modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 12:33:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 12:33:10
card
stringlengths
11
1.01M
glob-asr/wav2vec2-large-xls-r-300m-guarani-small
glob-asr
2022-03-24T11:52:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "gn", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gn license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - gn - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-guarani-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-guarani-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4964 - Wer: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.65 | 100 | 1.1326 | 1.0 | | 1.6569 | 13.32 | 200 | 0.5264 | 0.6478 | | 1.6569 | 19.97 | 300 | 0.5370 | 0.6261 | | 0.2293 | 26.65 | 400 | 0.4964 | 0.5957 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
comodoro/wav2vec2-xls-r-300m-pl-cv8
comodoro
2022-03-24T11:52:06Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "xlsr-fine-tuning-week", "hf-asr-leaderboard", "pl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - robust-speech-event - xlsr-fine-tuning-week - hf-asr-leaderboard datasets: - common_voice model-index: - name: Polish comodoro Wav2Vec2 XLSR 300M CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pl metrics: - name: Test WER type: wer value: 17.0 - name: Test CER type: cer value: 3.8 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pl metrics: - name: Test WER type: wer value: 38.97 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pl metrics: - name: Test WER type: wer value: 46.05 --- # wav2vec2-xls-r-300m-pl-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice 8.0 dataset. It achieves the following results on the evaluation set while training: - Loss: 0.1716 - Wer: 0.1697 - Cer: 0.0385 The `eval.py` script results are: WER: 0.16970531733661967 CER: 0.03839135416519316 ## Model description Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "pl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8") model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-pl-cv8") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated using the attached `eval.py` script: ``` python eval.py --model_id comodoro/wav2vec2-xls-r-300m-pl-cv8 --dataset mozilla-foundation/common-voice_8_0 --split test --config pl ``` ## Training and evaluation data The Common Voice 8.0 `train` and `validation` datasets were used for training ## Training procedure ### Training hyperparameters The following hyperparameters were used: - learning_rate: 1e-4 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 640 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP The training was interrupted after 3250 steps. ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
arampacha/wav2vec2-xls-r-1b-ka
arampacha
2022-03-24T11:51:59Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ka license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-ka results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ka args: ka metrics: - type: wer value: 7.39778066580026 name: WER LM - type: cer value: 1.1882089427096434 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ka metrics: - name: Test WER type: wer value: 22.61 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ka metrics: - name: Test WER type: wer value: 21.58 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
HarrisDePerceptron/xls-r-300m-ur
HarrisDePerceptron
2022-03-24T11:51:43Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ur license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - ur - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ur metrics: - name: Test WER type: wer value: 47.38 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [HarrisDePerceptron/xls-r-300m-ur](https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.0517 - WER: 0.5151291512915129 - CER: 0.23689640940982254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2991 | 1.96 | 100 | 0.9769 | 0.6627 | | 1.3415 | 3.92 | 200 | 0.9701 | 0.6594 | | 1.2998 | 5.88 | 300 | 0.9678 | 0.6668 | | 1.2881 | 7.84 | 400 | 0.9650 | 0.6613 | | 1.2369 | 9.8 | 500 | 0.9392 | 0.6502 | | 1.2293 | 11.76 | 600 | 0.9536 | 0.6480 | | 1.1709 | 13.73 | 700 | 0.9265 | 0.6402 | | 1.1492 | 15.69 | 800 | 0.9636 | 0.6506 | | 1.1044 | 17.65 | 900 | 0.9305 | 0.6351 | | 1.0704 | 19.61 | 1000 | 0.9329 | 0.6280 | | 1.0039 | 21.57 | 1100 | 0.9413 | 0.6295 | | 0.9756 | 23.53 | 1200 | 0.9718 | 0.6185 | | 0.9633 | 25.49 | 1300 | 0.9731 | 0.6133 | | 0.932 | 27.45 | 1400 | 0.9659 | 0.6199 | | 0.9252 | 29.41 | 1500 | 0.9766 | 0.6196 | | 0.9172 | 31.37 | 1600 | 1.0052 | 0.6199 | | 0.8733 | 33.33 | 1700 | 0.9955 | 0.6203 | | 0.868 | 35.29 | 1800 | 1.0069 | 0.6240 | | 0.8547 | 37.25 | 1900 | 0.9783 | 0.6258 | | 0.8451 | 39.22 | 2000 | 0.9845 | 0.6052 | | 0.8374 | 41.18 | 2100 | 0.9496 | 0.6137 | | 0.8153 | 43.14 | 2200 | 0.9756 | 0.6122 | | 0.8134 | 45.1 | 2300 | 0.9712 | 0.6096 | | 0.8019 | 47.06 | 2400 | 0.9565 | 0.5970 | | 0.7746 | 49.02 | 2500 | 0.9864 | 0.6096 | | 0.7664 | 50.98 | 2600 | 0.9988 | 0.6092 | | 0.7708 | 52.94 | 2700 | 1.0181 | 0.6255 | | 0.7468 | 54.9 | 2800 | 0.9918 | 0.6148 | | 0.7241 | 56.86 | 2900 | 1.0150 | 0.6018 | | 0.7165 | 58.82 | 3000 | 1.0439 | 0.6063 | | 0.7104 | 60.78 | 3100 | 1.0016 | 0.6037 | | 0.6954 | 62.75 | 3200 | 1.0117 | 0.5970 | | 0.6753 | 64.71 | 3300 | 1.0191 | 0.6037 | | 0.6803 | 66.67 | 3400 | 1.0190 | 0.6033 | | 0.661 | 68.63 | 3500 | 1.0284 | 0.6007 | | 0.6597 | 70.59 | 3600 | 1.0060 | 0.5967 | | 0.6398 | 72.55 | 3700 | 1.0372 | 0.6048 | | 0.6105 | 74.51 | 3800 | 1.0048 | 0.6044 | | 0.6164 | 76.47 | 3900 | 1.0398 | 0.6148 | | 0.6354 | 78.43 | 4000 | 1.0272 | 0.6133 | | 0.5952 | 80.39 | 4100 | 1.0364 | 0.6081 | | 0.5814 | 82.35 | 4200 | 1.0418 | 0.6092 | | 0.6079 | 84.31 | 4300 | 1.0277 | 0.5967 | | 0.5748 | 86.27 | 4400 | 1.0362 | 0.6041 | | 0.5624 | 88.24 | 4500 | 1.0427 | 0.6007 | | 0.5767 | 90.2 | 4600 | 1.0370 | 0.5919 | | 0.5793 | 92.16 | 4700 | 1.0442 | 0.6011 | | 0.547 | 94.12 | 4800 | 1.0516 | 0.5982 | | 0.5513 | 96.08 | 4900 | 1.0461 | 0.5989 | | 0.5429 | 98.04 | 5000 | 1.0504 | 0.5996 | | 0.5404 | 100.0 | 5100 | 1.0517 | 0.5967 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
lsb/wav2vec2-base-it-latin
lsb
2022-03-24T11:51:21Z
15
