0 | 414 | 2.2910 | nan | nan | nan |
| 2.1984 | 19.0 | 437 | 2.3424 | nan | nan | nan |
| 2.1869 | 20.0 | 460 | 2.3424 | nan | nan | nan |
| 2.1982 | 21.0 | 483 | 2.3460 | nan | nan | nan |
| 2.195 | 22.0 | 506 | 2.3664 | -0.0023 | 0.0002 | -0.0011 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
StatsGary/questionanswering-distilbert-squad
|
StatsGary
| 2023-01-26T14:47:35Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-01-25T17:15:24Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: questionanswering-distilbert-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# questionanswering-distilbert-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6344
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 250 | 2.3866 |
| 2.774 | 2.0 | 500 | 1.6956 |
| 2.774 | 3.0 | 750 | 1.6344 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_qqp
|
gokuls
| 2023-01-26T14:44:55Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T13:12:20Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_add_GLUE_Experiment_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8319564679693298
- name: F1
type: f1
value: 0.7639168809507263
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_qqp
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4050
- Accuracy: 0.8320
- F1: 0.7639
- Combined Score: 0.7979
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.5406 | 1.0 | 1422 | 0.4844 | 0.7648 | 0.6276 | 0.6962 |
| 0.4161 | 2.0 | 2844 | 0.4451 | 0.8044 | 0.6939 | 0.7491 |
| 0.3079 | 3.0 | 4266 | 0.4050 | 0.8320 | 0.7639 | 0.7979 |
| 0.2338 | 4.0 | 5688 | 0.4633 | 0.8388 | 0.7715 | 0.8052 |
| 0.1801 | 5.0 | 7110 | 0.5597 | 0.8346 | 0.7489 | 0.7918 |
| 0.1433 | 6.0 | 8532 | 0.5641 | 0.8460 | 0.7774 | 0.8117 |
| 0.1155 | 7.0 | 9954 | 0.5940 | 0.8481 | 0.7889 | 0.8185 |
| 0.0963 | 8.0 | 11376 | 0.6896 | 0.8438 | 0.7670 | 0.8054 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Mehtap/whisper-base
|
Mehtap
| 2023-01-26T14:44:41Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"tr",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-01-20T09:33:28Z |
---
language:
- tr
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Base Turkish Whisper (BTW)
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Base Turkish Whisper (BTW)
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Ermetal Meetings dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0009
- Wer: 0.0
- Cer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 1.8786 | 6.63 | 100 | 1.3510 | 0.7866 | 0.6649 |
| 0.4559 | 13.32 | 200 | 0.3395 | 0.3590 | 0.2157 |
| 0.0793 | 19.95 | 300 | 0.0564 | 0.0996 | 0.0531 |
| 0.0137 | 26.63 | 400 | 0.0120 | 0.0017 | 0.0017 |
| 0.0042 | 33.32 | 500 | 0.0032 | 0.0 | 0.0 |
| 0.0021 | 39.95 | 600 | 0.0018 | 0.0 | 0.0 |
| 0.0014 | 46.63 | 700 | 0.0013 | 0.0 | 0.0 |
| 0.0012 | 53.32 | 800 | 0.0011 | 0.0 | 0.0 |
| 0.001 | 59.95 | 900 | 0.0010 | 0.0 | 0.0 |
| 0.001 | 66.63 | 1000 | 0.0009 | 0.0 | 0.0 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.9.1+cu111
- Datasets 2.7.1
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_rte_96
|
gokuls
| 2023-01-26T14:36:21Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:35:29Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_add_GLUE_Experiment_rte_96
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE RTE
type: glue
config: rte
split: validation
args: rte
metrics:
- name: Accuracy
type: accuracy
value: 0.5270758122743683
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_rte_96
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6927
- Accuracy: 0.5271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.693 | 1.0 | 10 | 0.6927 | 0.5271 |
| 0.6937 | 2.0 | 20 | 0.6931 | 0.5271 |
| 0.6932 | 3.0 | 30 | 0.6939 | 0.4729 |
| 0.6935 | 4.0 | 40 | 0.6930 | 0.5271 |
| 0.6933 | 5.0 | 50 | 0.6935 | 0.4729 |
| 0.6932 | 6.0 | 60 | 0.6933 | 0.4729 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
fillsoko/stablesatya
|
fillsoko
| 2023-01-26T14:33:17Z | 19 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-26T12:13:56Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
widget:
- text: photo of STBLSATYA
---
### stablesatya Dreambooth model trained by fillsoko with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v2-1-512 base model
This model is based on Stable Diffusion 2.1 and was fine tuned using 18 portraits of Staya Nadella scraped from the web.
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
|
mikegarts/PyramidsRND
|
mikegarts
| 2023-01-26T14:28:05Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-01-26T14:28:00Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
library_name: ml-agents
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: mikegarts/PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
gokuls/distilbert_add_GLUE_Experiment_stsb_192
|
gokuls
| 2023-01-26T14:22:03Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:19:44Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: distilbert_add_GLUE_Experiment_stsb_192
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
config: stsb
split: validation
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: .nan
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_stsb_192
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2659
- Pearson: nan
- Spearmanr: nan
- Combined Score: nan
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
| 7.0456 | 1.0 | 23 | 4.3280 | nan | nan | nan |
| 4.7979 | 2.0 | 46 | 3.4200 | nan | nan | nan |
| 3.7359 | 3.0 | 69 | 2.7494 | nan | nan | nan |
| 2.9308 | 4.0 | 92 | 2.3396 | nan | nan | nan |
| 2.3776 | 5.0 | 115 | 2.2659 | nan | nan | nan |
| 2.1865 | 6.0 | 138 | 2.3171 | nan | nan | nan |
| 2.1731 | 7.0 | 161 | 2.3598 | nan | nan | nan |
| 2.1793 | 8.0 | 184 | 2.4690 | 0.1389 | 0.1432 | 0.1410 |
| 2.1725 | 9.0 | 207 | 2.3589 | 0.0899 | 0.0808 | 0.0854 |
| 2.1621 | 10.0 | 230 | 2.3156 | 0.0853 | 0.0802 | 0.0827 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
thomasmeunierr/q-Taxi-v3
|
thomasmeunierr
| 2023-01-26T14:20:23Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T14:20:20Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.72
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="thomasmeunierr/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
gokuls/distilbert_add_GLUE_Experiment_sst2_384
|
gokuls
| 2023-01-26T14:08:57Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T13:57:33Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_add_GLUE_Experiment_sst2_384
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.7752293577981652
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_sst2_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5097
- Accuracy: 0.7752
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6841 | 1.0 | 264 | 0.6896 | 0.5654 |
| 0.4539 | 2.0 | 528 | 0.5097 | 0.7752 |
| 0.354 | 3.0 | 792 | 0.5233 | 0.7741 |
| 0.302 | 4.0 | 1056 | 0.5783 | 0.7844 |
| 0.269 | 5.0 | 1320 | 0.6044 | 0.7787 |
| 0.2416 | 6.0 | 1584 | 0.6086 | 0.7672 |
| 0.2127 | 7.0 | 1848 | 0.6909 | 0.7752 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
