modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-02 12:32:32
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 534
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-02 12:31:20
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
bigmorning/whisper_charsplit_new_0072
|
bigmorning
| 2023-08-13T14:29:00Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T14:28:53Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0072
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0072
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0008
- Train Accuracy: 0.0795
- Train Wermet: 10.2545
- Validation Loss: 0.5315
- Validation Accuracy: 0.0765
- Validation Wermet: 9.0617
- Epoch: 71
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
| 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 |
| 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 |
| 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 |
| 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 |
| 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 |
| 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 |
| 0.0011 | 0.0795 | 10.1683 | 0.5291 | 0.0764 | 8.5736 | 69 |
| 0.0012 | 0.0795 | 10.1305 | 0.5336 | 0.0765 | 8.6648 | 70 |
| 0.0008 | 0.0795 | 10.2545 | 0.5315 | 0.0765 | 9.0617 | 71 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e9_s55555_v4_l4_v50
|
KingKazma
| 2023-08-13T14:28:55Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:28:51Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e8_s55555_v4_l4_v50
|
KingKazma
| 2023-08-13T14:25:39Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:25:36Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e-1_s108_v4_l6_v20_manual
|
KingKazma
| 2023-08-13T14:25:35Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:25:33Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e9_s55555_v4_l4_v100
|
KingKazma
| 2023-08-13T14:24:41Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:24:40Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e10_s108_v4_l6_v20
|
KingKazma
| 2023-08-13T14:24:22Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:24:20Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
nightdude/config_4
|
nightdude
| 2023-08-13T14:23:39Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:23:30Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
KingKazma/cnn_dailymail_t5-small_prompt_tuning_500_10_3000_8_e8_s108_v4_l4_v20
|
KingKazma
| 2023-08-13T14:23:00Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:22:59Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e7_s55555_v4_l4_v50
|
KingKazma
| 2023-08-13T14:22:22Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:22:18Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e9_s108_v4_l6_v20
|
KingKazma
| 2023-08-13T14:21:42Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:21:41Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e8_s55555_v4_l4_v100
|
KingKazma
| 2023-08-13T14:21:41Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:21:40Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_prompt_tuning_500_10_3000_8_e7_s108_v4_l4_v20
|
KingKazma
| 2023-08-13T14:19:53Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:19:52Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e6_s55555_v4_l4_v50
|
KingKazma
| 2023-08-13T14:19:03Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:18:59Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
fathyshalab/mdcsi-versicherungen-recht-setfit
|
fathyshalab
| 2023-08-13T14:19:01Z | 6 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T14:18:10Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpnodc6f2g\fathyshalab\mdcsi-versicherungen-recht-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpnodc6f2g\fathyshalab\mdcsi-versicherungen-recht-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e7_s55555_v4_l4_v100
|
KingKazma
| 2023-08-13T14:18:36Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:18:35Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_prompt_tuning_500_10_3000_8_e6_s108_v4_l4_v20
|
KingKazma
| 2023-08-13T14:16:47Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:16:46Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e7_s108_v4_l6_v20
|
KingKazma
| 2023-08-13T14:16:27Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:16:25Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0069
|
bigmorning
| 2023-08-13T14:15:52Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T14:15:45Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0069
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0069
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0027
- Train Accuracy: 0.0795
- Train Wermet: 10.3802
- Validation Loss: 0.5272
- Validation Accuracy: 0.0764
- Validation Wermet: 8.8216
- Epoch: 68
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
| 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 |
| 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 |
| 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 |
| 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 |
| 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 |
| 0.0027 | 0.0795 | 10.3802 | 0.5272 | 0.0764 | 8.8216 | 68 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e6_s55555_v4_l4_v100
|
KingKazma
| 2023-08-13T14:15:34Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:15:32Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_prompt_tuning_500_10_3000_8_e5_s108_v4_l4_v20
|
KingKazma
| 2023-08-13T14:13:39Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:13:38Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0068
|
bigmorning
| 2023-08-13T14:11:27Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T14:11:19Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0068
