modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 12:33:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 12:33:10
card
stringlengths
11
1.01M
javilonso/classificationPolEsp1
javilonso
2022-03-30T09:02:50Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T07:49:20Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: javilonso/classificationPolEsp1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/classificationPolEsp1 This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3728 - Validation Loss: 0.6217 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 17958, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.6282 | 0.6017 | 0 | | 0.5129 | 0.6177 | 1 | | 0.3728 | 0.6217 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
neibla/distilbert-base-uncased-finetuned-emotion
neibla
2022-03-30T08:56:26Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T08:22:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9254917237562972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2187 - Accuracy: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.855 | 1.0 | 250 | 0.3211 | 0.905 | 0.9017 | | 0.2561 | 2.0 | 500 | 0.2187 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
shrishail/t5_paraphrase_msrp_paws
shrishail
2022-03-30T05:47:27Z
38
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "paraphrase-generation", "text-generation", "Conditional Generation", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-29T13:13:11Z
--- language: "en" tags: - paraphrase-generation - text-generation - Conditional Generation inference: false --- # Simple model for Paraphrase Generation ​ ## Model description ​ T5-based model for generating paraphrased sentences. It is trained on the labeled [MSRP](https://www.microsoft.com/en-us/download/details.aspx?id=52398) and [Google PAWS](https://github.com/google-research-datasets/paws) dataset. ​ ## How to use ​ ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("shrishail/t5_paraphrase_msrp_paws") model = AutoModelForSeq2SeqLM.from_pretrained("shrishail/t5_paraphrase_msrp_paws") ​ sentence = "This is something which i cannot understand at all" text = "paraphrase: " + sentence + " </s>" encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, do_sample=True, top_k=120, top_p=0.95, early_stopping=True, num_return_sequences=5 ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True) print(line) ​ ```
lazyturtl/roomidentifier
lazyturtl
2022-03-30T04:10:41Z
89
3
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-30T04:10:32Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: roomidentifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9375 --- # roomidentifier Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Bathroom ![Bathroom](images/Bathroom.jpg) #### Bedroom ![Bedroom](images/Bedroom.jpg) #### DinningRoom ![DinningRoom](images/DinningRoom.jpg) #### Kitchen ![Kitchen](images/Kitchen.jpg) #### LivingRoom ![LivingRoom](images/LivingRoom.jpg)
samayash/finetuning-financial-news-sentiment
samayash
2022-03-30T03:36:40Z
4
3
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T03:27:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-financial-news-sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-financial-news-sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3345 - Accuracy: 0.8751 - F1: 0.8751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_masked_audio
scasutt
2022-03-30T03:35:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-29T11:30:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_masked_audio results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_masked_audio This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6445 - Wer: 0.4938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3761 | 1.05 | 250 | 3.4022 | 0.9954 | | 3.0858 | 2.1 | 500 | 3.4684 | 0.9954 | | 2.6302 | 3.15 | 750 | 1.7989 | 0.9865 | | 1.1292 | 4.2 | 1000 | 0.8558 | 0.7355 | | 0.8371 | 5.25 | 1250 | 0.7319 | 0.6621 | | 0.5992 | 6.3 | 1500 | 0.6848 | 0.6147 | | 0.5189 | 7.35 | 1750 | 0.6522 | 0.5742 | | 0.454 | 8.4 | 2000 | 0.6601 | 0.5531 | | 0.3896 | 9.45 | 2250 | 0.6138 | 0.5439 | | 0.3678 | 10.5 | 2500 | 0.6436 | 0.5320 | | 0.3232 | 11.55 | 2750 | 0.5920 | 0.5174 | | 0.2926 | 12.6 | 3000 | 0.6615 | 0.5107 | | 0.3041 | 13.65 | 3250 | 0.6311 | 0.5015 | | 0.2882 | 14.7 | 3500 | 0.6182 | 0.5004 | | 0.2868 | 15.75 | 3750 | 0.6266 | 0.4943 | | 0.2508 | 16.81 | 4000 | 0.6587 | 0.4965 | | 0.2563 | 17.86 | 4250 | 0.6634 | 0.4939 | | 0.2213 | 18.91 | 4500 | 0.6441 | 0.4925 | | 0.2255 | 19.96 | 4750 | 0.6445 | 0.4938 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
javilonso/classificationEsp2_Attraction
javilonso
2022-03-30T03:04:09Z
5
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T23:17:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: javilonso/classificationEsp2_Attraction results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # javilonso/classificationEsp2_Attraction This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-large-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9927 - Validation Loss: 0.9926 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 35916, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.8200 | 0.9930 | 0 | | 0.9942 | 0.9947 | 1 | | 0.9927 | 0.9926 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
tharangahf/botcircuits_nlu
tharangahf
2022-03-30T02:32:47Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-30T02:32:47Z
--- license: apache-2.0 ---
ntt123/hifigan_ljs_22k
ntt123
2022-03-30T01:47:26Z
0
0
null
[ "tensorboard", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-03-29T02:20:52Z
--- license: cc-by-nc-sa-4.0 ---
cammiemw/bert-marco-hdct
cammiemw
2022-03-30T01:21:38Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-30T01:09:55Z
--- license: cc-by-nc-4.0 ---
DrishtiSharma/poem-gen-spanish-t5-small-v6
DrishtiSharma
2022-03-29T23:45:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-29T18:58:46Z
--- license: mit tags: - generated_from_trainer model-index: - name: poem-gen-spanish-t5-small-v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # poem-gen-spanish-t5-small-v6 This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 2.8551 | 0.73 | 30000 | 2.9296 | | 2.6961 | 1.46 | 60000 | 2.9005 | | 2.5756 | 2.19 | 90000 | 2.8786 | | 2.5095 | 2.93 | 120000 | 2.8621 | | 2.4061 | 3.66 | 150000 | 2.8830 | | 2.3161 | 4.39 | 180000 | 2.8865 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
BigSalmon/PointsToSentence
BigSalmon
2022-03-29T23:11:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-29T22:58:46Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsToSentence") model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsToSentence") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - middle schools do not have recess - should get back to doing it - amazing for communication - and getting kids to move around text: a casualty of the education reform craze, recess has been excised from middle schools. this is tragic, for it is instrumental in honing children's communication skills and encouraging physical activity. *** - ``` It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27 Keywords to sentences or sentence.
efederici/sentence-it5-base
efederici
2022-03-29T23:09:01Z
35
4
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-29T19:57:59Z
--- pipeline_tag: sentence-similarity language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-IT5-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-base)) base model. It is trained on a dataset made from question/context pairs ([squad-it](https://github.com/crux82/squad-it)), tags/news-article pairs, headline/text pairs ([change-it](https://huggingface.co/datasets/gsarti/change_it)) and on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-IT5-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-base') model = AutoModel.from_pretrained('efederici/sentence-IT5-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
espnet/bur_openslr80_hubert
espnet
2022-03-29T22:19:50Z
0
0
null
[ "region:us" ]
null
2022-03-28T22:04:54Z
<!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Mar 21 22:59:35 UTC 2022` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.10.1` - Git hash: `7ae4efd81778436a98b822483e8123adba6aa430` - Commit date: `Tue Mar 15 20:11:18 2022 -0400` ## asr_train_asr_hubert_transformer_adam_specaug_raw_bpe150 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|4227|39.1|50.4|10.5|6.1|67.0|99.8| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|33345|82.2|7.6|10.1|3.6|21.4|99.8| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_batch_size1_lm_lm_train_lm_bpe150_valid.loss.ave_asr_model_valid.acc.best/bur_test|480|18237|70.7|17.7|11.6|2.5|31.8|99.8|
BigSalmon/PointsOneSent
BigSalmon
2022-03-29T21:26:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-29T21:19:54Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/PointsOneSent") model = AutoModelForCausalLM.from_pretrained("BigSalmon/PointsOneSent") ``` ``` - moviepass to return - this summer - swooped up by - original co-founder stacy spikes text: the re-launch of moviepass is set to transpire this summer, ( rescued at the hands of / under the stewardship of / spearheaded by ) its founding father, stacy spikes. *** - ``` It should also be able to do all that this can: https://huggingface.co/BigSalmon/InformalToFormalLincoln27
efederici/sentence-it5-small
efederici
2022-03-29T17:29:14Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "t5", "feature-extraction", "sentence-similarity", "transformers", "it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-27T15:19:10Z
--- pipeline_tag: sentence-similarity language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-IT5-small This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a T5 ([IT5](https://huggingface.co/gsarti/it5-small)) small model trained for asymmetric semantic search. Query is a keyword, Paragraph is a short news article. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-IT5-small') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-IT5-small') model = AutoModel.from_pretrained('efederici/sentence-IT5-small') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
GleamEyeBeast/ascend
GleamEyeBeast
2022-03-29T16:49:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-29T01:37:59Z
--- tags: - generated_from_trainer model-index: - name: ascend results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ascend This model is a fine-tuned version of [GleamEyeBeast/ascend](https://huggingface.co/GleamEyeBeast/ascend) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3718 - Wer: 0.6412 - Cer: 0.2428 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.5769 | 1.0 | 688 | 1.1864 | 0.7716 | 0.3159 | | 0.5215 | 2.0 | 1376 | 1.1613 | 0.7504 | 0.2965 | | 0.4188 | 3.0 | 2064 | 1.1644 | 0.7389 | 0.2950 | | 0.3695 | 4.0 | 2752 | 1.1937 | 0.7184 | 0.2815 | | 0.3404 | 5.0 | 3440 | 1.1947 | 0.7083 | 0.2719 | | 0.2885 | 6.0 | 4128 | 1.2314 | 0.7108 | 0.2685 | | 0.2727 | 7.0 | 4816 | 1.2243 | 0.6850 | 0.2616 | | 0.2417 | 8.0 | 5504 | 1.2506 | 0.6767 | 0.2608 | | 0.2207 | 9.0 | 6192 | 1.2804 | 0.6922 | 0.2595 | | 0.2195 | 10.0 | 6880 | 1.2582 | 0.6818 | 0.2575 | | 0.1896 | 11.0 | 7568 | 1.3101 | 0.6814 | 0.2545 | | 0.1961 | 12.0 | 8256 | 1.2793 | 0.6706 | 0.2526 | | 0.1752 | 13.0 | 8944 | 1.2643 | 0.6584 | 0.2509 | | 0.1638 | 14.0 | 9632 | 1.3152 | 0.6588 | 0.2482 | | 0.1522 | 15.0 | 10320 | 1.3098 | 0.6433 | 0.2439 | | 0.1351 | 16.0 | 11008 | 1.3253 | 0.6537 | 0.2447 | | 0.1266 | 17.0 | 11696 | 1.3394 | 0.6365 | 0.2418 | | 0.1289 | 18.0 | 12384 | 1.3718 | 0.6412 | 0.2443 | | 0.1204 | 19.0 | 13072 | 1.3708 | 0.6433 | 0.2433 | | 0.1189 | 20.0 | 13760 | 1.3718 | 0.6412 | 0.2428 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tbosse/bert-base-german-cased-finetuned-subj_v1
tbosse
2022-03-29T15:59:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-29T14:22:30Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj_v1 This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1594 - Precision: 0.1875 - Recall: 0.0077 - F1: 0.0147 - Accuracy: 0.9508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 136 | 0.1591 | 1.0 | 0.0051 | 0.0102 | 0.9523 | | No log | 2.0 | 272 | 0.1571 | 0.375 | 0.0077 | 0.015 | 0.9518 | | No log | 3.0 | 408 | 0.1594 | 0.1875 | 0.0077 | 0.0147 | 0.9508 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
sayef/fsner-bert-base-uncased
sayef
2022-03-29T14:20:35Z
9
6
