modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
epsil/ppo-LunarLander-v2
epsil
2022-05-04T17:06:56Z
9
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T14:18:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 124.30 +/- 74.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ``` import gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy # Retrieve the model from the hub ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) ## filename = name of the model zip file from the repository checkpoint = load_from_hub(repo_id="epsil/ppo-LunarLander-v2", filename="ppo-LunarLander-v2.zip") model = PPO.load(checkpoint) # Evaluate the agent eval_env = gym.make('LunarLander-v2') mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") # Watch the agent play obs = eval_env.reset() for i in range(1000): action, _state = model.predict(obs) obs, reward, done, info = eval_env.step(action) eval_env.render() if done: obs = eval_env.reset() eval_env.close() ``` ### Created by Saurabh Mishra Made with 💖 in India
robertou2/TEST2ppo-LunarLander-v2
robertou2
2022-05-04T17:05:32Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T16:47:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 286.33 +/- 13.08 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
neelan-elucidate-ai/wav2vec2-tcrs-runtest
neelan-elucidate-ai
2022-05-04T16:33:48Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-04T10:29:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-tcrs-runtest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-tcrs-runtest This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1370 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 22.437 | 1.43 | 10 | 36.3252 | 1.0 | | 14.7939 | 2.86 | 20 | 10.7441 | 1.0 | | 4.1824 | 4.29 | 30 | 3.7354 | 1.0 | | 3.289 | 5.71 | 40 | 3.5265 | 1.0 | | 3.1639 | 7.14 | 50 | 3.2868 | 1.0 | | 3.1107 | 8.57 | 60 | 3.3268 | 1.0 | | 3.0737 | 10.0 | 70 | 3.1149 | 1.0 | | 3.0273 | 11.43 | 80 | 3.2031 | 1.0 | | 3.0422 | 12.86 | 90 | 3.0771 | 1.0 | | 2.9957 | 14.29 | 100 | 3.0418 | 1.0 | | 2.9894 | 15.71 | 110 | 3.0321 | 1.0 | | 2.9997 | 17.14 | 120 | 3.0545 | 1.0 | | 2.9806 | 18.57 | 130 | 2.9936 | 1.0 | | 2.969 | 20.0 | 140 | 3.0322 | 1.0 | | 2.9692 | 21.43 | 150 | 3.0238 | 1.0 | | 2.9638 | 22.86 | 160 | 3.0407 | 1.0 | | 2.969 | 24.29 | 170 | 3.2487 | 1.0 | | 2.9783 | 25.71 | 180 | 3.1248 | 1.0 | | 2.9576 | 27.14 | 190 | 3.0880 | 1.0 | | 2.968 | 28.57 | 200 | 3.0962 | 1.0 | | 2.9784 | 30.0 | 210 | 3.1370 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3
MartinoMensio
2022-05-04T16:28:53Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T17:08:06Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-nonstrict-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-nonstrict-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9937393665313721}, {'label': 'non-racist', 'score': 0.9902436137199402}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2
MartinoMensio
2022-05-04T16:28:04Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T17:06:08Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-nonstrict-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-nonstrict-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9680026173591614}, {'label': 'non-racist', 'score': 0.9936750531196594}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1
MartinoMensio
2022-05-04T16:27:31Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T17:01:40Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-nonstrict-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-nonstrict-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8460916876792908}, {'label': 'non-racist', 'score': 0.9714874029159546}] ``` For more details, see https://github.com/preyero/neatclass22
Guillaume63/ppo-LunarLander-v2
Guillaume63
2022-05-04T16:27:19Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T16:26:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PP0 results: - metrics: - type: mean_reward value: 223.27 +/- 26.13 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PP0** Agent playing **LunarLander-v2** This is a trained model of a **PP0** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
MartinoMensio/racism-models-w-m-vote-strict-epoch-4
MartinoMensio
2022-05-04T16:26:42Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:58:37Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `w-m-vote-strict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'w-m-vote-strict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9834708571434021}, {'label': 'non-racist', 'score': 0.995682954788208}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-regression-w-m-vote-epoch-3
MartinoMensio
2022-05-04T16:21:40Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:21:04Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `regression-w-m-vote-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from transformers.pipelines import TextClassificationPipeline class TextRegressionPipeline(TextClassificationPipeline): """ Class based on the TextClassificationPipeline from transformers. The difference is that instead of being based on a classifier, it is based on a regressor. You can specify the regression threshold when you call the pipeline or when you instantiate the pipeline. """ def __init__(self, **kwargs): """ Builds a new Pipeline based on regression. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold = kwargs.pop("regression_threshold", None) super().__init__(**kwargs) def __call__(self, *args, **kwargs): """ You can also specify the regression threshold when you call the pipeline. regression_threshold: Optional(float). If None, the pipeline will simply output the score. If set to a specific value, the output will be both the score and the label. """ self.regression_threshold_call = kwargs.pop("regression_threshold", None) result = super().__call__(*args, **kwargs) return result def postprocess(self, model_outputs, function_to_apply=None, return_all_scores=False): outputs = model_outputs["logits"][0] outputs = outputs.numpy() scores = outputs score = scores[0] regression_threshold = self.regression_threshold # override the specific threshold if it is specified in the call if self.regression_threshold_call: regression_threshold = self.regression_threshold_call if regression_threshold: return {"label": 'racist' if score > regression_threshold else 'non-racist', "score": score} else: return {"score": score} model_name = 'regression-w-m-vote-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = TextRegressionPipeline(model=model, tokenizer=tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] # just get the score of regression print(pipe(texts)) # [{'score': 0.7393736}, {'score': 0.44301373}] # or also specify a threshold to cut racist/non-racist print(pipe(texts, regression_threshold=0.9)) # [{'label': 'non-racist', 'score': 0.7393736}, {'label': 'non-racist', 'score': 0.44301373}] ``` For more details, see https://github.com/preyero/neatclass22
huggingtweets/zacksteffen_
huggingtweets
2022-05-04T16:16:32Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-04T16:15:50Z
--- language: en thumbnail: http://www.huggingtweets.com/zacksteffen_/1651680987265/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509644465388105731/dErjQdWT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zack Steffen</div> <div style="text-align: center; font-size: 14px;">@zacksteffen_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zack Steffen. | Data | Zack Steffen | | --- | --- | | Tweets downloaded | 3120 | | Retweets | 869 | | Short tweets | 523 | | Tweets kept | 1728 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nz1w2dd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @zacksteffen_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lqwnrcja) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lqwnrcja/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/zacksteffen_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MartinoMensio/racism-models-m-vote-nonstrict-epoch-4
MartinoMensio
2022-05-04T16:14:06Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:50:19Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9791656136512756}, {'label': 'non-racist', 'score': 0.996966540813446}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-m-vote-nonstrict-epoch-3
MartinoMensio
2022-05-04T16:13:17Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:48:32Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-nonstrict-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-nonstrict-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.9642159342765808}, {'label': 'non-racist', 'score': 0.9484726786613464}] ``` For more details, see https://github.com/preyero/neatclass22
seriy21/ppo-LunarLander-v2
seriy21
2022-05-04T16:09:25Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T16:08:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 286.36 +/- 12.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingtweets/usmnt
huggingtweets
2022-05-04T16:09:08Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-28T23:16:44Z
--- language: en thumbnail: http://www.huggingtweets.com/usmnt/1651680543545/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">USMNT</div> <div style="text-align: center; font-size: 14px;">@usmnt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from USMNT. | Data | USMNT | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 600 | | Short tweets | 215 | | Tweets kept | 2435 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22ipg0a6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @usmnt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2nbn1lat) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2nbn1lat/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/usmnt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
MartinoMensio/racism-models-m-vote-strict-epoch-1
MartinoMensio
2022-05-04T16:07:46Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:29:06Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `m-vote-strict-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'm-vote-strict-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.6074065566062927}, {'label': 'non-racist', 'score': 0.8047575950622559}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-raw-label-epoch-4
MartinoMensio
2022-05-04T16:06:20Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:12:31Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-4` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-4' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.921501636505127}, {'label': 'non-racist', 'score': 0.9459075331687927}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-raw-label-epoch-3
MartinoMensio
2022-05-04T16:05:21Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:10:04Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-3` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-3' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8621180653572083}, {'label': 'non-racist', 'score': 0.9725497364997864}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-raw-label-epoch-2
MartinoMensio
2022-05-04T16:04:18Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T16:04:35Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-2` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-2' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.8982619643211365}, {'label': 'non-racist', 'score': 0.6703745126724243}] ``` For more details, see https://github.com/preyero/neatclass22
MartinoMensio/racism-models-raw-label-epoch-1
MartinoMensio
2022-05-04T16:02:49Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-15T15:41:29Z
--- language: es license: mit widget: - text: "y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!" --- ### Description This model is a fine-tuned version of [BETO (spanish bert)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) that has been trained on the *Datathon Against Racism* dataset (2022) We performed several experiments that will be described in the upcoming paper "Estimating Ground Truth in a Low-labelled Data Regime:A Study of Racism Detection in Spanish" (NEATClasS 2022) We applied 6 different methods ground-truth estimations, and for each one we performed 4 epochs of fine-tuning. The result is made of 24 models: | method | epoch 1 | epoch 3 | epoch 3 | epoch 4 | |--- |--- |--- |--- |--- | | raw-label | [raw-label-epoch-1](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-1) | [raw-label-epoch-2](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-2) | [raw-label-epoch-3](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-3) | [raw-label-epoch-4](https://huggingface.co/MartinoMensio/racism-models-raw-label-epoch-4) | | m-vote-strict | [m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-1) | [m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-2) | [m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-3) | [m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-strict-epoch-4) | | m-vote-nonstrict | [m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-1) | [m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-2) | [m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-3) | [m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-m-vote-nonstrict-epoch-4) | | regression-w-m-vote | [regression-w-m-vote-epoch-1](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-1) | [regression-w-m-vote-epoch-2](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-2) | [regression-w-m-vote-epoch-3](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-3) | [regression-w-m-vote-epoch-4](https://huggingface.co/MartinoMensio/racism-models-regression-w-m-vote-epoch-4) | | w-m-vote-strict | [w-m-vote-strict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-1) | [w-m-vote-strict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-2) | [w-m-vote-strict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-3) | [w-m-vote-strict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-strict-epoch-4) | | w-m-vote-nonstrict | [w-m-vote-nonstrict-epoch-1](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-1) | [w-m-vote-nonstrict-epoch-2](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-2) | [w-m-vote-nonstrict-epoch-3](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-3) | [w-m-vote-nonstrict-epoch-4](https://huggingface.co/MartinoMensio/racism-models-w-m-vote-nonstrict-epoch-4) | This model is `raw-label-epoch-1` ### Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_name = 'raw-label-epoch-1' tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-uncased") full_model_path = f'MartinoMensio/racism-models-{model_name}' model = AutoModelForSequenceClassification.from_pretrained(full_model_path) pipe = pipeline("text-classification", model = model, tokenizer = tokenizer) texts = [ 'y porqué es lo que hay que hacer con los menas y con los adultos también!!!! NO a los inmigrantes ilegales!!!!', 'Es que los judíos controlan el mundo' ] print(pipe(texts)) # [{'label': 'racist', 'score': 0.7924597263336182}, {'label': 'non-racist', 'score': 0.9130864143371582}] ``` For more details, see https://github.com/preyero/neatclass22