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0068
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0123
- Train Accuracy: 0.0792
- Train Wermet: 10.2575
- Validation Loss: 0.5261
- Validation Accuracy: 0.0763
- Validation Wermet: 9.3701
- Epoch: 67
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
| 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 |
| 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 |
| 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 |
| 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 |
| 0.0123 | 0.0792 | 10.2575 | 0.5261 | 0.0763 | 9.3701 | 67 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_prompt_tuning_500_10_3000_8_e4_s108_v4_l4_v20
|
KingKazma
| 2023-08-13T14:10:34Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:10:33Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e4_s55555_v4_l4_v100
|
KingKazma
| 2023-08-13T14:09:30Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:09:29Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e4_s108_v4_l6_v20
|
KingKazma
| 2023-08-13T14:08:33Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:08:32Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
peymansyh/whisper-tiny-en
|
peymansyh
| 2023-08-13T14:08:21Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T14:08:03Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.358913813459268
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-en
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6260
- Wer Ortho: 0.3646
- Wer: 0.3589
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 250
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 2.0491 | 3.57 | 50 | 1.0332 | 0.4670 | 0.4008 |
| 0.294 | 7.14 | 100 | 0.5294 | 0.3646 | 0.3506 |
| 0.0894 | 10.71 | 150 | 0.5465 | 0.3837 | 0.3636 |
| 0.0163 | 14.29 | 200 | 0.6034 | 0.3757 | 0.3660 |
| 0.0044 | 17.86 | 250 | 0.6260 | 0.3646 | 0.3589 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_prompt_tuning_500_10_3000_8_e3_s108_v4_l4_v20
|
KingKazma
| 2023-08-13T14:07:28Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:07:26Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
phanvu1905/test1
|
phanvu1905
| 2023-08-13T14:07:27Z | 0 | 0 | null |
[
"arxiv:1910.09700",
"region:us"
] | null | 2023-08-13T14:06:49Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bigmorning/whisper_charsplit_new_0067
|
bigmorning
| 2023-08-13T14:07:05Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T14:06:58Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0067
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0067
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0034
- Train Accuracy: 0.0795
- Train Wermet: 9.8382
- Validation Loss: 0.5771
- Validation Accuracy: 0.0758
- Validation Wermet: 8.8051
- Epoch: 66
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
| 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 |
| 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 |
| 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 |
| 0.0034 | 0.0795 | 9.8382 | 0.5771 | 0.0758 | 8.8051 | 66 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e3_s55555_v4_l4_v100
|
KingKazma
| 2023-08-13T14:06:26Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T14:06:25Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
Binettebob22/test
|
Binettebob22
| 2023-08-13T14:06:07Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-13T14:06:07Z |
---
license: creativeml-openrail-m
---
|
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e2_s108_v4_l6_v20
|
KingKazma
| 2023-08-13T14:03:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:58:20Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0066
|
bigmorning
| 2023-08-13T14:02:43Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T14:02:35Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0066
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0066
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0002
- Train Accuracy: 0.0795
- Train Wermet: 9.7663
- Validation Loss: 0.5357
- Validation Accuracy: 0.0765
- Validation Wermet: 8.4281
- Epoch: 65
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
| 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 |
| 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 |
| 0.0002 | 0.0795 | 9.7663 | 0.5357 | 0.0765 | 8.4281 | 65 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0065
|
bigmorning
| 2023-08-13T13:58:22Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:58:13Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0065
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0065
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0003
- Train Accuracy: 0.0795
- Train Wermet: 9.7593
- Validation Loss: 0.5320
- Validation Accuracy: 0.0765
- Validation Wermet: 8.4815
- Epoch: 64
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
| 0.0003 | 0.0795 | 9.7631 | 0.5282 | 0.0765 | 8.3860 | 63 |
| 0.0003 | 0.0795 | 9.7593 | 0.5320 | 0.0765 | 8.4815 | 64 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e-1_s108_v4_l4_v50_manual
|
KingKazma
| 2023-08-13T13:57:01Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:56:57Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e-1_s108_v4_l4_v100_manual
|
KingKazma
| 2023-08-13T13:54:37Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:54:36Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
har1/hs2-model
|
har1
| 2023-08-13T13:54:15Z | 7 | 0 |
transformers.js
|
[
"transformers.js",
"onnx",
"bert",
"text-classification",
"region:us"
] |
text-classification
| 2023-08-08T14:18:43Z |
---
library_name: transformers.js
pipeline_tag: text-classification
---
https://huggingface.co/Hate-speech-CNERG/malayalam-codemixed-abusive-MuRILwith ONNX weights to be compatible with Transformers.js.