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2008.10570", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# FSNER Implemented by [sayef](https://huggingface.co/sayef). # Overview The FSNER model was proposed in [Example-Based Named Entity Recognition](https://arxiv.org/abs/2008.10570) by Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a train-free few-shot learning approach inspired by question-answering. ## Abstract > We present a novel approach to named entity recognition (NER) in the presence of scarce data that we call example-based NER. Our train-free few-shot learning approach takes inspiration from question-answering to identify entity spans in a new and unseen domain. In comparison with the current state-of-the-art, the proposed method performs significantly better, especially when using a low number of support examples. ## Model Training Details | identifier | epochs | datasets | | ---------- |:------:|:-----------------------------------------------------------------------------------------------:| | [sayef/fsner-bert-base-uncased](https://huggingface.co/sayef/fsner-bert-base-uncased) | 25 | ontonotes5, conll2003, wnut2017, mit_movie_trivia, mit_restaurant and fin (Alvarado et al.). | ## Installation and Example Usage You can use the FSNER model in 3 ways: 1. Install directly from PyPI: `pip install fsner` and import the model as shown in the code example below or 2. Install from source: `python install .` and import the model as shown in the code example below or 3. Clone [repo](https://github.com/sayef/fsner) and add absolute path of `fsner/src` directory to your PYTHONPATH and import the model as shown in the code example below ```python import json from fsner import FSNERModel, FSNERTokenizerUtils, pretty_embed query_texts = [ "Does Luke's serve lunch?", "Chang does not speak Taiwanese very well.", "I like Berlin." ] # Each list in supports are the examples of one entity type # Wrap entities around with [E] and [/E] in the examples. # Each sentence should have only one pair of [E] ... [/E] support_texts = { "Restaurant": [ "What time does [E] Subway [/E] open for breakfast?", "Is there a [E] China Garden [/E] restaurant in newark?", "Does [E] Le Cirque [/E] have valet parking?", "Is there a [E] McDonalds [/E] on main street?", "Does [E] Mike's Diner [/E] offer huge portions and outdoor dining?" ], "Language": [ "Although I understood no [E] French [/E] in those days , I was prepared to spend the whole day with Chien - chien .", "like what the hell 's that called in [E] English [/E] ? I have to register to be here like since I 'm a foreigner .", "So , I 'm also working on an [E] English [/E] degree because that 's my real interest .", "Al - Jazeera TV station , established in November 1996 in Qatar , is an [E] Arabic - language [/E] news TV station broadcasting global news and reports nonstop around the clock .", "They think it 's far better for their children to be here improving their [E] English [/E] than sitting at home in front of a TV . \"", "The only solution seemed to be to have her learn [E] French [/E] .", "I have to read sixty pages of [E] Russian [/E] today ." ] } device = 'cpu' tokenizer = FSNERTokenizerUtils("sayef/fsner-bert-base-uncased") queries = tokenizer.tokenize(query_texts).to(device) supports = tokenizer.tokenize(list(support_texts.values())).to(device) model = FSNERModel("sayef/fsner-bert-base-uncased") model.to(device) p_starts, p_ends = model.predict(queries, supports) # One can prepare supports once and reuse multiple times with different queries # ------------------------------------------------------------------------------ # start_token_embeddings, end_token_embeddings = model.prepare_supports(supports) # p_starts, p_ends = model.predict(queries, start_token_embeddings=start_token_embeddings, # end_token_embeddings=end_token_embeddings) output = tokenizer.extract_entity_from_scores(query_texts, queries, p_starts, p_ends, entity_keys=list(support_texts.keys()), thresh=0.50) print(json.dumps(output, indent=2)) # install displacy for pretty embed pretty_embed(query_texts, output, list(support_texts.keys())) ``` <!DOCTYPE html> <html lang="en"> <head> <title>displaCy</title> </head> <body style="font-size: 16px; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Helvetica, Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol'; padding: 4rem 2rem; direction: ltr"> <figure style="margin-bottom: 6rem"> <div class="entities" style="line-height: 2.5; direction: ltr"> <div class="entities" style="line-height: 2.5; direction: ltr">Does <mark class="entity" style="background: #7aecec; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Luke's <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">Restaurant</span> </mark> serve lunch?</div> <div class="entities" style="line-height: 2.5; direction: ltr">Chang does not speak <mark class="entity" style="background: #bfeeb7; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;"> Taiwanese <span style="font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem">Language</span> </mark> very well.</div> <div class="entities" style="line-height: 2.5; direction: ltr">I like Berlin.</div> </div> </figure> </body> </html> ## Datasets preparation 1. We need to convert dataset into the following format. Let's say we have a dataset file train.json like following. 2. Each list in supports are the examples of one entity type 3. Wrap entities around with [E] and [/E] in the examples. 4. Each example should have only one pair of [E] ... [/E]. ```json { "CARDINAL_NUMBER": [ "Washington , cloudy , [E] 2 [/E] to 6 degrees .", "New Dehli , sunny , [E] 6 [/E] to 19 degrees .", "Well this is number [E] two [/E] .", "....." ], "LANGUAGE": [ "They do n't have the Quicken [E] Dutch [/E] version ?", "they learned a lot of [E] German [/E] .", "and then [E] Dutch [/E] it 's Mifrau", "...." ], "MONEY": [ "Per capita personal income ranged from $ [E] 11,116 [/E] in Mississippi to $ 23,059 in Connecticut ... .", "The trade surplus was [E] 582 million US dollars [/E] .", "It settled with a loss of 4.95 cents at $ [E] 1.3210 [/E] a pound .", "...." ] } ``` 2. Converted ontonotes5 dataset can be found here: 1. [train](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.train.json) 2. [dev](https://gist.githubusercontent.com/sayef/46deaf7e6c6e1410b430ddc8aff9c557/raw/ea7ae2ae933bfc9c0daac1aa52a9dc093d5b36f4/ontonotes5.dev.json) 3. Then trainer script can be used to train/evaluate your fsner model. ```bash fsner trainer --pretrained-model bert-base-uncased --mode train --train-data train.json --val-data val.json \ --train-batch-size 6 --val-batch-size 6 --n-examples-per-entity 10 --neg-example-batch-ratio 1/3 --max-epochs 25 --device gpu \ --gpus -1 --strategy ddp ```
maretamasaeva/roberta-finetuned-freeform
maretamasaeva
2022-03-29T14:19:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-finetuned-freeform results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-freeform This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6989 - Accuracy: 0.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6919 | 1.0 | 8094 | 0.6910 | 0.4668 | | 0.6912 | 2.0 | 16188 | 0.6934 | 0.4668 | | 0.6904 | 3.0 | 24282 | 0.6976 | 0.4668 | | 0.6918 | 4.0 | 32376 | 0.6989 | 0.4668 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
ArtemChistyakov-2/f
ArtemChistyakov-2
2022-03-29T12:21:18Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-29T12:21:18Z
--- license: apache-2.0 ---
gayanin/bart-med-term-conditional-masking-0
gayanin
2022-03-29T12:03:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T22:12:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-med-term-conditional-masking-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5041 - Rouge2 Precision: 0.7497 - Rouge2 Recall: 0.5246 - Rouge2 Fmeasure: 0.5986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6381 | 1.0 | 13915 | 0.5595 | 0.734 | 0.5152 | 0.5873 | | 0.5429 | 2.0 | 27830 | 0.5243 | 0.7441 | 0.5225 | 0.5956 | | 0.5002 | 3.0 | 41745 | 0.5078 | 0.7482 | 0.5238 | 0.5976 | | 0.4607 | 4.0 | 55660 | 0.5041 | 0.7497 | 0.5246 | 0.5986 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms
scasutt
2022-03-29T11:29:52Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-28T18:54:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_masked_audio_10ms This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5945 - Wer: 0.4929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4049 | 1.05 | 250 | 3.3497 | 1.0 | | 3.0851 | 2.1 | 500 | 3.4440 | 1.0 | | 2.3512 | 3.15 | 750 | 1.5938 | 0.9317 | | 1.1762 | 4.2 | 1000 | 0.8481 | 0.7333 | | 0.903 | 5.25 | 1250 | 0.7180 | 0.6484 | | 0.6754 | 6.3 | 1500 | 0.6603 | 0.6044 | | 0.5961 | 7.35 | 1750 | 0.6410 | 0.5778 | | 0.5325 | 8.4 | 2000 | 0.6245 | 0.5545 | | 0.4685 | 9.45 | 2250 | 0.5925 | 0.5359 | | 0.4526 | 10.5 | 2500 | 0.5991 | 0.5345 | | 0.3975 | 11.55 | 2750 | 0.5916 | 0.5228 | | 0.3672 | 12.6 | 3000 | 0.5882 | 0.5037 | | 0.3774 | 13.65 | 3250 | 0.5693 | 0.5028 | | 0.3489 | 14.7 | 3500 | 0.5645 | 0.5018 | | 0.3593 | 15.75 | 3750 | 0.5977 | 0.5043 | | 0.3167 | 16.81 | 4000 | 0.6049 | 0.5018 | | 0.3225 | 17.86 | 4250 | 0.6172 | 0.4921 | | 0.2807 | 18.91 | 4500 | 0.5937 | 0.4923 | | 0.2889 | 19.96 | 4750 | 0.5945 | 0.4929 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
KeithHorgan/TweetClimateAnalysis
KeithHorgan
2022-03-29T10:01:24Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:KeithHorgan98/autotrain-data-TweetClimateAnalysis", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T10:16:42Z
--- tags: autotrain language: unk widget: - text: "Climate Change is a hoax" - text: "It is freezing, where is global warming" datasets: - KeithHorgan98/autotrain-data-TweetClimateAnalysis co2_eq_emissions: 133.19491276284793 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 678720226 - CO2 Emissions (in grams): 133.19491276284793 ## Validation Metrics - Loss: 0.4864234924316406 - Accuracy: 0.865424430641822 - Macro F1: 0.7665472174344069 - Micro F1: 0.8654244306418221 - Weighted F1: 0.8586375445115083 - Macro Precision: 0.8281449061702826 - Micro Precision: 0.865424430641822 - Weighted Precision: 0.8619727477790186 - Macro Recall: 0.736576343905098 - Micro Recall: 0.865424430641822 - Weighted Recall: 0.865424430641822 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/KeithHorgan98/autotrain-TweetClimateAnalysis-678720226 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("KeithHorgan98/autotrain-TweetClimateAnalysis-678720226", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("KeithHorgan98/autotrain-TweetClimateAnalysis-678720226", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
PereLluis13/wav2vec2-xls-r-300m-ca
PereLluis13
2022-03-29T08:43:53Z
52
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "collectivat/tv3_parla", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "projecte-aina/parlament_parla", "robust-speech-event", "ca", "dataset:mozilla-foundation/common_voice_8_0", "dataset:collectivat/tv3_parla", "dataset:projecte-aina/parlament_parla", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ca license: apache-2.0 tags: - automatic-speech-recognition - collectivat/tv3_parla - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - projecte-aina/parlament_parla - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 - collectivat/tv3_parla - projecte-aina/parlament_parla model-index: - name: wav2vec2-xls-r-300m-ca results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_8_0 ca type: mozilla-foundation/common_voice_8_0 args: ca metrics: - name: Test WER type: wer value: 13.170091241317552 - name: Test CER type: cer value: 3.356726205534543 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: projecte-aina/parlament_parla ca type: projecte-aina/parlament_parla args: clean metrics: - name: Test WER type: wer value: 8.048005647723261 - name: Test CER type: cer value: 2.240912911020065 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: collectivat/tv3_parla ca type: collectivat/tv3_parla args: ca metrics: - name: Test WER type: wer value: 23.320629787889285 - name: Test CER type: cer value: 10.439216202089989 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: speech-recognition-community-v2/dev_data ca type: speech-recognition-community-v2/dev_data args: ca metrics: - name: Test WER type: wer value: 31.99671115046487 - name: Test CER type: cer value: 15.820020687277325 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ca metrics: - name: Test WER type: wer value: 22.04 --- # wav2vec2-xls-r-300m-ca This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - CA, the [tv3_parla](https://huggingface.co/datasets/collectivat/tv3_parla) and [parlament_parla](https://huggingface.co/datasets/projecte-aina/parlament_parla) datasets. It achieves the following results on the evaluation set (for the three datasets): - Loss: 0.2472 - Wer: 0.1499 ## Model description Please check the original [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) Model card. This is just a finetuned version of that model. ## Intended uses & limitations As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower-resourced dialects for the catalan language. ## Training and evaluation data More information needed ## Training procedure The data is preprocessed to remove characters not on the catalan alphabet. Moreover, numbers are verbalized using code provided by [@ccoreilly](https://github.com/ccoreilly), which can be found on the text/ folder or [here](https://github.com/CollectivaT-dev/catotron-cpu/blob/master/text/numbers_ca.py). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 18.0 - mixed_precision_training: Native AMP ### Training results Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training. | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.2099 | 0.09 | 500 | 3.4125 | 1.0 | | 2.9961 | 0.18 | 1000 | 2.9224 | 1.0 | | 2.2147 | 0.26 | 1500 | 0.6521 | 0.5568 | | 1.3017 | 0.35 | 2000 | 0.3153 | 0.2761 | | 1.1196 | 0.44 | 2500 | 0.2444 | 0.2367 | | 1.0712 | 0.53 | 3000 | 0.2324 | 0.2132 | | 1.052 | 0.62 | 3500 | 0.2173 | 0.2032 | | 1.2813 | 2.13 | 4000 | 0.3326 | 0.2099 | | 1.2365 | 2.4 | 4500 | 0.3224 | 0.2003 | | 1.2193 | 2.66 | 5000 | 0.3198 | 0.1957 | | 1.2072 | 2.93 | 5500 | 0.3063 | 0.1933 | | 1.213 | 3.2 | 6000 | 0.3051 | 0.1980 | | 1.2074 | 3.46 | 6500 | 0.3012 | 0.1879 | | 1.1918 | 3.73 | 7000 | 0.2947 | 0.1829 | | 1.1893 | 4.0 | 7500 | 0.2895 | 0.1807 | | 1.1751 | 4.26 | 8000 | 0.2878 | 0.1776 | | 1.1628 | 4.53 | 8500 | 0.2835 | 0.1731 | | 1.1577 | 4.79 | 9000 | 0.2816 | 0.1761 | | 1.1448 | 5.06 | 9500 | 0.2757 | 0.1740 | | 1.1407 | 5.33 | 10000 | 0.2768 | 0.1798 | | 1.1401 | 5.59 | 10500 | 0.2780 | 0.1816 | | 1.1333 | 5.86 | 11000 | 0.2748 | 0.1750 | | 1.1571 | 6.13 | 11500 | 0.2808 | 0.1708 | | 1.1505 | 6.39 | 12000 | 0.2726 | 0.1692 | | 1.1519 | 6.66 | 12500 | 0.2749 | 0.1654 | | 1.136 | 6.93 | 13000 | 0.2765 | 0.1643 | | 1.1326 | 7.19 | 13500 | 0.2706 | 0.1668 | | 1.1342 | 7.46 | 14000 | 0.2665 | 0.1638 | | 1.1286 | 7.72 | 14500 | 0.2669 | 0.1636 | | 1.1243 | 7.99 | 15000 | 0.2619 | 0.1623 | | 1.1173 | 8.26 | 15500 | 0.2652 | 0.1604 | | 1.1129 | 8.52 | 16000 | 0.2610 | 0.1598 | | 1.1091 | 8.79 | 16500 | 0.2608 | 0.1584 | | 1.1053 | 9.06 | 17000 | 0.2633 | 0.1664 | | 1.1004 | 9.32 | 17500 | 0.2594 | 0.1662 | | 1.0995 | 9.59 | 18000 | 0.2623 | 0.1569 | | 1.0964 | 9.86 | 18500 | 0.2624 | 0.1597 | | 1.09 | 10.12 | 19000 | 0.2577 | 0.1578 | | 1.089 | 10.39 | 19500 | 0.2574 | 0.1531 | | 1.0864 | 10.66 | 20000 | 0.2556 | 0.1546 | | 1.0806 | 10.92 | 20500 | 0.2548 | 0.1583 | | 1.0842 | 11.19 | 21000 | 0.2550 | 0.1542 | | 1.0805 | 11.45 | 21500 | 0.2561 | 0.1524 | | 1.0722 | 11.72 | 22000 | 0.2540 | 0.1566 | | 1.0763 | 11.99 | 22500 | 0.2549 | 0.1572 | | 1.0835 | 12.25 | 23000 | 0.2586 | 0.1521 | | 1.0883 | 12.52 | 23500 | 0.2583 | 0.1519 | | 1.0888 | 12.79 | 24000 | 0.2551 | 0.1582 | | 1.0933 | 13.05 | 24500 | 0.2628 | 0.1537 | | 1.0799 | 13.32 | 25000 | 0.2600 | 0.1508 | | 1.0804 | 13.59 | 25500 | 0.2620 | 0.1475 | | 1.0814 | 13.85 | 26000 | 0.2537 | 0.1517 | | 1.0693 | 14.12 | 26500 | 0.2560 | 0.1542 | | 1.0724 | 14.38 | 27000 | 0.2540 | 0.1574 | | 1.0704 | 14.65 | 27500 | 0.2548 | 0.1626 | | 1.0729 | 14.92 | 28000 | 0.2548 | 0.1601 | | 1.0724 | 15.18 | 28500 | 0.2511 | 0.1512 | | 1.0655 | 15.45 | 29000 | 0.2498 | 0.1490 | | 1.0608 | 15.98 | 30000 | 0.2487 | 0.1481 | | 1.0541 | 16.52 | 31000 | 0.2468 | 0.1504 | | 1.0584 | 17.05 | 32000 | 0.2467 | 0.1493 | | 1.0507 | 17.58 | 33000 | 0.2481 | 0.1517 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 # Thanks Want to thank both [@ccoreilly](https://github.com/ccoreilly) and [@gullabi](https://github.com/gullabi) who have contributed with their own resources and knowledge into making this model possible.