nickapch/distilbert-base-uncased-finetuned-emotion2
|
nickapch
| 2023-01-26T14:06:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T14:05:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
model-index:
- name: distilbert-base-uncased-finetuned-emotion2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_qqp_256
|
gokuls
| 2023-01-26T14:03:59Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:51:07Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_add_GLUE_Experiment_qqp_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8135790254761316
- name: F1
type: f1
value: 0.7425272435349981
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_qqp_256
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4273
- Accuracy: 0.8136
- F1: 0.7425
- Combined Score: 0.7781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.5648 | 1.0 | 1422 | 0.5394 | 0.7316 | 0.6540 | 0.6928 |
| 0.5038 | 2.0 | 2844 | 0.5093 | 0.7496 | 0.6564 | 0.7030 |
| 0.4837 | 3.0 | 4266 | 0.4952 | 0.7623 | 0.6625 | 0.7124 |
| 0.4624 | 4.0 | 5688 | 0.4777 | 0.7739 | 0.6844 | 0.7292 |
| 0.4197 | 5.0 | 7110 | 0.4541 | 0.7925 | 0.6939 | 0.7432 |
| 0.3693 | 6.0 | 8532 | 0.4539 | 0.8027 | 0.7012 | 0.7519 |
| 0.3214 | 7.0 | 9954 | 0.4273 | 0.8136 | 0.7425 | 0.7781 |
| 0.2804 | 8.0 | 11376 | 0.4547 | 0.8187 | 0.7344 | 0.7765 |
| 0.2463 | 9.0 | 12798 | 0.4779 | 0.8227 | 0.7478 | 0.7852 |
| 0.2177 | 10.0 | 14220 | 0.5060 | 0.8256 | 0.7510 | 0.7883 |
| 0.1933 | 11.0 | 15642 | 0.5020 | 0.8272 | 0.7587 | 0.7929 |
| 0.1741 | 12.0 | 17064 | 0.5385 | 0.8304 | 0.7604 | 0.7954 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/mobilebert_add_GLUE_Experiment_qnli_128
|
gokuls
| 2023-01-26T13:57:12Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:43:45Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_add_GLUE_Experiment_qnli_128
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.5053999633900788
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_qnli_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.5054
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6933 | 1.0 | 819 | 0.6932 | 0.4946 |
| 0.6932 | 2.0 | 1638 | 0.6932 | 0.4946 |
| 0.6932 | 3.0 | 2457 | 0.6931 | 0.5054 |
| 0.6932 | 4.0 | 3276 | 0.6933 | 0.4946 |
| 0.6932 | 5.0 | 4095 | 0.6931 | 0.5054 |
| 0.6932 | 6.0 | 4914 | 0.6931 | 0.5054 |
| 0.6932 | 7.0 | 5733 | 0.6931 | 0.5054 |
| 0.6932 | 8.0 | 6552 | 0.6931 | 0.5054 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_qqp_384
|
gokuls
| 2023-01-26T13:54:24Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:53:22Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_add_GLUE_Experiment_qqp_384
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8095226317091269
- name: F1
type: f1
value: 0.737194143944306
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_qqp_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4096
- Accuracy: 0.8095
- F1: 0.7372
- Combined Score: 0.7734
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.5518 | 1.0 | 1422 | 0.5289 | 0.7376 | 0.6535 | 0.6955 |
| 0.4901 | 2.0 | 2844 | 0.4655 | 0.7772 | 0.6744 | 0.7258 |
| 0.4098 | 3.0 | 4266 | 0.4096 | 0.8095 | 0.7372 | 0.7734 |
| 0.3273 | 4.0 | 5688 | 0.4343 | 0.8211 | 0.7536 | 0.7873 |
| 0.2681 | 5.0 | 7110 | 0.4322 | 0.8286 | 0.7519 | 0.7902 |
| 0.223 | 6.0 | 8532 | 0.4789 | 0.8301 | 0.7502 | 0.7901 |
| 0.1883 | 7.0 | 9954 | 0.4715 | 0.8329 | 0.7663 | 0.7996 |
| 0.1603 | 8.0 | 11376 | 0.5090 | 0.8346 | 0.7577 | 0.7961 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Martinkoling/my-first-setfit
|
Martinkoling
| 2023-01-26T13:52:42Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-01-26T13:52:25Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 60 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 60,
"warmup_steps": 6,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
mxbonn/ppo-LunarLander-v2
|
mxbonn
| 2023-01-26T13:40:07Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T13:39:42Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 288.48 +/- 11.46
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ChrisKahler/RVV12
|
ChrisKahler
| 2023-01-26T13:27:04Z | 8 | 0 |
diffusers
|
[
"diffusers",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-26T11:09:44Z |
---
license: creativeml-openrail-m
---
|
Shiry/whisper-large-v2-he
|
Shiry
| 2023-01-26T13:22:25Z | 4 | 5 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"whisper-event",
"generated_from_trainer",
"he",
"dataset:google/fleurs",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-12-12T11:09:22Z |
---
language:
- he
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Large-V2 Hebrew
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: he_il
split: train+validation
args: he_il
metrics:
- name: Wer
type: wer
value: 27
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large-V2 Hebrew
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the google/fleurs he_il dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5483
- Wer: 27
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|
ludigija/Ludigija_project
|
ludigija
| 2023-01-26T13:15:53Z | 0 | 0 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-01-26T13:15:53Z |
---
license: bigscience-openrail-m
---
|
stevaras2/ppo-SnowballTarget
|
stevaras2
| 2023-01-26T13:00:59Z | 8 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-01-26T13:00:53Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
library_name: ml-agents
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: stevaras2/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
NUROISEA/plmx-mirror
|
NUROISEA
| 2023-01-26T12:53:10Z | 0 | 1 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-26T12:30:55Z |
---
license: creativeml-openrail-m
---
|
gokuls/distilbert_add_GLUE_Experiment_qnli_192
|
gokuls
| 2023-01-26T12:50:34Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:34:04Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_add_GLUE_Experiment_qnli_192
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.594911220940875
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_qnli_192
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6649
- Accuracy: 0.5949
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6936 | 1.0 | 410 | 0.6930 | 0.5054 |
| 0.6793 | 2.0 | 820 | 0.6684 | 0.5823 |
| 0.6511 | 3.0 | 1230 | 0.6650 | 0.5938 |
| 0.6385 | 4.0 | 1640 | 0.6649 | 0.5949 |
| 0.6306 | 5.0 | 2050 | 0.6668 | 0.5923 |
| 0.6215 | 6.0 | 2460 | 0.6783 | 0.5931 |
| 0.6137 | 7.0 | 2870 | 0.6969 | 0.5852 |
| 0.6046 | 8.0 | 3280 | 0.6888 | 0.5881 |
| 0.5964 | 9.0 | 3690 | 0.6977 | 0.5799 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_qnli_384
|
gokuls
| 2023-01-26T12:50:15Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:33:35Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_add_GLUE_Experiment_qnli_384
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QNLI
type: glue
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.600219659527732
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_qnli_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6621
- Accuracy: 0.6002