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e10_s108_v4_l4_v100
|
KingKazma
| 2023-08-13T13:53:17Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:53:16Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e9_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:52:17Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:52:13Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0063
|
bigmorning
| 2023-08-13T13:49:49Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:49:42Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0063
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0063
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0005
- Train Accuracy: 0.0795
- Train Wermet: 9.8123
- Validation Loss: 0.5233
- Validation Accuracy: 0.0765
- Validation Wermet: 8.5043
- Epoch: 62
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
| 0.0005 | 0.0795 | 9.8123 | 0.5233 | 0.0765 | 8.5043 | 62 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e8_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:49:03Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:48:59Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0062
|
bigmorning
| 2023-08-13T13:45:30Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:45:22Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0062
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0062
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0015
- Train Accuracy: 0.0795
- Train Wermet: 9.8557
- Validation Loss: 0.5227
- Validation Accuracy: 0.0764
- Validation Wermet: 8.3774
- Epoch: 61
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
| 0.0015 | 0.0795 | 9.8557 | 0.5227 | 0.0764 | 8.3774 | 61 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e6_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:42:27Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:42:23Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0061
|
bigmorning
| 2023-08-13T13:41:13Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:41:06Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0061
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0061
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0044
- Train Accuracy: 0.0795
- Train Wermet: 10.3884
- Validation Loss: 0.5223
- Validation Accuracy: 0.0764
- Validation Wermet: 8.8152
- Epoch: 60
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
| 0.0044 | 0.0795 | 10.3884 | 0.5223 | 0.0764 | 8.8152 | 60 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e5_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:39:10Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:39:05Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e7_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:37:41Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:37:39Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0060
|
bigmorning
| 2023-08-13T13:36:53Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:36:45Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0060
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0060
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0124
- Train Accuracy: 0.0792
- Train Wermet: 10.2304
- Validation Loss: 0.5284
- Validation Accuracy: 0.0762
- Validation Wermet: 9.1194
- Epoch: 59
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
| 0.0006 | 0.0795 | 10.2165 | 0.5412 | 0.0763 | 8.4623 | 58 |
| 0.0124 | 0.0792 | 10.2304 | 0.5284 | 0.0762 | 9.1194 | 59 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e4_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:35:55Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:35:51Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_p_tuning_500_10_3000_8_e4_s108_v4_l4_v100
|
KingKazma
| 2023-08-13T13:35:03Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:35:02Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e6_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:34:50Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:34:48Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e3_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:32:36Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:32:32Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
fathyshalab/mdcsi-transport-logistik-setfit
|
fathyshalab
| 2023-08-13T13:32:34Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T13:31:43Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp0kxa9se7\fathyshalab\mdcsi-transport-logistik-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp0kxa9se7\fathyshalab\mdcsi-transport-logistik-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
helamri/rl_course_vizdoom_health_gathering_supreme
|
helamri
| 2023-08-13T13:32:25Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T13:24:16Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 11.97 +/- 4.61
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r helamri/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e5_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:31:57Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:31:55Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
Mtc2/poca-SoccerTwos
|
Mtc2
| 2023-08-13T13:31:31Z | 33 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-08-13T13:27:24Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Mtc2/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Binettebob22/Lactation
|
Binettebob22
| 2023-08-13T13:30:01Z | 3 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-04T12:59:37Z |
---
license: creativeml-openrail-m