STARBORN/MMC
STARBORN
2022-03-29T07:14:35Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-03-29T07:12:26Z
--- license: mit --- Metamodel Card (MMC) builds on MC and DC schemas by adding system level abstraction to the data. MMC instantiations follow
gayanin/t5-small-med-term-conditional-masking-0
gayanin
2022-03-29T03:19:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T22:04:47Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-med-term-conditional-masking-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-med-term-conditional-masking-0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6688 - Rouge2 Precision: 0.694 - Rouge2 Recall: 0.4781 - Rouge2 Fmeasure: 0.5479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.9525 | 1.0 | 13915 | 0.8148 | 0.6657 | 0.4581 | 0.5252 | | 0.8541 | 2.0 | 27830 | 0.7562 | 0.6779 | 0.4694 | 0.5371 | | 0.8183 | 3.0 | 41745 | 0.7268 | 0.6827 | 0.4722 | 0.5405 | | 0.8033 | 4.0 | 55660 | 0.7074 | 0.6861 | 0.4729 | 0.5419 | | 0.7727 | 5.0 | 69575 | 0.6934 | 0.6872 | 0.4726 | 0.5419 | | 0.7704 | 6.0 | 83490 | 0.6832 | 0.6901 | 0.4742 | 0.544 | | 0.7485 | 7.0 | 97405 | 0.6771 | 0.6926 | 0.4772 | 0.5469 | | 0.7528 | 8.0 | 111320 | 0.6722 | 0.6934 | 0.4782 | 0.5478 | | 0.7535 | 9.0 | 125235 | 0.6696 | 0.6944 | 0.4782 | 0.5481 | | 0.7444 | 10.0 | 139150 | 0.6688 | 0.694 | 0.4781 | 0.5479 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v9
DrishtiSharma
2022-03-29T00:52:52Z
5
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-29T00:13:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-sentiment-mesd-v9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-sentiment-mesd-v9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3500 - Accuracy: 0.9154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.7825 | 0.1846 | | 1.9553 | 1.86 | 6 | 1.7212 | 0.4308 | | 1.9553 | 2.86 | 9 | 1.6164 | 0.3769 | | 2.002 | 3.86 | 12 | 1.4904 | 0.3769 | | 1.6191 | 4.86 | 15 | 1.4426 | 0.4385 | | 1.6191 | 5.86 | 18 | 1.3516 | 0.5231 | | 1.6209 | 6.86 | 21 | 1.2176 | 0.5538 | | 1.6209 | 7.86 | 24 | 1.1683 | 0.5692 | | 1.371 | 8.86 | 27 | 1.0885 | 0.5923 | | 1.1568 | 9.86 | 30 | 1.0152 | 0.6385 | | 1.1568 | 10.86 | 33 | 0.9289 | 0.6385 | | 1.1023 | 11.86 | 36 | 0.9141 | 0.6308 | | 1.1023 | 12.86 | 39 | 0.8526 | 0.6462 | | 0.9448 | 13.86 | 42 | 0.8420 | 0.6769 | | 0.7972 | 14.86 | 45 | 0.7976 | 0.6692 | | 0.7972 | 15.86 | 48 | 0.8192 | 0.7308 | | 0.7793 | 16.86 | 51 | 0.7108 | 0.7615 | | 0.7793 | 17.86 | 54 | 0.6712 | 0.7769 | | 0.6468 | 18.86 | 57 | 0.6684 | 0.7923 | | 0.5083 | 19.86 | 60 | 0.6922 | 0.7385 | | 0.5083 | 20.86 | 63 | 0.6148 | 0.7923 | | 0.4988 | 21.86 | 66 | 0.5846 | 0.7923 | | 0.4988 | 22.86 | 69 | 0.6050 | 0.8154 | | 0.4123 | 23.86 | 72 | 0.5506 | 0.7846 | | 0.3511 | 24.86 | 75 | 0.6095 | 0.7846 | | 0.3511 | 25.86 | 78 | 0.5916 | 0.8154 | | 0.3268 | 26.86 | 81 | 0.5912 | 0.8077 | | 0.3268 | 27.86 | 84 | 0.5142 | 0.8538 | | 0.3036 | 28.86 | 87 | 0.5492 | 0.8077 | | 0.3066 | 29.86 | 90 | 0.6007 | 0.8231 | | 0.3066 | 30.86 | 93 | 0.5748 | 0.8231 | | 0.2538 | 31.86 | 96 | 0.6027 | 0.7692 | | 0.2538 | 32.86 | 99 | 0.6979 | 0.7462 | | 0.2281 | 33.86 | 102 | 0.7002 | 0.7615 | | 0.2183 | 34.86 | 105 | 0.6650 | 0.7769 | | 0.2183 | 35.86 | 108 | 0.5192 | 0.8462 | | 0.2202 | 36.86 | 111 | 0.5389 | 0.8308 | | 0.2202 | 37.86 | 114 | 0.5050 | 0.8385 | | 0.1906 | 38.86 | 117 | 0.5722 | 0.7769 | | 0.154 | 39.86 | 120 | 0.5239 | 0.8308 | | 0.154 | 40.86 | 123 | 0.4448 | 0.8615 | | 0.1474 | 41.86 | 126 | 0.4623 | 0.8615 | | 0.1474 | 42.86 | 129 | 0.4282 | 0.8615 | | 0.1345 | 43.86 | 132 | 0.5087 | 0.8615 | | 0.1567 | 44.86 | 135 | 0.4859 | 0.8385 | | 0.1567 | 45.86 | 138 | 0.6603 | 0.8077 | | 0.1731 | 46.86 | 141 | 0.5379 | 0.8385 | | 0.1731 | 47.86 | 144 | 0.8666 | 0.7538 | | 0.1606 | 48.86 | 147 | 0.7518 | 0.8 | | 0.1484 | 49.86 | 150 | 0.5986 | 0.8385 | | 0.1484 | 50.86 | 153 | 0.6368 | 0.8231 | | 0.2256 | 51.86 | 156 | 0.4639 | 0.8692 | | 0.2256 | 52.86 | 159 | 0.5533 | 0.8462 | | 0.1178 | 53.86 | 162 | 0.5038 | 0.8615 | | 0.0815 | 54.86 | 165 | 0.5052 | 0.8692 | | 0.0815 | 55.86 | 168 | 0.4337 | 0.8846 | | 0.0998 | 56.86 | 171 | 0.4422 | 0.8769 | | 0.0998 | 57.86 | 174 | 0.4317 | 0.8692 | | 0.0855 | 58.86 | 177 | 0.4025 | 0.8923 | | 0.0962 | 59.86 | 180 | 0.4605 | 0.8769 | | 0.0962 | 60.86 | 183 | 0.4356 | 0.8769 | | 0.0763 | 61.86 | 186 | 0.4614 | 0.8769 | | 0.0763 | 62.86 | 189 | 0.4382 | 0.8846 | | 0.0902 | 63.86 | 192 | 0.4701 | 0.8692 | | 0.0654 | 64.86 | 195 | 0.4922 | 0.8692 | | 0.0654 | 65.86 | 198 | 0.5413 | 0.8538 | | 0.0651 | 66.86 | 201 | 0.5759 | 0.8615 | | 0.0651 | 67.86 | 204 | 0.4238 | 0.9 | | 0.0822 | 68.86 | 207 | 0.3500 | 0.9154 | | 0.0625 | 69.86 | 210 | 0.3878 | 0.8923 | | 0.0625 | 70.86 | 213 | 0.4952 | 0.8615 | | 0.0548 | 71.86 | 216 | 0.4544 | 0.8615 | | 0.0548 | 72.86 | 219 | 0.5497 | 0.8769 | | 0.054 | 73.86 | 222 | 0.4434 | 0.8846 | | 0.0543 | 74.86 | 225 | 0.4732 | 0.8769 | | 0.0543 | 75.86 | 228 | 0.4425 | 0.8923 | | 0.0881 | 76.86 | 231 | 0.4788 | 0.8769 | | 0.0881 | 77.86 | 234 | 0.5448 | 0.8769 | | 0.061 | 78.86 | 237 | 0.4221 | 0.9077 | | 0.0567 | 79.86 | 240 | 0.4404 | 0.8769 | | 0.0567 | 80.86 | 243 | 0.4099 | 0.9 | | 0.052 | 81.86 | 246 | 0.5259 | 0.8769 | | 0.052 | 82.86 | 249 | 0.5874 | 0.8692 | | 0.0444 | 83.86 | 252 | 0.5555 | 0.8846 | | 0.0332 | 84.86 | 255 | 0.5156 | 0.8615 | | 0.0332 | 85.86 | 258 | 0.4564 | 0.8615 | | 0.0449 | 86.86 | 261 | 0.4826 | 0.8692 | | 0.0449 | 87.86 | 264 | 0.4726 | 0.8615 | | 0.0385 | 88.86 | 267 | 0.4206 | 0.8846 | | 0.0356 | 89.86 | 270 | 0.4050 | 0.8769 | | 0.0356 | 90.86 | 273 | 0.4161 | 0.8923 | | 0.0391 | 91.86 | 276 | 0.4100 | 0.9077 | | 0.0391 | 92.86 | 279 | 0.4047 | 0.9 | | 0.0249 | 93.86 | 282 | 0.4044 | 0.9 | | 0.0399 | 94.86 | 285 | 0.3968 | 0.8846 | | 0.0399 | 95.86 | 288 | 0.3802 | 0.9 | | 0.031 | 96.86 | 291 | 0.3689 | 0.9 | | 0.031 | 97.86 | 294 | 0.3616 | 0.9077 | | 0.036 | 98.86 | 297 | 0.3584 | 0.9077 | | 0.0386 | 99.86 | 300 | 0.3574 | 0.9077 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
tbosse/bert-base-german-cased-finetuned-subj
tbosse
2022-03-28T22:50:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-28T20:51:21Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-german-cased-finetuned-subj results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-german-cased-finetuned-subj This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Precision: 0.6514 - Recall: 0.0186 - F1: 0.0363 - Accuracy: 0.9511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 140 | 0.1588 | 0.6 | 0.0016 | 0.0031 | 0.9507 | | No log | 2.0 | 280 | 0.1466 | 0.75 | 0.0039 | 0.0078 | 0.9508 | | No log | 3.0 | 420 | 0.1424 | 0.6514 | 0.0186 | 0.0363 | 0.9511 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
frtna/ted_mt-Spanish-to-Italian
frtna
2022-03-28T22:04:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:new_dataset", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset model-index: - name: ted_mt-Spanish-to-Italian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ted_mt-Spanish-to-Italian This model is a fine-tuned version of [Helsinki-NLP/opus-mt-es-it](https://huggingface.co/Helsinki-NLP/opus-mt-es-it) on the new_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | No log | 1.0 | 46 | 1.4873 | 29.6133 | 26.9081 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Chikashi/t5-small-finetuned-cnndm1
Chikashi
2022-03-28T22:00:26Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T14:55:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.4246 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6853 - Rouge1: 24.4246 - Rouge2: 11.6944 - Rougel: 20.1717 - Rougelsum: 23.0424 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.912 | 0.14 | 5000 | 1.7167 | 24.4232 | 11.7049 | 20.1758 | 23.0345 | 18.9997 | | 1.8784 | 0.28 | 10000 | 1.7018 | 24.4009 | 11.6918 | 20.1561 | 23.0073 | 18.9997 | | 1.8628 | 0.42 | 15000 | 1.6934 | 24.385 | 11.683 | 20.1285 | 22.9823 | 18.9997 | | 1.8594 | 0.56 | 20000 | 1.6902 | 24.4407 | 11.6835 | 20.1734 | 23.0369 | 18.9996 | | 1.8537 | 0.7 | 25000 | 1.6864 | 24.3635 | 11.658 | 20.1318 | 22.9782 | 18.9993 | | 1.8505 | 0.84 | 30000 | 1.6856 | 24.4267 | 11.6991 | 20.1629 | 23.0361 | 18.9994 | | 1.8505 | 0.98 | 35000 | 1.6853 | 24.4246 | 11.6944 | 20.1717 | 23.0424 | 18.9996 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
jorge-henao/spanish-t5-small-disco-poetry
jorge-henao
2022-03-28T21:26:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T18:15:25Z
--- license: mit tags: - generated_from_trainer model-index: - name: spanish-t5-small-disco-poetry results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanish-t5-small-disco-poetry This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1417 | 1.0 | 1284 | 0.0577 | | 0.0902 | 2.0 | 2568 | 0.0516 | | 0.0803 | 3.0 | 3852 | 0.0494 | | 0.0733 | 4.0 | 5136 | 0.0488 | | 0.0683 | 5.0 | 6420 | 0.0480 | | 0.067 | 6.0 | 7704 | 0.0477 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v2
DrishtiSharma
2022-03-28T19:04:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-28T17:20:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-sentiment-mesd-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-sentiment-mesd-v2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7213 - Accuracy: 0.3923 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 64 - eval_batch_size: 40 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.86 | 3 | 1.7961 | 0.1462 | | 1.9685 | 1.86 | 6 | 1.7932 | 0.1692 | | 1.9685 | 2.86 | 9 | 1.7891 | 0.2 | | 2.1386 | 3.86 | 12 | 1.7820 | 0.2923 | | 1.9492 | 4.86 | 15 | 1.7750 | 0.2923 | | 1.9492 | 5.86 | 18 | 1.7684 | 0.2846 | | 2.1143 | 6.86 | 21 | 1.7624 | 0.3231 | | 2.1143 | 7.86 | 24 | 1.7561 | 0.3308 | | 2.0945 | 8.86 | 27 | 1.7500 | 0.3462 | | 1.9121 | 9.86 | 30 | 1.7443 | 0.3385 | | 1.9121 | 10.86 | 33 | 1.7386 | 0.3231 | | 2.0682 | 11.86 | 36 | 1.7328 | 0.3231 | | 2.0682 | 12.86 | 39 | 1.7272 | 0.3769 | | 2.0527 | 13.86 | 42 | 1.7213 | 0.3923 | | 1.8705 | 14.86 | 45 | 1.7154 | 0.3846 | | 1.8705 | 15.86 | 48 | 1.7112 | 0.3846 | | 2.0263 | 16.86 | 51 | 1.7082 | 0.3769 | | 2.0263 | 17.86 | 54 | 1.7044 | 0.3846 | | 2.0136 | 18.86 | 57 | 1.7021 | 0.3846 | | 1.8429 | 19.86 | 60 | 1.7013 | 0.3846 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
aapot/wav2vec2-large-xlsr-53-finnish
aapot
2022-03-28T17:56:36Z
9
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "fi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: fi datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Aapo Tanskanen results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 32.378771 --- # NOTE: this is an old model and should not be used anymore!! There are a lot better newer models available at our orgnization hub: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) and [Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm) # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10 Finnish](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import librosa import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "fi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import librosa import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "fi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model = Wav2Vec2ForCTC.from_pretrained("aapot/wav2vec2-large-xlsr-53-finnish") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\...\…\–\é]' resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(sampling_rate, speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.378771 % ## Training The Common Voice `train`, `validation` and `other` datasets were used for training as well as `CSS10 Finnish` and `Finnish parliament session 2` datasets. The script used for training can be found from [Google Colab](https://colab.research.google.com/drive/1vnEGC9BnNRmVyIHj-0UsVulh_cUYSGWA?usp=sharing)
aapot/wav2vec2-xlsr-1b-finnish-v2
aapot
2022-03-28T17:49:48Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 9.73 - name: Test CER type: cer value: 1.65 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). **Note**: there is a version with KenLM language model used in the decoding phase producing better transcriptions: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-v2/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.7778 | 0.17 | 500 | 0.2851 | 0.3572 | | 0.5506 | 0.34 | 1000 | 0.1595 | 0.2130 | | 0.6569 | 0.5 | 1500 | 0.1458 | 0.2046 | | 0.5997 | 0.67 | 2000 | 0.1374 | 0.1975 | | 0.542 | 0.84 | 2500 | 0.1390 | 0.1956 | | 0.4815 | 1.01 | 3000 | 0.1266 | 0.1813 | | 0.6982 | 1.17 | 3500 | 0.1441 | 0.1965 | | 0.4522 | 1.34 | 4000 | 0.1232 | 0.1822 | | 0.4655 | 1.51 | 4500 | 0.1209 | 0.1702 | | 0.4069 | 1.68 | 5000 | 0.1149 | 0.1688 | | 0.4226 | 1.84 | 5500 | 0.1121 | 0.1560 | | 0.3993 | 2.01 | 6000 | 0.1091 | 0.1557 | | 0.406 | 2.18 | 6500 | 0.1115 | 0.1553 | | 0.4098 | 2.35 | 7000 | 0.1144 | 0.1560 | | 0.3995 | 2.51 | 7500 | 0.1028 | 0.1476 | | 0.4101 | 2.68 | 8000 | 0.1129 | 0.1511 | | 0.3636 | 2.85 | 8500 | 0.1025 | 0.1517 | | 0.3534 | 3.02 | 9000 | 0.1068 | 0.1480 | | 0.3836 | 3.18 | 9500 | 0.1072 | 0.1459 | | 0.3531 | 3.35 | 10000 | 0.0928 | 0.1367 | | 0.3649 | 3.52 | 10500 | 0.1042 | 0.1426 | | 0.3645 | 3.69 | 11000 | 0.0979 | 0.1433 | | 0.3685 | 3.85 | 11500 | 0.0947 | 0.1346 | | 0.3325 | 4.02 | 12000 | 0.0991 | 0.1352 | | 0.3497 | 4.19 | 12500 | 0.0919 | 0.1358 | | 0.3303 | 4.36 | 13000 | 0.0888 | 0.1272 | | 0.3323 | 4.52 | 13500 | 0.0888 | 0.1277 | | 0.3452 | 4.69 | 14000 | 0.0894 | 0.1279 | | 0.337 | 4.86 | 14500 | 0.0917 | 0.1289 | | 0.3114 | 5.03 | 15000 | 0.0942 | 0.1313 | | 0.3099 | 5.19 | 15500 | 0.0902 | 0.1239 | | 0.3079 | 5.36 | 16000 | 0.0871 | 0.1256 | | 0.3293 | 5.53 | 16500 | 0.0861 | 0.1263 | | 0.3123 | 5.7 | 17000 | 0.0876 | 0.1203 | | 0.3093 | 5.86 | 17500 | 0.0848 | 0.1226 | | 0.2903 | 6.03 | 18000 | 0.0914 | 0.1221 | | 0.297 | 6.2 | 18500 | 0.0841 | 0.1185 | | 0.2797 | 6.37 | 19000 | 0.0858 | 0.1165 | | 0.2878 | 6.53 | 19500 | 0.0874 | 0.1161 | | 0.2974 | 6.7 | 20000 | 0.0835 | 0.1173 | | 0.3051 | 6.87 | 20500 | 0.0835 | 0.1178 | | 0.2941 | 7.04 | 21000 | 0.0852 | 0.1155 | | 0.258 | 7.21 | 21500 | 0.0832 | 0.1132 | | 0.2778 | 7.37 | 22000 | 0.0829 | 0.1110 | | 0.2751 | 7.54 | 22500 | 0.0822 | 0.1069 | | 0.2887 | 7.71 | 23000 | 0.0819 | 0.1103 | | 0.2509 | 7.88 | 23500 | 0.0787 | 0.1055 | | 0.2501 | 8.04 | 24000 | 0.0807 | 0.1076 | | 0.2399 | 8.21 | 24500 | 0.0784 | 0.1052 | | 0.2539 | 8.38 | 25000 | 0.0772 | 0.1075 | | 0.248 | 8.55 | 25500 | 0.0772 | 0.1055 | | 0.2689 | 8.71 | 26000 | 0.0763 | 0.1027 | | 0.2855 | 8.88 | 26500 | 0.0756 | 0.1035 | | 0.2421 | 9.05 | 27000 | 0.0771 | 0.0998 | | 0.2497 | 9.22 | 27500 | 0.0756 | 0.0971 | | 0.2367 | 9.38 | 28000 | 0.0741 | 0.0974 | | 0.2473 | 9.55 | 28500 | 0.0739 | 0.0982 | | 0.2396 | 9.72 | 29000 | 0.0756 | 0.0991 | | 0.2602 | 9.89 | 29500 | 0.0737 | 0.0975 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-v2 --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the first row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