huggingtweets/cpulisic_10-usmnt-zacksteffen_
huggingtweets
2022-05-04T16:00:44Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-04T16:00:36Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509644465388105731/dErjQdWT_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511457717281607680/SuAprf1T_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">USMNT & Zack Steffen & Christian Pulisic</div> <div style="text-align: center; font-size: 14px;">@cpulisic_10-usmnt-zacksteffen_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from USMNT & Zack Steffen & Christian Pulisic. | Data | USMNT | Zack Steffen | Christian Pulisic | | --- | --- | --- | --- | | Tweets downloaded | 3243 | 3120 | 1159 | | Retweets | 599 | 869 | 629 | | Short tweets | 215 | 523 | 93 | | Tweets kept | 2429 | 1728 | 437 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/395einau/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cpulisic_10-usmnt-zacksteffen_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1x9olwhx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1x9olwhx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cpulisic_10-usmnt-zacksteffen_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
LidarRL/TEST2ppo-LunarLander-v2
LidarRL
2022-05-04T15:10:24Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T14:20:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 204.65 +/- 31.76 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
dbmdz/flair-hipe-2022-ajmc-all
dbmdz
2022-05-04T13:43:34Z
10
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "multilingual", "license:mit", "region:us" ]
token-classification
2022-04-29T07:26:42Z
--- tags: - flair - token-classification - sequence-tagger-model language: multilingual widget: - text: "In editing the Fragments , I have availed myself of Mr . R . Ellis ’ acute remarks on them in the Cambridge Journal of Philology , Vol . IV , and that I am largely indebted , as every editor must now be , to the edition of the Tragic Fragments by A . Nauck , Leipzig , 1856 ." - text: "459 . Skyros klang dem Athener etwa wie Pholegandros und Sikinos bei Solon Eleg . 1 , 4 , dem Römer Ulubrae , Butunti ." - text: "Celles d ’ Ajax et des siens occupaient l ' extrême aile gauche , vers le promontoire Rhétée , et confinaient tout à la fois au retranchement et à la mer ( // . XIT1 , 681 ; Heynce , excursns cité ) ," license: mit ---
uhlenbeckmew/distilroberta-base-swift_shake
uhlenbeckmew
2022-05-04T13:25:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-04T13:07:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-swift_shake results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-swift_shake This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5309 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 334 | 2.5817 | | 2.7363 | 2.0 | 668 | 2.4499 | | 2.4584 | 3.0 | 1002 | 2.5309 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
thuannc/vi-distilled-msmarco-MiniLM-L12-cos-v5
thuannc
2022-05-04T12:52:08Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "arxiv:2004.09813", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-04T10:10:10Z
--- license: mit pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a Vietnamese [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like questions answering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> The thesis will be available on [https://github.com/ncthuan/uet-qa](https://github.com/ncthuan/uet-qa) with evaluation results in chapter 4. paraphrase-multilingual-minilm: 75 recall@10, 49 MRR@10 this model: 85 recall@10, 58 MRR@10 ## Training It was distilled using English-Vietnamese parallel data with this [training script](https://github.com/ncthuan/uet-qa/blob/main/scripts/train/make_multilingual.py) that follows the work of [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://www.sbert.net/examples/training/multilingual/README.html) teacher: msmarco-MiniLM-L12-cos-v5 student: paraphrase-multilingual-minilm-L12-v2 Data: PhoMT, MKQA, MLQA, XQuAD The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40148 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 2000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "correct_bias": false, "eps": 1e-06, "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2000, "weight_decay": 0.005 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> ``` @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } @article{thuan2022-uetqa, title={{Extractive question answering system on regulations for University of Engineering and Technology}}, author={Nguyen, Thuan}, journal={Undergraduate Thesis, University of Engineering and Technology, Vietnam National University Hanoi}, year={2022} } ```
jonfrank/xlm-roberta-base-finetuned-panx-de
jonfrank
2022-05-04T10:13:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-04T09:39:55Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654425558524246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1334 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2541 | 1.0 | 525 | 0.1596 | 0.8242 | | 0.1284 | 2.0 | 1050 | 0.1360 | 0.8499 | | 0.0827 | 3.0 | 1575 | 0.1334 | 0.8654 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
waboucay/camembert-base-finetuned-nli-repnum_wl
waboucay
2022-05-04T09:27:26Z
4
0
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "nli", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-04T09:25:53Z
--- language: - fr tags: - nli metrics: - f1 --- ## Eval results We obtain the following results on ```validation``` and ```test``` sets: | Set | F1<sub>micro</sub> | F1<sub>macro</sub> | |------------|--------------------|--------------------| | validation | 74.6 | 74.5 | | test | 77.8 | 77.8 |
osanseviero/test_sb3
osanseviero
2022-05-04T09:16:12Z
6
2
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-04T09:15:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -203.78 +/- 89.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nbhimte/tiny-bert-mnli-distilled
nbhimte
2022-05-04T07:14:17Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-17T03:40:10Z
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: tiny-bert-mnli-distilled results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.5818644931227712 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-mnli-distilled It achieves the following results on the evaluation set: - Loss: 1.5018 - Accuracy: 0.5819 - F1 score: 0.5782 - Precision score: 0.6036 - Metric recall: 0.5819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 32 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score | Precision score | Metric recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:-------------:| | 1.4475 | 1.0 | 614 | 1.4296 | 0.4521 | 0.4070 | 0.5621 | 0.4521 | | 1.3354 | 2.0 | 1228 | 1.4320 | 0.4805 | 0.4579 | 0.5276 | 0.4805 | | 1.2244 | 3.0 | 1842 | 1.4786 | 0.5699 | 0.5602 | 0.5865 | 0.5699 | | 1.1416 | 4.0 | 2456 | 1.5018 | 0.5819 | 0.5782 | 0.6036 | 0.5819 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.11.6
ybkim95/lp-bert-model
ybkim95
2022-05-04T06:26:12Z
1
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-05-04T06:26:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # ybkim95/lp-bert-model This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ybkim95/lp-bert-model') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ybkim95/lp-bert-model') model = AutoModel.from_pretrained('ybkim95/lp-bert-model') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ybkim95/lp-bert-model) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 46 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LiYouYou/bert_finetuning_cn
LiYouYou
2022-05-04T05:36:19Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-04T05:21:07Z
--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_finetuning_cn results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8314220183486238 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_finetuning_cn This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5440 - Accuracy: 0.8314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
abhi1nandy2/EManuals_RoBERTa
abhi1nandy2
2022-05-04T04:57:53Z
20
0
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "EManuals", "customer support", "QA", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - English tags: - EManuals - customer support - QA - roberta --- Refer to https://aclanthology.org/2021.findings-emnlp.392/ for the paper and https://sites.google.com/view/emanualqa/home for the project website ## Citation Please cite the work if you would like to use it. ``` @inproceedings{nandy-etal-2021-question-answering, title = "Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based {QA} Framework", author = "Nandy, Abhilash and Sharma, Soumya and Maddhashiya, Shubham and Sachdeva, Kapil and Goyal, Pawan and Ganguly, NIloy", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-emnlp.392", doi = "10.18653/v1/2021.findings-emnlp.392", pages = "4600--4609", abstract = "Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper, we meticulously create a large amount of data connected with E-manuals and develop a suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals, and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40{\%} in ROUGE-L F1 scores over most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.", } ```
czw/gpt2-base-chinese-finetuned-job-resume
czw
2022-05-04T03:38:53Z
6
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-02T17:50:01Z
--- license: gpl-3.0 tags: - generated_from_trainer model-index: - name: gpt2-base-chinese-finetuned-job-resume results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-base-chinese-finetuned-job-resume This model is a fine-tuned version of [ckiplab/gpt2-base-chinese](https://huggingface.co/ckiplab/gpt2-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 480 | 2.3271 | | 2.4967 | 2.0 | 960 | 2.2729 | | 2.2259 | 3.0 | 1440 | 2.2658 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/dril-nycguidovoice-senn_spud
huggingtweets
2022-05-04T01:55:26Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-04T01:44:12Z
--- language: en thumbnail: http://www.huggingtweets.com/dril-nycguidovoice-senn_spud/1651629321136/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1510917391533830145/XW-zSFDJ_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503095773059244036/xof9dI-A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1387151448203358209/HKNuKY7L_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Nick Mullen & Will Sennett</div> <div style="text-align: center; font-size: 14px;">@dril-nycguidovoice-senn_spud</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Nick Mullen & Will Sennett. | Data | wint | Nick Mullen | Will Sennett | | --- | --- | --- | --- | | Tweets downloaded | 3229 | 1007 | 3231 | | Retweets | 486 | 71 | 314 | | Short tweets | 300 | 41 | 631 | | Tweets kept | 2443 | 895 | 2286 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dcek2rh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-nycguidovoice-senn_spud's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f1xmo4s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f1xmo4s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-nycguidovoice-senn_spud') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Lauler/sentiment-classifier
Lauler
2022-05-03T23:28:00Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-03T23:25:23Z
## Sentiment classifier Sentiment classifier for Swedish trained on ScandiSent dataset.
clevo570/Nissan_Project
clevo570
2022-05-03T21:54:07Z
0
0
null
[ "region:us" ]
null
2022-04-26T04:47:11Z