library_name: diffusers
pipeline_tag: text-to-image
---
|
shkwon98/llama2-qlora-finetunined-french
|
shkwon98
| 2023-08-13T13:29:17Z | 2 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:28:37Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e2_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:29:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:29:12Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e4_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:29:06Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:29:04Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0058
|
bigmorning
| 2023-08-13T13:28:01Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:27:55Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0058
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0058
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0007
- Train Accuracy: 0.0795
- Train Wermet: 10.2557
- Validation Loss: 0.5328
- Validation Accuracy: 0.0764
- Validation Wermet: 8.5665
- Epoch: 57
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
| 0.0005 | 0.0795 | 10.0546 | 0.5286 | 0.0764 | 8.8830 | 56 |
| 0.0007 | 0.0795 | 10.2557 | 0.5328 | 0.0764 | 8.5665 | 57 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e3_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:27:43Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:27:41Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e3_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:26:13Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:26:11Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_p_tuning_500_10_3000_8_e1_s108_v4_l4_v50
|
KingKazma
| 2023-08-13T13:25:57Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:25:54Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e2_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:24:18Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:24:17Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
antonjaragon/wav2vec2-base-ft-keyword-spotting
|
antonjaragon
| 2023-08-13T13:23:40Z | 164 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:superb",
"base_model:facebook/wav2vec2-base",
"base_model:finetune:facebook/wav2vec2-base",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-13T13:03:13Z |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: wav2vec2-base-ft-keyword-spotting
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: superb
type: superb
config: ks
split: validation
args: ks
metrics:
- name: Accuracy
type: accuracy
value: 0.9832303618711385
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-ft-keyword-spotting
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0827
- Accuracy: 0.9832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4547 | 1.0 | 399 | 0.3372 | 0.9710 |
| 0.2625 | 2.0 | 798 | 0.1182 | 0.9779 |
| 0.1575 | 3.0 | 1197 | 0.0963 | 0.9787 |
| 0.1314 | 4.0 | 1597 | 0.0827 | 0.9832 |
| 0.1307 | 5.0 | 1995 | 0.0789 | 0.9831 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e2_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:23:18Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:23:16Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/cnn_dailymail_t5-small_lora_500_10_3000_8_e1_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:20:56Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:20:54Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
KingKazma/xsum_t5-small_lora_500_10_3000_8_e1_s55555_v4_l4_r4
|
KingKazma
| 2023-08-13T13:20:25Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T13:20:23Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
aurioldegbelo/slm-edge-detection
|
aurioldegbelo
| 2023-08-13T13:19:53Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2023-08-13T13:12:42Z |
---
license: mit
---
This repository contains two functions used for boundary detection.
The two functions were tested with respect to their respective performance on a boundary extraction task for sketched maps.
|
bigmorning/whisper_charsplit_new_0056
|
bigmorning
| 2023-08-13T13:19:10Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:19:02Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0056
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0056
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0008
- Train Accuracy: 0.0795
- Train Wermet: 10.1079
- Validation Loss: 0.5217
- Validation Accuracy: 0.0764
- Validation Wermet: 8.5608
- Epoch: 55
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
| 0.0032 | 0.0795 | 10.0283 | 0.5240 | 0.0763 | 9.0101 | 53 |
| 0.0018 | 0.0795 | 10.0694 | 0.5247 | 0.0763 | 8.5717 | 54 |
| 0.0008 | 0.0795 | 10.1079 | 0.5217 | 0.0764 | 8.5608 | 55 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Dayanand4574/stable-diffusion-chair
|
Dayanand4574
| 2023-08-13T13:15:29Z | 3 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-13T13:11:48Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Stable-diffusion-chair Dreambooth model trained by Dayanand4574 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
ShowCarSign/car-show-display-signs-and-boards
|
ShowCarSign
| 2023-08-13T13:14:29Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-13T12:56:16Z |
Welcome to the ShowCarSign <a href="https://showcarsign.com/product/show-car-sign/">car show display boards</a>. ! Here, you'll find an excellent selection of boards that will showcase your cars in style. Whether you're a seasoned pro with a fleet of vehicles or a first-time buyer with just one car, we've got something for everyone.