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "la", "dataset:lsb/poetaexmachina-mp3-recitations", "license:agpl-3.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - la license: agpl-3.0 tags: - robust-speech-event - hf-asr-leaderboard datasets: - lsb/poetaexmachina-mp3-recitations metrics: - wer model-index: - name: wav2vec2-base-it-latin results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: lsb/poetaexmachina-mp3-recitations name: Poeta Ex Machina mp3 recitations metrics: - type: wer value: 0.398 name: Test WER --- --- # wav2vec2-base-it-latin This model is a fine-tuned version of [wav2vec2-base-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-base-it-voxpopuli) The dataset used is the [poetaexmachina-mp3-recitations](https://github.com/lsb/poetaexmachina-mp3-recitations), all of the 2-series texts (vergil) and every tenth 1-series text (words from Poeta Ex Machina's [database](https://github.com/lsb/poetaexmachina/blob/master/merged-scansions.db) of words with scansions). It achieves the following [results](https://github.com/lsb/tironiculum/blame/trunk/wav2vec2%20base%20it%20latin.ipynb#L1234) on the evaluation set: - Loss: 0.1943 - WER: 0.398
infinitejoy/wav2vec2-large-xls-r-300m-romansh-sursilvan
infinitejoy
2022-03-24T11:51:18Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "rm-sursilv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - rm-sursilv - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romansh Sursilvan results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: rm-sursilv metrics: - name: Test WER type: wer value: 19.816 - name: Test CER type: cer value: 4.153 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romansh-sursilvan This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2163 - Wer: 0.1981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 1.1004 | 23.81 | 2000 | 0.3710 | 0.4191 | | 0.7002 | 47.62 | 4000 | 0.2342 | 0.2562 | | 0.5573 | 71.43 | 6000 | 0.2175 | 0.2177 | | 0.4799 | 95.24 | 8000 | 0.2109 | 0.1987 | | 0.4511 | 119.05 | 10000 | 0.2164 | 0.1975 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-slovak
infinitejoy
2022-03-24T11:50:01Z
366
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sk", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sk license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - sk - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Slovak results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: sk metrics: - name: Test WER type: wer value: 24.852 - name: Test CER type: cer value: 5.09 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sk metrics: - name: Test WER type: wer value: 56.388 - name: Test CER type: cer value: 20.654 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sk metrics: - name: Test WER type: wer value: 59.25 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-slovak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SK dataset. It achieves the following results on the evaluation set: - Loss: 0.2915 - Wer: 0.2481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.0076 | 19.74 | 3000 | 0.3274 | 0.3806 | | 0.6889 | 39.47 | 6000 | 0.2824 | 0.2942 | | 0.5863 | 59.21 | 9000 | 0.2700 | 0.2735 | | 0.4798 | 78.95 | 12000 | 0.2844 | 0.2602 | | 0.4399 | 98.68 | 15000 | 0.2907 | 0.2489 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-lithuanian
sammy786
2022-03-24T11:49:34Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "lt", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - lt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - lt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-lithuanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: lt metrics: - name: Test WER type: wer value: 14.67 - name: Test CER type: cer value: 2.77 --- # sammy786/wav2vec2-xlsr-lithuanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - lt dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 13.1811 - Wer: 24.2570 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:-----:|:-------------:|:---------------:|:--------:| | 200 | 5.718700 | 2.897032 | 1.000000 | | 400 | 1.340000 | 0.309548 | 0.507284 | | 600 | 0.799100 | 0.220205 | 0.402098 | | 800 | 0.494400 | 0.185093 | 0.352855 | | 1000 | 0.370800 | 0.165869 | 0.334207 | | 1200 | 0.312500 | 0.159801 | 0.324009 | | 1400 | 0.276100 | 0.148066 | 0.321678 | | 1600 | 0.250100 | 0.153748 | 0.311626 | | 1800 | 0.226400 | 0.147437 | 0.302885 | | 2000 | 0.206900 | 0.141176 | 0.296037 | | 2200 | 0.189900 | 0.142161 | 0.288170 | | 2400 | 0.192100 | 0.138029 | 0.286568 | | 2600 | 0.175600 | 0.139496 | 0.283654 | | 2800 | 0.156900 | 0.138609 | 0.283217 | | 3000 | 0.149400 | 0.140468 | 0.281906 | | 3200 | 0.144600 | 0.132472 | 0.278263 | | 3400 | 0.144100 | 0.141028 | 0.277535 | | 3600 | 0.133000 | 0.134287 | 0.275495 | | 3800 | 0.126600 | 0.149136 | 0.277681 | | 4000 | 0.123500 | 0.132180 | 0.266463 | | 4200 | 0.113000 | 0.137942 | 0.268211 | | 4400 | 0.111700 | 0.140038 | 0.272873 | | 4600 | 0.108600 | 0.136756 | 0.264132 | | 4800 | 0.103600 | 0.137541 | 0.263403 | | 5000 | 0.098000 | 0.140435 | 0.264860 | | 5200 | 0.095800 | 0.136950 | 0.262383 | | 5400 | 0.094000 | 0.128214 | 0.263986 | | 5600 | 0.085300 | 0.125024 | 0.259761 | | 5800 | 0.078900 | 0.128575 | 0.260198 | | 6000 | 0.083300 | 0.135496 | 0.258887 | | 6200 | 0.078800 | 0.131706 | 0.259178 | | 6400 | 0.073800 | 0.128451 | 0.255390 | | 6600 | 0.072600 | 0.131245 | 0.252768 | | 6800 | 0.073300 | 0.131525 | 0.249417 | | 7000 | 0.069000 | 0.128627 | 0.255536 | | 7200 | 0.064400 | 0.127767 | 0.250583 | | 7400 | 0.065400 | 0.129557 | 0.247815 | | 7600 | 0.061200 | 0.129734 | 0.250146 | | 7800 | 0.059100 | 0.135124 | 0.249709 | | 8000 | 0.057000 | 0.132850 | 0.249126 | | 8200 | 0.056100 | 0.128827 | 0.248252 | | 8400 | 0.056400 | 0.130229 | 0.246795 | | 8600 | 0.052800 | 0.128939 | 0.245775 | | 8800 | 0.051100 | 0.131892 | 0.248543 | | 9000 | 0.052900 | 0.132062 | 0.244464 | | 9200 | 0.048200 | 0.130988 | 0.244172 | | 9400 | 0.047700 | 0.131811 | 0.242570 | | 9600 | 0.050000 | 0.133832 | 0.245484 | | 9800 | 0.047500 | 0.134340 | 0.243881 | | 10000 | 0.048400 | 0.133388 | 0.243590 | | 10200 | 0.047800 | 0.132729 | 0.244464 | | 10400 | 0.049000 | 0.131695 | 0.245047 | | 10600 | 0.044400 | 0.132154 | 0.245484 | | 10800 | 0.050100 | 0.131575 | 0.245192 | | 11000 | 0.047700 | 0.131211 | 0.245192 | | 11200 | 0.046000 | 0.131293 | 0.245047 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-lithuanian --dataset mozilla-foundation/common_voice_8_0 --config lt --split test ```
infinitejoy/wav2vec2-large-xls-r-300m-bulgarian
infinitejoy
2022-03-24T11:47:30Z
445