# Nissan Project --- license: mit --- ## Overview This model is based on [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) model and [roberta-base-squad2 ](https://huggingface.co/deepset/roberta-base-squad2) model. Bart-large-mnli model is a zero-shot pre-trained model so we don't need to train the model. We just input comments and features we want to classify. Roberta-base-squad2 is a Question Answering model, which helps us to filter which comment mentions the feature. ## Text-image matching ### Model Input ```python import pandas as pd from transformers import pipeline QA_input = { 'question': 'Does it mention dependable?', 'context': input("Enter your sentence:") } ``` ### Model Process ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "deepset/roberta-base-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) res = nlp(QA_input) if res['score'] > 0.1: sentence = QA_input['context'] classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli", device=0) sequence_to_classify = sentence candidate_labels = ['dependable', 'not dependable'] res_2 = classifier(sequence_to_classify, candidate_labels, multi_label=False) score = res_2.get('scores')[0]*2-1 else: score = 0 print(score) ``` ## Result If the score is zero, it means it doesn't mention the feature. Others, it gets the score of the comment with the feature we select. ### Demo code (Python Notebook) https://github.com/vanderbilt-data-science/nissan/blob/main/30-ModelFilter/question-answering.ipynb https://github.com/vanderbilt-data-science/nissan/blob/main/31-ModelWalkthrough/label_after_filtering.ipynb
theojolliffe/bart-large-cnn-finetuned-roundup-32
theojolliffe
2022-05-03T21:24:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T19:23:27Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-32 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2324 - Rouge1: 46.462 - Rouge2: 25.9506 - Rougel: 29.4584 - Rougelsum: 44.1863 - Gen Len: 142.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 32 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3139 | 48.8247 | 29.2173 | 31.7628 | 45.8992 | 142.0 | | No log | 2.0 | 264 | 1.2287 | 47.9398 | 29.4061 | 30.9133 | 44.9142 | 140.9 | | No log | 3.0 | 396 | 1.2676 | 49.2743 | 30.4469 | 32.8893 | 46.6208 | 142.0 | | 0.9578 | 4.0 | 528 | 1.3218 | 47.315 | 26.7303 | 30.5007 | 44.7654 | 142.0 | | 0.9578 | 5.0 | 660 | 1.3173 | 47.1476 | 25.9408 | 29.4257 | 44.4956 | 142.0 | | 0.9578 | 6.0 | 792 | 1.4283 | 47.5836 | 27.1572 | 29.8553 | 44.8858 | 142.0 | | 0.9578 | 7.0 | 924 | 1.5005 | 46.6839 | 26.2214 | 30.1895 | 43.8753 | 140.75 | | 0.3306 | 8.0 | 1056 | 1.5316 | 47.7611 | 27.1105 | 30.8142 | 44.7598 | 142.0 | | 0.3306 | 9.0 | 1188 | 1.6295 | 48.4416 | 27.6912 | 30.3409 | 45.317 | 142.0 | | 0.3306 | 10.0 | 1320 | 1.6564 | 46.5751 | 27.2306 | 29.7265 | 43.7327 | 142.0 | | 0.3306 | 11.0 | 1452 | 1.7471 | 47.9684 | 27.5739 | 30.7018 | 44.6852 | 141.75 | | 0.145 | 12.0 | 1584 | 1.7700 | 47.9274 | 28.5129 | 31.129 | 45.1009 | 142.0 | | 0.145 | 13.0 | 1716 | 1.8391 | 49.8091 | 30.1597 | 33.6004 | 47.2007 | 141.95 | | 0.145 | 14.0 | 1848 | 1.9212 | 45.2195 | 25.033 | 27.4181 | 42.6161 | 142.0 | | 0.145 | 15.0 | 1980 | 1.9267 | 48.4959 | 28.1 | 31.2796 | 46.2758 | 142.0 | | 0.0723 | 16.0 | 2112 | 1.9130 | 47.0765 | 27.4929 | 30.6862 | 44.1458 | 142.0 | | 0.0723 | 17.0 | 2244 | 1.9514 | 48.5354 | 28.4909 | 31.8966 | 45.7116 | 142.0 | | 0.0723 | 18.0 | 2376 | 2.0064 | 47.9339 | 28.6862 | 32.4472 | 45.3704 | 142.0 | | 0.042 | 19.0 | 2508 | 2.0210 | 48.3169 | 28.1579 | 30.2681 | 45.3831 | 141.3 | | 0.042 | 20.0 | 2640 | 2.0377 | 46.8156 | 26.0122 | 28.817 | 43.9383 | 142.0 | | 0.042 | 21.0 | 2772 | 2.0587 | 46.3813 | 27.3555 | 29.875 | 43.6605 | 142.0 | | 0.042 | 22.0 | 2904 | 2.0695 | 45.6728 | 26.0639 | 29.5653 | 42.3772 | 142.0 | | 0.025 | 23.0 | 3036 | 2.1617 | 46.7283 | 26.2082 | 28.52 | 43.3304 | 142.0 | | 0.025 | 24.0 | 3168 | 2.1375 | 48.1347 | 28.3444 | 31.7509 | 45.4907 | 142.0 | | 0.025 | 25.0 | 3300 | 2.1911 | 47.3358 | 27.1479 | 29.4923 | 44.0087 | 142.0 | | 0.025 | 26.0 | 3432 | 2.1806 | 47.2218 | 26.8421 | 30.03 | 44.2417 | 142.0 | | 0.0153 | 27.0 | 3564 | 2.1890 | 46.3745 | 27.0095 | 29.7274 | 43.3372 | 142.0 | | 0.0153 | 28.0 | 3696 | 2.2235 | 50.1274 | 30.8817 | 32.8766 | 46.7486 | 141.5 | | 0.0153 | 29.0 | 3828 | 2.2236 | 50.1785 | 30.8079 | 32.8886 | 46.9888 | 142.0 | | 0.0153 | 30.0 | 3960 | 2.2312 | 46.7468 | 26.4272 | 30.1175 | 43.9132 | 142.0 | | 0.0096 | 31.0 | 4092 | 2.2287 | 47.558 | 26.3933 | 29.9122 | 44.5752 | 142.0 | | 0.0096 | 32.0 | 4224 | 2.2324 | 46.462 | 25.9506 | 29.4584 | 44.1863 | 142.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
SebastianS/distilbert-base-uncased-finetuned-imdb
SebastianS
2022-05-03T20:42:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-03T19:56:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0122 - eval_runtime: 27.9861 - eval_samples_per_second: 35.732 - eval_steps_per_second: 0.572 - epoch: 2.13 - step: 334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
BigSalmon/ConciseAndFormal
BigSalmon
2022-05-03T19:42:53Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T19:34:00Z
how to start prompt: ``` wordy: ``` example: ``` wordy: the ndp has turned into the country's darling of the young. ``` output: ``` the ndp is youth-driven. ``` OR ``` informal english: ``` example: ``` informal english: corn fields are all across illinois, visible once you leave chicago. ``` output: ``` corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. ```
theojolliffe/bart-large-cnn-finetuned-roundup-16
theojolliffe
2022-05-03T19:21:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T18:14:34Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-roundup-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-roundup-16 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8957 - Rouge1: 49.4097 - Rouge2: 29.3516 - Rougel: 31.527 - Rougelsum: 46.4241 - Gen Len: 141.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 132 | 1.3170 | 48.412 | 29.2017 | 31.6679 | 45.494 | 141.85 | | No log | 2.0 | 264 | 1.2292 | 49.0133 | 29.6645 | 30.7612 | 46.1673 | 142.0 | | No log | 3.0 | 396 | 1.2670 | 49.183 | 29.4104 | 31.573 | 46.7082 | 142.0 | | 0.9596 | 4.0 | 528 | 1.3059 | 47.3854 | 26.6865 | 28.4666 | 44.4934 | 141.8 | | 0.9596 | 5.0 | 660 | 1.3288 | 48.1189 | 26.9242 | 31.2938 | 45.3462 | 142.0 | | 0.9596 | 6.0 | 792 | 1.4084 | 47.5713 | 26.7488 | 29.2959 | 45.1764 | 141.3 | | 0.9596 | 7.0 | 924 | 1.5043 | 46.5407 | 26.0995 | 29.9007 | 43.9335 | 142.0 | | 0.3369 | 8.0 | 1056 | 1.5115 | 49.6891 | 29.0514 | 32.33 | 46.9357 | 142.0 | | 0.3369 | 9.0 | 1188 | 1.6131 | 47.5773 | 27.6348 | 30.5294 | 45.1151 | 142.0 | | 0.3369 | 10.0 | 1320 | 1.6837 | 46.5699 | 26.3805 | 29.8581 | 43.5252 | 142.0 | | 0.3369 | 11.0 | 1452 | 1.7874 | 47.1383 | 26.535 | 30.1724 | 44.2508 | 142.0 | | 0.148 | 12.0 | 1584 | 1.7776 | 49.8061 | 30.1994 | 33.2405 | 47.6102 | 142.0 | | 0.148 | 13.0 | 1716 | 1.8144 | 48.4451 | 28.2949 | 30.9026 | 45.6614 | 142.0 | | 0.148 | 14.0 | 1848 | 1.8646 | 50.1964 | 30.4426 | 32.8156 | 47.4134 | 142.0 | | 0.148 | 15.0 | 1980 | 1.8829 | 48.8129 | 29.2358 | 32.3247 | 46.2233 | 142.0 | | 0.0726 | 16.0 | 2112 | 1.8957 | 49.4097 | 29.3516 | 31.527 | 46.4241 | 141.9 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mak109/distilgpt2-finetuned-lyrics
mak109
2022-05-03T19:20:58Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-03T15:48:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mak109/distilgpt2-finetuned-lyrics results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mak109/distilgpt2-finetuned-lyrics This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0226 - Validation Loss: 3.0275 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2907 | 3.1500 | 0 | | 3.1607 | 3.0962 | 1 | | 3.1005 | 3.0664 | 2 | | 3.0573 | 3.0430 | 3 | | 3.0226 | 3.0275 | 4 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.3 - Datasets 2.1.0 - Tokenizers 0.12.1
hbruce11216/distilbert-base-uncased-finetuned-OTTO
hbruce11216
2022-05-03T18:51:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-26T14:54:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-OTTO results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-OTTO This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7687 | 1.0 | 17 | 3.3507 | | 3.5069 | 2.0 | 34 | 3.2786 | | 3.4126 | 3.0 | 51 | 3.2575 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/wojespn
huggingtweets
2022-05-03T18:45:11Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/wojespn/1651603295184/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509990164415893517/qIuzsMq6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adrian Wojnarowski</div> <div style="text-align: center; font-size: 14px;">@wojespn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Adrian Wojnarowski. | Data | Adrian Wojnarowski | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 699 | | Short tweets | 46 | | Tweets kept | 2505 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kc1af3t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wojespn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3d9r0f0h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3d9r0f0h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wojespn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
laituan245/molt5-base-caption2smiles
laituan245
2022-05-03T18:08:45Z
764
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T04:08:16Z
--- license: apache-2.0 --- This model can be used to generate a SMILES string from an input caption. ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-base-caption2smiles", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-base-caption2smiles') input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, num_beams=5, max_length=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # The model will generate "COC1=C(C=CC(=C1)CCCO)O". The ground-truth is "COC1=C(C=CC(=C1)CO)O". ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
laituan245/molt5-large-smiles2caption
laituan245
2022-05-03T18:08:31Z
308
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T16:50:08Z
--- license: apache-2.0 --- This model can be used to generate an input caption from a SMILES string. ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption') input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, num_beams=5, max_length=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
laituan245/molt5-large-caption2smiles
laituan245
2022-05-03T18:08:19Z
7,081
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T15:58:10Z
--- license: apache-2.0 --- This model can be used to generate a SMILES string from an input caption. ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles') input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, num_beams=5, max_length=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
laituan245/molt5-small-caption2smiles
laituan245
2022-05-03T18:08:09Z
52
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T17:03:20Z
--- license: apache-2.0 --- This model can be used to generate a SMILES string from an input caption. ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-small-caption2smiles", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-small-caption2smiles') input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, num_beams=5, max_length=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # The model will generate "COC1=C(C=CC(=C1)CCCO)O". The ground-truth is "COC1=C(C=CC(=C1)CO)O". ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
laituan245/molt5-base-smiles2caption
laituan245
2022-05-03T18:07:57Z
617
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T17:12:55Z
--- license: apache-2.0 --- This model can be used to generate an input caption from a SMILES string. ## Example Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-base-smiles2caption", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-base-smiles2caption') input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, num_beams=5, max_length=512) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
laituan245/molt5-large
laituan245
2022-05-03T18:06:08Z
1,229
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2204.11817", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T17:20:12Z
--- license: apache-2.0 --- ## Example Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("laituan245/molt5-large", model_max_length=512) model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large') ``` ## Paper For more information, please take a look at our paper. Paper: [Translation between Molecules and Natural Language](https://arxiv.org/abs/2204.11817) Authors: *Carl Edwards\*, Tuan Lai\*, Kevin Ros, Garrett Honke, Heng Ji*
gbennett/xlm-roberta-base-finetuned-panx-de
gbennett
2022-05-03T17:15:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-03T16:38:26Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654425558524246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1334 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2541 | 1.0 | 525 | 0.1596 | 0.8242 | | 0.1284 | 2.0 | 1050 | 0.1360 | 0.8499 | | 0.0827 | 3.0 | 1575 | 0.1334 | 0.8654 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
TehranNLP-org/electra-base-mnli
TehranNLP-org
2022-05-03T17:01:07Z
5
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T12:50:13Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SEED0042 results: - task: name: Text Classification type: text-classification dataset: name: MNLI type: '' args: mnli metrics: - name: Accuracy type: accuracy value: 0.8879266428935303 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SEED0042 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4265 - Accuracy: 0.8879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3762 | 1.0 | 12272 | 0.3312 | 0.8794 | | 0.2542 | 2.0 | 24544 | 0.3467 | 0.8843 | | 0.1503 | 3.0 | 36816 | 0.4265 | 0.8879 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
facebook/data2vec-vision-base
facebook