Our boards are designed to turn heads and get attention. That means they have to look just as great on the outside as they do the inside. Choose from our wide range of <a href="http://https://showcarsign.com/">car show display ideas</a>. Plus, our state-of-the-art printing techniques make sure that whatever board you choose, it'll be vibrant and strong - ready to show off your precious vehicles in all their glory.
For those with more unique tastes, we can even design and create custom <a href="http://https://showcarsign.com/product/car-show-boards/">car show reader boards</a> made to measure. So come take a look at what we have to offer here at ShowCarSign and make sure your cars get the display they deserve.
Visit: https://showcarsign.com
|
bigmorning/whisper_charsplit_new_0053
|
bigmorning
| 2023-08-13T13:05:58Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T13:05:49Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0053
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0053
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0083
- Train Accuracy: 0.0794
- Train Wermet: 9.9557
- Validation Loss: 0.5173
- Validation Accuracy: 0.0762
- Validation Wermet: 8.2406
- Epoch: 52
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
| 0.0006 | 0.0795 | 9.9494 | 0.5233 | 0.0763 | 8.5719 | 50 |
| 0.0069 | 0.0794 | 10.2037 | 0.5434 | 0.0759 | 8.5399 | 51 |
| 0.0083 | 0.0794 | 9.9557 | 0.5173 | 0.0762 | 8.2406 | 52 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
ailabturkiye/tonguc
|
ailabturkiye
| 2023-08-13T13:01:01Z | 0 | 0 | null |
[
"music",
"tr",
"license:openrail",
"region:us"
] | null | 2023-08-13T12:50:26Z |
---
license: openrail
language:
- tr
tags:
- music
---
|
bigmorning/whisper_charsplit_new_0050
|
bigmorning
| 2023-08-13T12:52:38Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:52:29Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0050
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0050
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0008
- Train Accuracy: 0.0795
- Train Wermet: 10.0022
- Validation Loss: 0.5166
- Validation Accuracy: 0.0764
- Validation Wermet: 8.4855
- Epoch: 49
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
| 0.0023 | 0.0795 | 9.9201 | 0.5167 | 0.0763 | 8.9537 | 48 |
| 0.0008 | 0.0795 | 10.0022 | 0.5166 | 0.0764 | 8.4855 | 49 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
fp16-guy/Cetus-Mix_v4_fp16_cleaned
|
fp16-guy
| 2023-08-13T12:51:38Z | 0 | 1 | null |
[
"text-to-image",
"region:us"
] |
text-to-image
| 2023-07-31T14:37:04Z |
---
pipeline_tag: text-to-image
---
Cetus-Mix v4, but fp16/cleaned - smaller size, same result.