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "bg", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bg license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_7_0 - generated_from_trainer - bg - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Bulgarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: bg metrics: - name: Test WER type: wer value: 46.68 - name: Test CER type: cer value: 10.75 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: bg metrics: - name: Test WER type: wer value: 63.68 - name: Test CER type: cer value: 19.88 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: bg metrics: - name: Test WER type: wer value: 64.08 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-bulgarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.4487 - Wer: 0.4674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9774 | 6.33 | 500 | 2.9769 | 1.0 | | 1.3453 | 12.66 | 1000 | 0.6523 | 0.6980 | | 1.1658 | 18.99 | 1500 | 0.5636 | 0.6359 | | 1.0797 | 25.32 | 2000 | 0.5004 | 0.5759 | | 1.044 | 31.65 | 2500 | 0.4958 | 0.5569 | | 0.9915 | 37.97 | 3000 | 0.4971 | 0.5350 | | 0.9429 | 44.3 | 3500 | 0.4829 | 0.5229 | | 0.9266 | 50.63 | 4000 | 0.4515 | 0.5074 | | 0.8965 | 56.96 | 4500 | 0.4599 | 0.5039 | | 0.878 | 63.29 | 5000 | 0.4735 | 0.4954 | | 0.8494 | 69.62 | 5500 | 0.4460 | 0.4878 | | 0.8343 | 75.95 | 6000 | 0.4510 | 0.4795 | | 0.8236 | 82.28 | 6500 | 0.4538 | 0.4789 | | 0.8069 | 88.61 | 7000 | 0.4526 | 0.4748 | | 0.7958 | 94.94 | 7500 | 0.4496 | 0.4700 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner
JustAdvanceTechonology
2022-03-24T11:33:03Z
5
4
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T10:20:14Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # JustAdvanceTechonology/bert-fine-tuned-medical-insurance-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0269 - Validation Loss: 0.0551 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1775 | 0.0646 | 0 | | 0.0454 | 0.0580 | 1 | | 0.0269 | 0.0551 | 2 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.5.0 - Datasets 1.18.3 - Tokenizers 0.11.6
joe5campbell/Horovod_Tweet_Sentiment_1k_5eps
joe5campbell
2022-03-24T11:01:59Z
4
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T11:01:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Horovod_Tweet_Sentiment_1k_5eps results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Horovod_Tweet_Sentiment_1k_5eps This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5216092 - Train Accuracy: 0.784375 - Validation Loss: 0.92405033 - Validation Accuracy: 0.4875 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'clipnorm': 1.0, 'learning_rate': 0.0003, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.7129049 | 0.50937504 | 0.7314203 | 0.490625 | 0 | | 0.73165804 | 0.47343752 | 0.6929074 | 0.484375 | 1 | | 0.6827939 | 0.55 | 0.6864271 | 0.50625 | 2 | | 0.66076773 | 0.5578125 | 0.60817575 | 0.69687504 | 3 | | 0.5216092 | 0.784375 | 0.92405033 | 0.4875 | 4 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Tokenizers 0.11.6
huggingtweets/kytalli-vi0linheart
huggingtweets
2022-03-24T09:38:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T09:25:29Z
--- language: en thumbnail: http://www.huggingtweets.com/kytalli-vi0linheart/1648114676311/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500859213622300673/izXwf0KK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1376749372831002627/2B9FZTnI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">sal & G</div> <div style="text-align: center; font-size: 14px;">@kytalli-vi0linheart</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from sal & G. | Data | sal | G | | --- | --- | --- | | Tweets downloaded | 3114 | 3249 | | Retweets | 421 | 55 | | Short tweets | 541 | 226 | | Tweets kept | 2152 | 2968 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tj76wad/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @kytalli-vi0linheart's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a1bludi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/kytalli-vi0linheart') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
niksmer/PolicyBERTa-7d
niksmer
2022-03-24T09:19:57Z
5
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit language: - en metrics: - accuracy - precision - recall model-index: - name: PolicyBERTa-7d results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # PolicyBERTa-7d This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). It was inspired by the model from [Laurer (2020)](https://huggingface.co/MoritzLaurer/policy-distilbert-7d). It achieves the following results on the evaluation set: - Loss: 0.8549 - Accuracy: 0.7059 - F1-micro: 0.7059 - F1-macro: 0.6683 - F1-weighted: 0.7033 - Precision: 0.7059 - Recall: 0.7059 ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of seven political categories: "external relations", "freedom and democracy", "political system", "economy", "welfare and quality of life", "fabric of society" and "social groups". ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/PolicyBERTa-7d") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Training and evaluation data PolicyBERTa-7d was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The Manifesto Project mannually annotates individual sentences from political party manifestos in 7 main political domains: 'Economy', 'External Relations', 'Fabric of Society', 'Freedom and Democracy', 'Political System', 'Welfare and Quality of Life' or 'Social Groups' - see the [codebook](https://manifesto-project.wzb.eu/down/papers/handbook_2021_version_5.pdf) for the exact definitions of each domain. ### Tain data Train data was higly imbalanced. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 7,640 | | 1 | freedom and democracy | 5,880 | | 2 | political system | 11,234 | | 3 | economy | 29,218 | | 4 | welfare and quality of life | 37,200 | | 5 | fabric of society | 13,594 | | 6 | social groups | 11,177 | Overall count: 115,943 ### Validation data The validation was created by chance. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 1,345 | | 1 | freedom and democracy | 1,043 | | 2 | political system | 2,038 | | 3 | economy | 5,140 | | 4 | welfare and quality of life | 6,554 | | 5 | fabric of society | 2,384 | | 6 | social groups | 1,957 | Overall count: 20,461 ## Test data The test dataset contains ten canadian manifestos between 2004 and 2008. | Label | Description | Count | |------------|--------------|--------| | 0 | external relations | 824 | | 1 | freedom and democracy | 296 | | 2 | political system | 1,041 | | 3 | economy | 2,188 | | 4 | welfare and quality of life | 2,654 | | 5 | fabric of society | 940 | | 6 | social groups | 387 | Overall count: 8,330 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_steps=0, weight_decay=0.1, learning_rate=1e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 0.9154 | 1.0 | 1812 | 0.8984 | 0.6785 | 0.6785 | 0.6383 | 0.6772 | 0.6785 | 0.6785 | | 0.8374 | 2.0 | 3624 | 0.8569 | 0.6957 | 0.6957 | 0.6529 | 0.6914 | 0.6957 | 0.6957 | | 0.7053 | 3.0 | 5436 | 0.8582 | 0.7019 | 0.7019 | 0.6594 | 0.6967 | 0.7019 | 0.7019 | | 0.7178 | 4.0 | 7248 | 0.8488 | 0.7030 | 0.7030 | 0.6662 | 0.7011 | 0.7030 | 0.7030 | | 0.6688 | 5.0 | 9060 | 0.8549 | 0.7059 | 0.7059 | 0.6683 | 0.7033 | 0.7059 | 0.7059 | ### Validation evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.71 | 0.67 | 0.70 | ### Test evaluation | Model | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | PolicyBERTa-7d | 0.65 | 0.60 | 0.65 | ### Evaluation per category | Label | Validation F1-Score | Test F1-Score | |-----------------------------|---------------------|---------------| | external relations | 0.76 | 0.70 | | freedom and democracy | 0.61 | 0.55 | | political system | 0.55 | 0.55 | | economy | 0.74 | 0.67 | | welfare and quality of life | 0.77 | 0.72 | | fabric of society | 0.67 | 0.60 | | social groups | 0.58 | 0.41 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). But PolicyBERTa isn't fine-tuned to predict the rile-index, if you're interested in that, check [ManiBERT](https://huggingface.co/niksmer/ManiBERT) or [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). In the following table, the predicted and original share of the individual policy domains are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original shares is 0.965. | Party-ID | Year | Type | Share external relations | Share freedom and democracy | Share political system | Share economy | Share welfare and quality of life | Share fabric of society | Share social groups | |--------------|-------------|---------------|--------------------------|-----------------------------|------------------------|----------------|-----------------------------------|-------------------------|---------------------| | 62320 | 2004 | Predicted | 7.1% | 4.8% | 13.2% | 20.3% | 35.2% | 9.6% | 9.8% | | | | Original | 10.2% | 2.5% | 13.7% | 23.8% | 31.7% | 11.6% | 6.4% | | 62320 | 2006 | Predicted | 2.9% | 4.7% | 16.4% | 18.9% | 38.3% | 11.9% | 6.9% | | | | Original | 5.6% | 5.0% | 15.8% | 20.7% | 38.7% | 9.3% | 4.9% | | 62320 | 2008 | Predicted | 6.8% | 4.7% | 6.2% | 24.7% | 38.3% | 10.3% | 9.0% | | | | Original | 5.6% | 3.7% | 8.2% | 33.1% | 29.5% | 11.7% | 4.3% | | 62420 | 2004 | Predicted | 9.7% | 3.5% | 14.5% | 24.7% | 34.8% | 8.5% | 4.3% | | | | Original | 12.6% | 1.3% | 18.8% | 23.0% | 33.2% | 9.0% | 2.0% | | 62420 | 2006 | Predicted | 9.5% | 2.2% | 7.9% | 27.8% | 34.8% | 9.2% | 8.7% | | | | Original | 10.6% | 2.5% | 9.6% | 29.7% | 33.1% | 8.3% | 6.2% | | 62420 | 2008 | Predicted | 0.7% | 0.5% | 3.5% | 41.7% | 46.4% | 3.7% | 3.5% | | | | Original | 2.0% | 0.2% | 4.4% | 33.3% | 45.9% | 7.7% | 6.4% | | 62623 | 2004 | Predicted | 7.1% | 11.4% | 24.5% | 17.6% | 21.5% | 13.6% | 4.3% | | | | Original | 8.4% | 6.7% | 28.8% | 17.4% | 18.7% | 15.5% | 4.5% | | 62623 | 2006 | Predicted | 5.6% | 8.5% | 23.6% | 15.6% | 14.8% | 24.3% | 7.6% | | | | Original | 5.0% | 8.9% | 22.2% | 17.4% | 17.2% | 25.7% | 3.6% | | 62623 | 2008 | Predicted | 5.0% | 4.4% | 12.2% | 33.1% | 21.9% | 17.5% | 5.9% | | | | Original | 5.6% | 2.2% | 11.6% | 37.8% | 17.8% | 20.9% | 4.1% | | 62110 | 2008 | Predicted | 10.0% | 3.1% | 6.8% | 22.7% | 41.3% | 10.1% | 6.0% | | | | Original | 13.4% | 3.3% | 7.7% | 26.9% | 35.6% | 8.9% | 4.3% | ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
niksmer/ManiBERT
niksmer
2022-03-24T09:03:13Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit metrics: - accuracy - precision - recall model-index: - name: ManiBERT results: [] widget: - text: "Russia must end the war." - text: "Democratic institutions must be supported." - text: "The state must fight political corruption." - text: "Our energy economy must be nationalised." - text: "We must increase social spending." --- # ManiBERT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on data from the [Manifesto Project](https://manifesto-project.wzb.eu/). ## Model description This model was trained on 115,943 manually annotated sentences to classify text into one of 56 political categories: ## Intended uses & limitations The model output reproduces the limitations of the dataset in terms of country coverage, time span, domain definitions and potential biases of the annotators - as any supervised machine learning model would. Applying the model to other types of data (other types of texts, countries etc.) will reduce performance. ```python from transformers import pipeline import pandas as pd classifier = pipeline( task="text-classification", model="niksmer/ManiBERT") # Load text data you want to classify text = pd.read_csv("example.csv")["text_you_want_to_classify"].to_list() # Inference output = classifier(text) # Print output pd.DataFrame(output).head() ``` ## Train Data ManiBERT was trained on the English-speaking subset of the [Manifesto Project Dataset (MPDS2021a)](https://manifesto-project.wzb.eu/datasets). The model was trained on 115,943 sentences from 163 political manifestos in 7 English-speaking countries (Australia, Canada, Ireland, New Zealand, South Africa, United Kingdom, United States). The manifestos were published between 1992 - 2020. | Country | Count manifestos | Count sentences | Time span | |----------------|------------------|-----------------|--------------------| | Australia | 18 | 14,887 | 2010-2016 | | Ireland | 23 | 24,966 | 2007-2016 | | Canada | 14 | 12,344 | 2004-2008 & 2015 | | New Zealand | 46 | 35,079 | 1993-2017 | | South Africa | 29 | 13,334 | 1994-2019 | | USA | 9 | 13,188 | 1992 & 2004-2020 | | United Kingdom | 34 | 30,936 | 1997-2019 | Canadian manifestos between 2004 and 2008 are used as test data. The resulting Datasets are higly (!) imbalanced. See Evaluation. ## Evaluation | Description | Label | Count Train Data | Count Validation Data | Count Test Data | Validation F1-Score | Test F1-Score | |-------------------------------------------------------------------|-------|------------------|-----------------------|-----------------|---------------------|---------------| | Foreign Special Relationships: Positive | 0 | 545 | 96 | 60 | 0.43 | 0.45 | | Foreign Special Relationships: Negative | 1 | 66 | 14 | 22 | 0.22 | 0.09 | | Anti-Imperialism | 2 | 93 | 16 | 1 | 0.16 | 0.00 | | Military: Positive | 3 | 1,969 | 356 | 159 | 0.69 | 0.63 | | Military: Negative | 4 | 489 | 89 | 52 | 0.59 | 0.63 | | Peace | 5 | 418 | 80 | 49 | 0.57 | 0.64 | | Internationalism: Positive | 6 | 2,401 | 417 | 404 | 0.60 | 0.54 | | European Community/Union or Latin America Integration: Positive | 7 | 930 | 156 | 20 | 0.58 | 0.32 | | Internationalism: Negative | 8 | 209 | 40 | 57 | 0.28 | 0.05 | | European Community/Union or Latin America Integration: Negative | 9 | 520 | 81 | 0 | 0.39 | - | | Freedom and Human Rights | 10 | 2,196 | 389 | 76 | 0.50 | 0.34 | | Democracy | 11 | 3,045 | 534 | 206 | 0.53 | 0.51 | | Constitutionalism: Positive | 12 | 259 | 48 | 12 | 0.34 | 0.22 | | Constitutionalism: Negative | 13 | 380 | 72 | 2 | 0.34 | 0.00 | | Decentralisation: Positive | 14 | 2,791 | 481 | 331 | 0.49 | 0.45 | | Centralisation: Positive | 15 | 150 | 33 | 71 | 0.11 | 0.00 | | Governmental and Administrative Efficiency | 16 | 3,905 | 711 | 105 | 0.50 | 0.32 | | Political Corruption | 17 | 900 | 186 | 234 | 0.59 | 0.55 | | Political Authority | 18 | 3,488 | 627 | 300 | 0.51 | 0.39 | | Free Market Economy | 19 | 1,768 | 309 | 53 | 0.40 | 0.16 | | Incentives: Positive | 20 | 3,100 | 544 | 81 | 0.52 | 0.28 | | Market Regulation | 21 | 3,562 | 616 | 210 | 0.50 | 0.36 | | Economic Planning | 22 | 533 | 93 | 67 | 0.31 | 0.12 | | Corporatism/ Mixed Economy | 23 | 193 | 32 | 23 | 0.28 | 0.33 | | Protectionism: Positive | 24 | 633 | 103 | 180 | 0.44 | 0.22 | | Protectionism: Negative | 25 | 723 | 118 | 149 | 0.52 | 0.40 | | Economic Goals | 26 | 817 | 139 | 148 | 0.05 | 0.00 | | Keynesian Demand Management | 27 | 160 | 25 | 9 | 0.00 | 0.00 | | Economic Growth: Positive | 28 | 3,142 | 607 | 374 | 0.53 | 0.30 | | Technology and Infrastructure: Positive | 29 | 8,643 | 1,529 | 339 | 0.71 | 0.56 | | Controlled Economy | 30 | 567 | 96 | 94 | 0.47 | 0.16 | | Nationalisation | 31 | 832 | 157 | 27 | 0.56 | 0.16 | | Economic Orthodoxy | 32 | 1,721 | 287 | 184 | 0.55 | 0.48 | | Marxist Analysis: Positive | 33 | 148 | 33 | 0 | 0.20 | - | | Anti-Growth Economy and Sustainability | 34 | 2,676 | 452 | 250 | 0.43 | 0.33 | | Environmental Protection | 35 | 6,731 | 1,163 | 934 | 0.70 | 0.67 | | Culture: Positive | 36 | 2,082 | 358 | 92 | 0.69 | 0.56 | | Equality: Positive | 37 | 6,630 | 1,126 | 361 | 0.57 | 0.43 | | Welfare State Expansion | 38 | 13,486 | 2,405 | 990 | 0.72 | 0.61 | | Welfare State Limitation | 39 | 926 | 151 | 2 | 0.45 | 0.00 | | Education Expansion | 40 | 7,191 | 1,324 | 274 | 0.78 | 0.63 | | Education Limitation | 41 | 154 | 27 | 1 | 0.17 | 0.00 | | National Way of Life: Positive | 42 | 2,105 | 385 | 395 | 0.48 | 0.34 | | National Way of Life: Negative | 43 | 743 | 147 | 2 | 0.27 | 0.00 | | Traditional Morality: Positive | 44 | 1,375 | 234 | 19 | 0.55 | 0.14 | | Traditional Morality: Negative | 45 | 291 | 54 | 38 | 0.30 | 0.23 | | Law and Order | 46 | 5,582 | 949 | 381 | 0.72 | 0.71 | | Civic Mindedness: Positive | 47 | 1,348 | 229 | 27 | 0.45 | 0.28 | | Multiculturalism: Positive | 48 | 2,006 | 355 | 71 | 0.61 | 0.35 | | Multiculturalism: Negative | 49 | 144 | 31 | 7 | 0.33 | 0.00 | | Labour Groups: Positive | 50 | 3,856 | 707 | 57 | 0.64 | 0.14 | | Labour Groups: Negative | 51 | 208 | 35 | 0 | 0.44 | - | | Agriculture and Farmers | 52 | 2,996 | 490 | 130 | 0.67 | 0.56 | | Middle Class and Professional Groups | 53 | 271 | 38 | 12 | 0.38 | 0.40 | | Underprivileged Minority Groups | 54 | 1,417 | 252 | 82 | 0.34 | 0.33 | | Non-economic Demographic Groups | 55 | 2,429 | 435 | 106 | 0.42 | 0.24 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ``` training_args = TrainingArguments( warmup_ratio=0.05, weight_decay=0.1, learning_rate=5e-05, fp16 = True, evaluation_strategy="epoch", num_train_epochs=5, per_device_train_batch_size=16, overwrite_output_dir=True, per_device_eval_batch_size=16, save_strategy="no", logging_dir='logs', logging_strategy= 'steps', logging_steps=10, push_to_hub=True, hub_strategy="end") ``` ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-micro | F1-macro | F1-weighted | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:-----------:|:---------:|:------:| | 1.7638 | 1.0 | 1812 | 1.6471 | 0.5531 | 0.5531 | 0.3354 | 0.5368 | 0.5531 | 0.5531 | | 1.4501 | 2.0 | 3624 | 1.5167 | 0.5807 | 0.5807 | 0.3921 | 0.5655 | 0.5807 | 0.5807 | | 1.0638 | 3.0 | 5436 | 1.5017 | 0.5893 | 0.5893 | 0.4240 | 0.5789 | 0.5893 | 0.5893 | | 0.9263 | 4.0 | 7248 | 1.5173 | 0.5975 | 0.5975 | 0.4499 | 0.5901 | 0.5975 | 0.5975 | | 0.7859 | 5.0 | 9060 | 1.5574 | 0.5978 | 0.5978 | 0.4564 | 0.5903 | 0.5978 | 0.5978 | ### Overall evaluation | Type | Micro F1-Score | Macro F1-Score | Weighted F1-Score | |----------------|----------------|----------------|-------------------| | Validation | 0.60 | 0.46 | 0.59 | | Test | 0.48 | 0.30 | 0.47 | ### Evaluation based on saliency theory Saliency theory is a theory to analyse politial text data. In sum, parties tend to write about policies in which they think that they are seen as competent. Voters tend to assign advantages in policy competence in line to the assumed ideology of parties. Therefore you can analyze the share of policies parties tend to write about in their manifestos to analyze the party ideology. The Manifesto Project presented for such an analysis the rile-index. For a quick overview, check [this](https://manifesto-project.wzb.eu/down/tutorials/main-dataset.html#measuring-parties-left-right-positions). In the following plot, the predicted and original rile-indices are shown per manifesto in the test dataset. Overall the pearson correlation between the predicted and original rile-indices is 0.95. As alternative, you can use [RoBERTa-RILE](https://huggingface.co/niksmer/RoBERTa-RILE). ![image](english_manibert_manifesto.png) ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
tartuNLP/liv4ever-hugging-mt
tartuNLP
2022-03-24T07:33:01Z
5
0
transformers
[ "transformers", "pytorch", "fsmt", "text2text-generation", "translation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-24T01:38:25Z
--- license: apache-2.0 tags: - translation widget: - text: "<2li> Let us generate some Livonian text!" ---
enimai/mt5-mustc-fr
enimai
2022-03-24T07:30:36Z
7
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-24T06:59:25Z
--- license: apache-2.0 ---
tiennvcs/distilbert-base-uncased-finetuned-ner
tiennvcs
2022-03-24T07:29:26Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-24T07:17:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9264836138175376 - name: Recall type: recall value: 0.9361226087929299 - name: F1 type: f1 value: 0.9312781703856213 - name: Accuracy type: accuracy value: 0.9836529143565221 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0616 - Precision: 0.9265 - Recall: 0.9361 - F1: 0.9313 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2437 | 1.0 | 878 | 0.0745 | 0.9144 | 0.9173 | 0.9158 | 0.9799 | | 0.0518 | 2.0 | 1756 | 0.0621 | 0.9177 | 0.9353 | 0.9264 | 0.9826 | | 0.03 | 3.0 | 2634 | 0.0616 | 0.9265 | 0.9361 | 0.9313 | 0.9837 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.11.6