2022-05-03T15:52:10Z
664
3
transformers
[ "transformers", "pytorch", "tf", "data2vec-vision", "image-feature-extraction", "image-classification", "vision", "dataset:imagenet", "dataset:imagenet-1k", "arxiv:2202.03555", "arxiv:2106.08254", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-04-14T08:08:12Z
--- license: apache-2.0 tags: - image-classification - vision datasets: - imagenet - imagenet-1k --- # Data2Vec-Vision (base-sized model, pre-trained only) BEiT model pre-trained in a self-supervised fashion on ImageNet-1k (1,2 million images, 1000 classes) at resolution 224x224. It was introduced in the paper [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli and first released in [this repository](https://github.com/facebookresearch/data2vec_vision/tree/main/beit). Disclaimer: The team releasing Facebook team did not write a model card for this model so this model card has been written by the Hugging Face team. ## Pre-Training method ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/data2vec.png) For more information, please take a look at the [official paper](https://arxiv.org/abs/2202.03555). ## Abstract *While the general idea of self-supervised learning is identical across modalities, the actual algorithms and objectives differ widely because they were developed with a single modality in mind. To get us closer to general self-supervised learning, we present data2vec, a framework that uses the same learning method for either speech, NLP or computer vision. The core idea is to predict latent representations of the full input data based on a masked view of the input in a selfdistillation setup using a standard Transformer architecture. Instead of predicting modality-specific targets such as words, visual tokens or units of human speech which are local in nature, data2vec predicts contextualized latent representations that contain information from the entire input. Experiments on the major benchmarks of speech recognition, image classification, and natural language understanding demonstrate a new state of the art or competitive performance to predominant approaches.* ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?other=data2vec-vision) to look for fine-tuned versions on a task that interests you. ## Training data The BEiT model was pretrained on [ImageNet-1k](http://www.image-net.org/), a dataset consisting of 1,2 million images and 1k classes. ## Training procedure ### Preprocessing The exact details of preprocessing of images during training/validation can be found [here](https://github.com/microsoft/unilm/blob/master/beit/datasets.py). Images are resized/rescaled to the same resolution (224x224) and normalized across the RGB channels with mean (0.5, 0.5, 0.5) and standard deviation (0.5, 0.5, 0.5). ### Pretraining For all pre-training related hyperparameters, we refer to the [original paper](https://arxiv.org/abs/2106.08254) and the [original codebase](https://github.com/facebookresearch/data2vec_vision/tree/main/beit) ## Evaluation results For evaluation results on several image classification benchmarks, we refer to tables 1 of the original paper. Note that for fine-tuning, the best results are obtained with a higher resolution. Of course, increasing the model size will result in better performance. ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2202.03555, doi = {10.48550/ARXIV.2202.03555}, url = {https://arxiv.org/abs/2202.03555}, author = {Baevski, Alexei and Hsu, Wei-Ning and Xu, Qiantong and Babu, Arun and Gu, Jiatao and Auli, Michael}, keywords = {Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
netoass/xlm-roberta-base-finetuned-panx-de
netoass
2022-05-03T15:26:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-03T14:50:42Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8654425558524246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1334 - F1: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2541 | 1.0 | 525 | 0.1596 | 0.8242 | | 0.1284 | 2.0 | 1050 | 0.1360 | 0.8499 | | 0.0827 | 3.0 | 1575 | 0.1334 | 0.8654 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
pietrolesci/t5v1_1-base-mnli_snli_anli
pietrolesci
2022-05-03T14:46:07Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T14:33:00Z
## Overview T5-Base v1.1 model trained to generate hypotheses given a premise and a label. Below the settings used to train it. ```yaml Experiment configurations ├── datasets │ └── snli_train: │ dataset_name: snli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: null │ val_subset_names: validation │ test_subset_names: none │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ anli_train: │ dataset_name: anli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: │ - train_r1 │ - train_r2 │ - train_r3 │ val_subset_names: │ - dev_r1 │ - dev_r2 │ - dev_r3 │ test_subset_names: none │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ mnli_train: │ dataset_name: multi_nli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: null │ val_subset_names: validation_matched │ test_subset_names: none │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ snli: │ dataset_name: snli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: none │ val_subset_names: none │ test_subset_names: null │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ anli: │ dataset_name: anli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: none │ val_subset_names: none │ test_subset_names: │ - test_r1 │ - test_r2 │ - test_r3 │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ mnli: │ dataset_name: multi_nli │ dataset_config_name: null │ cache_dir: null │ input_fields: │ - premise │ - hypothesis │ target_field: label │ train_subset_names: none │ val_subset_names: none │ test_subset_names: validation_mismatched │ train_val_split: null │ limit_train_samples: null │ limit_val_samples: null │ limit_test_samples: null │ sampling_kwargs: │ sampling_strategy: random │ seed: 42 │ replace: false │ align_labels_with_mapping: null │ avoid_consistency_check: false │ predict_label_mapping: null │ ├── data │ └── _target_: src.task.nli.data.NLIGenerationData.from_config │ main_dataset_name: null │ use_additional_as_test: null │ dataloader: │ batch_size: 96 │ eval_batch_size: 96 │ num_workers: 8 │ pin_memory: true │ drop_last: false │ persistent_workers: false │ shuffle: true │ seed_dataloader: 42 │ replacement: false │ processing: │ preprocessing_num_workers: 8 │ preprocessing_batch_size: 1000 │ load_from_cache_file: true │ padding: longest │ truncation: longest_first │ max_source_length: 128 │ max_target_length: 128 │ template: 'premise: $premise $label hypothesis: ' │ tokenizer: │ _target_: transformers.AutoTokenizer.from_pretrained │ pretrained_model_name_or_path: pietrolesci/t5-v1_1-base_nli_gen │ use_fast: true │ ├── task │ └── optimizer: │ name: Adafactor │ lr: 0.001 │ weight_decay: 0.0 │ no_decay: │ - bias │ - LayerNorm.weight │ decay_rate: -0.8 │ clip_threshold: 1.0 │ relative_step: false │ scale_parameter: false │ warmup_init: false │ scheduler: │ name: constant_schedule │ model: │ model_name_or_path: pietrolesci/t5-v1_1-base_nli_gen │ checkpoint_path: null │ freeze: false │ seed_init_weight: 42 │ _target_: src.task.nli.NLIGenerationTask.from_config │ generation: │ generation_max_length: 128 │ generation_min_length: 3 │ do_sample: true │ early_stopping: false │ num_beams: 1 │ temperature: 1.0 │ top_k: 50 │ top_p: 0.95 │ repetition_penalty: null │ length_penalty: null │ no_repeat_ngram_size: null │ encoder_no_repeat_ngram_size: null │ num_return_sequences: 1 │ max_time: null │ max_new_tokens: null │ decoder_start_token_id: null │ use_cache: null │ num_beam_groups: null │ diversity_penalty: null │ ├── trainer │ └── _target_: pytorch_lightning.Trainer │ callbacks: │ lr_monitor: │ _target_: pytorch_lightning.callbacks.LearningRateMonitor │ logging_interval: step │ log_momentum: false │ model_checkpoint: │ _target_: pytorch_lightning.callbacks.ModelCheckpoint │ dirpath: ./checkpoints/ │ filename: nli_generator_sma-epoch={epoch:02d}-val_loss={val/aggregat │ monitor: val/aggregated_loss │ mode: min │ verbose: false │ save_last: true │ save_top_k: 1 │ auto_insert_metric_name: false │ save_on_train_epoch_end: false │ rich_model_summary: │ _target_: pytorch_lightning.callbacks.RichModelSummary │ max_depth: 1 │ log_grad_norm: │ _target_: src.core.callbacks.LogGradNorm │ norm_type: 2 │ group_separator: / │ only_total: true │ on_step: true │ on_epoch: false │ prog_bar: true │ log_generated_text: │ _target_: src.core.callbacks.GenerateAndLogText │ dirpath: ./generated_text │ type: generated_text │ pop_keys_after_logging: true │ on_train: false │ on_validation: false │ on_test: true │ log_to_wandb: true │ wandb_log_dataset_sizes: │ _target_: src.core.callbacks.WandbLogDatasetSizes │ logger: │ wandb: │ _target_: pytorch_lightning.loggers.WandbLogger │ project: nli_debiasing │ entity: team_brushino │ name: nli_generator_sma │ save_dir: ./ │ offline: false │ log_model: false │ group: generator │ job_type: genearator_training │ tags: │ - nli_generator_sma │ - seed=42 │ - seed_dataloader=42 │ notes: nli_generator_sma_time=01-37-04 │ enable_checkpointing: true │ enable_progress_bar: true │ enable_model_summary: true │ gradient_clip_val: 6 │ gradient_clip_algorithm: null │ accelerator: gpu │ devices: auto │ gpus: null │ auto_select_gpus: true │ accumulate_grad_batches: 1 │ max_epochs: 2 │ min_epochs: 1 │ max_steps: -1 │ min_steps: null │ max_time: null │ num_sanity_val_steps: 2 │ overfit_batches: 0.0 │ fast_dev_run: false │ limit_train_batches: 1.0 │ limit_val_batches: 1.0 │ limit_test_batches: 1.0 │ profiler: null │ detect_anomaly: false │ deterministic: false │ check_val_every_n_epoch: 1 │ val_check_interval: 0.5 │ log_every_n_steps: 1 │ move_metrics_to_cpu: false │ └── training └── run_val_before_fit: false run_val_after_fit: false run_test_before_fit: false run_test_after_fit: true lr: 0.001 seed: 42 show_batch: false batch_size: 96 eval_batch_size: 96 num_workers: 8 pin_memory: true drop_last: false persistent_workers: false shuffle: true seed_dataloader: 42 ignore_warnings: true experiment_name: nli_generator_sma ```
srmukundb/bert-base-uncased-finetuned-squad
srmukundb
2022-05-03T13:54:15Z
22
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-07T07:13:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.2582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0462 | 1.0 | 8235 | 1.0822 | | 0.7579 | 2.0 | 16470 | 1.1160 | | 0.5734 | 3.0 | 24705 | 1.2582 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
UWB-AIR/Czert-B-base-cased-long-zero-shot
UWB-AIR
2022-05-03T13:49:35Z
13
2
transformers
[ "transformers", "pytorch", "longformer", "feature-extraction", "cs", "fill-mask", "arxiv:2103.13031", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - cs - fill-mask --- # CZERT This repository keeps trained Czert-B-base-cased-long-zero-shot model for the paper [Czert – Czech BERT-like Model for Language Representation ](https://arxiv.org/abs/2103.13031) For more information, see the paper This is long version of Czert-B-base-cased created without any finetunning on long documents. Positional embedings were created by simply repeating the positional embeddings of the original Czert-B model. For tokenization, please use BertTokenizer. Cannot be used with AutoTokenizer. ## Available Models You can download **MLM & NSP only** pretrained models ~~[CZERT-A-v1](https://air.kiv.zcu.cz/public/CZERT-A-czert-albert-base-uncased.zip) [CZERT-B-v1](https://air.kiv.zcu.cz/public/CZERT-B-czert-bert-base-cased.zip)~~ After some additional experiments, we found out that the tokenizers config was exported wrongly. In Czert-B-v1, the tokenizer parameter "do_lower_case" was wrongly set to true. In Czert-A-v1 the parameter "strip_accents" was incorrectly set to true. Both mistakes are repaired in v2. [CZERT-A-v2](https://air.kiv.zcu.cz/public/CZERT-A-v2-czert-albert-base-uncased.zip) [CZERT-B-v2](https://air.kiv.zcu.cz/public/CZERT-B-v2-czert-bert-base-cased.zip) or choose from one of **Finetuned Models** | | Models | | - | - | | Sentiment Classification<br> (Facebook or CSFD) | [CZERT-A-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-A_fb.zip) <br> [CZERT-B-sentiment-FB](https://air.kiv.zcu.cz/public/CZERT-B_fb.zip) <br> [CZERT-A-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-A_csfd.zip) <br> [CZERT-B-sentiment-CSFD](https://air.kiv.zcu.cz/public/CZERT-B_csfd.zip) | Semantic Text Similarity <br> (Czech News Agency) | [CZERT-A-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-A-sts-CNA.zip) <br> [CZERT-B-sts-CNA](https://air.kiv.zcu.cz/public/CZERT-B-sts-CNA.zip) | Named Entity Recognition | [CZERT-A-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-A-ner-CNEC-cased.zip) <br> [CZERT-B-ner-CNEC](https://air.kiv.zcu.cz/public/CZERT-B-ner-CNEC-cased.zip) <br>[PAV-ner-CNEC](https://air.kiv.zcu.cz/public/PAV-ner-CNEC-cased.zip) <br> [CZERT-A-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-A-ner-BSNLP-cased.zip)<br>[CZERT-B-ner-BSNLP](https://air.kiv.zcu.cz/public/CZERT-B-ner-BSNLP-cased.zip) <br>[PAV-ner-BSNLP](https://air.kiv.zcu.cz/public/PAV-ner-BSNLP-cased.zip) | | Morphological Tagging<br> | [CZERT-A-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-A-morphtag-126k-cased.zip)<br>[CZERT-B-morphtag-126k](https://air.kiv.zcu.cz/public/CZERT-B-morphtag-126k-cased.zip) | | Semantic Role Labelling |[CZERT-A-srl](https://air.kiv.zcu.cz/public/CZERT-A-srl-cased.zip)<br> [CZERT-B-srl](https://air.kiv.zcu.cz/public/CZERT-B-srl-cased.zip) | ## How to Use CZERT? ### Sentence Level Tasks We evaluate our model on two sentence level tasks: * Sentiment Classification, * Semantic Text Similarity. <!-- tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False) model = TFAlbertForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, num_labels=1) or self.tokenizer = BertTokenizerFast.from_pretrained(CZERT_MODEL_PATH, strip_accents=False) self.model_encoder = AutoModelForSequenceClassification.from_pretrained(CZERT_MODEL_PATH, from_tf=True) --> ### Document Level Tasks We evaluate our model on one document level task * Multi-label Document Classification. ### Token Level Tasks We evaluate our model on three token level tasks: * Named Entity Recognition, * Morphological Tagging, * Semantic Role Labelling. ## Downstream Tasks Fine-tuning Results ### Sentiment Classification | | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B | |:----:|:------------------------:|:------------------------:|:------------------------:|:-----------------------:|:--------------------------------:| | FB | 71.72 ± 0.91 | 73.87 ± 0.50 | 59.50 ± 0.47 | 72.47 ± 0.72 | **76.55** ± **0.14** | | CSFD | 82.80 ± 0.14 | 82.51 ± 0.14 | 75.40 ± 0.18 | 79.58 ± 0.46 | **84.79** ± **0.26** | Average F1 results for the Sentiment Classification task. For more information, see [the paper](https://arxiv.org/abs/2103.13031). ### Semantic Text Similarity | | **mBERT** | **Pavlov** | **Albert-random** | **Czert-A** | **Czert-B** | |:-------------|:--------------:|:--------------:|:-----------------:|:--------------:|:----------------------:| | STA-CNA | 83.335 ± 0.063 | 83.593 ± 0.050 | 43.184 ± 0.125 | 82.942 ± 0.106 | **84.345** ± **0.028** | | STS-SVOB-img | 79.367 ± 0.486 | 79.900 ± 0.810 | 15.739 ± 2.992 | 79.444 ± 0.338 | **83.744** ± **0.395** | | STS-SVOB-hl | 78.833 ± 0.296 | 76.996 ± 0.305 | 33.949 ± 1.807 | 75.089 ± 0.806 | **79.827 ± 0.469** | Comparison of Pearson correlation achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on semantic text similarity. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Multi-label Document Classification | | mBERT | SlavicBERT | ALBERT-r | Czert-A | Czert-B | |:-----:|:------------:|:------------:|:------------:|:------------:|:-------------------:| | AUROC | 97.62 ± 0.08 | 97.80 ± 0.06 | 94.35 ± 0.13 | 97.49 ± 0.07 | **98.00** ± **0.04** | | F1 | 83.04 ± 0.16 | 84.08 ± 0.14 | 72.44 ± 0.22 | 82.27 ± 0.17 | **85.06** ± **0.11** | Comparison of F1 and AUROC score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on multi-label document classification. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Morphological Tagging | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | |:-----------------------|:---------------|:---------------|:---------------|:---------------|:---------------| | Universal Dependencies | 99.176 ± 0.006 | 99.211 ± 0.008 | 96.590 ± 0.096 | 98.713 ± 0.008 | **99.300 ± 0.009** | Comparison of F1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on morphological tagging task. For more information see [the paper](https://arxiv.org/abs/2103.13031). ### Semantic Role Labelling <div id="tab:SRL"> | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | dep-based | gold-dep | |:------:|:----------:|:----------:|:-------------:|:----------:|:----------:|:---------:|:--------:| | span | 78.547 ± 0.110 | 79.333 ± 0.080 | 51.365 ± 0.423 | 72.254 ± 0.172 | **81.861 ± 0.102** | \- | \- | | syntax | 90.226 ± 0.224 | 90.492 ± 0.040 | 80.747 ± 0.131 | 80.319 ± 0.054 | **91.462 ± 0.062** | 85.19 | 89.52 | SRL results – dep columns are evaluate with labelled F1 from CoNLL 2009 evaluation script, other columns are evaluated with span F1 score same as it was used for NER evaluation. For more information see [the paper](https://arxiv.org/abs/2103.13031). </div> ### Named Entity Recognition | | mBERT | Pavlov | Albert-random | Czert-A | Czert-B | |:-----------|:---------------|:---------------|:---------------|:---------------|:---------------| | CNEC | **86.225 ± 0.208** | **86.565 ± 0.198** | 34.635 ± 0.343 | 72.945 ± 0.227 | 86.274 ± 0.116 | | BSNLP 2019 | 84.006 ± 1.248 | **86.699 ± 0.370** | 19.773 ± 0.938 | 48.859 ± 0.605 | **86.729 ± 0.344** | Comparison of f1 score achieved using pre-trained CZERT-A, CZERT-B, mBERT, Pavlov and randomly initialised Albert on named entity recognition task. For more information see [the paper](https://arxiv.org/abs/2103.13031). ## Licence This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/ ## How should I cite CZERT? For now, please cite [the Arxiv paper](https://arxiv.org/abs/2103.13031): ``` @article{sido2021czert, title={Czert -- Czech BERT-like Model for Language Representation}, author={Jakub Sido and Ondřej Pražák and Pavel Přibáň and Jan Pašek and Michal Seják and Miloslav Konopík}, year={2021}, eprint={2103.13031}, archivePrefix={arXiv}, primaryClass={cs.CL}, journal={arXiv preprint arXiv:2103.13031}, } ```
Tobias/bert-base-uncased_English_Hotel_classification
Tobias
2022-05-03T11:46:32Z
7
1
transformers
[ "transformers", "tf", "bert", "text-classification", "eng", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-03T11:33:24Z
--- language: eng tags: - bert license: apache-2.0 widget: - text: "The hotel is very nicely located" example_title: "Example 1" - text: "The reception staff were extremely helpful and very welcoming" example_title: "Example 2" - text: "There is no balcony in the rooms on the mountain side" example_title: "Example 3" - text: "A bit pricey" example_title: "Example 4" --- # German Hotel Review Sentiment Classification A model trained on English Hotel Reviews from Switzerland. The base model is the [bert-base-uncased](https://huggingface.co/bert-base-uncased). The last hidden layer of the base model was extracted and a classification layer was added. The entire model was then trained for 5 epochs on our dataset. # Model Performance | Classes | Precision | Recall | F1 Score | | :--- | :---: | :---: |:---: | | Room | 77.78% | 77.78% | 77.78% | | Location | 95.45% | 95.45% | 95.45% | | Staff | 75.00% | 93.75% | 83.33% | | Unknown | 71.43% | 50.00% | 58.82% | | HotelOrganisation | 27.27% | 30.00% | 28.57% | | Food | 87.50% | 87.50% | 87.50% | | ReasonForStay | 63.64% | 58.33% | 60.87%| | GeneralUtility | 66.67% | 50.00% | 66.67% | | Accuracy | | | 74.00% | | Macro Average | 70.59%| 67.85% | 68.68% | | Weighted Average | 74.17% | 74.00% | 73.66% | ## Confusion Matrix ![Confusion Matrix](bert-base-uncased_English_classification.jpg)
lucaordronneau/finbert-finetuned-FG-SINGLE_SENTENCE-NEWS
lucaordronneau
2022-05-03T09:58:12Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-22T18:54:48Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finbert-finetuned-FG-SINGLE_SENTENCE-NEWS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finbert-finetuned-FG-SINGLE_SENTENCE-NEWS This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2997 - Accuracy: 0.6414 - F1: 0.6295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 321 | 0.9371 | 0.5699 | 0.4333 | | 0.9282 | 2.0 | 642 | 0.9135 | 0.5930 | 0.5447 | | 0.9282 | 3.0 | 963 | 0.9900 | 0.6033 | 0.5823 | | 0.6743 | 4.0 | 1284 | 1.0802 | 0.6142 | 0.6065 | | 0.3134 | 5.0 | 1605 | 1.5156 | 0.6183 | 0.5971 | | 0.3134 | 6.0 | 1926 | 1.3695 | 0.6319 | 0.6183 | | 0.1709 | 7.0 | 2247 | 1.8746 | 0.6462 | 0.6267 | | 0.1112 | 8.0 | 2568 | 2.0880 | 0.6176 | 0.6155 | | 0.1112 | 9.0 | 2889 | 2.3953 | 0.6190 | 0.6087 | | 0.0811 | 10.0 | 3210 | 2.3792 | 0.6339 | 0.6225 | | 0.0608 | 11.0 | 3531 | 2.3783 | 0.6360 | 0.6282 | | 0.0608 | 12.0 | 3852 | 2.5982 | 0.6544 | 0.6351 | | 0.039 | 13.0 | 4173 | 2.7687 | 0.6346 | 0.6305 | | 0.039 | 14.0 | 4494 | 2.8980 | 0.6414 | 0.6299 | | 0.0206 | 15.0 | 4815 | 3.0858 | 0.6319 | 0.6253 | | 0.0168 | 16.0 | 5136 | 3.2408 | 0.6244 | 0.6170 | | 0.0168 | 17.0 | 5457 | 3.1809 | 0.6435 | 0.6293 | | 0.0123 | 18.0 | 5778 | 3.2629 | 0.6449 | 0.6324 | | 0.0055 | 19.0 | 6099 | 3.2866 | 0.6449 | 0.6308 | | 0.0055 | 20.0 | 6420 | 3.2997 | 0.6414 | 0.6295 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.1 - Datasets 1.18.4 - Tokenizers 0.11.6
jerryKakooza/language-detection-fine-tuned-on-xlm-roberta-base
jerryKakooza
2022-05-03T09:31:18Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:common_language", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T16:45:16Z
--- license: mit tags: - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: language-detection-fine-tuned-on-xlm-roberta-base results: - task: name: Text Classification type: text-classification dataset: name: common_language type: common_language args: full metrics: - name: Accuracy type: accuracy value: 0.9760187824920342 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-fine-tuned-on-xlm-roberta-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0725 | 1.0 | 22194 | 0.1642 | 0.9760 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
agi-css/distilroberta-base-mrl
agi-css
2022-05-03T09:27:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-23T06:28:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilroberta-base-mrl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-mrl This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0170 - Accuracy: 0.9967 - F1: 0.9967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.1821851463909416e-05 - train_batch_size: 400 - eval_batch_size: 400 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 48 | 0.0265 | 0.9946 | 0.9946 | | No log | 2.0 | 96 | 0.0180 | 0.9962 | 0.9962 | | No log | 3.0 | 144 | 0.0163 | 0.9962 | 0.9962 | | No log | 4.0 | 192 | 0.0194 | 0.9946 | 0.9946 | | No log | 5.0 | 240 | 0.0193 | 0.9942 | 0.9942 | | No log | 6.0 | 288 | 0.0172 | 0.9967 | 0.9967 | | No log | 7.0 | 336 | 0.0206 | 0.9954 | 0.9954 | | No log | 8.0 | 384 | 0.0183 | 0.9962 | 0.9962 | | No log | 9.0 | 432 | 0.0170 | 0.9967 | 0.9967 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Hate-speech-CNERG/tamil-codemixed-abusive-MuRIL
Hate-speech-CNERG
2022-05-03T08:52:47Z
217,074
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2204.12543", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T12:10:58Z
--- language: ta-en license: afl-3.0 --- This model is used to detect **abusive speech** in **Code-Mixed Tamil**. It is finetuned on MuRIL model using Code-Mixed Tamil abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
Hate-speech-CNERG/bengali-abusive-MuRIL
Hate-speech-CNERG
2022-05-03T08:50:49Z
33
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "bn", "arxiv:2204.12543", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-24T18:59:53Z
--- language: [bn] license: afl-3.0 --- This model is used detecting **abusive speech** in **Bengali**. It is finetuned on MuRIL model using bengali abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
Hate-speech-CNERG/kannada-codemixed-abusive-MuRIL
Hate-speech-CNERG
2022-05-03T08:48:39Z
32
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2204.12543", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T07:44:08Z
--- language: ka-en license: afl-3.0 --- This model is used to detect **abusive speech** in **Code-Mixed Kannada**. It is finetuned on MuRIL model using Code-Mixed Kannada abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
Hate-speech-CNERG/malayalam-codemixed-abusive-MuRIL
Hate-speech-CNERG
2022-05-03T08:47:17Z
37
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2204.12543", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T10:00:23Z
--- language: ma-en license: afl-3.0 --- This model is used to detect **abusive speech** in **Code-Mixed Malayalam**. It is finetuned on MuRIL model using Code-Mixed Malayalam abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
Hate-speech-CNERG/urdu-abusive-MuRIL
Hate-speech-CNERG
2022-05-03T08:43:53Z
13
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ur", "arxiv:2204.12543", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T19:18:21Z
--- language: ur license: afl-3.0 --- This model is used to detect **abusive speech** in **Urdu**. It is finetuned on MuRIL model using Urdu abusive speech dataset. The model is trained with learning rates of 2e-5. Training code can be found at this [url](https://github.com/hate-alert/IndicAbusive) LABEL_0 :-> Normal LABEL_1 :-> Abusive ### For more details about our paper Mithun Das, Somnath Banerjee and Animesh Mukherjee. "[Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages](https://arxiv.org/abs/2204.12543)". Accepted at ACM HT 2022. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{das2022data, title={Data Bootstrapping Approaches to Improve Low Resource Abusive Language Detection for Indic Languages}, author={Das, Mithun and Banerjee, Somnath and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2204.12543}, year={2022} } ~~~
niklaspm/linkbert-large-finetuned-squad
niklaspm
2022-05-03T07:51:30Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-02T19:06:30Z
--- license: apache-2.0 --- --- license: apache-2.0 --- **Exact Match** 92.68 **F1** 86.5 Checkout [linkbert-base-finetuned-squad](https://huggingface.co/niklaspm/linkbert-base-finetuned-squad) See [LinkBERT Paper](https://arxiv.org/abs/2203.15827)
niklaspm/linkbert-base-finetuned-squad
niklaspm
2022-05-03T07:50:32Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2203.15827", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-02T08:53:53Z
--- license: apache-2.0 --- **Exact Match** 83.19 **F1** 90.46 Checkout [linkbert-large-finetuned-squad](https://huggingface.co/niklaspm/linkbert-large-finetuned-squad) which achives F1:92.68 and EM:86.5 See [LinkBERT Paper](https://arxiv.org/abs/2203.15827)
DioLiu/distilbert-base-uncased-finetuned-sst2-nostop
DioLiu