========
///
**[**original checkpoint link**](https://civitai.com/models/6755?modelVersionId=126564)**
*(all rights to the model belong to Eagelaxis)*
---
*[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusmixv4%2001%2020230807110113-111-cetusMix_v4-Euler%20a-6.png) *(1.99gb version)*
*[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusmixv4%2002%2020230807110204-111-cetusMix_v4-Euler%20a-6.png) *(1.83gb version - no vae)*
*[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_v4%20inp%2001%2020230813151521-111-cetusMix_v4_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)*
*[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_v4%20inp%2002%2020230813151628-111-cetusMix_v4_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
|
bigmorning/whisper_charsplit_new_0048
|
bigmorning
| 2023-08-13T12:43:50Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:43:42Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0048
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0048
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0037
- Train Accuracy: 0.0795
- Train Wermet: 10.0455
- Validation Loss: 0.5174
- Validation Accuracy: 0.0762
- Validation Wermet: 8.2514
- Epoch: 47
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
| 0.0041 | 0.0795 | 10.2751 | 0.5242 | 0.0760 | 8.3671 | 45 |
| 0.0070 | 0.0794 | 10.2166 | 0.5169 | 0.0760 | 8.8409 | 46 |
| 0.0037 | 0.0795 | 10.0455 | 0.5174 | 0.0762 | 8.2514 | 47 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Ding-Qiang/Reinfore-MLP-Cartpole
|
Ding-Qiang
| 2023-08-13T12:36:09Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T12:35:59Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinfore-MLP
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 457.00 +/- 87.33
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
bigmorning/whisper_charsplit_new_0045
|
bigmorning
| 2023-08-13T12:30:32Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:30:23Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0045
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0045
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0024
- Train Accuracy: 0.0795
- Train Wermet: 10.3731
- Validation Loss: 0.5055
- Validation Accuracy: 0.0762
- Validation Wermet: 8.6347
- Epoch: 44
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
| 0.0024 | 0.0795 | 10.3731 | 0.5055 | 0.0762 | 8.6347 | 44 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
hafidzmrizky/stress-detection-500
|
hafidzmrizky
| 2023-08-13T12:30:30Z | 0 | 0 |
peft
|
[
"peft",
"doi:10.57967/hf/0976",
"region:us"
] | null | 2023-08-13T11:30:51Z |
---
library_name: peft
---
## Training procedure
failed model, cant delete.
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0044
|
bigmorning
| 2023-08-13T12:26:06Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:25:59Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0044
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0044
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0023
- Train Accuracy: 0.0795
- Train Wermet: 10.4871
- Validation Loss: 0.5027
- Validation Accuracy: 0.0762
- Validation Wermet: 8.6712
- Epoch: 43
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
| 0.0023 | 0.0795 | 10.4871 | 0.5027 | 0.0762 | 8.6712 | 43 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0043
|
bigmorning
| 2023-08-13T12:21:48Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:21:41Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0043
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0043
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0028
- Train Accuracy: 0.0795
- Train Wermet: 10.3174
- Validation Loss: 0.4968
- Validation Accuracy: 0.0762
- Validation Wermet: 8.8525
- Epoch: 42
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
| 0.0028 | 0.0795 | 10.3174 | 0.4968 | 0.0762 | 8.8525 | 42 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0042
|
bigmorning
| 2023-08-13T12:17:26Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:17:18Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0042
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0042
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0045
- Train Accuracy: 0.0795
- Train Wermet: 10.2251
- Validation Loss: 0.5014
- Validation Accuracy: 0.0761
- Validation Wermet: 8.5737
- Epoch: 41
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
| 0.0045 | 0.0795 | 10.2251 | 0.5014 | 0.0761 | 8.5737 | 41 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
mosama/Llama-2-LoRA-Weights
|
mosama
| 2023-08-13T12:17:09Z | 6 | 1 |
peft
|
[
"peft",
"safetensors",
"region:us"
] | null | 2023-07-27T20:50:46Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
Pierre-Arthur/T5_small_eurlexsum
|
Pierre-Arthur
| 2023-08-13T12:16:31Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:eur-lex-sum",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-24T20:26:43Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- eur-lex-sum
metrics:
- rouge
model-index:
- name: T5_small_eurlexsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: eur-lex-sum
type: eur-lex-sum
config: french
split: test
args: french
metrics:
- name: Rouge1
type: rouge
value: 0.2
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5_small_eurlexsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eur-lex-sum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1159
- Rouge1: 0.2
- Rouge2: 0.1394
- Rougel: 0.1833
- Rougelsum: 0.1829
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 71 | 1.4740 | 0.1718 | 0.0935 | 0.1476 | 0.1476 | 19.0 |
| No log | 2.0 | 142 | 1.2138 | 0.1915 | 0.1207 | 0.1719 | 0.1719 | 19.0 |
| No log | 3.0 | 213 | 1.1368 | 0.1953 | 0.1306 | 0.1759 | 0.1759 | 19.0 |
| No log | 4.0 | 284 | 1.1159 | 0.2 | 0.1394 | 0.1833 | 0.1829 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3
|
lizsergeeva/vit-base-patch16-224-finetuned-vit
|
lizsergeeva