aapot/wav2vec2-xlsr-1b-finnish-lm
aapot
2022-03-28T17:31:03Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-1b-finnish-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 5.65 - name: Test CER type: cer value: 1.2 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) for Finnish ASR. The model has been fine-tuned with 259.57 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. **Note**: there is a better V2 version of this model which has been fine-tuned longer with 16 hours of more data: [Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-1b-finnish-lm-v2) ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (1 billion parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-1b-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects. It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 259.57 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:----------------------------------------------------------------------------------------------------------------------------------|:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.74 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 5.94 h | 2.29 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.98 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 87.84 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 2.07 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-1b` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.968 | 0.18 | 500 | 0.4870 | 0.4720 | | 0.6557 | 0.36 | 1000 | 0.2450 | 0.2931 | | 0.647 | 0.54 | 1500 | 0.1818 | 0.2255 | | 0.5297 | 0.72 | 2000 | 0.1698 | 0.2354 | | 0.5802 | 0.9 | 2500 | 0.1581 | 0.2355 | | 0.6351 | 1.07 | 3000 | 0.1689 | 0.2336 | | 0.4626 | 1.25 | 3500 | 0.1719 | 0.3099 | | 0.4526 | 1.43 | 4000 | 0.1434 | 0.2069 | | 0.4692 | 1.61 | 4500 | 0.1645 | 0.2192 | | 0.4584 | 1.79 | 5000 | 0.1483 | 0.1987 | | 0.4234 | 1.97 | 5500 | 0.1499 | 0.2178 | | 0.4243 | 2.15 | 6000 | 0.1345 | 0.2070 | | 0.4108 | 2.33 | 6500 | 0.1383 | 0.1850 | | 0.4048 | 2.51 | 7000 | 0.1338 | 0.1811 | | 0.4085 | 2.69 | 7500 | 0.1290 | 0.1780 | | 0.4026 | 2.87 | 8000 | 0.1239 | 0.1650 | | 0.4033 | 3.04 | 8500 | 0.1346 | 0.1657 | | 0.3986 | 3.22 | 9000 | 0.1310 | 0.1850 | | 0.3867 | 3.4 | 9500 | 0.1273 | 0.1741 | | 0.3658 | 3.58 | 10000 | 0.1219 | 0.1672 | | 0.382 | 3.76 | 10500 | 0.1306 | 0.1698 | | 0.3847 | 3.94 | 11000 | 0.1230 | 0.1577 | | 0.3691 | 4.12 | 11500 | 0.1310 | 0.1615 | | 0.3593 | 4.3 | 12000 | 0.1296 | 0.1622 | | 0.3619 | 4.48 | 12500 | 0.1285 | 0.1601 | | 0.3361 | 4.66 | 13000 | 0.1261 | 0.1569 | | 0.3603 | 4.84 | 13500 | 0.1235 | 0.1533 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-1b-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the second row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
aapot/wav2vec2-xlsr-300m-finnish-lm
aapot
2022-03-28T17:22:08Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "finnish", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "arxiv:2111.09296", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: fi metrics: - wer - cer tags: - automatic-speech-recognition - fi - finnish - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: wav2vec2-xlsr-300m-finnish-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 8.16 - name: Test CER type: cer value: 1.97 --- # Wav2Vec2 XLS-R for Finnish ASR This acoustic model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for Finnish ASR. The model has been fine-tuned with 275.6 hours of Finnish transcribed speech data. Wav2Vec2 XLS-R was introduced in [this paper](https://arxiv.org/abs/2111.09296) and first released at [this page](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#wav2vec-20). This repository also includes Finnish KenLM language model used in the decoding phase with the acoustic model. **Note**: this model is exactly the same as the [Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm](https://huggingface.co/Finnish-NLP/wav2vec2-xlsr-300m-finnish-lm) model so this model has just been copied/moved to the `Finnish-NLP` Hugging Face organization. ## Model description Wav2Vec2 XLS-R is Facebook AI's large-scale multilingual pretrained model for speech. It is pretrained on 436k hours of unlabeled speech, including VoxPopuli, MLS, CommonVoice, BABEL, and VoxLingua107. It uses the wav2vec 2.0 objective, in 128 languages. You can read more about the pretrained model from [this blog](https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages) and [this paper](https://arxiv.org/abs/2111.09296). This model is fine-tuned version of the pretrained model (300 million parameter variant) for Finnish ASR. ## Intended uses & limitations You can use this model for Finnish ASR (speech-to-text) task. ### How to use Check the [run-finnish-asr-models.ipynb](https://huggingface.co/aapot/wav2vec2-xlsr-300m-finnish-lm/blob/main/run-finnish-asr-models.ipynb) notebook in this repository for an detailed example on how to use this model. ### Limitations and bias This model was fine-tuned with audio samples which maximum length was 20 seconds so this model most likely works the best for quite short audios of similar length. However, you can try this model with a lot longer audios too and see how it works. If you encounter out of memory errors with very long audio files you can use the audio chunking method introduced in [this blog post](https://huggingface.co/blog/asr-chunking). A vast majority of the data used for fine-tuning was from the Finnish Parliament dataset so this model may not generalize so well to very different domains like common daily spoken Finnish with dialects etc. In addition, audios of the datasets tend to be adult male dominated so this model may not work as well for speeches of children and women, for example. The Finnish KenLM language model used in the decoding phase has been trained with text data from the audio transcriptions and from a subset of Finnish Wikipedia. Thus, the decoder's language model may not generalize to very different language, for example to spoken daily language with dialects (because especially the Wikipedia contains mostly formal Finnish language). It may be beneficial to train your own KenLM language model for your domain language and use that in the decoding. ## Training data This model was fine-tuned with 275.6 hours of Finnish transcribed speech data from following datasets: | Dataset | Hours | % of total hours | |:------------------------------------------------------------------------------------------------------------------------------ |:--------:|:----------------:| | [Common Voice 7.0 Finnish train + evaluation + other splits](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | 9.70 h | 3.52 % | | [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) | 0.24 h | 0.09 % | | [VoxPopuli Finnish](https://github.com/facebookresearch/voxpopuli) | 21.97 h | 7.97 % | | [CSS10 Finnish](https://github.com/kyubyong/css10) | 10.32 h | 3.74 % | | [Aalto Finnish Parliament ASR Corpus](http://urn.fi/urn:nbn:fi:lb-2021051903) | 228.00 h | 82.73 % | | [Finnish Broadcast Corpus](http://urn.fi/urn:nbn:fi:lb-2016042502) | 5.37 h | 1.95 % | Datasets were filtered to include maximum length of 20 seconds long audio samples. ## Training procedure This model was trained during [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by Hugging Face. Training was done on a Tesla V100 GPU, sponsored by OVHcloud. Training script was provided by Hugging Face and it is available [here](https://github.com/huggingface/transformers/blob/main/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py). We only modified its data loading for our custom datasets. For the KenLM language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by Hugging Face. Training data for the 5-gram KenLM were text transcriptions of the audio training data and 100k random samples of cleaned [Finnish Wikipedia](https://huggingface.co/datasets/wikipedia) (August 2021) dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-04 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: [8-bit Adam](https://github.com/facebookresearch/bitsandbytes) with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP The pretrained `facebook/wav2vec2-xls-r-300m` model was initialized with following hyperparameters: - attention_dropout: 0.094 - hidden_dropout: 0.047 - feat_proj_dropout: 0.04 - mask_time_prob: 0.082 - layerdrop: 0.041 - activation_dropout: 0.055 - ctc_loss_reduction: "mean" ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.973 | 0.17 | 500 | 0.5750 | 0.6844 | | 0.713 | 0.34 | 1000 | 0.3356 | 0.4518 | | 0.6563 | 0.5 | 1500 | 0.3007 | 0.4039 | | 0.642 | 0.67 | 2000 | 0.2619 | 0.3674 | | 0.6203 | 0.84 | 2500 | 0.2488 | 0.3558 | | 0.6016 | 1.01 | 3000 | 0.2795 | 0.3835 | | 0.5423 | 1.17 | 3500 | 0.2652 | 0.3310 | | 0.5639 | 1.34 | 4000 | 0.2479 | 0.3462 | | 0.586 | 1.51 | 4500 | 0.2409 | 0.3295 | | 0.5169 | 1.68 | 5000 | 0.2728 | 0.3352 | | 0.5176 | 1.84 | 5500 | 0.2254 | 0.3149 | | 0.4983 | 2.01 | 6000 | 0.2169 | 0.3009 | | 0.4982 | 2.18 | 6500 | 0.2215 | 0.3079 | | 0.4898 | 2.35 | 7000 | 0.2174 | 0.3023 | | 0.4922 | 2.51 | 7500 | 0.2217 | 0.3081 | | 0.5025 | 2.68 | 8000 | 0.2002 | 0.2710 | | 0.4745 | 2.85 | 8500 | 0.1935 | 0.2783 | | 0.4377 | 3.02 | 9000 | 0.1859 | 0.2742 | | 0.4511 | 3.18 | 9500 | 0.2038 | 0.2786 | | 0.4411 | 3.35 | 10000 | 0.1863 | 0.2651 | | 0.4501 | 3.52 | 10500 | 0.1948 | 0.2605 | | 0.4557 | 3.69 | 11000 | 0.1872 | 0.2695 | | 0.4493 | 3.85 | 11500 | 0.1888 | 0.2632 | | 0.4047 | 4.02 | 12000 | 0.1818 | 0.2559 | | 0.4319 | 4.19 | 12500 | 0.1896 | 0.2648 | | 0.4162 | 4.36 | 13000 | 0.1953 | 0.2595 | | 0.4046 | 4.52 | 13500 | 0.1864 | 0.2606 | | 0.4195 | 4.69 | 14000 | 0.1843 | 0.2467 | | 0.4146 | 4.86 | 14500 | 0.1686 | 0.2450 | | 0.378 | 5.03 | 15000 | 0.1731 | 0.2401 | | 0.3792 | 5.19 | 15500 | 0.1676 | 0.2325 | | 0.3855 | 5.36 | 16000 | 0.1740 | 0.2326 | | 0.4029 | 5.53 | 16500 | 0.1674 | 0.2345 | | 0.386 | 5.7 | 17000 | 0.1735 | 0.2280 | | 0.3811 | 5.86 | 17500 | 0.1692 | 0.2258 | | 0.3607 | 6.03 | 18000 | 0.1797 | 0.2279 | | 0.3604 | 6.2 | 18500 | 0.1651 | 0.2206 | | 0.3362 | 6.37 | 19000 | 0.1627 | 0.2199 | | 0.3611 | 6.53 | 19500 | 0.1652 | 0.2172 | | 0.3671 | 6.7 | 20000 | 0.1564 | 0.2140 | | 0.3769 | 6.87 | 20500 | 0.1525 | 0.2101 | | 0.3539 | 7.04 | 21000 | 0.1639 | 0.2096 | | 0.3225 | 7.21 | 21500 | 0.1611 | 0.2087 | | 0.3323 | 7.37 | 22000 | 0.1633 | 0.2008 | | 0.3327 | 7.54 | 22500 | 0.1692 | 0.1975 | | 0.3456 | 7.71 | 23000 | 0.1555 | 0.1991 | | 0.3058 | 7.88 | 23500 | 0.1590 | 0.1959 | | 0.3034 | 8.04 | 24000 | 0.1531 | 0.1973 | | 0.2925 | 8.21 | 24500 | 0.1583 | 0.1978 | | 0.2967 | 8.38 | 25000 | 0.1546 | 0.1906 | | 0.2974 | 8.55 | 25500 | 0.1540 | 0.1869 | | 0.3131 | 8.71 | 26000 | 0.1534 | 0.1850 | | 0.3306 | 8.88 | 26500 | 0.1482 | 0.1844 | | 0.2842 | 9.05 | 27000 | 0.1490 | 0.1854 | | 0.2879 | 9.22 | 27500 | 0.1463 | 0.1799 | | 0.27 | 9.38 | 28000 | 0.1454 | 0.1798 | | 0.2874 | 9.55 | 28500 | 0.1504 | 0.1787 | | 0.2757 | 9.72 | 29000 | 0.1512 | 0.1784 | | 0.3017 | 9.89 | 29500 | 0.1484 | 0.1800 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0 ## Evaluation results Evaluation was done with the [Common Voice 7.0 Finnish test split](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). To evaluate this model, run the `eval.py` script in this repository: ```bash python3 eval.py --model_id aapot/wav2vec2-xlsr-300m-finnish-lm --dataset mozilla-foundation/common_voice_7_0 --config fi --split test ``` This model (the third row of the table) achieves the following WER (Word Error Rate) and CER (Character Error Rate) results compared to our other models: | | WER (with LM) | WER (without LM) | CER (with LM) | CER (without LM) | |-----------------------------------------|---------------|------------------|---------------|------------------| |aapot/wav2vec2-xlsr-1b-finnish-lm-v2 |**4.09** |**9.73** |**0.88** |**1.65** | |aapot/wav2vec2-xlsr-1b-finnish-lm |5.65 |13.11 |1.20 |2.23 | |aapot/wav2vec2-xlsr-300m-finnish-lm |8.16 |17.92 |1.97 |3.36 | ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Chikashi/t5-small-finetuned-cnndm
Chikashi
2022-03-28T14:04:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T09:07:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnndm results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.417 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6854 - Rouge1: 24.417 - Rouge2: 11.6924 - Rougel: 20.1756 - Rougelsum: 23.0414 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 1.8522 | 1.0 | 35890 | 1.6854 | 24.417 | 11.6924 | 20.1756 | 23.0414 | 18.9996 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
dennisowusuk/wav2vec2-large-xls-r-300m-turkish-colab
dennisowusuk
2022-03-28T13:28:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-28T05:29:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3863 - Wer: 0.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8284 | 3.67 | 400 | 0.6782 | 0.6739 | | 0.4174 | 7.34 | 800 | 0.4524 | 0.4811 | | 0.2015 | 11.01 | 1200 | 0.4736 | 0.4311 | | 0.1371 | 14.68 | 1600 | 0.4254 | 0.3929 | | 0.0997 | 18.35 | 2000 | 0.4254 | 0.3636 | | 0.082 | 22.02 | 2400 | 0.3807 | 0.3474 | | 0.0665 | 25.69 | 2800 | 0.3987 | 0.3236 | | 0.0523 | 29.36 | 3200 | 0.3863 | 0.3095 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/abeshinzo
huggingtweets
2022-03-28T12:19:48Z
3
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-28T12:19:01Z
--- language: en thumbnail: http://www.huggingtweets.com/abeshinzo/1648469983562/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1765776666/s-abetwitter1_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">安倍晋三</div> <div style="text-align: center; font-size: 14px;">@abeshinzo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 安倍晋三. | Data | 安倍晋三 | | --- | --- | | Tweets downloaded | 2365 | | Retweets | 77 | | Short tweets | 1629 | | Tweets kept | 659 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37uwbwzs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @abeshinzo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ib1nsfa1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ib1nsfa1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/abeshinzo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