2022-05-03T06:43:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-03T06:31:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-nostop results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-nostop This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0701 - Accuracy: 0.9888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.125 | 1.0 | 1116 | 0.0975 | 0.9743 | | 0.0599 | 2.0 | 2232 | 0.0692 | 0.9840 | | 0.0191 | 3.0 | 3348 | 0.0570 | 0.9871 | | 0.0109 | 4.0 | 4464 | 0.0660 | 0.9882 | | 0.0092 | 5.0 | 5580 | 0.0701 | 0.9888 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
pfactorial/checkpoint-22500-epoch-20
pfactorial
2022-05-03T05:48:55Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T03:25:44Z
this is a Questions generating mode
Nakul24/Spanbert-emotion-extraction
Nakul24
2022-05-03T05:10:03Z
6
1
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-05-01T17:42:46Z
Enter the Name of Emotion in the Question Field Enter The Text from which emotion has to be extracted Example 1- Question - Guilty Context - I shouted to my mom Example 2 - Question - Sad Context - I felt betrayed when my girlfriend kissed another guy even though she was drunk Note: Model is still under development stage so results might be a little strange
huggingtweets/lonelythey18
huggingtweets
2022-05-03T05:01:20Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-03T04:59:03Z
--- language: en thumbnail: http://www.huggingtweets.com/lonelythey18/1651554075248/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488171735174238211/4Y7YAhJG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cara</div> <div style="text-align: center; font-size: 14px;">@lonelythey18</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cara. | Data | Cara | | --- | --- | | Tweets downloaded | 2640 | | Retweets | 301 | | Short tweets | 500 | | Tweets kept | 1839 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l0t3r5o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lonelythey18's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1znlhqjr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1znlhqjr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lonelythey18') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kornosk/bert-election2020-twitter-stance-trump
kornosk
2022-05-02T22:59:13Z
64
3
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "twitter", "stance-detection", "election2020", "politics", "en", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" tags: - twitter - stance-detection - election2020 - politics license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Donald Trump (f-BERT) Pre-trained weights for **f-BERT** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Donald Trump. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Donald Trump. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Donald Trump. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-trump" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Trump!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Trump is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
kornosk/bert-election2020-twitter-stance-trump-KE-MLM
kornosk
2022-05-02T22:58:49Z
40
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "twitter", "stance-detection", "election2020", "politics", "en", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" tags: - twitter - stance-detection - election2020 - politics license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Donald Trump (KE-MLM) Pre-trained weights for **KE-MLM model** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Donald Trump. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Donald Trump. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Donald Trump. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-trump-KE-MLM" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Trump!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Trump is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
kornosk/bert-election2020-twitter-stance-biden-KE-MLM
kornosk
2022-05-02T22:58:37Z
26
3
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "twitter", "stance-detection", "election2020", "politics", "en", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: "en" tags: - twitter - stance-detection - election2020 - politics license: "gpl-3.0" --- # Pre-trained BERT on Twitter US Election 2020 for Stance Detection towards Joe Biden (KE-MLM) Pre-trained weights for **KE-MLM model** in [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. Then fine-tuned using our [stance-labeled data](https://github.com/GU-DataLab/stance-detection-KE-MLM) for stance detection towards Joe Biden. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective with classification layer fine-tuned for stance detection towards Joe Biden. # Usage This pre-trained language model is fine-tuned to the stance detection task specifically for Joe Biden. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import numpy as np # choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # select mode path here pretrained_LM_path = "kornosk/bert-election2020-twitter-stance-biden-KE-MLM" # load model tokenizer = AutoTokenizer.from_pretrained(pretrained_LM_path) model = AutoModelForSequenceClassification.from_pretrained(pretrained_LM_path) id2label = { 0: "AGAINST", 1: "FAVOR", 2: "NONE" } ##### Prediction Neutral ##### sentence = "Hello World." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Favor ##### sentence = "Go Go Biden!!!" inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) ##### Prediction Against ##### sentence = "Biden is the worst." inputs = tokenizer(sentence.lower(), return_tensors="pt") outputs = model(**inputs) predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() print("Sentence:", sentence) print("Prediction:", id2label[np.argmax(predicted_probability)]) print("Against:", predicted_probability[0]) print("Favor:", predicted_probability[1]) print("Neutral:", predicted_probability[2]) # please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
huggingtweets/usrsistakenhelp
huggingtweets
2022-05-02T22:26:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-02T22:25:02Z
--- language: en thumbnail: http://www.huggingtweets.com/usrsistakenhelp/1651530363067/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1520487753896665088/lO1PwH2q_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rosa - I miss tgamm</div> <div style="text-align: center; font-size: 14px;">@usrsistakenhelp</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rosa - I miss tgamm. | Data | Rosa - I miss tgamm | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 507 | | Short tweets | 1160 | | Tweets kept | 1577 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jxrwgo01/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @usrsistakenhelp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1z4w7mpe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1z4w7mpe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/usrsistakenhelp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
caush/Clickbait4
caush
2022-05-02T20:39:40Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T20:24:42Z
--- license: mit tags: - generated_from_trainer model-index: - name: Clickbait1 results: [] --- This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the Webis-Clickbait-17 dataset. It achieves the following results on the evaluation set: Loss: 0.0261 The following list presents the current performances achieved by the participants. As primary evaluation measure, Mean Squared Error (MSE) with respect to the mean judgments of the annotators is used. Our result is 0,0261 for the MSE metric. We do not compute the other metrics. We try not to cheat using unknown data at the time of the challenge. We do not use k-fold cross validation techniques. | team | MSE | F1 | Precision | Recall| Accuracy| Runtime | |----- |----- |--- |-----------|-------|---------|-------- | |goldfish | 0.024 | 0.741 | 0.739 | 0.742 | 0.876 | 16:20:21| |caush | 0.026 | | | | | 00:11:00| |monkfish | 0.026 | 0.694 | 0.785 | 0.622 | 0.870 | 03:41:35| |dartfish | 0.027 | 0.706 | 0.733 | 0.681 | 0.865 | 00:47:07| |torpedo19 | 0.03 | 0.677 | 0.755 | 0.614 | 0.861 | 00:52:44| |albacore | 0.031 | 0.67 | 0.731 | 0.62 | 0.855 | 00:01:10| |blobfish | 0.032 | 0.646 | 0.738 | 0.574 | 0.85 | 00:03:22| |zingel | 0.033 | 0.683 | 0.719 | 0.65 | 0.856 | 00:03:27| |anchovy | 0.034 | 0.68 | 0.717 | 0.645 | 0.855 | 00:07:20| |ray | 0.034 | 0.684 | 0.691 | 0.677 | 0.851 | 00:29:28| |icarfish | 0.035 | 0.621 | 0.768 | 0.522 | 0.849 | 01:02:57| |emperor | 0.036 | 0.641 | 0.714 | 0.581 | 0.845 | 00:04:03| |carpetshark | 0.036 | 0.638 | 0.728 | 0.568 | 0.847 | 00:08:05| |electriceel | 0.038 | 0.588 | 0.727 | 0.493 | 0.835 | 01:04:54| |arowana | 0.039 | 0.656 | 0.659 | 0.654 | 0.837 | 00:35:24| |pineapplefish | 0.041 | 0.631 | 0.642 | 0.621 | 0.827 | 00:54:28| |whitebait | 0.043 | 0.565 | 0.7 | 0.474 | 0.826 | 00:04:31|
doc2query/msmarco-14langs-mt5-base-v1
doc2query
2022-05-02T20:12:45Z
19
14
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "ar", "zh", "nl", "fr", "de", "hi", "in", "it", "ja", "pt", "ru", "es", "vi", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-02T20:08:06Z
--- language: - en - ar - zh - nl - fr - de - hi - in - it - ja - pt - ru - es - vi datasets: - unicamp-dl/mmarco widget: - text: "Python ist eine universelle, üblicherweise interpretierte, höhere Programmiersprache. Sie hat den Anspruch, einen gut lesbaren, knappen Programmierstil zu fördern. So werden beispielsweise Blöcke nicht durch geschweifte Klammern, sondern durch Einrückungen strukturiert." license: apache-2.0 --- # doc2query/msmarco-14langs-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It was trained on all 14 languages of [mMARCO dataset](https://github.com/unicamp-dl/mMARCO), i.e. you can input a passage in any of the 14 languages, and it will generate a query in the same language. It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-14langs-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python ist eine universelle, üblicherweise interpretierte, höhere Programmiersprache. Sie hat den Anspruch, einen gut lesbaren, knappen Programmierstil zu fördern. So werden beispielsweise Blöcke nicht durch geschweifte Klammern, sondern durch Einrückungen strukturiert." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 525k training steps on all 14 languages from [mMARCO dataset](https://github.com/unicamp-dl/mMARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
amirbr/finetuning-sentiment-model-3000-samples
amirbr
2022-05-02T20:06:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T09:31:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
ali2066/DistilBERT_FINAL_ctxSentence_TRAIN_all_TEST_NULL_second_train_set_null_False
ali2066
2022-05-02T18:36:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T18:30:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERT_FINAL_ctxSentence_TRAIN_all_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT_FINAL_ctxSentence_TRAIN_all_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0699 - Precision: 0.9942 - Recall: 0.9773 - F1: 0.9857 - Accuracy: 0.9725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 479 | 0.4036 | 0.8333 | 0.9326 | 0.8802 | 0.8054 | | 0.5047 | 2.0 | 958 | 0.3749 | 0.8635 | 0.9339 | 0.8973 | 0.8361 | | 0.3336 | 3.0 | 1437 | 0.3789 | 0.8862 | 0.9184 | 0.9020 | 0.8471 | | 0.2644 | 4.0 | 1916 | 0.4024 | 0.8762 | 0.9171 | 0.8962 | 0.8371 | | 0.2233 | 5.0 | 2395 | 0.4195 | 0.8784 | 0.9171 | 0.8973 | 0.8391 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/DistilBERT_FINAL_ctxSentence_TRAIN_editorials_TEST_NULL_second_train_set_null_False
ali2066
2022-05-02T18:29:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T18:27:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERT_FINAL_ctxSentence_TRAIN_editorials_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT_FINAL_ctxSentence_TRAIN_editorials_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.8119 - Precision: 0.2752 - Recall: 0.9522 - F1: 0.4270 - Accuracy: 0.2849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.0726 | 0.9827 | 1.0 | 0.9913 | 0.9828 | | No log | 2.0 | 332 | 0.0569 | 0.9827 | 1.0 | 0.9913 | 0.9828 | | No log | 3.0 | 498 | 0.0434 | 0.9884 | 1.0 | 0.9942 | 0.9885 | | 0.1021 | 4.0 | 664 | 0.0505 | 0.9884 | 1.0 | 0.9942 | 0.9885 | | 0.1021 | 5.0 | 830 | 0.0472 | 0.9884 | 1.0 | 0.9942 | 0.9885 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
LACAI/roberta-large-adapted-PFG-progression
LACAI
2022-05-02T18:28:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T18:09:17Z
--- license: mit --- Base model: [lacai/roberta-large-dialog-narrative](https://huggingface.co/lacai/roberta-large-dialog-narrative) Fine tuned as a progression model (to predict the acceptability of a dialogue) on the [Persuasion For Good Dataset](https://gitlab.com/ucdavisnlp/persuasionforgood) (Wang et al., 2019): Given a complete dialogue from (or in the style of) Persuasion For Good, the task is to predict a numeric score typically in the range (-3, 3) where a higher score means a more acceptable dialogue in context of the donation solicitation task. This model inherits a special dialogue token `<d>` from its base model, which indicates the start of a dialogue utterance. **Example input**: `<d>How are you?</s><d>Good! how about yourself?</s><d>Great. Would you like to donate today to help the children?</s>` For more context and usage information see [https://github.rpi.edu/LACAI/dialogue-progression](https://github.rpi.edu/LACAI/dialogue-progression).