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6894 | 1.0 | 410 | 0.6660 | 0.5933 |
| 0.6593 | 2.0 | 820 | 0.6621 | 0.6002 |
| 0.6441 | 3.0 | 1230 | 0.6634 | 0.6004 |
| 0.6338 | 4.0 | 1640 | 0.6694 | 0.5942 |
| 0.6238 | 5.0 | 2050 | 0.6732 | 0.5920 |
| 0.6125 | 6.0 | 2460 | 0.6865 | 0.5969 |
| 0.6026 | 7.0 | 2870 | 0.7080 | 0.5799 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_mrpc
|
gokuls
| 2023-01-26T12:46:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:41:46Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_add_GLUE_Experiment_mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.696078431372549
- name: F1
type: f1
value: 0.8171091445427728
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_mrpc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6028
- Accuracy: 0.6961
- F1: 0.8171
- Combined Score: 0.7566
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6617 | 1.0 | 15 | 0.6507 | 0.6838 | 0.8122 | 0.7480 |
| 0.6412 | 2.0 | 30 | 0.6290 | 0.6838 | 0.8122 | 0.7480 |
| 0.6315 | 3.0 | 45 | 0.6252 | 0.6838 | 0.8122 | 0.7480 |
| 0.6319 | 4.0 | 60 | 0.6236 | 0.6838 | 0.8122 | 0.7480 |
| 0.6321 | 5.0 | 75 | 0.6225 | 0.6838 | 0.8122 | 0.7480 |
| 0.616 | 6.0 | 90 | 0.6028 | 0.6961 | 0.8171 | 0.7566 |
| 0.5469 | 7.0 | 105 | 0.6485 | 0.6446 | 0.7349 | 0.6898 |
| 0.4436 | 8.0 | 120 | 0.7536 | 0.6838 | 0.7909 | 0.7374 |
| 0.3794 | 9.0 | 135 | 0.7805 | 0.6961 | 0.7898 | 0.7430 |
| 0.3158 | 10.0 | 150 | 0.8811 | 0.6838 | 0.7825 | 0.7331 |
| 0.281 | 11.0 | 165 | 0.9246 | 0.6863 | 0.7881 | 0.7372 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/mobilebert_add_GLUE_Experiment_cola_256
|
gokuls
| 2023-01-26T12:41:17Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:25:26Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: mobilebert_add_GLUE_Experiment_cola_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE COLA
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.01845565733408863
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_cola_256
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6102
- Matthews Correlation: 0.0185
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6129 | 1.0 | 67 | 0.6180 | 0.0 |
| 0.6078 | 2.0 | 134 | 0.6178 | 0.0 |
| 0.6073 | 3.0 | 201 | 0.6179 | 0.0 |
| 0.6067 | 4.0 | 268 | 0.6167 | 0.0 |
| 0.6059 | 5.0 | 335 | 0.6168 | 0.0 |
| 0.5998 | 6.0 | 402 | 0.6115 | 0.0 |
| 0.5917 | 7.0 | 469 | 0.6122 | 0.0 |
| 0.5849 | 8.0 | 536 | 0.6126 | 0.0 |
| 0.5796 | 9.0 | 603 | 0.6277 | 0.0 |
| 0.5759 | 10.0 | 670 | 0.6138 | 0.0029 |
| 0.5733 | 11.0 | 737 | 0.6102 | 0.0185 |
| 0.5716 | 12.0 | 804 | 0.6143 | 0.0252 |
| 0.5667 | 13.0 | 871 | 0.6347 | 0.0348 |
| 0.5662 | 14.0 | 938 | 0.6314 | 0.0385 |
| 0.5631 | 15.0 | 1005 | 0.6130 | 0.0174 |
| 0.5628 | 16.0 | 1072 | 0.6218 | 0.0348 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_cola
|
gokuls
| 2023-01-26T12:41:17Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:37:35Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert_add_GLUE_Experiment_cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE COLA
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6182
- Matthews Correlation: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6218 | 1.0 | 34 | 0.6182 | 0.0 |
| 0.611 | 2.0 | 68 | 0.6194 | 0.0 |
| 0.6084 | 3.0 | 102 | 0.6226 | 0.0 |
| 0.6104 | 4.0 | 136 | 0.6186 | 0.0 |
| 0.6102 | 5.0 | 170 | 0.6214 | 0.0 |
| 0.6095 | 6.0 | 204 | 0.6187 | 0.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_mrpc_384
|
gokuls
| 2023-01-26T12:32:44Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:29:22Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilbert_add_GLUE_Experiment_mrpc_384
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MRPC
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7009803921568627
- name: F1
type: f1
value: 0.8189910979228486
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_mrpc_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5935
- Accuracy: 0.7010
- F1: 0.8190
- Combined Score: 0.7600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
| 0.6355 | 1.0 | 15 | 0.6261 | 0.6838 | 0.8122 | 0.7480 |
| 0.6315 | 2.0 | 30 | 0.6294 | 0.6838 | 0.8122 | 0.7480 |
| 0.6327 | 3.0 | 45 | 0.6241 | 0.6838 | 0.8122 | 0.7480 |
| 0.6344 | 4.0 | 60 | 0.6285 | 0.6838 | 0.8122 | 0.7480 |
| 0.6328 | 5.0 | 75 | 0.6245 | 0.6838 | 0.8122 | 0.7480 |
| 0.6293 | 6.0 | 90 | 0.6245 | 0.6838 | 0.8122 | 0.7480 |
| 0.6341 | 7.0 | 105 | 0.6239 | 0.6838 | 0.8122 | 0.7480 |
| 0.6298 | 8.0 | 120 | 0.6240 | 0.6838 | 0.8122 | 0.7480 |
| 0.6304 | 9.0 | 135 | 0.6232 | 0.6838 | 0.8122 | 0.7480 |
| 0.6286 | 10.0 | 150 | 0.6196 | 0.6838 | 0.8122 | 0.7480 |
| 0.6045 | 11.0 | 165 | 0.5935 | 0.7010 | 0.8190 | 0.7600 |
| 0.5251 | 12.0 | 180 | 0.6129 | 0.6789 | 0.7849 | 0.7319 |
| 0.4395 | 13.0 | 195 | 0.6564 | 0.6912 | 0.7872 | 0.7392 |
| 0.3921 | 14.0 | 210 | 0.7059 | 0.6446 | 0.7173 | 0.6810 |
| 0.3399 | 15.0 | 225 | 0.7605 | 0.6887 | 0.7829 | 0.7358 |
| 0.3219 | 16.0 | 240 | 0.7614 | 0.6569 | 0.7328 | 0.6948 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
gokuls/distilbert_add_GLUE_Experiment_cola_384
|
gokuls
| 2023-01-26T12:28:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T12:26:19Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert_add_GLUE_Experiment_cola_384
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE COLA
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_add_GLUE_Experiment_cola_384
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6181
- Matthews Correlation: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6117 | 1.0 | 34 | 0.6181 | 0.0 |
| 0.6094 | 2.0 | 68 | 0.6181 | 0.0 |
| 0.6078 | 3.0 | 102 | 0.6190 | 0.0 |
| 0.6096 | 4.0 | 136 | 0.6183 | 0.0 |
| 0.6091 | 5.0 | 170 | 0.6187 | 0.0 |
| 0.607 | 6.0 | 204 | 0.6189 | 0.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Heerak/xlm-roberta-base-finetuned-panx-fr
|
Heerak
| 2023-01-26T12:26:14Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-01-26T11:18:02Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.8370531968451083
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2777
- F1: 0.8371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 191 | 0.3122 | 0.7961 |
| 0.4151 | 2.0 | 382 | 0.2749 | 0.8312 |
| 0.4151 | 3.0 | 573 | 0.2777 | 0.8371 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
andyleow/q-FrozenLake-v1-4x4
|
andyleow
| 2023-01-26T12:15:58Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T12:15:55Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
metrics:
- type: mean_reward
value: 0.58 +/- 0.49
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="andyleow/q-FrozenLake-v1-4x4", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
kabita-choudhary/finetuned-bart-for-conversation-summary
|
kabita-choudhary
| 2023-01-26T12:09:46Z | 174 | 53 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"summarization",
"dataset:samsum",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2023-01-25T11:00:13Z |
---
datasets:
- samsum
pipeline_tag: summarization
widget:
- text: >
Laurie: So, what are your plans for this weekend?