VincentC12/rh_classification_kara
VincentC12
2022-03-28T11:53:41Z
9
0
pytorch
[ "pytorch", "distilbert", "sentiment-analysis", "en", "region:us" ]
null
2022-03-23T16:19:02Z
--- language: - en library_name: pytorch metrics: - satisfaction - culture organisationnelle - leadership - conditions de travail tags: - sentiment-analysis widget: - text: "My work is recognized by my superiors and I would even say that I feel like I have more recognition since we are on telework." example_title: "Exemple leadership" - text: "For Working conditions and wages in particular." example_title: "Exemple conditions de travail" - text: "A climate of overperformance is in place in the company." example_title: "Exemple culture organisationnelle" - text: "With regard to telework, I look forward to setting up the hybrid week, so 2 3 days at home and at the office." example_title: "Exemple satisfaction" --- Ce modèle est développé pour KARA. Ce modèle est : - Un outil de classification thématique des commentaires RH - Entrainé pour être utilisé en ANGLAIS (les commentaires doivent êtres traduits) - Spécialisé pour des commentaires entre 10 et 512 charactères Ce modèle n'est pas : - Utilisable pour détecter un discours haineux ou bien une lettre de suicide Étiquettes : - Label_0 = Satisfaction - Label_1 = Culture Organisationnelle - Label_2 = Leadership - Label_3 = Conditions de travail version 0.0.1 Performances sur le jeux de données du HRM : 84.3% de précision
VincentC12/sentiment_analysis_kara
VincentC12
2022-03-28T11:52:03Z
21
0
pytorch
[ "pytorch", "distilbert", "sentiment-analysis", "en", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en library_name: pytorch metrics: - negative - positive tags: - sentiment-analysis widget: - text: "Thank you for listening to the recommendations of the telephone team for teleworking. we have a strong expertise in this field and accurate listening to Our management!!!!" example_title: "Exemple positif" - text: "working conditions and wages are less than average more part of the time it is not a hierarchical system Our opinion counts" example_title: "Exemple négatif" --- Ce modèle est développé pour KARA. Ce modèle est : - Un outil d'analyse de sentiment associé à un commentaire de sondage RH - Entrainé pour être utilisé en ANGLAIS (les commentaires doivent êtres traduits) - Spécialisé pour des commentaires entre 10 et 512 charactères Ce modèle n'est pas : - Utilisable pour détecter un discours haineux ou bien une lettre de suicide Étiquettes : - Label_0 = Négatif - Label_1 = Positif version 1.1.0 Performances sur le jeux de données du HRM : 91.5% de précision
mrm8488/t5-base-iterater
mrm8488
2022-03-28T11:00:41Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "IteraTeR", "en", "dataset:wanyu/IteraTeR_full_sent", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-27T18:48:43Z
--- license: apache-2.0 language: - en datasets: - wanyu/IteraTeR_full_sent tags: - generated_from_trainer - IteraTeR widget: - text: "<clarity> Delay-based schemes have the potential to resolve this last packet problem by scheduling the link based on the delay for the packet has encountered." model-index: - name: t5-base-iterater results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5 (base) fine-tuned on IteraTeR This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an [IteraTeR](https://huggingface.co/datasets/wanyu/IteraTeR_full_sent) dataset. It achieves the following results on the evaluation set: - Loss: 0.2580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3286 | 0.09 | 2000 | 0.3010 | | 0.3194 | 0.18 | 4000 | 0.2872 | | 0.3208 | 0.27 | 6000 | 0.2792 | | 0.3091 | 0.36 | 8000 | 0.2731 | | 0.3164 | 0.45 | 10000 | 0.2678 | | 0.2941 | 0.54 | 12000 | 0.2682 | | 0.2981 | 0.63 | 14000 | 0.2696 | | 0.2975 | 0.72 | 16000 | 0.2643 | | 0.3109 | 0.81 | 18000 | 0.2624 | | 0.2965 | 0.9 | 20000 | 0.2648 | | 0.3053 | 0.99 | 22000 | 0.2627 | | 0.2779 | 1.08 | 24000 | 0.2632 | | 0.2692 | 1.17 | 26000 | 0.2608 | | 0.2755 | 1.26 | 28000 | 0.2600 | | 0.2771 | 1.35 | 30000 | 0.2584 | | 0.2774 | 1.44 | 32000 | 0.2609 | | 0.2976 | 1.53 | 34000 | 0.2593 | | 0.2646 | 1.62 | 36000 | 0.2616 | | 0.2705 | 1.71 | 38000 | 0.2574 | | 0.2714 | 1.8 | 40000 | 0.2577 | | 0.2857 | 1.9 | 42000 | 0.2576 | | 0.2832 | 1.99 | 44000 | 0.2580 | ### How to use ```py from transformers import T5ForConditionalGeneration, T5TokenizerFast MODEL_CKPT = 'mrm8488/t5-base-iterater' tokenizer = T5TokenizerFast.from_pretrained(MODEL_CKPT) model = T5ForConditionalGeneration.from_pretrained(MODEL_CKPT) def predict(intent, text): input_text = f"<{intent}> {text}" features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=128, num_beams=8) return tokenizer.decode(output[0], skip_special_tokens=True) text = "Delay-based schemes have the potential to resolve this last packet problem by scheduling the link based on the delay for the packet has encountered." intent = "clarity" predict(intent, text) # Delay-based schemes have the potential to resolve this last packet problem by scheduling the link based on the delay the packet has encountered. ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mideind/tokenizer-mbart-25-enis
mideind
2022-03-28T10:11:08Z
0
0
null
[ "translation", "is", "en", "license:mit", "region:us" ]
translation
2022-03-28T10:01:18Z
--- language: - is - en tags: - translation license: mit --- # mBART 25 SentencePiece tokenizer This tokenizer is used for Mideind's mBART translation models. It is based on Facebooks mBART-25 SentencePiece model. A language token from the original model has been replaced with "is_IS". Usage example (for debugging): ```python import sys from transformers.models import mbart MODEL_DIR = sys.argv[1] tokenizer: mbart.MBartTokenizerFast = mbart.MBartTokenizerFast.from_pretrained( MODEL_DIR, src_lang="en_XX" ) is_lang_idx = tokenizer.convert_tokens_to_ids("is_IS") model = mbart.MBartForConditionalGeneration.from_pretrained(MODEL_DIR) test_sentence = "This is a test." input_ids = tokenizer(test_sentence, return_tensors="pt") print(input_ids) outputs = model.generate( **input_ids, decoder_start_token_id=is_lang_idx ) print(outputs) print(tokenizer.batch_decode(outputs)) ```
mart/ivan
mart
2022-03-28T08:40:12Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2022-03-28T08:40:12Z
--- license: artistic-2.0 ---
jkhan447/sentiment-model-sample-offline-goemotion
jkhan447
2022-03-28T06:50:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-28T06:33:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: sentiment-model-sample-offline-goemotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model-sample-offline-goemotion This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0183 - Accuracy: 0.7109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
aps/flava_full_pretrained_encoders_torchmm
aps
2022-03-28T06:03:42Z
0
0
null
[ "pytorch", "license:bsd-3-clause", "region:us" ]
null
2022-03-28T05:35:04Z
--- license: bsd-3-clause ---
huggingtweets/freudwarrior123
huggingtweets
2022-03-28T04:26:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-28T04:23:45Z
--- language: en thumbnail: http://www.huggingtweets.com/freudwarrior123/1648441457881/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1443547125770559488/QNDa_bi1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">freudwarrior123</div> <div style="text-align: center; font-size: 14px;">@freudwarrior123</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from freudwarrior123. | Data | freudwarrior123 | | --- | --- | | Tweets downloaded | 859 | | Retweets | 274 | | Short tweets | 34 | | Tweets kept | 551 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3798mw2s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @freudwarrior123's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2n7ltssk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2n7ltssk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/freudwarrior123') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
aihijo/transformers4ime-pinyingpt-concat
aihijo
2022-03-28T03:57:51Z
53
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2203.00249", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-26T09:54:26Z
--- license: cc-by-nc-sa-4.0 --- ![ime](https://user-images.githubusercontent.com/2136700/160290194-4f30a796-876a-4750-bb3b-b5b62c4676c5.png) # Transformers4IME Transformers4IME is repo for exploring and adapting transformer-based models to IME. ## PinyinGPT PinyinGPT is a model from [Exploring and Adapting Chinese GPT to Pinyin Input Method](https://arxiv.org/abs/2203.00249) which appears in ACL2022. ```bibtex @article{tan2022exploring, title={Exploring and Adapting Chinese GPT to Pinyin Input Method}, author={Tan, Minghuan and Dai, Yong and Tang, Duyu and Feng, Zhangyin and Huang, Guoping and Jiang, Jing and Li, Jiwei and Shi, Shuming}, journal={arXiv preprint arXiv:2203.00249}, year={2022} } ``` The code can be found at * [Gitee](https://gitee.com/visualjoyce/Transformers4IME) * [Github](https://github.com/visualjoyce/Transformers4IME)
YXHugging/autotrain-xlm-roberta-base-reviews-672119799
YXHugging
2022-03-28T01:30:54Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T00:52:19Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1583.7188188958198 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119799 - CO2 Emissions (in grams): 1583.7188188958198 ## Validation Metrics - Loss: 0.9590993523597717 - Accuracy: 0.5827541666666667 - Macro F1: 0.5806748283026683 - Micro F1: 0.5827541666666667 - Weighted F1: 0.5806748283026683 - Macro Precision: 0.5834325027348383 - Micro Precision: 0.5827541666666667 - Weighted Precision: 0.5834325027348383 - Macro Recall: 0.5827541666666667 - Micro Recall: 0.5827541666666667 - Weighted Recall: 0.5827541666666667 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119799 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119799", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119799", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
BigSalmon/InformalToFormalLincoln31
BigSalmon
2022-03-28T00:48:44Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T23:08:12Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln31") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ```
minimaxir/imgbeddings
minimaxir
2022-03-28T00:36:28Z
0
3
transformers
[ "transformers", "onnx", "ai", "images", "image-processing", "embeddings", "clip", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-27T17:23:51Z
--- language: - en tags: - ai - transformers - onnx - images - image-processing - embeddings - clip license: mit --- # imgbeddings The HF repo where the models for [imgbeddings](https://github.com/minimaxir/imgbeddings) are loaded. The ONNX files were generated using [this export Notebook](https://github.com/minimaxir/imgbeddings/blob/main/examples/export.ipynb). ## License MIT
huggingtweets/jacobe
huggingtweets
2022-03-27T23:02:12Z
5
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T23:01:35Z
--- language: en thumbnail: http://www.huggingtweets.com/jacobe/1648422127637/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1025926108984664064/2ZHTSIof_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rowel Atienza</div> <div style="text-align: center; font-size: 14px;">@jacobe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rowel Atienza. | Data | Rowel Atienza | | --- | --- | | Tweets downloaded | 100 | | Retweets | 29 | | Short tweets | 4 | | Tweets kept | 67 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1uzq4b7w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jacobe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ouo6sis) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ouo6sis/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jacobe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/baguioni
huggingtweets
2022-03-27T22:55:21Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T22:54:40Z
--- language: en thumbnail: http://www.huggingtweets.com/baguioni/1648421716784/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506662013707046914/hVtCPrPL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">baguio</div> <div style="text-align: center; font-size: 14px;">@baguioni</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from baguio. | Data | baguio | | --- | --- | | Tweets downloaded | 3012 | | Retweets | 1090 | | Short tweets | 527 | | Tweets kept | 1395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z9nh9v8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @baguioni's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s53fr1o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s53fr1o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/baguioni') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/baguioni-elonmusk-jacobe
huggingtweets
2022-03-27T22:44:21Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T22:43:39Z
--- language: en thumbnail: http://www.huggingtweets.com/baguioni-elonmusk-jacobe/1648421056394/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1503591435324563456/foUrqiEw_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1025926108984664064/2ZHTSIof_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506662013707046914/hVtCPrPL_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Rowel Atienza & baguio</div> <div style="text-align: center; font-size: 14px;">@baguioni-elonmusk-jacobe</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Rowel Atienza & baguio. | Data | Elon Musk | Rowel Atienza | baguio | | --- | --- | --- | --- | | Tweets downloaded | 1621 | 100 | 3012 | | Retweets | 69 | 29 | 1090 | | Short tweets | 520 | 4 | 527 | | Tweets kept | 1032 | 67 | 1395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xuj1tda/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @baguioni-elonmusk-jacobe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fpkbu3i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fpkbu3i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/baguioni-elonmusk-jacobe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Splend1dchan/t5small4-squad1024
Splend1dchan
2022-03-27T22:26:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-27T14:15:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5small4-squad1024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5small4-squad1024 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: tpu - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.9.0+cu102 - Tokenizers 0.11.6
theResearchNinja/Cybonto-distilbert-base-uncased-finetuned-ner-v0.1
theResearchNinja