ali2066/DistilBERT_FINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False
ali2066
2022-05-02T18:27:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T18:24:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERT_FINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT_FINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0703 - Precision: 0.9667 - Recall: 0.0505 - F1: 0.0961 - Accuracy: 0.0766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 95 | 0.5442 | 0.6667 | 0.1132 | 0.1935 | 0.75 | | No log | 2.0 | 190 | 0.5316 | 0.5385 | 0.1321 | 0.2121 | 0.74 | | No log | 3.0 | 285 | 0.5384 | 0.4615 | 0.2264 | 0.3038 | 0.725 | | No log | 4.0 | 380 | 0.5503 | 0.4286 | 0.2264 | 0.2963 | 0.715 | | No log | 5.0 | 475 | 0.5529 | 0.4286 | 0.2264 | 0.2963 | 0.715 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
espnet/tamil_slu
espnet
2022-05-02T18:09:16Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:tamil", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-02T18:00:45Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - tamil license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/tamil_slu` This model was trained by Sujay S Kumar using tamil recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 395bda6123ae268f991e5ef1dab887b6e677974a pip install -e . cd egs2/tamil/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/tamil_slu ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Oct 3 20:59:46 EDT 2021` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a3` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `b41391336042a4876e30d9fe5c66afb4e4be404c` - Commit date: `Wed Sep 22 10:02:03 2021 -0400` ## asr_train_asr_wav2vec2_xlsr_raw_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_5best/test|80|372|70.4|22.6|7.0|3.2|32.8|56.3| |inference_asr_model_valid.acc.ave_5best/valid|80|372|70.4|22.6|7.0|3.2|32.8|56.3| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_asr_model_valid.acc.ave_5best/test|80|3234|85.9|8.2|5.9|5.5|19.6|56.3| |inference_asr_model_valid.acc.ave_5best/valid|80|3234|85.9|8.2|5.9|5.5|19.6|56.3| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_wav2vec2_xlsr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp_train_asr_wav2vec2_xlsr/asr_train_asr_wav2vec2_xlsr_raw_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 250 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: 5 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp_train_asr_wav2vec2_xlsr/asr_stats_raw_word/train/speech_shape - exp_train_asr_wav2vec2_xlsr/asr_stats_raw_word/train/text_shape.word valid_shape_file: - exp_train_asr_wav2vec2_xlsr/asr_stats_raw_word/valid/speech_shape - exp_train_asr_wav2vec2_xlsr/asr_stats_raw_word/valid/text_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text valid_data_path_and_name_and_type: - - dump/raw/valid/wav.scp - speech - sound - - dump/raw/valid/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 5000 token_list: - <blank> - <unk> - காசு - வேணும் - Request_Acc_balance - Account - Money_deposit - Money_withdraw - Credit_card_payments - card - மீதி - Money_transfer - எவ்வளோ - Bill_payments - Credit - கட்ட - எவ்வளவு - காச - கட்டவேணும் - இந்த - Balance - வேண்டும் - போடோணும் - கணக்கு - செய்ய - Bill - போட - account - மாத்த - credit - pay - பண்ணோணும் - Deposit - மீளெடுக்க - வைப்பு - எடுக்கவேணும் - ல - இருக்கிற - எடுக்கணும் - இல - இருந்து - மற்ற - accountக்கு - balance - என்ன - bill - அ - ஒருக்கா - ஏலுமோ - deposit - பண்ண - payment - Account-la - காசெடுக்கோணும் - அனுப்பவேணும் - காசெடுக்க - இன்னொரு - கு - Cash - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 4 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a3 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
fahadtouseef/wav2vec2-base-timit-demo-colab_3
fahadtouseef
2022-05-02T17:56:34Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-02T15:40:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab_3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1942 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.2975 | 3.52 | 500 | 3.1771 | 1.0 | | 3.1468 | 7.04 | 1000 | 3.1917 | 1.0 | | 3.147 | 10.56 | 1500 | 3.1784 | 1.0 | | 3.1467 | 14.08 | 2000 | 3.1850 | 1.0 | | 3.1446 | 17.61 | 2500 | 3.2022 | 1.0 | | 3.1445 | 21.13 | 3000 | 3.2196 | 1.0 | | 3.1445 | 24.65 | 3500 | 3.2003 | 1.0 | | 3.1443 | 28.17 | 4000 | 3.1942 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab3000
hassnain
2022-05-02T17:34:38Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-02T12:25:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3000 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3000 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6852 - eval_wer: 0.3845 - eval_runtime: 71.297 - eval_samples_per_second: 9.846 - eval_steps_per_second: 1.234 - epoch: 24.22 - step: 8500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
wpatena/PB-Chlamy
wpatena
2022-05-02T16:34:01Z
0
0
null
[ "region:us" ]
null
2022-04-12T22:35:19Z
These are files for the trained protein localization prediction model PB-Chlamy, created for the paper **"A Chloroplast Protein Atlas Reveals Novel Structures and Spatial Organization of Biosynthetic Pathways"** by Lianyong Wang, Weronika Patena, Kelly A. Van Baalen, Yihua Xie, Emily R. Singer, Sophia Gavrilenko, Michelle Warren-Williams, Linqu Han, Henry Harrigan, Vivian Chen, Vinh Ton, Saw Kyin, Henry H. Shwe, Matthew H. Cahn, Alexandra Wilson, Jianping Hu, Christoph Benning, Danny J. Schnell, Claire D. McWhite, Martin Jonikas (submitted for publication in May 2022).
espnet/thai_commonvoice_blstm
espnet
2022-05-02T15:53:53Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "th", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-02T15:16:52Z
--- tags: - espnet - audio - automatic-speech-recognition language: th datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/thai_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 716eb8f92e19708acfd08ba3bd39d40890d3a84b pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/thai_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Apr 18 11:05:12 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `5e6e95d087af8a7a4c33c4248b75114237eae64b` - Commit date: `Mon Apr 4 21:04:45 2022 -0400` ## asr_train_asr_rnn_raw_th_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_th|10769|14356|49.0|43.1|7.9|5.1|56.0|53.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_th|10769|348793|95.2|3.0|1.8|1.8|6.6|53.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_th|10769|278454|95.0|2.8|2.2|1.1|6.1|41.2| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_rnn_raw_th_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_th_bpe150_sp/train/speech_shape - exp/asr_stats_raw_th_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_th_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_th_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_th_sp/wav.scp - speech - sound - - dump/raw/train_th_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_th/wav.scp - speech - sound - - dump/raw/dev_th/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - น - ร - ก - า - เ - อ - ง - ย - ม - ั - ส - ด - บ - ว - ิ - ล - ค - ต - ห - ่ - ท - ้ - พ - ช - แ - ี - จ - ะ - ที่ - ุ - ้า - ู - ์ - ป - ข - ไ - การ - โ - ไม่ - ่อ - ่า - ็ - ื - ํา - ือ - จะ - มา - ของ - ได้ - เป็น - ถ - ีย - มี - ่ง - ว่า - ้อ - ัน - ใน - ไป - คุณ - ▁ฉัน - ัง - เขา - ความ - ใ - ผ - หน - ให้ - ทํา - ศ - ซ - ึ - นี้ - ฉัน - มัน - ี่ - ญ - และ - ประ - ิน - หล - ษ - ภ - ธ - ณ - ฟ - อย่าง - เธอ - '?' - '"' - ฐ - '!' - ฝ - ฉ - ฮ - ๊ - '''' - '-' - ฒ - ๆ - ๋ - ฎ - ฤ - ฏ - ฬ - ฑ - . - ” - ':' - “ - ',' - ’ - ; - ฌ - E - R - O - T - N - A - I - S - F - C - '~' - B - K - X - L - H - M - Y - — - J - W - ฃ - _ - ฯ - ํ - U - ๅ - ‘ - G - '|' - P - ฆ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/th_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_th_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/farsi_commonvoice_blstm
espnet
2022-05-02T15:50:24Z
5
3
espnet
[ "espnet", "audio", "automatic-speech-recognition", "fa", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-02T15:49:22Z
--- tags: - espnet - audio - automatic-speech-recognition language: fa datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/farsi_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 716eb8f92e19708acfd08ba3bd39d40890d3a84b pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/farsi_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon May 2 11:48:56 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `716eb8f92e19708acfd08ba3bd39d40890d3a84b` - Commit date: `Thu Apr 28 19:50:59 2022 -0400` ## asr_train_asr_rnn_raw_fa_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_fa|9728|68904|0.0|0.0|100.0|0.0|100.0|100.0| |decode_rnn_asr_model_valid.acc.best/test_fa|9728|68904|91.4|7.2|1.4|1.0|9.5|30.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_fa|9728|331506|0.0|0.0|100.0|0.0|100.0|100.0| |decode_rnn_asr_model_valid.acc.best/test_fa|9728|331506|97.2|1.3|1.5|0.7|3.6|30.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_fa|9728|230963|0.0|0.0|100.0|0.0|100.0|100.0| |decode_rnn_asr_model_valid.acc.best/test_fa|9728|230963|95.9|2.4|1.6|0.7|4.7|30.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_rnn_raw_fa_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_fa_bpe150_sp/train/speech_shape - exp/asr_stats_raw_fa_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_fa_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_fa_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_fa_sp/wav.scp - speech - sound - - dump/raw/train_fa_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_fa/wav.scp - speech - sound - - dump/raw/dev_fa/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ی - ا - ه - ▁ - ر - م - و - د - ت - ش - ن - ل - ▁ب - ز - ب - . - ▁م - ان - ▁ا - س - ک - ▁می - گ - ف - ▁د - ؟ - ق - ▁و - ید - ▁ن - ند - ست - ار - ▁چ - ع - ج - ▁ت - ▁ک - ▁با - خ - ون - ▁پ - ▁به - ▁من - ▁س - ▁را - ، - ▁خ - ▁این - ▁کن - ▁آ - ▁در - ای - ▁از - اد - ▁است - ح - ص - ▁ش - ط - ▁تو - ین - ▁دار - ▁که - ال - ▁رو - ▁گ - ▁ج - ور - ام - ▁هم - ▁ح - فت - رد - یم - پ - غ - چ - ذ - ض - ظ - '!' - ث - ً - ئ - '"' - ژ - ك - آ - ي - ':' - ى - '-' - ِ - أ - َ - » - ـ - ',' - ُ - ( - ) - ء - ٔ - ٬ - ّ - ؛ - B - C - A - E - G - M - S - ؤ - I - ; - T - H - _ - F - D - ۀ - Y - N - K - U - – - ٌ - P - O - Q - Z - '&' - L - R - ة - X - ā - '#' - “ - '=' - « - š - ْ - ے - ” - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/fa_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_fa_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/pt_commonvoice_blstm
espnet
2022-05-02T15:39:16Z
3
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "pt", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-02T15:37:14Z
--- tags: - espnet - audio - automatic-speech-recognition language: pt datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/pt_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 716eb8f92e19708acfd08ba3bd39d40890d3a84b pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/pt_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Apr 11 18:55:23 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `5e6e95d087af8a7a4c33c4248b75114237eae64b` - Commit date: `Mon Apr 4 21:04:45 2022 -0400` ## asr_train_asr_rnn_raw_pt_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.best/test_pt|4334|33716|84.7|12.4|2.9|1.3|16.6|46.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.best/test_pt|4334|191499|93.4|3.0|3.6|1.2|7.8|46.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.best/test_pt|4334|116003|90.4|5.7|3.9|1.5|11.1|46.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_rnn_raw_pt_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_pt_bpe150_sp/train/speech_shape - exp/asr_stats_raw_pt_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_pt_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_pt_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_pt_sp/wav.scp - speech - sound - - dump/raw/train_pt_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_pt/wav.scp - speech - sound - - dump/raw/dev_pt/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - S - R - I - U - E - O - A - . - N - M - L - ▁A - ▁DE - RA - ▁O - T - ▁E - ▁UM - C - TA - DO - G - TO - TE - DA - VE - B - NDO - ▁SE - ▁QUE - P - ▁UMA - LA - D - ▁COM - CA - á - '?' - ▁PE - ▁EM - IN - TI - IS - ▁C - H - HO - ▁CA - ▁P - CO - ',' - ▁NO - MA - NTE - PA - ▁NãO - DE - ãO - ▁ME - ▁PARA - Z - ▁MA - VA - PO - ▁DO - ▁VOCê - RI - ▁DI - GA - VI - ▁é - LO - IA - ▁ELE - ▁EU - ▁ESTá - HA - ▁M - X - ▁NA - NA - é - CE - LE - GO - VO - ▁RE - ▁FO - ▁FA - ▁CO - QUE - ▁EST - BE - ▁CON - ó - SE - ▁POR - ê - í - çãO - ▁DA - RES - ▁QUA - ▁HOMEM - RIA - çA - ▁SA - V - ▁PRE - MENTE - ZE - NHA - '-' - ▁BA - MOS - ▁SO - ▁BO - ç - '"' - '!' - ú - ã - K - Y - É - W - ô - Á - ':' - ; - '''' - ” - Ô - ñ - “ - Ú - Í - Ó - ü - À - â - à - õ - J - Q - F - Â - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/pt_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_pt_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/greek_commonvoice_blstm
espnet
2022-05-02T15:35:07Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "el", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-05-02T15:34:01Z