Christie: I don’t know. Do you want to get together or something?
Sarah: How about going to see a movie? Cinemax 26 on Carson Boulevard is showing Enchanted.
Laurie: That sounds like a good idea. Maybe we should go out to eat beforehand.
Sarah: It is fine with me. Where do you want to meet?
Christie: Let’s meet at Summer Pizza House. I have not gone there for a long time.
Laurie: Good idea again. I heard they just came up with a new pizza. It should be good because Summer Pizza House always has the best pizza in town.
Sarah: When should we meet?
Christie: Well, the movie is shown at 2:00PM, 4:00PM, 6:00PM and 8:00PM.
Laurie: Why don’t we go to the 2:00PM show? We can meet at Summer Pizza House at noon. That will give us plenty of time to enjoy our pizza.
Sarah: My cousin Karen is in town. Can I bring her along? I hate to leave her home alone.
Christie: Karen is in town? Yes, bring her along. Laurie, you remember Karen? We met her at Sara’s high school graduation party two years ago.
Laurie: I do not quite remember her. What does she look like?
Sarah: She has blond hair, she is kind of slender, and she is about your height.
Laurie: She wears eyeglasses, right?
Sarah: Yes, and she was playing the piano off and on during the party.
Laurie: I remember her now. Yes, do bring her along Sara. She is such a nice person, and funny too.
Sarah: She will be happy to meet both of you again.
Christie: What is she doing these days?
Sarah: She graduated last June, and she will start her teaching career next week when the new school term begins.
Laurie: What grade is she going to teach?
Sarah: She will teach kindergarten. She loves working with kids, and she always has such a good rapport with them
Christie: Kindergarten? She must be a very patient person. I always think kindergarten is the most difficult class to teach. Most of the kids have never been to school, and they have
e never been away from mommy for long.
Sarah: I think Karen will do fine. She knows how to handle young children
Laurie: I think the first few weeks will be tough. However, once the routine is set, it should not be too difficult to teach kindergarten.
Christie: You are right. The kids might even look forward to going to school since they have so many friends to play with.
Sarah: There are so many new things for them to do at school too. They do a lot of crafts in kindergarten. I am always amazed by the things kindergarten teachers do.
Laurie: Yes, I have seen my niece come home with so many neat stuff.
Christie: Maybe we can ask Karen to show us some of the things that we can do for this Halloween.
Laurie: Maybe we can stop by the craft store after the movie. What do you think, Sara?
Sarah: I will talk to her. I think she will like that. It will help her with school projects when Halloween comes.
Christie: Michael’s is a good store for crafts. It always carries a variety of things, and you can find almost anything there.
Laurie: There is a Michaels store not far away from Cinemax 26. I believe it is just around the corner, on Pioneer Avenue. We can even walk over there.
Sarah: So, we plan to meet for pizza at noon, go to the movies at two, and shop at Michael’s afterward. Right?
Laurie and Christie: Yes.
model-index:
- name: bart-large-cnn-samsum
results:
- task:
type: summarization
name: Conversation Summarization
dataset:
name: >-
SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
Summarization
type: samsum
metrics:
- type: rogue-1
value: 54.8764
name: Validation ROGUE-1
- type: rogue-2
value: 29.6869,
name: Validation ROGUE-2
- type: rogue-l
value: 44.9874
name: Validation ROGUE-L
- type: loss
value: 1.47812
name: loss
---
|
PlayDev/distilbert-base-uncased-finetuned-emotion
|
PlayDev
| 2023-01-26T11:27:57Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T11:21:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.927
- name: F1
type: f1
value: 0.9272714026125913
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2239
- Accuracy: 0.927
- F1: 0.9273
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.876 | 1.0 | 250 | 0.3230 | 0.9085 | 0.9054 |
| 0.2619 | 2.0 | 500 | 0.2239 | 0.927 | 0.9273 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.10.3
|
theta/mbti-career
|
theta
| 2023-01-26T11:23:01Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-16T16:10:47Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: mbti-career
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbti-career
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6547 | 0.59 | 100 | 0.6169 |
| 0.5967 | 1.18 | 200 | 0.5943 |
| 0.5872 | 1.76 | 300 | 0.5696 |
| 0.554 | 2.35 | 400 | 0.5287 |
| 0.5041 | 2.94 | 500 | 0.4890 |
| 0.4773 | 3.53 | 600 | 0.4895 |
| 0.4691 | 4.12 | 700 | 0.4840 |
| 0.4253 | 4.71 | 800 | 0.4573 |
| 0.4002 | 5.29 | 900 | 0.4240 |
| 0.3813 | 5.88 | 1000 | 0.4031 |
| 0.3561 | 6.47 | 1100 | 0.3943 |
| 0.3359 | 7.06 | 1200 | 0.3864 |
| 0.3126 | 7.65 | 1300 | 0.3889 |
| 0.2948 | 8.24 | 1400 | 0.3869 |
| 0.2816 | 8.82 | 1500 | 0.3788 |
| 0.2522 | 9.41 | 1600 | 0.3891 |
| 0.2451 | 10.0 | 1700 | 0.3849 |
| 0.2148 | 10.59 | 1800 | 0.3784 |
| 0.2132 | 11.18 | 1900 | 0.3716 |
| 0.1882 | 11.76 | 2000 | 0.3659 |
| 0.1754 | 12.35 | 2100 | 0.3737 |
| 0.169 | 12.94 | 2200 | 0.3711 |
| 0.1559 | 13.53 | 2300 | 0.3672 |
| 0.1537 | 14.12 | 2400 | 0.3391 |
| 0.1427 | 14.71 | 2500 | 0.3516 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Kenemo/dqn-SpaceInvadersNoFrameskip-v4-1Msteps
|
Kenemo
| 2023-01-26T11:14:14Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T11:13:35Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 500.50 +/- 144.54
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Kenemo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Kenemo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Kenemo
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
orenk/a2c-PandaReachDense-v2
|
orenk
| 2023-01-26T10:42:25Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T10:40:04Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -2.79 +/- 0.92
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
arnonl/a2c-PandaReachDense-v2
|
arnonl
| 2023-01-26T10:39:57Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T10:37:45Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -2.77 +/- 0.93
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
jamiehudson/600-STmodel-brand-rem
|
jamiehudson
| 2023-01-26T10:31:09Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-01-26T10:30:57Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 225 with parameters:
```
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 225,
"warmup_steps": 23,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
wmobilas/visualizevalue
|
wmobilas
| 2023-01-26T10:08:17Z | 14 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-26T09:57:03Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### visualizevalue Dreambooth model trained by wmobilas with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
raruto/raruto-mix
|
raruto
| 2023-01-26T09:56:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-01-26T09:03:02Z |
This is a SD merge based on Anything v3. The model is very similar to Anything v3, but the default style is slightly different.