2022-03-27T21:51:10Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:few_nerd", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-27T20:34:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - few_nerd metrics: - precision - recall - f1 - accuracy model-index: - name: Cybonto-distilbert-base-uncased-finetuned-ner-v0.1 results: - task: name: Token Classification type: token-classification dataset: name: few_nerd type: few_nerd args: supervised metrics: - name: Precision type: precision value: 0.7377633209417596 - name: Recall type: recall value: 0.7817648386368765 - name: F1 type: f1 value: 0.7591269959856158 - name: Accuracy type: accuracy value: 0.9383331648547562 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Cybonto-distilbert-base-uncased-finetuned-ner-v0.1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.1930 - Precision: 0.7378 - Recall: 0.7818 - F1: 0.7591 - Accuracy: 0.9383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 36 - eval_batch_size: 36 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2001 | 1.0 | 3661 | 0.1954 | 0.7244 | 0.7750 | 0.7488 | 0.9360 | | 0.1717 | 2.0 | 7322 | 0.1898 | 0.7392 | 0.7767 | 0.7575 | 0.9384 | | 0.1485 | 3.0 | 10983 | 0.1930 | 0.7378 | 0.7818 | 0.7591 | 0.9383 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
leonadase/bert-base-chinese-finetuned-fdRE
leonadase
2022-03-27T20:52:06Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:sem_eval2010_task8", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T19:04:51Z
--- tags: - generated_from_trainer datasets: - sem_eval2010_task8 metrics: - accuracy model-index: - name: bert-base-chinese-finetuned-fdRE results: - task: name: Text Classification type: text-classification dataset: name: sem_eval2010_task8 type: sem_eval2010_task8 args: default metrics: - name: Accuracy type: accuracy value: 0.9080962800875274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-finetuned-fdRE This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the sem_eval2010_task8 dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - Accuracy: 0.9081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 46 | 0.5571 | 0.7812 | | No log | 2.0 | 92 | 0.4030 | 0.8621 | | No log | 3.0 | 138 | 0.3139 | 0.8928 | | No log | 4.0 | 184 | 0.2716 | 0.9081 | | No log | 5.0 | 230 | 0.2564 | 0.9081 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
willcai/wav2vec2_common_voice_accents_indian_only_rerun
willcai
2022-03-27T18:00:16Z
2
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-27T06:51:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_common_voice_accents_indian_only_rerun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_common_voice_accents_indian_only_rerun This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 48 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 384 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 588 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.6205 | 25.0 | 400 | 1.4584 | | 0.3427 | 50.0 | 800 | 1.8377 | | 0.1213 | 75.0 | 1200 | 1.6086 | | 0.0643 | 100.0 | 1600 | 1.5136 | | 0.0433 | 125.0 | 2000 | 1.4882 | | 0.0323 | 150.0 | 2400 | 1.2204 | | 0.0265 | 175.0 | 2800 | 1.3034 | | 0.0206 | 200.0 | 3200 | 1.2866 | | 0.0191 | 225.0 | 3600 | 1.2337 | | 0.0148 | 250.0 | 4000 | 1.1729 | | 0.0121 | 275.0 | 4400 | 1.2059 | | 0.0105 | 300.0 | 4800 | 1.1246 | | 0.01 | 325.0 | 5200 | 1.1397 | | 0.0098 | 350.0 | 5600 | 1.1684 | | 0.0073 | 375.0 | 6000 | 1.1030 | | 0.0061 | 400.0 | 6400 | 1.2077 | | 0.0049 | 425.0 | 6800 | 1.2653 | | 0.0044 | 450.0 | 7200 | 1.1587 | | 0.0037 | 475.0 | 7600 | 1.2283 | | 0.0033 | 500.0 | 8000 | 1.1897 | | 0.0026 | 525.0 | 8400 | 1.2633 | | 0.0023 | 550.0 | 8800 | 1.2571 | | 0.002 | 575.0 | 9200 | 1.2807 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data_augment_0.1
scasutt
2022-03-27T17:07:53Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-25T17:45:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data_augment_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data_augment_0.1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4658 - Wer: 0.5037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.447 | 1.05 | 250 | 3.3799 | 1.0 | | 3.089 | 2.1 | 500 | 3.4868 | 1.0 | | 3.063 | 3.15 | 750 | 3.3155 | 1.0 | | 2.4008 | 4.2 | 1000 | 1.2934 | 0.8919 | | 1.618 | 5.25 | 1250 | 0.7847 | 0.7338 | | 1.3038 | 6.3 | 1500 | 0.6459 | 0.6712 | | 1.2074 | 7.35 | 1750 | 0.5705 | 0.6269 | | 1.1062 | 8.4 | 2000 | 0.5267 | 0.5843 | | 1.026 | 9.45 | 2250 | 0.5108 | 0.5683 | | 0.9505 | 10.5 | 2500 | 0.5066 | 0.5568 | | 0.893 | 11.55 | 2750 | 0.5161 | 0.5532 | | 0.8535 | 12.6 | 3000 | 0.4994 | 0.5341 | | 0.8462 | 13.65 | 3250 | 0.4626 | 0.5262 | | 0.8334 | 14.7 | 3500 | 0.4593 | 0.5197 | | 0.842 | 15.75 | 3750 | 0.4651 | 0.5126 | | 0.7678 | 16.81 | 4000 | 0.4687 | 0.5120 | | 0.7873 | 17.86 | 4250 | 0.4716 | 0.5070 | | 0.7486 | 18.91 | 4500 | 0.4657 | 0.5033 | | 0.7073 | 19.96 | 4750 | 0.4658 | 0.5037 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
YXHugging/autotrain-xlm-roberta-base-reviews-672119801
YXHugging
2022-03-27T16:53:50Z
3
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T01:21:43Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 999.5670927087938 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119801 - CO2 Emissions (in grams): 999.5670927087938 ## Validation Metrics - Loss: 0.9767692685127258 - Accuracy: 0.5738333333333333 - Macro F1: 0.5698748846905103 - Micro F1: 0.5738333333333333 - Weighted F1: 0.5698748846905102 - Macro Precision: 0.5734242161804903 - Micro Precision: 0.5738333333333333 - Weighted Precision: 0.5734242161804902 - Macro Recall: 0.5738333333333333 - Micro Recall: 0.5738333333333333 - Weighted Recall: 0.5738333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119801 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119801", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119801", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
EMBO/bio-lm
EMBO
2022-03-27T15:46:51Z
8
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "language model", "dataset:EMBO/biolang", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - english thumbnail: tags: - language model license: datasets: - EMBO/biolang metrics: - --- # bio-lm ## Model description This model is a [RoBERTa base pre-trained model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). ## Intended uses & limitations #### How to use The intended use of this model is to be fine-tuned for downstream tasks, token classification in particular. To have a quick check of the model as-is in a fill-mask task: ```python from transformers import pipeline, RobertaTokenizerFast tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) text = "Let us try this model to see if it <mask>." fill_mask = pipeline( "fill-mask", model='EMBO/bio-lm', tokenizer=tokenizer ) fill_mask(text) ``` #### Limitations and bias This model should be fine-tuned on a specifi task like token classification. The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained with a masked language modeling taskon the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang) wich includes 12Mio examples from abstracts and figure legends extracted from papers published in life sciences. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Command: `python -m lm.train /data/json/oapmc_abstracts_figs/ MLM` - Tokenizer vocab size: 50265 - Training data: EMBO/biolang MLM - Training with: 12005390 examples - Evaluating on: 36713 examples - Epochs: 3.0 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - tensorboard run: lm-MLM-2021-01-27T15-17-43.113766 End of training: ``` trainset: 'loss': 0.8653350830078125 validation set: 'eval_loss': 0.8192330598831177, 'eval_recall': 0.8154601116513597 ``` ## Eval results Eval on test set: ``` recall: 0.814471959728645 ```
perevalov/query-validation-lcquad
perevalov
2022-03-27T14:04:19Z
0
0
tf-keras
[ "tf-keras", "kgqa", "question answering", "sparql", "bert-base-cased", "en", "license:apache-2.0", "region:us" ]
null
2022-03-27T09:51:36Z
--- language: en tags: - kgqa - question answering - sparql - bert-base-cased license: apache-2.0 --- # SPARQL Query Validation model ## Model description ## Intended uses & limitations ### How to use
EMBO/sd-smallmol-roles
EMBO
2022-03-27T13:28:53Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "token classification", "dataset:EMBO/sd-nlp", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-19T11:14:58Z
--- language: - english thumbnail: tags: - token classification license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-smallmol-roles ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It has then been fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `SMALL_MOL_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is to infer the semantic role of small molecules with regard to the causal hypotheses tested in experiments reported in scientific papers. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-smallmol-roles') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) which includes manually annotated examples. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine tuned: EMBL/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: SMALL_MOL_ROLES - Training with 48771 examples. - Evaluating on 13801 examples. - Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR - Epochs: 0.33 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On 7178 example of test set with `sklearn.metrics`: ``` precision recall f1-score support CONTROLLED_VAR 0.76 0.90 0.83 2946 MEASURED_VAR 0.60 0.71 0.65 852 micro avg 0.73 0.86 0.79 3798 macro avg 0.68 0.80 0.74 3798 weighted avg 0.73 0.86 0.79 3798 {'test_loss': 0.011743436567485332, 'test_accuracy_score': 0.9951612532624371, 'test_precision': 0.7261345852895149, 'test_recall': 0.8551869404949973, 'test_f1': 0.7853947527505744, 'test_runtime': 58.0378, 'test_samples_per_second': 123.678, 'test_steps_per_second': 1.947} ```
EMBO/sd-geneprod-roles
EMBO
2022-03-27T13:23:03Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "token classification", "dataset:EMBO/sd-nlp", "license:agpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-19T10:38:53Z
--- language: - english thumbnail: tags: - token classification license: agpl-3.0 datasets: - EMBO/sd-nlp metrics: - --- # sd-geneprod-roles ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of English scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `GENEPROD_ROLES` configuration to perform pure context-dependent semantic role classification of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is to infer the semantic role of gene products (genes and proteins) with regard to the causal hypotheses tested in experiments reported in scientific papers. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s>The <mask> overexpression in cells caused an increase in <mask> expression.</s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-geneprod-roles') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) which includes manually annotated examples. ## Training procedure The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Model fine-tuned: EMBL/bio-lm - Tokenizer vocab size: 50265 - Training data: EMBO/sd-nlp - Dataset configuration: GENEPROD_ROLES - Training with 48771 examples. - Evaluating on 13801 examples. - Training on 15 features: O, I-CONTROLLED_VAR, B-CONTROLLED_VAR, I-MEASURED_VAR, B-MEASURED_VAR - Epochs: 0.9 - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On 7178 example of test set with `sklearn.metrics`: ``` precision recall f1-score support CONTROLLED_VAR 0.81 0.86 0.83 7835 MEASURED_VAR 0.82 0.85 0.84 9330 micro avg 0.82 0.85 0.83 17165 macro avg 0.82 0.85 0.83 17165 weighted avg 0.82 0.85 0.83 17165 {'test_loss': 0.03846803680062294, 'test_accuracy_score': 0.9854472664459946, 'test_precision': 0.8156312625250501, 'test_recall': 0.8535974366443344, 'test_f1': 0.8341825841897008, 'test_runtime': 58.7369, 'test_samples_per_second': 122.206, 'test_steps_per_second': 1.924} ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119798
YXHugging
2022-03-27T12:58:03Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T21:07:59Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1013.8825767332373 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119798 - CO2 Emissions (in grams): 1013.8825767332373 ## Validation Metrics - Loss: 0.9646632075309753 - Accuracy: 0.5789333333333333 - Macro F1: 0.5775792001871465 - Micro F1: 0.5789333333333333 - Weighted F1: 0.5775792001871465 - Macro Precision: 0.5829444191847423 - Micro Precision: 0.5789333333333333 - Weighted Precision: 0.5829444191847424 - Macro Recall: 0.5789333333333333 - Micro Recall: 0.5789333333333333 - Weighted Recall: 0.5789333333333333 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119798 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119798", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119798", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
YXHugging/autotrain-xlm-roberta-base-reviews-672119797
YXHugging
2022-03-27T12:55:19Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain", "unk", "dataset:YXHugging/autotrain-data-xlm-roberta-base-reviews", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T21:05:03Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - YXHugging/autotrain-data-xlm-roberta-base-reviews co2_eq_emissions: 1019.0229633198007 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 672119797 - CO2 Emissions (in grams): 1019.0229633198007 ## Validation Metrics - Loss: 0.9898674488067627 - Accuracy: 0.5688083333333334 - Macro F1: 0.5640966271895913 - Micro F1: 0.5688083333333334 - Weighted F1: 0.5640966271895913 - Macro Precision: 0.5673737438011194 - Micro Precision: 0.5688083333333334 - Weighted Precision: 0.5673737438011194 - Macro Recall: 0.5688083333333334 - Micro Recall: 0.5688083333333334 - Weighted Recall: 0.5688083333333334 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YXHugging/autotrain-xlm-roberta-base-reviews-672119797 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119797", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YXHugging/autotrain-xlm-roberta-base-reviews-672119797", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Danik51002/NewModel
Danik51002
2022-03-27T12:52:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-13T16:51:09Z
--- tags: - generated_from_trainer model-index: - name: NewModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NewModel This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 200 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
scasutt/wav2vec2-large-xlsr-53_toy_train_data
scasutt