| 2023-08-13T12:13:49Z | 193 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224",
"base_model:finetune:google/vit-base-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-13T08:28:07Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-vit
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9160530191458026
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-vit
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2549
- Accuracy: 0.9161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6065 | 0.99 | 47 | 0.4006 | 0.8748 |
| 0.335 | 2.0 | 95 | 0.2745 | 0.9175 |
| 0.2707 | 2.97 | 141 | 0.2549 | 0.9161 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0041
|
bigmorning
| 2023-08-13T12:12:58Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:12:51Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0041
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0041
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0120
- Train Accuracy: 0.0793
- Train Wermet: 10.4810
- Validation Loss: 0.4963
- Validation Accuracy: 0.0760
- Validation Wermet: 8.9194
- Epoch: 40
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
| 0.0120 | 0.0793 | 10.4810 | 0.4963 | 0.0760 | 8.9194 | 40 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Evan-Lin/Bart-large-abs-amazon-allure
|
Evan-Lin
| 2023-08-13T12:06:06Z | 47 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-08-13T11:59:19Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpyq66vaeu/Evan-Lin/Bart-large-abs-amazon-allure")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpyq66vaeu/Evan-Lin/Bart-large-abs-amazon-allure")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpyq66vaeu/Evan-Lin/Bart-large-abs-amazon-allure")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
bigmorning/whisper_charsplit_new_0038
|
bigmorning
| 2023-08-13T11:59:47Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:59:40Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0038
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0038
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0020
- Train Accuracy: 0.0795
- Train Wermet: 10.7428
- Validation Loss: 0.4835
- Validation Accuracy: 0.0762
- Validation Wermet: 9.0566
- Epoch: 37
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
fathyshalab/mdcsi-unternehmen-verbaende-setfit
|
fathyshalab
| 2023-08-13T11:51:49Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T11:50:59Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp8z_73twb\fathyshalab\mdcsi-unternehmen-verbaende-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp8z_73twb\fathyshalab\mdcsi-unternehmen-verbaende-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
manvik28/FinBERT_Tuned
|
manvik28
| 2023-08-13T11:47:14Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:ProsusAI/finbert",
"base_model:finetune:ProsusAI/finbert",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-13T11:15:40Z |
---
base_model: ProsusAI/finbert
tags:
- generated_from_trainer
model-index:
- name: FinBERT_Tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FinBERT_Tuned
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 148 | 0.4307 | 0.7776 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0035
|
bigmorning
| 2023-08-13T11:46:46Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:46:39Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0035
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0035
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0130
- Train Accuracy: 0.0793
- Train Wermet: 11.1022
- Validation Loss: 0.4748
- Validation Accuracy: 0.0760
- Validation Wermet: 9.4521
- Epoch: 34
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0034
|
bigmorning
| 2023-08-13T11:42:29Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:42:22Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0034
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0034
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0047
- Train Accuracy: 0.0795
- Train Wermet: 10.7613
- Validation Loss: 0.4788
- Validation Accuracy: 0.0759
- Validation Wermet: 9.4065
- Epoch: 33
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0029
|
bigmorning
| 2023-08-13T11:20:47Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:20:40Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0029
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0029
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0114
- Train Accuracy: 0.0794
- Train Wermet: 11.3093
- Validation Loss: 0.4431
- Validation Accuracy: 0.0758
- Validation Wermet: 9.5545
- Epoch: 28
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0026
|
bigmorning
| 2023-08-13T11:07:34Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:07:26Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0026
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0026
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0142
- Train Accuracy: 0.0794
- Train Wermet: 11.3562
- Validation Loss: 0.4057
- Validation Accuracy: 0.0760
- Validation Wermet: 9.6831
- Epoch: 25
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
morell23/3dmm
|
morell23
| 2023-08-13T11:04:37Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-13T11:03:45Z |
---
license: creativeml-openrail-m
---
|
Falah/Iyad_Radi_SDXL1.0_Lora
|
Falah
| 2023-08-13T11:01:53Z | 3 | 2 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-08-13T08:27:32Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a Iyad Radi
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# ART Text-to-Image Generation using stabilityai/stable-diffusion-xl-base-1.0
This repository contains code and instructions for using the `stabilityai/stable-diffusion-xl-base-1.0` model from Hugging Face's Transformers library to generate images from textual descriptions. The model utilizes diffusion models for high-quality image synthesis based on the provided text prompts.