Prototypeu/bart-base-finetuned-tldrhq-cnn-dailymail
Prototypeu
2022-03-24T05:13:18Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "bart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-22T18:11:10Z
--- tags: - generated_from_keras_callback model-index: - name: Prototypeu/bart-base-finetuned-tldrhq-cnn-dailymail results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Prototypeu/bart-base-finetuned-tldrhq-cnn-dailymail This model is a fine-tuned version of [Prototypeu/bart-base-finetuned-xsum](https://huggingface.co/Prototypeu/bart-base-finetuned-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.5049 - Train Logits Loss: 1.5049 - Train Rouge1: 28.1795 - Train Rouge2: 14.0392 - Train Rougel: 23.7617 - Train Rougelsum: 26.5583 - Train Gen Len: 19.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 3e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 255113, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 32000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.98, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Logits Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:-----------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.9074 | 2.9074 | 26.9164 | 12.6984 | 22.4321 | 25.2287 | 19.0 | 0 | | 1.9368 | 1.9368 | 28.0165 | 13.8906 | 23.4187 | 26.3779 | 19.0 | 1 | | 1.7246 | 1.7246 | 27.6022 | 13.5255 | 23.2301 | 25.9923 | 19.0 | 2 | | 1.5945 | 1.5945 | 28.0347 | 13.7045 | 23.4851 | 26.3488 | 19.0 | 3 | | 1.5049 | 1.5049 | 28.1795 | 14.0392 | 23.7617 | 26.5583 | 19.0 | 4 | ### Framework versions - Transformers 4.17.0 - TensorFlow 2.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
quincyqiang/chinese-roberta-wwm-ext
quincyqiang
2022-03-24T04:58:07Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:52:35Z
--- license: apache-2.0 ---
Yaxin/xlm-roberta-base-yelp-mlm
Yaxin
2022-03-24T04:44:37Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "dataset:yelp_review_full", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-24T04:10:58Z
--- license: mit tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: xlm-roberta-base-yelp-mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: yelp_review_full yelp_review_full type: yelp_review_full args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.7356223359340127 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-yelp-mlm This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the yelp_review_full yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1743 - Accuracy: 0.7356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.3 - Tokenizers 0.11.0
FuriouslyAsleep/unhappyZebra100
FuriouslyAsleep
2022-03-24T04:39:04Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:FuriouslyAsleep/autotrain-data-techDataClassifeier", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T04:38:22Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - FuriouslyAsleep/autotrain-data-techDataClassifeier co2_eq_emissions: 0.6969569001670619 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 664919631 - CO2 Emissions (in grams): 0.6969569001670619 ## Validation Metrics - Loss: 0.022509008646011353 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - AUC: 1.0 - F1: 1.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/FuriouslyAsleep/autotrain-techDataClassifeier-664919631 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("FuriouslyAsleep/autotrain-techDataClassifeier-664919631", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/btohtoh-willitbetoomuch
huggingtweets
2022-03-24T02:06:47Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T01:50:00Z
--- language: en thumbnail: http://www.huggingtweets.com/btohtoh-willitbetoomuch/1648087519902/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506402743296020484/X79Yfcx5_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488467916198539265/3pTy_Kr3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BToh & unloading</div> <div style="text-align: center; font-size: 14px;">@btohtoh-willitbetoomuch</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BToh & unloading. | Data | BToh | unloading | | --- | --- | --- | | Tweets downloaded | 3241 | 85 | | Retweets | 347 | 0 | | Short tweets | 480 | 3 | | Tweets kept | 2414 | 82 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2d3flykp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @btohtoh-willitbetoomuch's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lp51jew) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lp51jew/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/btohtoh-willitbetoomuch') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Waynehillsdev/Wayne_NLP_mT5
Waynehillsdev
2022-03-24T02:02:30Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: Wayne_NLP_mT5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wayne_NLP_mT5 This model was trained only english datasets. if you want trained korean + english model go to wayne_mulang_mT5. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0a0+3fd9dcf - Datasets 1.18.3 - Tokenizers 0.11.0
espnet/chai_microsoft_indian_langs_te
espnet
2022-03-24T00:36:45Z
0
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "te", "dataset:microsoft_indian_languages_interspeech2018", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-23T23:36:26Z
--- tags: - espnet - audio - automatic-speech-recognition language: te datasets: - microsoft_indian_languages_interspeech2018 license: cc-by-4.0 --- ## ESPnet2 model ### `` This model was trained by Chaitanya Narisetty using recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd egs2/ms_indic_is18/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/chai_microsoft_indian_langs_te ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Mar 22 13:38:24 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1+cu111` - Git hash: `f91410f712d1287cd6809c5bf26b54c5a40fe314` - Commit date: `Mon Mar 14 22:32:17 2022 -0400` ## asr_train_asr_xlsr53_conformer_raw_te_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.5|2.5|2.4|24.4|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.4|2.6|2.4|24.4|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|28413|78.0|19.5|2.6|2.5|24.5|79.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.2|2.2|1.6|6.1|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.2|2.2|1.6|6.0|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|229419|95.6|2.1|2.2|1.6|6.0|79.