2022-03-27T11:32:48Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-27T08:49:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xlsr-53_toy_train_data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53_toy_train_data This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6357 - Wer: 0.5496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6073 | 2.1 | 250 | 3.5111 | 1.0 | | 3.0828 | 4.2 | 500 | 3.5133 | 1.0 | | 1.9969 | 6.3 | 750 | 1.3924 | 0.9577 | | 0.9279 | 8.4 | 1000 | 0.8378 | 0.7243 | | 0.6692 | 10.5 | 1250 | 0.7367 | 0.6394 | | 0.5273 | 12.6 | 1500 | 0.6703 | 0.5907 | | 0.4314 | 14.7 | 1750 | 0.6594 | 0.5718 | | 0.3809 | 16.8 | 2000 | 0.6138 | 0.5559 | | 0.3934 | 18.9 | 2250 | 0.6357 | 0.5496 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
yy642/bert-base-uncased-finetuned-mnli-512-10
yy642
2022-03-27T11:06:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-27T01:55:50Z
--- tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-uncased-finetuned-mnli-512-10 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.9355947399880454 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-mnli-512-10 This model is a fine-tuned version of [yy642/bert-base-uncased-finetuned-mnli-512-5](https://huggingface.co/yy642/bert-base-uncased-finetuned-mnli-512-5) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4991 - Accuracy: 0.9356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0514 | 1.0 | 16363 | 0.4557 | 0.9265 | | 0.0369 | 2.0 | 32726 | 0.4548 | 0.9323 | | 0.0249 | 3.0 | 49089 | 0.4376 | 0.9320 | | 0.0197 | 4.0 | 65452 | 0.4991 | 0.9356 | | 0.0135 | 5.0 | 81815 | 0.5424 | 0.9341 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.0.0 - Tokenizers 0.11.6
Danik51002/Example
Danik51002
2022-03-27T08:55:29Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T07:58:16Z
--- tags: - generated_from_trainer model-index: - name: Example results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Example This model is a fine-tuned version of [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 840 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 300 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Tokenizers 0.11.6
ItsMe1111/EDSR
ItsMe1111
2022-03-27T06:18:32Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-03-27T06:18:32Z
--- license: apache-2.0 ---
huggingtweets/psimon365
huggingtweets
2022-03-27T02:56:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T02:56:02Z
--- language: en thumbnail: http://www.huggingtweets.com/psimon365/1648349798068/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507859834107879426/d5Jqrb7Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Psimon 🌐</div> <div style="text-align: center; font-size: 14px;">@psimon365</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Psimon 🌐. | Data | Psimon 🌐 | | --- | --- | | Tweets downloaded | 181 | | Retweets | 0 | | Short tweets | 34 | | Tweets kept | 147 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q7gcbo7v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @psimon365's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/kyaiz92o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/kyaiz92o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/psimon365') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
scasutt/wav2vec2-base_toy_train_data_random_noise
scasutt
2022-03-27T02:27:39Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-27T00:14:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_random_noise results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_random_noise This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0909 - Wer: 0.7351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.128 | 2.1 | 250 | 3.5052 | 1.0 | | 3.0423 | 4.2 | 500 | 2.9312 | 1.0 | | 1.4109 | 6.3 | 750 | 1.2618 | 0.8915 | | 0.9132 | 8.4 | 1000 | 1.1074 | 0.8436 | | 0.7146 | 10.5 | 1250 | 1.0397 | 0.7876 | | 0.5418 | 12.6 | 1500 | 1.0359 | 0.7662 | | 0.4649 | 14.7 | 1750 | 1.0469 | 0.7467 | | 0.4127 | 16.8 | 2000 | 1.0655 | 0.7404 | | 0.3881 | 18.9 | 2250 | 1.0909 | 0.7351 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_random_noise_0.1
scasutt
2022-03-27T00:13:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T22:03:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_random_noise_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_random_noise_0.1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9263 - Wer: 0.7213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1296 | 2.1 | 250 | 3.5088 | 1.0 | | 3.0728 | 4.2 | 500 | 3.1694 | 1.0 | | 1.8686 | 6.3 | 750 | 1.3414 | 0.9321 | | 1.1241 | 8.4 | 1000 | 1.0196 | 0.8321 | | 0.8704 | 10.5 | 1250 | 0.9387 | 0.7962 | | 0.6734 | 12.6 | 1500 | 0.9309 | 0.7640 | | 0.5832 | 14.7 | 1750 | 0.9329 | 0.7346 | | 0.5207 | 16.8 | 2000 | 0.9060 | 0.7247 | | 0.4857 | 18.9 | 2250 | 0.9263 | 0.7213 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/mkobach-naval-shaneaparrish
huggingtweets
2022-03-27T00:07:05Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-27T00:04:05Z
--- language: en thumbnail: http://www.huggingtweets.com/mkobach-naval-shaneaparrish/1648339620049/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1374075536595505154/1_1jV_AF_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1253758424292171778/48gD7Hne_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matthew Kobach & Shane Parrish & Naval</div> <div style="text-align: center; font-size: 14px;">@mkobach-naval-shaneaparrish</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matthew Kobach & Shane Parrish & Naval. | Data | Matthew Kobach | Shane Parrish | Naval | | --- | --- | --- | --- | | Tweets downloaded | 3248 | 3197 | 3249 | | Retweets | 135 | 102 | 181 | | Short tweets | 444 | 147 | 617 | | Tweets kept | 2669 | 2948 | 2451 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17cy2tt4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mkobach-naval-shaneaparrish's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zkb00dh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mkobach-naval-shaneaparrish') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Mnauel/wav2vec2-base-finetuned-ks
Mnauel
2022-03-26T20:53:27Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-03-12T10:51:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5766 - Accuracy: 0.8308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.7247 | 0.7462 | | No log | 2.0 | 14 | 0.6844 | 0.7615 | | 0.4279 | 3.0 | 21 | 0.7254 | 0.7462 | | 0.4279 | 4.0 | 28 | 0.5891 | 0.8 | | 0.4279 | 5.0 | 35 | 0.6991 | 0.7462 | | 0.4478 | 6.0 | 42 | 0.6579 | 0.7615 | | 0.4478 | 7.0 | 49 | 0.6164 | 0.8 | | 0.4478 | 8.0 | 56 | 0.6191 | 0.8077 | | 0.4194 | 9.0 | 63 | 0.5766 | 0.8308 | | 0.4194 | 10.0 | 70 | 0.5704 | 0.8154 | | 0.4194 | 11.0 | 77 | 0.6518 | 0.8 | | 0.3833 | 12.0 | 84 | 0.6190 | 0.8077 | | 0.3833 | 13.0 | 91 | 0.5693 | 0.8231 | | 0.3833 | 14.0 | 98 | 0.5628 | 0.8231 | | 0.3607 | 15.0 | 105 | 0.5741 | 0.8154 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.10.3
dannyvas23/electricidad-small-discriminator-finetuned-clasificacion-texto-suicida
dannyvas23
2022-03-26T19:22:14Z
25
1
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sentiment", "emotion", "es", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T17:19:56Z
--- license: afl-3.0 language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "La vida no merece la pena" example_title: "Ejemplo 1" - text: "Para vivir así lo mejor es estar muerto" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" - text: "Quiero terminar con todo" example_title: "Ejemplo 4" - text: "Disfruto de la vista" example_title: "Ejemplo 5" metrics: - accuracy model-index: - name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electricidad-small-discriminator-finetuned-clasificacion-texto-suicida This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0458 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:---------------:|:--------:| | 0.161100 | 1.0 | 0.133057 | 0.952718 | | 0.134500 | 2.0 | 0.110966 | 0.960804 | | 0.108500 | 3.0 | 0.086417 | 0.970835 | | 0.099400 | 4.0 | 0.073618 | 0.974856 | | 0.090500 | 5.0 | 0.065231 | 0.979629 | | 0.080700 | 6.0 | 0.060849 | 0.982324 | | 0.069200 | 7.0 | 0.054718 | 0.986125 | | 0.060400 | 8.0 | 0.051153 | 0.985948 | | 0.048200 | 9.0 | 0.045747 | 0.989748 | | 0.045500 | 10.0 | 0.049992 | 0.988069 | | 0.043400 | 11.0 | 0.046325 | 0.990234 | | 0.034300 | 12.0 | 0.050746 | 0.989792 | | 0.032900 | 13.0 | 0.043434 | 0.991737 | | 0.028400 | 14.0 | 0.045003 | 0.991869 | | 0.022300 | 15.0 | 0.045819 | 0.991648 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
world-wide/is-legit-kwd-march-27
world-wide
2022-03-26T18:44:40Z
3
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "en", "dataset:bozelosp/autotrain-data-legit-keyword", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-26T18:44:03Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - bozelosp/autotrain-data-legit-keyword co2_eq_emissions: 0.5745216001459987 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 668419758 - CO2 Emissions (in grams): 0.5745216001459987 ## Validation Metrics - Loss: 0.5012844800949097 - Accuracy: 0.8057228915662651 - Precision: 0.7627627627627628 - Recall: 0.8355263157894737 - AUC: 0.868530701754386 - F1: 0.7974882260596545 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/bozelosp/autotrain-legit-keyword-668419758 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bozelosp/autotrain-legit-keyword-668419758", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bozelosp/autotrain-legit-keyword-668419758", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
dannyvas23/clasificacion-texto-suicida-finetuned-amazon-review
dannyvas23
2022-03-26T17:12:23Z
24
2
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "sentiment", "emotion", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-21T19:26:40Z
--- language: "es" tags: - generated_from_trainer - sentiment - emotion widget: - text: "no me gusta esta vida." example_title: "Ejemplo 1" - text: "odio estar ahi" example_title: "Ejemplo 2" - text: "me siento triste por no poder viajar" example_title: "Ejemplo 3" metrics: - accuracy model-index: - name: clasificacion-texto-suicida-finetuned-amazon-review results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificacion-texto-suicida-finetuned-amazon-review This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 - Accuracy: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1643 | 1.0 | 12022 | 0.1546 | 0.9488 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/distilgpt2-500e
bigmorning
2022-03-26T16:37:42Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-26T16:31:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilgpt2-500e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-500e This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
zuppif/versioning-test
zuppif
2022-03-26T13:35:30Z
0
0
null
[ "region:us" ]
null
2022-03-26T13:34:47Z
| | uid | hidden_size | |---:|:------------------------------------------------------------------------------------------------------------------------|--------------:| | 0 | [e87a4e028b11ec7bf770c6f3ab5c6349](https://huggingface.co/zuppif/versioning-test/tree/e87a4e028b11ec7bf770c6f3ab5c6349) | 8 | | 1 | [48f2a327cfb7cb0f9b519d9abf73a9be](https://huggingface.co/zuppif/versioning-test/tree/48f2a327cfb7cb0f9b519d9abf73a9be) | 16 | | 2 | [1c9d18df9ec06b5f7e2f49b2ef1cb826](https://huggingface.co/zuppif/versioning-test/tree/1c9d18df9ec06b5f7e2f49b2ef1cb826) | 32 |
Roshan777/finetuning-sentiment-model-300-samples
Roshan777
2022-03-26T12:54:48Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T13:02:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-300-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6833333333333333 - name: F1 type: f1 value: 0.6153846153846154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-300-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6567 - Accuracy: 0.6833 - F1: 0.6154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Mr-Wick/Roberta
Mr-Wick
2022-03-26T12:39:55Z
3
0
transformers
[ "transformers", "tf", "roberta", "question-answering", "generated_from_keras_callback", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-03-23T16:08:46Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Roberta results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16476, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
scasutt/wav2vec2-base_toy_train_data_fast_10pct
scasutt
2022-03-26T12:28:13Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T10:09:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_fast_10pct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_fast_10pct This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3087 - Wer: 0.7175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1309 | 1.05 | 250 | 3.4541 | 0.9982 | | 3.0499 | 2.1 | 500 | 3.0231 | 0.9982 | | 1.4839 | 3.15 | 750 | 1.4387 | 0.9257 | | 1.1697 | 4.2 | 1000 | 1.3729 | 0.8792 | | 0.9353 | 5.25 | 1250 | 1.2608 | 0.8445 | | 0.7298 | 6.3 | 1500 | 1.1867 | 0.8052 | | 0.6418 | 7.35 | 1750 | 1.2414 | 0.7997 | | 0.5698 | 8.4 | 2000 | 1.2240 | 0.7766 | | 0.5084 | 9.45 | 2250 | 1.1910 | 0.7687 | | 0.4912 | 10.5 | 2500 | 1.2241 | 0.7617 | | 0.4144 | 11.55 | 2750 | 1.2412 | 0.7477 | | 0.4153 | 12.6 | 3000 | 1.2736 | 0.7511 | | 0.405 | 13.65 | 3250 | 1.2827 | 0.7328 | | 0.3852 | 14.7 | 3500 | 1.1981 | 0.7331 | | 0.3829 | 15.75 | 3750 | 1.3035 | 0.7347 | | 0.3538 | 16.81 | 4000 | 1.3003 | 0.7240 | | 0.3385 | 17.86 | 4250 | 1.3354 | 0.7304 | | 0.3108 | 18.91 | 4500 | 1.2983 | 0.7229 | | 0.3037 | 19.96 | 4750 | 1.3087 | 0.7175 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
donyd/distilbert-finetuned-imdb
donyd
2022-03-26T10:29:06Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-26T00:32:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: donyd/distilbert-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # donyd/distilbert-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8432 - Validation Loss: 2.6247 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8432 | 2.6247 | 0 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.7.0 - Tokenizers 0.11.6
lighteternal/wav2vec2-large-xlsr-53-greek
lighteternal
2022-03-26T10:12:37Z
2,071
8