[<img src=https://i.imgur.com/01wp0x7.jpg>](https://i.imgur.com/01wp0x7.jpg)
[<img src=https://i.imgur.com/4R8hiBI.jpg>](https://i.imgur.com/4R8hiBI.jpg)
|
arnonl/a2c-AntBulletEnv-v0
|
arnonl
| 2023-01-26T09:52:27Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T09:51:25Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1234.54 +/- 172.57
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
orenk/a2c-AntBulletEnv-v0
|
orenk
| 2023-01-26T09:50:07Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T09:48:58Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1400.57 +/- 347.64
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mildmillard/distilbert-base-uncased-finetuned-imdb
|
mildmillard
| 2023-01-26T09:43:45Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-01-26T09:07:55Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4898 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
edusei/sentiment_analysis_on_covid_tweets
|
edusei
| 2023-01-26T08:23:17Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-26T07:58:35Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: sentiment_analysis_on_covid_tweets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment_analysis_on_covid_tweets
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5883
- eval_accuracy: 0.771
- eval_runtime: 33.4887
- eval_samples_per_second: 59.722
- eval_steps_per_second: 7.465
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
charanhu/text_to_sql_1
|
charanhu
| 2023-01-26T07:52:04Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain",
"translation",
"unk",
"dataset:charanhu/autotrain-data-text_to_sql_finetune",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-01-26T07:40:12Z |
---
tags:
- autotrain
- translation
language:
- unk
- unk
datasets:
- charanhu/autotrain-data-text_to_sql_finetune
co2_eq_emissions:
emissions: 16.03787641705279
---
# Model Trained Using AutoTrain
- Problem type: Translation
- Model ID: 3073487571
- CO2 Emissions (in grams): 16.0379
## Validation Metrics
- Loss: 0.140
- SacreBLEU: 77.653
- Gen len: 42.019
|
nijatzeynalov/azerbaijani-medical-question-classification
|
nijatzeynalov
| 2023-01-26T07:46:46Z | 8 | 4 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"classification",
"medical",
"az",
"dataset:tibb.az",
"doi:10.57967/hf/0290",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-23T11:15:43Z |
---
license: openrail
language:
- az
metrics:
- accuracy
datasets:
- tibb.az
tags:
- classification
- medical
---
# Azerbaijani Medical Forum Question Classification
With the rapid increase of the internet, patients are increasingly use it for health information and support. However, given the large number of queries, and limited number of experts as well as not knowing which doctor to tell your complaint to, a significant fraction of the questions remains unanswered. Also, when patients apply online to the hospital, automatic direction to the appropriate doctor according to their disease is very important.
Automatic question classifiers can overcome this issue by directing questions to specific experts according to their topic preferences to get quick and better responses.
In this project, I aim to classify Azerbaijani health forum questions with BERT multilingual base model (uncased). BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion.
For medical question classification, it requires high-quality datasets to train a deep-learning approach in a supervised way. Currently, there is no public dataset for Azerbaijani medical classification, and the datasets of other fields are not applicable to the medical QA system. To solve this problem, I scraped a m.tibb.az website using Python where 27k questions in 19 medical branch have been asked by users and answered by medical experts.
I will also provide dataset which can be used in Azerbaijani medical QA and related fields.
# How to use
Here is how to use this model.
__Firstly, you need to build a dictionary with medical branch names and their numbers, because target is encoded and model output will be a number.__
```python
branch_dict = {0: 'Endoskopist', 1: 'Nevropatoloq',2: 'Dermato veneroloq',3: 'Qastroenteroloq',
4: 'Psixoloq', 5: 'Pediatr', 6: 'Proktoloq', 7: 'Endokrinoloq',
8: 'Psixoterapevt', 9: 'Allerqoloq', 10: 'Oftalmoloq', 11: 'Kardioloq', 12: 'Uroloq',
13: 'Plastik cərrah', 14: 'Cərrah-proktoloq', 15: 'Ümumi cərrah',
16: 'Hepatoloq', 17: 'LOR həkimi', 18: 'Ginekoloq'}
```
__Secondly, we will use a simple Python function in order to convert model result to branch name.__
```python
def result_helper_funct(model_result):
result = model_result[0][0]
if result in branch_dict.keys():
return branch_dict[result]
```
__Then, we need to install simpletransformers library__
```python
!pip install simpletransformers
```
__After succesfully installing, use pre-trained model.__
```python
from simpletransformers.classification import ClassificationModel
model = ClassificationModel("bert", "nijatzeynalov/azerbaijani-medical-question-classification", use_cuda=False)
```
__At the next step, we just write down the text we want to classify and use our helper function.__
```python
sample_text = 'salam menim qulagimda agri var'
result = model.predict([sample_text])
result_helper_funct(result)
```
__Code result:__
```python
'LOR həkimi'
```
__Let's try another example.__
```python
sample_text = 'üzümdə səpgi var'
result = model.predict([sample_text])
result_helper_funct(result)
```
__Code result:__
```python
'Allerqoloq'
```
Citation:
```
@misc {nijatzeynalov_2023,
author = { {NijatZeynalov} },
title = { azerbaijani-medical-question-classification (Revision ac4fa1e) },
year = 2023,
url = { https://huggingface.co/nijatzeynalov/azerbaijani-medical-question-classification },
doi = { 10.57967/hf/0290 },
publisher = { Hugging Face }
}
```
|
almuallim/gpt2-idea-generation
|
almuallim
| 2023-01-26T07:38:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"en",
"license:bsd",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-01-26T07:15:49Z |
---
license: bsd
language:
- en
library_name: transformers
---
Fine-Tuned GPT-2 For Business Idea Generation using with Idea Dataset on [Kaggle](https://www.kaggle.com/datasets/bilalelebi/business-ideas-generated-with-gpt3)
|
xiaozhangMJXXZ/SEX-lora-all
|
xiaozhangMJXXZ
| 2023-01-26T07:25:32Z | 0 | 62 | null |
[
"region:us"
] | null | 2023-01-22T17:47:32Z | ERROR: type should be string, got "\nhttps://t.me/+a-k8rVfjIVk3NGU1 \nhttps://t.me/loraeveryone\n这是tg群组,之后会在第一时间更新tg,因为tg可以直接传tg原文件呜呜呜,笑脸站会缓慢更新!\n笑脸上下载不下来的也可以直接来tg下载\n这里是色色的lora合集,希望各位可以及时来补充!!! \n分别为打包全下载与单个角色,由于中文名字的文件无法下载所以是压缩包的形式,下载之后需要各位解压一下里面就有对应的中文名字了。 校 长的联系方式:qq3062945846\n\n只是为了方便中文玩家而搬运整理!!\n\n有目录的截图小伙伴们可以参照!\n\n我们十分尊敬每一位lora的作者!!\n\n感谢你们的付出!!\n\n大家好这里是校长,目前这边准备来整合质量高些的lora模型, 已经是整理了70+并且给打上了中文标注以及把触发tag直接打到了文件名字上, 有些复杂的衣物装饰什么的还在旁边附带了同名的文档可以方便查阅。 如果大家有比较好的且跟目前的不同的lora的话, 希望可以来找咱发下Lora模型, 我把它们全部都统一整理完之后进行分类整理并且分享给大家(是lora模型哦,不是平常的大模型)。" |
carlosmirandad/rl-class-dqn-SpaceInvadersNoFrameskip-v4
|
carlosmirandad
| 2023-01-26T07:25:05Z | 6 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-24T09:09:33Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 531.50 +/- 134.70
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga carlosmirandad -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga carlosmirandad -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga carlosmirandad
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0005),
('learning_starts', 100000),
('n_timesteps', 5000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
xiaozhangMJXXZ/Arknights-lora-all
|
xiaozhangMJXXZ
| 2023-01-26T07:23:36Z | 0 | 25 | null |
[
"region:us"
] | null | 2023-01-22T17:09:25Z |
https://t.me/+a-k8rVfjIVk3NGU1
https://t.me/loraeveryone
这是tg群组,之后会在第一时间更新tg,因为tg可以直接传tg原文件呜呜呜,笑脸站会缓慢更新!