## Model Information
- Base Model: stabilityai/stable-diffusion-xl-base-1.0
- Instance Prompt: "photo of Iyad Radi"
- Tags:
- text-to-image
- diffusers
- autotrain
## Inference
To use this model for generating images from text prompts, follow these steps:
1. **Environment Setup:**
Make sure you have Python installed on your system. You can also use a virtual environment for isolation.
2. **Install Dependencies:**
Install the required Python packages by running the following command:
```bash
pip install -r requirements.txt
```
3.## Usage
Here is an example of how you can use the `stabilityai/stable-diffusion-xl-base-1.0` model for text-to-image generation in Python using the `diffusers` library.
```python
from diffusers import DiffusionPipeline
import torch
# Load LoRA weights
lora_weights = torch.load("/path/to/lora_weights/pytorch_lora_weights.safetensors")
# Initialize the DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipe.to("cuda")
# Load LoRA weights into the pipeline
pipe.load_lora_weights(lora_weights)
# Text prompt for image generation
prompt = "photo of Iyad Radi with cat in the pool"
# Generate Images
image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images
```
4. **Generated Images:**
The generated images will be saved in the `output_images` directory by default.
## Application in Art and Cinema Industry
This model can be incredibly useful in the art and cinema movie production industry, especially for creating visuals based on textual descriptions. In the case of Aiyad Radi, an Iraqi actor and comedian, this tool can aid in visualizing character designs, scenes, and concepts before actual production. Directors, artists, and producers can utilize the generated images as a reference to plan and visualize their projects effectively.
## Credits
- Model developed by [stabilityai](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
- This repository is created and maintained by [Falah.G.Saleih]
## Disclaimer
Please note that the model's outputs might vary, and the generated images are based on the input text prompts. The model's behavior is influenced by its training data and might not always produce accurate or desired results.
Feel free to experiment, provide feedback, and contribute to this repository if you'd like to enhance its functionality!
---
|
bigmorning/whisper_charsplit_new_0022
|
bigmorning
| 2023-08-13T10:50:13Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:50:05Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0022
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0022
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0318
- Train Accuracy: 0.0790
- Train Wermet: 11.6314
- Validation Loss: 0.3628
- Validation Accuracy: 0.0760
- Validation Wermet: 9.6652
- Epoch: 21
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
steve-tong/opus-mt-en-zh-tw
|
steve-tong
| 2023-08-13T10:39:43Z | 107 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"base_model:Helsinki-NLP/opus-mt-en-zh",
"base_model:finetune:Helsinki-NLP/opus-mt-en-zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-13T10:36:48Z |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-zh
tags:
- generated_from_trainer
model-index:
- name: opus-mt-en-zh-tw
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-zh-tw
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.0
- Tokenizers 0.13.3
|
snob/HeungEol-KoAlpaca-12.8B-v1.0_LoRA
|
snob
| 2023-08-13T10:38:31Z | 0 | 0 |
peft
|
[
"peft",
"HeungEol",
"ko",
"region:us"
] | null | 2023-08-10T12:38:00Z |
---
library_name: peft
language:
- ko
tags:
- HeungEol
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
snob/HeungEol-KoAlpaca-12.8B-v1.0
|
snob
| 2023-08-13T10:38:08Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"HeungEol",
"ko",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T13:56:44Z |
---
tags:
- HeungEol
language:
- ko
---
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.