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "speech", "xlsr-fine-tuning-week", "el", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: el datasets: - common_voice tags: - audio - hf-asr-leaderboard - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Greek by Lighteternal results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: CommonVoice (EL), CSS10 (EL) type: CCS10 + mozilla-foundation/common_voice_7_0 args: el metrics: - name: Test WER type: wer value: 10.497628 - name: Test CER type: cer value: 2.875260 --- # Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model ### By the Hellenic Army Academy and the Technical University of Crete * language: el * licence: apache-2.0 * dataset: CommonVoice (EL), 364MB: https://commonvoice.mozilla.org/el/datasets + CSS10 (EL), 1.22GB: https://github.com/Kyubyong/css10 * model: XLSR-Wav2Vec2, trained for 50 epochs * metrics: Word Error Rate (WER) ## Model description UPDATE: We repeated the fine-tuning process using an additional 1.22GB dataset from CSS10. Wav2Vec2 is a pretrained model for Automatic Speech Recognition (ASR) and was released in September 2020 by Alexei Baevski, Michael Auli, and Alex Conneau. Soon after the superior performance of Wav2Vec2 was demonstrated on the English ASR dataset LibriSpeech, Facebook AI presented XLSR-Wav2Vec2. XLSR stands for cross-lingual speech representations and refers to XLSR-Wav2Vec2`s ability to learn speech representations that are useful across multiple languages. Similar to Wav2Vec2, XLSR-Wav2Vec2 learns powerful speech representations from hundreds of thousands of hours of speech in more than 50 languages of unlabeled speech. Similar, to BERT's masked language modeling, the model learns contextualized speech representations by randomly masking feature vectors before passing them to a transformer network. This model was trained for 50 epochs on a single NVIDIA RTX 3080, for aprox. 8hrs. ## How to use for inference: For live demo, make sure that speech files are sampled at 16kHz. Instructions to test on CommonVoice extracts are provided in the ASR_Inference.ipynb. Snippet also available below: ```python #!/usr/bin/env python # coding: utf-8 # Loading dependencies and defining preprocessing functions from transformers import Wav2Vec2ForCTC from transformers import Wav2Vec2Processor from datasets import load_dataset, load_metric import re import torchaudio import librosa import numpy as np from datasets import load_dataset, load_metric import torch chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�]' def remove_special_characters(batch): batch["text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " return batch def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = speech_array[0].numpy() batch["sampling_rate"] = sampling_rate batch["target_text"] = batch["text"] return batch def resample(batch): batch["speech"] = librosa.resample(np.asarray(batch["speech"]), 48_000, 16_000) batch["sampling_rate"] = 16_000 return batch def prepare_dataset(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values with processor.as_target_processor(): batch["labels"] = processor(batch["target_text"]).input_ids return batch # Loading model and dataset processor model = Wav2Vec2ForCTC.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek").to("cuda") processor = Wav2Vec2Processor.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek") # Preparing speech dataset to be suitable for inference common_voice_test = load_dataset("common_voice", "el", split="test") common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"]) common_voice_test = common_voice_test.map(remove_special_characters, remove_columns=["sentence"]) common_voice_test = common_voice_test.map(speech_file_to_array_fn, remove_columns=common_voice_test.column_names) common_voice_test = common_voice_test.map(resample, num_proc=8) common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names, batch_size=8, num_proc=8, batched=True) # Loading test dataset common_voice_test_transcription = load_dataset("common_voice", "el", split="test") #Performing inference on a random sample. Change the "example" value to try inference on different CommonVoice extracts example = 123 input_dict = processor(common_voice_test["input_values"][example], return_tensors="pt", sampling_rate=16_000, padding=True) logits = model(input_dict.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) print("Prediction:") print(processor.decode(pred_ids[0])) # πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς print("\\\\ Reference:") print(common_voice_test_transcription["sentence"][example].lower()) # πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς. ``` ## Evaluation The model can be evaluated as follows on the Greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek") model = Wav2Vec2ForCTC.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 10.497628 % ### How to use for training: Instructions and code to replicate the process are provided in the Fine_Tune_XLSR_Wav2Vec2_on_Greek_ASR_with_🤗_Transformers.ipynb notebook. ## Metrics | Metric | Value | | ----------- | ----------- | | Training Loss | 0.0545 | | Validation Loss | 0.1661 | | CER on CommonVoice Test (%) &ast;| 2.8753 | | WER on CommonVoice Test (%) &ast;| 10.4976 | &ast; Reference transcripts were lower-cased and striped of punctuation and special characters. ### Acknowledgement The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call) Based on the tutorial of Patrick von Platen: https://huggingface.co/blog/fine-tune-xlsr-wav2vec2 Original colab notebook here: https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb#scrollTo=V7YOT2mnUiea
scasutt/wav2vec2-base_toy_train_data_augmented
scasutt
2022-03-26T10:09:16Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-26T07:36:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base_toy_train_data_augmented results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base_toy_train_data_augmented This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0238 - Wer: 0.6969 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.12 | 1.05 | 250 | 3.3998 | 0.9982 | | 3.0727 | 2.1 | 500 | 3.1261 | 0.9982 | | 1.9729 | 3.15 | 750 | 1.4868 | 0.9464 | | 1.3213 | 4.2 | 1000 | 1.2598 | 0.8833 | | 1.0508 | 5.25 | 1250 | 1.0014 | 0.8102 | | 0.8483 | 6.3 | 1500 | 0.9475 | 0.7944 | | 0.7192 | 7.35 | 1750 | 0.9493 | 0.7686 | | 0.6447 | 8.4 | 2000 | 0.9872 | 0.7573 | | 0.6064 | 9.45 | 2250 | 0.9587 | 0.7447 | | 0.5384 | 10.5 | 2500 | 0.9332 | 0.7320 | | 0.4985 | 11.55 | 2750 | 0.9926 | 0.7315 | | 0.4643 | 12.6 | 3000 | 1.0008 | 0.7292 | | 0.4565 | 13.65 | 3250 | 0.9522 | 0.7171 | | 0.449 | 14.7 | 3500 | 0.9685 | 0.7140 | | 0.4307 | 15.75 | 3750 | 1.0080 | 0.7077 | | 0.4239 | 16.81 | 4000 | 0.9950 | 0.7023 | | 0.389 | 17.86 | 4250 | 1.0260 | 0.7007 | | 0.3471 | 18.91 | 4500 | 1.0012 | 0.6966 | | 0.3276 | 19.96 | 4750 | 1.0238 | 0.6969 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
calebcsjm/reversed_harrypotter_generation
calebcsjm
2022-03-26T05:02:52Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T20:58:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reversed_harrypotter_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reversed_harrypotter_generation This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
nikhedward/t5-small-finetuned-multi-news
nikhedward
2022-03-26T04:31:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:multi_news", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-26T03:43:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: t5-small-finetuned-multi-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 14.5549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-multi-news This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.7775 - Rouge1: 14.5549 - Rouge2: 4.5934 - Rougel: 11.1178 - Rougelsum: 12.8964 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.0211 | 1.0 | 1405 | 2.7775 | 14.5549 | 4.5934 | 11.1178 | 12.8964 | 19.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/atarifounders
huggingtweets
2022-03-26T03:45:11Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-10T18:31:26Z
--- language: en thumbnail: http://www.huggingtweets.com/atarifounders/1648266306699/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507523916981583875/6n7ng67H_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">koala/claw/soppy</div> <div style="text-align: center; font-size: 14px;">@atarifounders</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from koala/claw/soppy. | Data | koala/claw/soppy | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 129 | | Short tweets | 883 | | Tweets kept | 2227 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gsc0jwi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @atarifounders's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/tl1eu60e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/tl1eu60e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/atarifounders') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ahmeddbahaa/mt5-finetuned-en-ar
ahmeddbahaa
2022-03-26T02:24:12Z
15
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-25T19:26:01Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-finetuned-en-ar results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: arabic metrics: - name: Rouge1 type: rouge value: 0.2824 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-finetuned-en-ar This model is a fine-tuned version of [ahmeddbahaa/mt5-small-finetuned-mt5-en](https://huggingface.co/ahmeddbahaa/mt5-small-finetuned-mt5-en) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.2314 - Rouge1: 0.2824 - Rouge2: 0.0 - Rougel: 0.2902 - Rougelsum: 0.298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.1685 | 1.0 | 4130 | 2.4262 | 0.0941 | 0.0235 | 0.1098 | 0.1098 | | 2.686 | 2.0 | 8260 | 2.2853 | 0.2824 | 0.0 | 0.298 | 0.298 | | 2.481 | 3.0 | 12390 | 2.2314 | 0.2824 | 0.0 | 0.2902 | 0.298 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
pinecone/msmarco-distilbert-base-tas-b-covid
pinecone
2022-03-25T18:30:52Z
152
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-25T18:20:41Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6250 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MarginMSELoss.MarginMSELoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 6250, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
manandey/wav2vec2-large-xlsr-tamil
manandey
2022-03-25T16:52:49Z
22
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "ta", "dataset:common_voice", "doi:10.57967/hf/0191", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ta datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week - hf-asr-leaderboard license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Tamil by Manan Dey results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ta type: common_voice args: ta metrics: - name: Test WER type: wer value: 56.44 --- # Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\–\(\)]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 56.44% ## Training The Common Voice `train`, `validation` datasets were used for training.
Wende/bert-finetuned-ner
Wende
2022-03-25T16:19:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-25T15:21:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9321670242614293 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9412548954253812 - name: Accuracy type: accuracy value: 0.9860334373344322 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0575 - Precision: 0.9322 - Recall: 0.9505 - F1: 0.9413 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2219 | 1.0 | 878 | 0.0716 | 0.9076 | 0.9288 | 0.9181 | 0.9808 | | 0.0453 | 2.0 | 1756 | 0.0597 | 0.9297 | 0.9477 | 0.9386 | 0.9852 | | 0.0239 | 3.0 | 2634 | 0.0575 | 0.9322 | 0.9505 | 0.9413 | 0.9860 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.8.2+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
huggingtweets/rivatez
huggingtweets
2022-03-25T14:57:29Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T14:51:51Z
--- language: en thumbnail: http://www.huggingtweets.com/rivatez/1648220244511/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421403684085374979/SoqYa6o3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Riva</div> <div style="text-align: center; font-size: 14px;">@rivatez</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Riva. | Data | Riva | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 780 | | Short tweets | 405 | | Tweets kept | 1993 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qe0i10s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rivatez's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rspxzzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rivatez') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vumichien/tf-bert-base-cased-squad2
vumichien
2022-03-25T14:02:14Z
3
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-25T13:56:15Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: tf-bert-base-cased-squad2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tf-bert-base-cased-squad2 This model is a fine-tuned version of [deepset/bert-base-cased-squad2](https://huggingface.co/deepset/bert-base-cased-squad2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Tokenizers 0.11.6
azizbarank/mbert-finnic-ner
azizbarank
2022-03-25T13:55:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-25T12:43:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mbert-finnic-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-finnic-ner This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the Finnish and Estonian parts of the "WikiANN" dataset. It achieves the following results on the evaluation set: - Loss: 0.1427 - Precision: 0.9090 - Recall: 0.9156 - F1: 0.9123 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1636 | 1.0 | 2188 | 0.1385 | 0.8906 | 0.9000 | 0.8953 | 0.9601 | | 0.0991 | 2.0 | 4376 | 0.1346 | 0.9099 | 0.9095 | 0.9097 | 0.9660 | | 0.0596 | 3.0 | 6564 | 0.1427 | 0.9090 | 0.9156 | 0.9123 | 0.9672 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
bigmorning/try-m-e-perplexity594
bigmorning
2022-03-25T13:33:19Z
10
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-25T13:28:27Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: try-m-e-perplexity594 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # try-m-e-perplexity594 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.17.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
ssardorf/pegasus-xsum-new-dataset
ssardorf
2022-03-25T13:12:00Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-25T13:07:00Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-new-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-new-dataset This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8355 - Rouge1: 48.7306 - Rouge2: 34.1291 - Rougel: 44.0778 - Rougelsum: 45.7139 - Gen Len: 30.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cpu - Datasets 1.18.3 - Tokenizers 0.11.6