笑脸上下载不下来的也可以直接来tg下载
这里是方舟角色的lora合集,希望各位可以及时来补充!!!
分别为打包全下载与单个角色,由于中文名字的文件无法下载所以是压缩包的形式,下载之后需要各位解压一下里面就有对应的中文名字了。
校
长的联系方式:qq3062945846
只是为了方便中文玩家而搬运整理!!
记得查看txt角色触发词 (因为校长不玩方舟,实在是不认识角色,所以没把触发词里的角色标注中文,有小伙伴可以来帮忙的话及时联系校长啊!!!!) ps 【有小伙伴反馈陈年幽灵鲨的效果不行】
我们十分尊敬每一位lora的作者!!
感谢你们的付出!!
大家好这里是校长,目前这边准备来整合质量高些的lora模型,
已经是整理了70+并且给打上了中文标注以及把触发tag直接打到了文件名字上,
有些复杂的衣物装饰什么的还在旁边附带了同名的文档可以方便查阅。 如果大家有比较好的且跟目前的不同的lora的话,
希望可以来找咱发下Lora模型, 我把它们全部都统一整理完之后进行分类整理并且分享给大家(是lora模型哦,不是平常的大模型)。
|
Mreyesart/mreyesart1
|
Mreyesart
| 2023-01-26T07:18:41Z | 2 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-01-26T07:05:06Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Mreyesart1 Dreambooth model trained by Mreyesart with [buildspace's DreamBooth](https://colab.research.google.com/github/buildspace/diffusers/blob/main/examples/dreambooth/DreamBooth_Stable_Diffusion.ipynb) notebook
Build your own using the [AI Avatar project](https://buildspace.so/builds/ai-avatar)!
To get started head over to the [project dashboard](https://buildspace.so/p/build-ai-avatars).
Sample pictures of this concept:
|
Korakoe/Koromiko-Diffusion
|
Korakoe
| 2023-01-26T06:12:00Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-01-26T06:12:00Z |
---
license: creativeml-openrail-m
---
|
hesw23168/SD_Elysium_Kuro_Model
|
hesw23168
| 2023-01-26T05:25:03Z | 0 | 34 | null |
[
"license:openrail",
"region:us"
] | null | 2023-01-25T03:48:50Z |
---
license: openrail
---
Also on https://civitai.com/models/5301/elysium-kuro-anime
Anime model is custom mix + finetune on dataset of high quality images (mix including Anything 4.0, WD 1.4 Booru, Seek Art Mega V1) and contains the contains the kl-f8-anime2 VAE from Waifu Diffusion.
Example settings:
Negative prompt: (lowres:1.1), (worst quality:1.2), (low quality:1.1), bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, normal quality, jpeg artifacts, signature, watermark, username, blurry
(General model): Clip skip 1, VAE: 'vae-ft-mse-840000' from StabilityAI (included)
(Anime model): Clip skip 2, VAE: 'kl-f8-anime2.ckpt' from Waifu Diffusion (included)
Example images from anime model:

General model coming soon.
|
gokuls/mobilebert_sa_GLUE_Experiment_mnli_256
|
gokuls
| 2023-01-26T03:03:25Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-25T16:30:13Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_mnli_256
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE MNLI
type: glue
config: mnli
split: validation_matched
args: mnli
metrics:
- name: Accuracy
type: accuracy
value: 0.6030309194467046
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_mnli_256
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8790
- Accuracy: 0.6030
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0008 | 1.0 | 3068 | 0.9490 | 0.5405 |
| 0.9205 | 2.0 | 6136 | 0.9166 | 0.5675 |
| 0.8928 | 3.0 | 9204 | 0.9022 | 0.5786 |
| 0.872 | 4.0 | 12272 | 0.8843 | 0.5967 |
| 0.8531 | 5.0 | 15340 | 0.8807 | 0.5959 |
| 0.8359 | 6.0 | 18408 | 0.8763 | 0.5999 |
| 0.8197 | 7.0 | 21476 | 0.8815 | 0.6009 |
| 0.8028 | 8.0 | 24544 | 0.9012 | 0.5934 |
| 0.786 | 9.0 | 27612 | 0.8633 | 0.6191 |
| 0.769 | 10.0 | 30680 | 0.8734 | 0.6098 |
| 0.752 | 11.0 | 33748 | 0.8682 | 0.6220 |
| 0.736 | 12.0 | 36816 | 0.8741 | 0.6175 |
| 0.7204 | 13.0 | 39884 | 0.8994 | 0.6048 |
| 0.7038 | 14.0 | 42952 | 0.8940 | 0.6079 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
starcel/asr-conformer-kdialectspeech
|
starcel
| 2023-01-26T02:54:57Z | 2 | 1 |
speechbrain
|
[
"speechbrain",
"automatic-speech-recognition",
"ko",
"license:apache-2.0",
"region:us"
] |
automatic-speech-recognition
| 2023-01-26T01:32:28Z |
---
license: apache-2.0
language:
- ko
metrics:
- cer
- wer
library_name: speechbrain
pipeline_tag: automatic-speech-recognition
---
이 모델은 2022년 인공지능 학습용 데이터 구축 사업 <18 중노년층 방언 데이터>의 데이터 셋을 사용하여 Conformer ASR 모델을 훈련한 모델 파일입니다.
|
AKFromCanada/Taxi-v3
|
AKFromCanada
| 2023-01-26T02:51:45Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T02:51:36Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.46 +/- 2.64
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="AKFromCanada/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
AKFromCanada/q-FrozenLake-v1-4x4-noSlippery
|
AKFromCanada
| 2023-01-26T02:48:01Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T02:47:53Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="AKFromCanada/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sohm/Reinforce-CartPole_v1
|
sohm
| 2023-01-26T02:30:59Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-26T02:30:48Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole_v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 127.30 +/- 7.66
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
facebook/opt-iml-1.3b
|
facebook
| 2023-01-26T01:35:09Z | 622 | 29 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"text-generation",
"arxiv:2212.12017",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-01-26T00:08:49Z |
---
inference: false
tags:
- text-generation
- opt
license: other
commercial: false
---
# OPT-IML
## Model Description
[OPT-IML (OPT + Instruction Meta-Learning)](https://arxiv.org/abs/2212.12017) is a set of instruction-tuned versions of OPT, on a collection of ~2000 NLP tasks gathered from 8 NLP benchmarks, called OPT-IML Bench.
We provide two model versions:
* OPT-IML trained on 1500 tasks with several tasks held-out for purposes of downstream evaluation, and
* OPT-IML-Max trained on all ~2000 tasks
### How to use
You can use this model directly with a pipeline for text generation.
```python
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model="facebook/opt-iml-1.3b")
>>> generator("What is the capital of USA?")
```
### Limitations and bias
While OPT-IML models outperform baseline OPT on an extensive set of evaluations,
nevertheless, they are susceptible to the various risks associated with using large language models
relating to factual correctness, generation of toxic language and enforcing stereotypes. While we release our
OPT-IML models to proliferate future work on instruction-tuning and to improve the availability
of large instruction-tuned causal LMs, the use of these models should be
accompanied with responsible best practices.
## Training data
OPT-IML models are trained on OPT-IML Bench, a large benchmark for Instruction MetaLearning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks include Super-NaturalInstructions, FLAN, PromptSource, etc.
## Training procedure
The texts are tokenized using the GPT2 byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens.
The 30B model was fine-tuned on 64 40GB A100 GPUs. During fine-tuning, models saw approximately 2 billion tokens, which is only 0.6% of the pre-training
budget of OPT.