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|146657|92.7|4.7|2.6|1.6|8.9|80.1| |decode_transformer5_lm_lm_train_lm_rnn_te_bpe150_valid.loss.best_asr_model_valid.acc.ave/test_te|3040|146657|92.8|4.7|2.6|1.6|8.9|79.7| |decode_transformer5_lm_lm_train_lm_transformer_te_bpe150_valid.loss.ave_asr_model_valid.acc.ave/test_te|3040|146657|92.8|4.6|2.6|1.6|8.9|79.9| ## config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_xlsr53_conformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_xlsr53_conformer_raw_te_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 64 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_te_bpe150_sp_ssl/train/speech_shape - exp/asr_stats_raw_te_bpe150_sp_ssl/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_te_bpe150_sp_ssl/valid/speech_shape - exp/asr_stats_raw_te_bpe150_sp_ssl/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_te_sp/wav.scp - speech - sound - - dump/raw/train_te_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_te/wav.scp - speech - sound - - dump/raw/dev_te/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0005 scheduler: warmuplr scheduler_conf: warmup_steps: 30000 token_list: - <blank> - <unk> - ా - ు - ి - ం - ే - వ - న - ల - ▁అ - క - ్ - ో - మ - ▁ - త - ర - ప - ీ - ▁మ - య - డ - ▁ప - ద - ని - గ - ▁వ - స - కు - ె - ర్ - ▁స - ▁క - ్య - న్న - ట - ▁చ - ▁త - ాల - ంట - ూ - శ - ంద - ార - ▁న - ారు - ▁ఉ - లు - ▁ఆ - ను - జ - రి - ▁ప్ర - ించ - ధ - ై - హ - ంది - ్ర - ▁ఇ - చ - రు - స్త - లో - ▁ద - డు - ▁ఎ - ▁వి - ల్ల - ణ - గా - ది - డి - న్నారు - దు - ిన - ▁ర - త్ - ొ - ▁గ - ంత - ంగా - ▁కా - బ - ▁జ - ష - ▁తెల - ులు - ▁ఏ - ట్ట - చ్చ - తి - నే - కి - ంలో - ▁అవును - ▁చెప్ప - భ - ▁ఈ - ప్ప - ▁ని - ▁రా - క్క - ▁బ - ట్ల - ▁భ - తో - ▁కూడా - ▁బా - ద్ద - ▁చేస - ▁లే - ాయి - ానికి - త్ర - ▁కొ - ఖ - ▁ఒక - ▁చాలా - క్ష - ళ - ▁చేస్త - ృ - థ - ఘ - ఫ - ఓ - ౌ - ఒ - ఐ - ఠ - ఢ - అ - ఉ - ఏ - ఈ - ౦ - ఇ - ః - ఋ - ఝ - ఔ - ఛ - ఞ - ఊ - ఎ - ఆ - ఙ - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false use_preprocessor: true token_type: bpe bpemodel: data/te_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: fused frontend_conf: frontends: - frontend_type: default n_fft: 512 win_length: 400 hop_length: 160 - frontend_type: s3prl frontend_conf: upstream: wav2vec2_xlsr download_dir: ./hub multilayer_feature: true align_method: linear_projection proj_dim: 200 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} preencoder: linear preencoder_conf: input_size: 400 output_size: 100 encoder: conformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/russian_commonvoice_blstm
espnet
2022-03-24T00:02:17Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "ru", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-23T23:59:42Z
--- tags: - espnet - audio - automatic-speech-recognition language: ru datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/russian_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout fa1b865352475b744c37f70440de1cc6b257ba70 pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/russian_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Mar 23 19:56:59 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `fa1b865352475b744c37f70440de1cc6b257ba70` - Commit date: `Wed Feb 16 16:42:36 2022 -0500` ## asr_blstm_specaug_num_time_mask_2_lr_0.1 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|71189|79.3|18.4|2.4|2.1|22.8|71.1| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|537025|95.0|3.0|2.0|1.1|6.1|71.1| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ru|7307|399162|93.2|4.5|2.3|1.4|8.2|71.1| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_blstm_specaug_num_time_mask_2_lr_0.1 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_ru_bpe150_sp/train/speech_shape - exp/asr_stats_raw_ru_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_ru_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_ru_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_ru_sp/wav.scp - speech - sound - - dump/raw/train_ru_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_ru/wav.scp - speech - sound - - dump/raw/dev_ru/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - е - о - и - с - м - а - в - н - д - т - у - . - я - ы - л - й - з - п - к - но - ',' - ▁в - ра - б - ж - ю - г - го - ▁по - ▁с - ни - ч - х - р - ко - ре - ш - ли - ть - ▁на - ль - ва - ер - ▁и - ет - ст - ро - на - ла - ле - ь - ен - то - ло - да - ка - ▁не - ств - ти - ци - ся - ▁за - ▁про - че - ем - ру - же - та - ▁при - ▁со - ▁это - ри - ф - ки - бо - ц - ▁С - ста - ения - щ - сти - э - К - О - А - И - '-' - Т - Я - Б - Д - М - '?' - – - Г - — - '!' - У - ъ - '"' - » - ё - Ф - ':' - Х - Ю - F - ; - O - I - E - R - − - В - С - '''' - П - C - L - A - ‐ - H - T - G - S - ( - ) - B - K - P - Z - M - Й - X - Ц - Ж - Ч - Ш - « - З - Л - Е - Р - Э - N - Н - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/ru_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_ru_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
public-data/dlib_face_landmark_model
public-data
2022-03-23T22:54:12Z
0
0
null
[ "region:us" ]
null
2022-03-23T22:52:02Z
# dlib face landmark model - http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
radev/xlm-roberta-base-finetuned-panx-de
radev
2022-03-23T22:27:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-16T22:11:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8593216480764853 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1345 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 263 | 0.1807 | 0.8065 | | 0.2218 | 2.0 | 526 | 0.1365 | 0.8485 | | 0.2218 | 3.0 | 789 | 0.1345 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
ydshieh/roberta-large-ner-english
ydshieh
2022-03-23T22:24:57Z
36
2
transformers
[ "transformers", "tf", "roberta", "token-classification", "en", "dataset:conll2003", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-23T22:13:16Z