--- tags: - espnet - audio - automatic-speech-recognition language: el datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/greek_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 716eb8f92e19708acfd08ba3bd39d40890d3a84b pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/greek_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Apr 17 19:51:46 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `5e6e95d087af8a7a4c33c4248b75114237eae64b` - Commit date: `Mon Apr 4 21:04:45 2022 -0400` ## asr_train_asr_rnn_tr_raw_el_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_el|1681|10574|90.7|7.7|1.6|0.5|9.9|27.4| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_el|1681|61731|96.6|1.5|1.9|0.6|4.0|27.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_el|1681|44869|95.7|2.4|1.9|0.7|5.0|27.5| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn_tr.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_rnn_tr_raw_el_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_el_bpe150_sp/train/speech_shape - exp/asr_stats_raw_el_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_el_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_el_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_el_sp/wav.scp - speech - sound - - dump/raw/train_el_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_el/wav.scp - speech - sound - - dump/raw/dev_el/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - α - ν - ρ - ι - ε - ο - τ - ς - λ - ά - σ - κ - ό - . - ί - ▁π - έ - ω - π - γ - η - μ - υ - ',' - ή - ▁το - χ - θ - ώ - ▁και - ▁του - δ - τα - αν - ει - ▁να - ▁σ - ου - σε - ▁κ - ύ - ού - φ - στ - ρα - ια - ▁μ - ▁δ - ▁έ - τι - β - ρι - μα - πο - εί - ▁φ - ▁με - κα - ▁α - ος - ; - ▁χ - '!' - ▁β - ες - ▁στο - τε - ▁γ - '"' - τη - ▁ο - ▁Π - ▁δε - ▁που - ▁μου - με - ▁τα - σα - λα - Μ - ιά - ▁από - εις - ▁την - έρ - ▁ε - ▁τον - ρά - λο - ▁είπε - ▁μα - ψ - Τ - '''' - Κ - Σ - Ε - Α - Θ - '-' - Η - Ά - Ν - Δ - Χ - ’ - Ξ - » - Π - ΐ - Ώ - Ο - A - O - · - ':' - E - G - H - N - R - T - V - Υ - ϋ - Ψ - ́ - ‘ - Ι - Ί - Ρ - Ω - « - Ύ - Ζ - ϊ - Ή - Φ - Λ - Ό - Γ - Έ - Β - ζ - M - ξ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/el_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_el_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
hassnain/wav2vec2-base-timit-demo-colab971
hassnain
2022-05-02T14:40:45Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-02T11:49:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab971 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab971 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6551 - Wer: 0.4448 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9461 | 1.77 | 500 | 3.2175 | 1.0 | | 2.5387 | 3.53 | 1000 | 1.2239 | 0.7851 | | 0.9632 | 5.3 | 1500 | 0.7275 | 0.6352 | | 0.6585 | 7.07 | 2000 | 0.6218 | 0.5896 | | 0.4875 | 8.83 | 2500 | 0.5670 | 0.5651 | | 0.397 | 10.6 | 3000 | 0.5796 | 0.5487 | | 0.3298 | 12.37 | 3500 | 0.5870 | 0.5322 | | 0.2816 | 14.13 | 4000 | 0.5796 | 0.5016 | | 0.2396 | 15.9 | 4500 | 0.5956 | 0.5040 | | 0.2019 | 17.67 | 5000 | 0.5911 | 0.4847 | | 0.1845 | 19.43 | 5500 | 0.6050 | 0.4800 | | 0.1637 | 21.2 | 6000 | 0.6518 | 0.4927 | | 0.1428 | 22.97 | 6500 | 0.6247 | 0.4645 | | 0.1319 | 24.73 | 7000 | 0.6592 | 0.4711 | | 0.1229 | 26.5 | 7500 | 0.6526 | 0.4556 | | 0.1111 | 28.27 | 8000 | 0.6551 | 0.4448 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
umanlp/TOD-XLMR
umanlp
2022-05-02T14:16:51Z
13
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "exbert", "multilingual", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-21T09:29:28Z
--- tags: - exbert language: multilingual license: mit --- # TOD-XLMR TOD-XLMR is a conversationally specialized multilingual version based on [XLM-RoBERTa](https://huggingface.co/xlm-roberta-base). It is pre-trained on English conversational corpora consisting of nine human-to-human multi-turn task-oriented dialog (TOD) datasets as proposed in the paper [TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue](https://aclanthology.org/2020.emnlp-main.66.pdf) by Wu et al. and first released in [this repository](https://huggingface.co/TODBERT). The model is jointly trained with two objectives as proposed in TOD-BERT, including masked language modeling (MLM) and response contrastive loss (RCL). Masked language modeling is a common pretraining strategy utilized for BERT-based architectures, where a random sample of tokens in the input sequence is replaced with the special token [MASK] for predicting the original masked tokens. To further encourage the model to capture dialogic structure (i.e., dialog sequential order), response contrastive loss is implemented by using in-batch negative training with contrastive learning. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("umanlp/TOD-XLMR") model = AutoModelForMaskedLM.from_pretrained("umanlp/TOD-XLMR") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` Or you can also use `AutoModel` to load the pretrained model and further apply to downstream tasks: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("umanlp/TOD-XLMR") model = AutoModel("umanlp/TOD-XLMR") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ```
Matthijs/vit-base-patch16-224
Matthijs
2022-05-02T14:08:03Z
0
2
null
[ "coreml", "vision", "image-classification", "dataset:imagenet", "dataset:imagenet-21k", "arxiv:2010.11929", "license:apache-2.0", "region:us" ]
image-classification
2022-05-02T13:56:44Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet - imagenet-21k --- # Vision Transformer (base-sized model) Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Dosovitskiy et al. and first released in [this repository](https://github.com/google-research/vision_transformer). However, the weights were converted from the [timm repository](https://github.com/rwightman/pytorch-image-models) by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him. This repo contains a Core ML version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224). ## Usage instructions Create a `VNCoreMLRequest` that loads the ViT model: ```swift import CoreML import Vision lazy var classificationRequest: VNCoreMLRequest = { do { let config = MLModelConfiguration() config.computeUnits = .all let coreMLModel = try ViT(configuration: config) let visionModel = try VNCoreMLModel(for: coreMLModel.model) let request = VNCoreMLRequest(model: visionModel, completionHandler: { [weak self] request, error in if let results = request.results as? [VNClassificationObservation] { /* do something with the results */ } }) request.imageCropAndScaleOption = .centerCrop return request } catch { fatalError("Failed to create VNCoreMLModel: \(error)") } }() ``` Perform the request: ```swift func classify(image: UIImage) { guard let ciImage = CIImage(image: image) else { print("Unable to create CIImage") return } DispatchQueue.global(qos: .userInitiated).async { let handler = VNImageRequestHandler(ciImage: ciImage, orientation: .up) do { try handler.perform([self.classificationRequest]) } catch { print("Failed to perform classification: \(error)") } } } ```
kurama/bert-finetuned-ner
kurama
2022-05-02T14:02:58Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-02T13:33:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9321865696328151 - name: Recall type: recall value: 0.9485021878155503 - name: F1 type: f1 value: 0.9402736069402736 - name: Accuracy type: accuracy value: 0.9860187201977983 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9322 - Recall: 0.9485 - F1: 0.9403 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0831 | 1.0 | 1756 | 0.0652 | 0.9213 | 0.9392 | 0.9302 | 0.9835 | | 0.0413 | 2.0 | 3512 | 0.0567 | 0.9292 | 0.9495 | 0.9392 | 0.9861 | | 0.0192 | 3.0 | 5268 | 0.0617 | 0.9322 | 0.9485 | 0.9403 | 0.9860 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_editorials_TEST_NULL_second_train_set_null_False
ali2066
2022-05-02T13:43:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T13:14:59Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERTFINAL_ctxSentence_TRAIN_editorials_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERTFINAL_ctxSentence_TRAIN_editorials_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4527 - Precision: 0.2844 - Recall: 0.9676 - F1: 0.4395 - Accuracy: 0.2991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.1044 | 0.9742 | 1.0 | 0.9869 | 0.9742 | | No log | 2.0 | 332 | 0.1269 | 0.9742 | 1.0 | 0.9869 | 0.9742 | | No log | 3.0 | 498 | 0.1028 | 0.9742 | 1.0 | 0.9869 | 0.9742 | | 0.0947 | 4.0 | 664 | 0.0836 | 0.9826 | 0.9971 | 0.9898 | 0.9799 | | 0.0947 | 5.0 | 830 | 0.0884 | 0.9854 | 0.9912 | 0.9883 | 0.9771 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False
ali2066
2022-05-02T13:37:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T13:12:40Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERTFINAL_ctxSentence_TRAIN_webDiscourse_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2555 - Precision: 1.0 - Recall: 0.0200 - F1: 0.0393 - Accuracy: 0.0486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 95 | 0.5756 | nan | 0.0 | nan | 0.715 | | No log | 2.0 | 190 | 0.5340 | 0.6429 | 0.1579 | 0.2535 | 0.735 | | No log | 3.0 | 285 | 0.5298 | 0.5833 | 0.3684 | 0.4516 | 0.745 | | No log | 4.0 | 380 | 0.5325 | 0.5789 | 0.3860 | 0.4632 | 0.745 | | No log | 5.0 | 475 | 0.5452 | 0.4815 | 0.4561 | 0.4685 | 0.705 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False
ali2066
2022-05-02T13:33:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T13:10:30Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: DistilBERTFINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERTFINAL_ctxSentence_TRAIN_essays_TEST_NULL_second_train_set_null_False This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7680 - Precision: 0.9838 - Recall: 0.6632 - F1: 0.7923 - Accuracy: 0.6624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 130 | 0.2980 | 0.9315 | 0.9533 | 0.9423 | 0.9081 | | No log | 2.0 | 260 | 0.2053 | 0.9537 | 0.9626 | 0.9581 | 0.9338 | | No log | 3.0 | 390 | 0.1873 | 0.9464 | 0.9907 | 0.9680 | 0.9485 | | 0.3064 | 4.0 | 520 | 0.1811 | 0.9585 | 0.9720 | 0.9652 | 0.9449 | | 0.3064 | 5.0 | 650 | 0.1887 | 0.9587 | 0.9766 | 0.9676 | 0.9485 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu113 - Datasets 1.18.0 - Tokenizers 0.10.3
kSaluja/new-test-model2
kSaluja
2022-05-02T12:58:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-25T14:30:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: new-test-model2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new-test-model2 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1040 - Precision: 0.9722 - Recall: 0.9757 - F1: 0.9739 - Accuracy: 0.9808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.1819 | 0.9360 | 0.9405 | 0.9382 | 0.9540 | | No log | 2.0 | 302 | 0.1196 | 0.9637 | 0.9639 | 0.9638 | 0.9703 | | No log | 3.0 | 453 | 0.1322 | 0.9614 | 0.9682 | 0.9648 | 0.9711 | | 0.2764 | 4.0 | 604 | 0.1071 | 0.9677 | 0.9725 | 0.9701 | 0.9763 | | 0.2764 | 5.0 | 755 | 0.1084 | 0.9709 | 0.9766 | 0.9737 | 0.9790 | | 0.2764 | 6.0 | 906 | 0.1015 | 0.9717 | 0.9739 | 0.9728 | 0.9791 | | 0.0342 | 7.0 | 1057 | 0.1208 | 0.9686 | 0.9727 | 0.9706 | 0.9785 | | 0.0342 | 8.0 | 1208 | 0.1068 | 0.9680 | 0.9752 | 0.9716 | 0.9798 | | 0.0342 | 9.0 | 1359 | 0.1028 | 0.9719 | 0.9743 | 0.9731 | 0.9807 | | 0.0129 | 10.0 | 1510 | 0.1040 | 0.9722 | 0.9757 | 0.9739 | 0.9808 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
tomh/toxigen_hatebert
tomh
2022-05-02T12:42:51Z
1,476
11
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "arxiv:2203.09509", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-01T13:02:09Z
--- language: - en tags: - text-classification --- Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, Ece Kamar. This model comes from the paper [ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection](https://arxiv.org/abs/2203.09509) and can be used to detect implicit hate speech. Please visit the [Github Repository](https://github.com/microsoft/TOXIGEN) for the training dataset and further details. ```bibtex @inproceedings{hartvigsen2022toxigen, title = "{T}oxi{G}en: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection", author = "Hartvigsen, Thomas and Gabriel, Saadia and Palangi, Hamid and Sap, Maarten and Ray, Dipankar and Kamar, Ece", booktitle = "Proceedings of the 60th Annual Meeting of the Association of Computational Linguistics", year = "2022" } ```
DioLiu/distilbert-base-uncased-finetuned-sst2-newdata
DioLiu
2022-05-02T12:40:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T12:18:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2-newdata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2-newdata This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0588 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0543 | 1.0 | 1116 | 0.0307 | 0.9911 | | 0.0235 | 2.0 | 2232 | 0.0372 | 0.9911 | | 0.0102 | 3.0 | 3348 | 0.0486 | 0.9914 | | 0.0003 | 4.0 | 4464 | 0.0563 | 0.9914 | | 0.0008 | 5.0 | 5580 | 0.0588 | 0.9911 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
hassnain/wav2vec2-base-timit-demo-colab240
hassnain
2022-05-02T12:31:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T18:29:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab240 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab240 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6367 - eval_wer: 0.5855 - eval_runtime: 20.4889 - eval_samples_per_second: 6.931 - eval_steps_per_second: 0.879 - epoch: 14.08 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3