### BibTeX entry and citation info
```bibtex
@misc{iyer2022opt,
title={OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization},
author={Iyer, Srinivasan and Lin, Xi Victoria and Pasunuru, Ramakanth and Mihaylov, Todor and Simig, D{\'a}niel and Yu, Ping and Shuster, Kurt and Wang, Tianlu and Liu, Qing and Koura, Punit Singh and others},
year={2022},
eprint={2212.12017},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
facebook/opt-iml-max-1.3b
|
facebook
| 2023-01-26T01:31:38Z | 9,572 | 44 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"text-generation",
"arxiv:2212.12017",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-01-26T00:08:30Z |
---
inference: false
tags:
- text-generation
- opt
license: other
commercial: false
---
# OPT-IML
## Model Description
[OPT-IML (OPT + Instruction Meta-Learning)](https://arxiv.org/abs/2212.12017) is a set of instruction-tuned versions of OPT, on a collection of ~2000 NLP tasks gathered from 8 NLP benchmarks, called OPT-IML Bench.
We provide two model versions:
* OPT-IML trained on 1500 tasks with several tasks held-out for purposes of downstream evaluation, and
* OPT-IML-Max trained on all ~2000 tasks
### How to use
You can use this model directly with a pipeline for text generation.
```python
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model="facebook/opt-iml-max-1.3b")
>>> generator("What is the capital of USA?")
```
### Limitations and bias
While OPT-IML models outperform baseline OPT on an extensive set of evaluations,
nevertheless, they are susceptible to the various risks associated with using large language models
relating to factual correctness, generation of toxic language and enforcing stereotypes. While we release our
OPT-IML models to proliferate future work on instruction-tuning and to improve the availability
of large instruction-tuned causal LMs, the use of these models should be
accompanied with responsible best practices.
## Training data
OPT-IML models are trained on OPT-IML Bench, a large benchmark for Instruction MetaLearning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks include Super-NaturalInstructions, FLAN, PromptSource, etc.
## Training procedure
The texts are tokenized using the GPT2 byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens.
The 30B model was fine-tuned on 64 40GB A100 GPUs. During fine-tuning, models saw approximately 2 billion tokens, which is only 0.6% of the pre-training
budget of OPT.
### BibTeX entry and citation info
```bibtex
@misc{iyer2022opt,
title={OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization},
author={Iyer, Srinivasan and Lin, Xi Victoria and Pasunuru, Ramakanth and Mihaylov, Todor and Simig, D{\'a}niel and Yu, Ping and Shuster, Kurt and Wang, Tianlu and Liu, Qing and Koura, Punit Singh and others},
year={2022},
eprint={2212.12017},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
taraqur/blossom-vit
|
taraqur
| 2023-01-26T01:11:00Z | 16 | 0 |
transformers
|
[
"transformers",
"tf",
"vit",
"image-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-12-13T03:53:21Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: blossom-vit
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# blossom-vit
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 345, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.25.1
- TensorFlow 2.10.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|
OpenAssistant/reward-model-electra-large-discriminator
|
OpenAssistant
| 2023-01-26T01:08:08Z | 138 | 5 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"reward-model",
"reward_model",
"RLHF",
"en",
"dataset:openai/webgpt_comparisons",
"dataset:openai/summarize_from_feedback",
"dataset:Dahoas/instruct-synthetic-prompt-responses",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-15T11:09:23Z |
---
license: apache-2.0
datasets:
- openai/webgpt_comparisons
- openai/summarize_from_feedback
- Dahoas/instruct-synthetic-prompt-responses
language:
- en
metrics:
- accuracy
tags:
- reward-model
- reward_model
- RLHF
---
# Reward model trained from human feedback
Reward model (RM) trained to predict which generated answer is better judged by a human, given a question.
RM are useful in these domain:
- QA model evaluation
- serves as reward score in RLHF
All models are train on these dataset with a same split seed across datasets (if validation split wasn't available)
- [webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
- [summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
- [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise)
# How to use
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
reward_name = "OpenAssistant/reward-model-electra-large-discriminator"
rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name)
question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants."
inputs = tokenizer(question, answer, return_tensors='pt')
score = rank_model(**inputs).logits[0].cpu().detach()
print(score)
```
# Performance
Validation split accuracy
| Model | [WebGPT](https://huggingface.co/datasets/openai/webgpt_comparisons) | [Summary](https://huggingface.co/datasets/openai/summarize_from_feedback) | [SytheticGPT](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) |
|---|---|---|---|
| [electra-large-discriminator](https://huggingface.co/OpenAssistant/reward-model-electra-large-discriminator) | 59.30 | 68.66 | 99.85 |
| [deberta-v3-large](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large) | 61.13 | 72.23 | 99.94 |
| [deberta-v3-base](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base) | 59.07 | 66.84 | 99.85 |
Its likely SytheticGPT has somekind of surface pattern on the choosen-rejected pair which makes it trivial to differentiate between better the answer.
|
OpenAssistant/reward-model-deberta-v3-base
|
OpenAssistant
| 2023-01-26T01:07:57Z | 711 | 10 |
transformers
|
[
"transformers",
"pytorch",
"deberta-v2",
"text-classification",
"reward-model",
"reward_model",
"RLHF",
"en",
"dataset:openai/webgpt_comparisons",
"dataset:openai/summarize_from_feedback",
"dataset:Dahoas/instruct-synthetic-prompt-responses",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-15T11:06:39Z |
---
license: mit
datasets:
- openai/webgpt_comparisons
- openai/summarize_from_feedback
- Dahoas/instruct-synthetic-prompt-responses
language:
- en
metrics:
- accuracy
tags:
- reward-model
- reward_model
- RLHF
---
# Reward model trained from human feedback
Reward model (RM) trained to predict which generated answer is better judged by a human, given a question.
RM are useful in these domain:
- QA model evaluation
- serves as reward score in RLHF
All models are train on these dataset with a same split seed across datasets (if validation split wasn't available)
- [webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons)
- [summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback)
- [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise)
# How to use
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
reward_name = "OpenAssistant/reward-model-deberta-v3-base"
rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name)
question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants."
inputs = tokenizer(question, answer, return_tensors='pt')
score = rank_model(**inputs).logits[0].cpu().detach()
print(score)
```
# Performance
Validation split accuracy
| Model | [WebGPT](https://huggingface.co/datasets/openai/webgpt_comparisons) | [Summary](https://huggingface.co/datasets/openai/summarize_from_feedback) | [SytheticGPT](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) |
|---|---|---|---|
| [electra-large-discriminator](https://huggingface.co/OpenAssistant/reward-model-electra-large-discriminator) | 59.30 | 68.66 | 99.85 |
| [deberta-v3-large](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large) | 61.13 | 72.23 | 99.94 |
| [deberta-v3-base](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base) | 59.07 | 66.84 | 99.85 |
Its likely SytheticGPT has somekind of surface pattern on the choosen-rejected pair which makes it trivial to differentiate between better the answer.
|
mrm8488/xlm-roberta-large-finetuned-HC3-mix
|
mrm8488
| 2023-01-26T00:38:21Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"doi:10.57967/hf/0305",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-25T14:04:10Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-large-finetuned-HC3-mix
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-finetuned-HC3-mix
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6998
- F1: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:------:|:---------------:|:---:|
| 0.6506 | 1.0 | 35824 | 0.6998 | 0.0 |
| 0.6481 | 2.0 | 71648 | 0.7662 | 0.0 |
| 0.6391 | 3.0 | 107472 | 0.7492 | 0.0 |
| 0.6396 | 4.0 | 143296 | 0.7358 | 0.0 |
| 0.6366 | 5.0 | 179120 | 0.7259 | 0.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
rohitp1/Nystrom-W2V2-100hrs-take-3
|
rohitp1
| 2023-01-26T00:07:27Z | 1 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2023-01-23T11:17:58Z |
---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Nystrom-W2V2-100hrs-take-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Nystrom-W2V2-100hrs-take-3
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 30.1649
- Wer: 0.1047
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 55.4504 | 9.01 | 1000 | 29.0675 | 0.1464 |
| 65.4799 | 18.02 | 2000 | 26.9263 | 0.1580 |
| 72.6609 | 27.03 | 3000 | 27.2220 | 0.1500 |
| 65.6264 | 36.04 | 4000 | 26.4758 | 0.1426 |
| 57.9496 | 45.04 | 5000 | 27.0818 | 0.1349 |
| 49.6643 | 54.05 | 6000 | 27.9658 | 0.1269 |
| 42.5205 | 63.06 | 7000 | 28.6973 | 0.1214 |
| 36.1799 | 72.07 | 8000 | 28.1021 | 0.1128 |
| 30.9742 | 81.08 | 9000 | 29.9000 | 0.1093 |
| 27.4728 | 90.09 | 10000 | 30.2661 | 0.1057 |
| 26.0383 | 99.1 | 11000 | 30.1649 | 0.1047 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.11.0
|
StepanLavr/SnakeZVO
|
StepanLavr
| 2023-01-25T23:53:27Z | 0 | 0 | null |
[
"dataset:fka/awesome-chatgpt-prompts",
"region:us"
] | null | 2023-01-25T23:51:41Z |
---
datasets:
- fka/awesome-chatgpt-prompts
---
|
cdefghijkl/anime-m-series-vol1
|
cdefghijkl
| 2023-01-25T23:39:52Z | 0 | 3 | null |
[
"text-to-image",
"stable-diffusion",
"en",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-01-13T17:48:10Z |
---
license: creativeml-openrail-m
language:
- en
tags:
- text-to-image
- stable-diffusion
---
A collection of anime models merged by me. Will update info and examples later.
|
GBaker/bigbird-roberta-base-medqa-usmle-nocontext
|
GBaker
| 2023-01-25T23:34:26Z | 2 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"big_bird",
"multiple-choice",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2023-01-25T23:05:28Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bigbird-roberta-base-medqa-usmle-nocontext
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bigbird-roberta-base-medqa-usmle-nocontext
This model is a fine-tuned version of [google/bigbird-roberta-base](https://huggingface.co/google/bigbird-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3863
- Accuracy: 0.2592
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.392 | 1.0 | 636 | 1.3863 | 0.2333 |
| 1.39 | 2.0 | 1272 | 1.3863 | 0.2592 |
| 1.3896 | 3.0 | 1908 | 1.3863 | 0.2592 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Periramm/ppo-LunarLander-v2
|
Periramm
| 2023-01-25T23:33:01Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-25T12:20:47Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 249.61 +/- 21.73
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Kaludi/CSGO-Minimap-Layout-Generation
|
Kaludi
| 2023-01-25T23:16:20Z | 8 | 1 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"art",
"artistic",
"cs:go",
"topview",
"map generator",
"layout",
"layout generator",
"map",
"csgo",
"improved layout",
"radar",
"en",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-01-25T22:47:33Z |
---
language:
- en
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- art
- artistic
- diffusers
- cs:go
- topview
- map generator
- layout
- layout generator
- map
- csgo
- improved layout
- radar
inference: true
license: creativeml-openrail-m
---
# CSGO Minimap Layout Generation

This is an improved AI model of my previous model trained on CS:GO's radar top view images of many maps which can now produce custom map layouts in seconds. This model does not produce red or green boxes like in my previous model. The tag for this model is **"radar-topview"**. If you'd like to get a map layout similar to a specific map, you can add the map name before "radar-topview". So if I wanted a map generation similar to dust2, I would write **"dust2-radar-topview"**.
**Try the following prompt to get the best results:**
"fps radar-topview game map, flat shading, soft shadows, global illumination"
"fps radar topview map, polygonal, gradient background, pastel colors, soft shadows, global illumination, straight lines, insanely detailed"
**Map Radar Topviews this AI was trained on:**
de_dust2
de_inferno
de_nuke
de_mirage
de_cache
de_train
de_cobblestone
de_castle
de_overpass
**Have fun generating map layouts!**
### CompVis
[Download csgoTopViewMapLayout.ckpt) (2.9GB)](https://huggingface.co/Kaludi/CSGO-Minimap-Layout-Generation/blob/main/csgoMiniMapLayoutsV2.ckpt)
### 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion Pipeline](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
```python
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
prompt = (
"fps radar-topview game map, flat shading, soft shadows, global illumination")
model_id = "Kaludi/CSGO-Improved-Radar-Top-View-Map-Layouts"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
image = pipe(prompt, num_inference_steps=30).images[0]
image.save("./result.jpg")
```
## License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
aimarsg/bert-finetuned-ner-1
|
aimarsg
| 2023-01-25T23:11:43Z | 19 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:xglue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-28T17:32:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xglue
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xglue
type: xglue
config: ner
split: validation.es
args: ner
metrics:
- name: Precision
type: precision
value: 0.6037969459347916
- name: Recall
type: recall
value: 0.6720257234726688
- name: F1
type: f1
value: 0.6360869565217391
- name: Accuracy
type: accuracy
value: 0.9488508424567125
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the xglue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2202
- Precision: 0.6038
- Recall: 0.6720
- F1: 0.6361
- Accuracy: 0.9489
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 191 | 0.2359 | 0.5659 | 0.6309 | 0.5967 | 0.9397 |
| No log | 2.0 | 382 | 0.2136 | 0.5754 | 0.6681 | 0.6183 | 0.9464 |
| 0.1605 | 3.0 | 573 | 0.2202 | 0.6038 | 0.6720 | 0.6361 | 0.9489 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|
eLarry/ppo-Huggy
|
eLarry
| 2023-01-25T22:58:32Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-01-25T22:58:24Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
library_name: ml-agents
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: eLarry/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Periramm/q-taxi
|
Periramm
| 2023-01-25T22:57:13Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-25T22:57:04Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.54 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Periramm/q-taxi", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Periramm/q-frozlake
|
Periramm
| 2023-01-25T22:54:51Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-01-25T22:54:43Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-frozlake
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Periramm/q-frozlake", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
gokuls/mobilebert_sa_GLUE_Experiment_sst2_128
|
gokuls
| 2023-01-25T22:07:13Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mobilebert",
"text-classification",
"generated_from_trainer",
"en",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-01-25T21:21:54Z |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_sst2_128
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8004587155963303
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_sst2_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4330
- Accuracy: 0.8005
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5124 | 1.0 | 527 | 0.4330 | 0.8005 |
| 0.2842 | 2.0 | 1054 | 0.4711 | 0.8028 |
| 0.2267 | 3.0 | 1581 | 0.4593 | 0.7982 |
| 0.2025 | 4.0 | 2108 | 0.7141 | 0.7856 |
| 0.1849 | 5.0 | 2635 | 0.4771 | 0.7982 |
| 0.1754 | 6.0 | 3162 | 0.6028 | 0.7901 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.8.0
- Tokenizers 0.13.2
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.