--- language: en datasets: - conll2003 widget: - text: "My name is jean-baptiste and I live in montreal" - text: "My name is clara and I live in berkeley, california." - text: "My name is wolfgang and I live in berlin" --- # roberta-large-ner-english: model fine-tuned from roberta-large for NER task ## Introduction [roberta-large-ner-english] is an english NER model that was fine-tuned from roberta-large on conll2003 dataset. Model was validated on emails/chat data and outperformed other models on this type of data specifically. In particular the model seems to work better on entity that don't start with an upper case. ## Training data Training data was classified as follow: Abbreviation|Description -|- O |Outside of a named entity MISC |Miscellaneous entity PER |Person’s name ORG |Organization LOC |Location In order to simplify, the prefix B- or I- from original conll2003 was removed. I used the train and test dataset from original conll2003 for training and the "validation" dataset for validation. This resulted in a dataset of size: Train | Validation -|- 17494 | 3250 ## How to use camembert-ner with HuggingFace ##### Load camembert-ner and its sub-word tokenizer : ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english") model = AutoModelForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english") ##### Process text sample (from wikipedia) from transformers import pipeline nlp = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") nlp("Apple was founded in 1976 by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple I personal computer") [{'entity_group': 'ORG', 'score': 0.99381506, 'word': ' Apple', 'start': 0, 'end': 5}, {'entity_group': 'PER', 'score': 0.99970853, 'word': ' Steve Jobs', 'start': 29, 'end': 39}, {'entity_group': 'PER', 'score': 0.99981767, 'word': ' Steve Wozniak', 'start': 41, 'end': 54}, {'entity_group': 'PER', 'score': 0.99956465, 'word': ' Ronald Wayne', 'start': 59, 'end': 71}, {'entity_group': 'PER', 'score': 0.9997918, 'word': ' Wozniak', 'start': 92, 'end': 99}, {'entity_group': 'MISC', 'score': 0.99956393, 'word': ' Apple I', 'start': 102, 'end': 109}] ``` ## Model performances Model performances computed on conll2003 validation dataset (computed on the tokens predictions) entity|precision|recall|f1 -|-|-|- PER|0.9914|0.9927|0.9920 ORG|0.9627|0.9661|0.9644 LOC|0.9795|0.9862|0.9828 MISC|0.9292|0.9262|0.9277 Overall|0.9740|0.9766|0.9753 On private dataset (email, chat, informal discussion), computed on word predictions: entity|precision|recall|f1 -|-|-|- PER|0.8823|0.9116|0.8967 ORG|0.7694|0.7292|0.7487 LOC|0.8619|0.7768|0.8171 By comparison on the same private dataset, Spacy (en_core_web_trf-3.2.0) was giving: entity|precision|recall|f1 -|-|-|- PER|0.9146|0.8287|0.8695 ORG|0.7655|0.6437|0.6993 LOC|0.8727|0.6180|0.7236
BigSalmon/InformalToFormalLincoln30
BigSalmon
2022-03-23T20:51:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T20:36:45Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln30") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln30") ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. Text: failing to draw in the masses, the NBA has fallen into disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap solutions could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` infill: chrome extensions [MASK] accomplish everyday tasks. Translated into the Style of Abraham Lincoln: chrome extensions ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks. infill: at a time when nintendo has become inflexible, [MASK] consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly [MASK] on / firmly set on / unyielding in its insistence on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices. infill: ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - declining viewership facing the nba. - does not have to be this way. - in fact, many solutions exist. - the four point line would surely draw in eyes. text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
pere/test-t5-small
pere
2022-03-23T20:39:40Z
5
1
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-20T12:17:29Z
--- language: - en - fr - ro - de datasets: - c4 tags: - summarization - translation license: apache-2.0 --- ## Test T5 small conversion This is a test repo for the conversion of T5X to HuggingFace Flax. The current model is first converted from MTF to T5X using the conversion script included in the T5X library: ```bash python3 -m t5x.scripts.convert_tf_checkpoint --gin_file=t5x/examples/t5/t5_1_0/small.gin --gin.convert_checkpoint.model=%MODEL --gin.convert_checkpoint.tf_checkpoint_path=\"gs://t5-data/pretrained_models/small/model.ckpt-1000000\" --gin.convert_checkpoint.output_dir=\"/tmp/t5x_checkpoints/t5_small\" --logtostderr ``` After creating the T5X model, the model is converted to Huggingface Flax by a modified version of the script from @stefan-it (https://gist.githubusercontent.com/stefan-it/30e4998ef159f33696e377a46f699d9f/raw/c19da5d067dc9d31d0b8115a79e8626186e11daa/convert_t5x_checkpoint_to_flax.py). The modified version is included in this repo. The modification is basically that the wi_0 and wi_1 layers are combined into wi. This might be a difference between t5_1_0 and t5_1_1 ```bash python3 convert_t5_checkpoint_to_flax.py --t5x_checkpoint_path /tmp/t5x_checkpoints/t5_small/checkpoint_1000000/ --flax_dump_folder_path /tmp/flax_dump_folder/ --config_name t5-small ``` The tokenizer.json was copied from https://huggingface.co/t5-small/blob/main/tokenizer.json. To be able to use the widgets in HuggingFace, the model was converted to pyTorch by running: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True) model.save_pretrained(".") ```
huggingtweets/ryiacy
huggingtweets
2022-03-23T19:51:46Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:28:42Z
--- language: en thumbnail: http://www.huggingtweets.com/ryiacy/1648065062687/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1424813722011410434/73S-oYNT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">cyriac</div> <div style="text-align: center; font-size: 14px;">@ryiacy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from cyriac. | Data | cyriac | | --- | --- | | Tweets downloaded | 1050 | | Retweets | 32 | | Short tweets | 60 | | Tweets kept | 958 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26de85bt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ryiacy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2p7goxic/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ryiacy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/MASKGPT2
BigSalmon
2022-03-23T19:26:53Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T19:20:45Z
``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ```
gayanin/bart-med-term-conditional-masking
gayanin
2022-03-23T19:06:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-23T14:24:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-med-term-conditional-masking results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-med-term-conditional-masking This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5115 - Rouge2 Precision: 0.7409 - Rouge2 Recall: 0.5343 - Rouge2 Fmeasure: 0.6025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6278 | 1.0 | 15827 | 0.5546 | 0.7255 | 0.5244 | 0.5908 | | 0.5356 | 2.0 | 31654 | 0.5286 | 0.7333 | 0.5293 | 0.5966 | | 0.4757 | 3.0 | 47481 | 0.5154 | 0.7376 | 0.532 | 0.5998 | | 0.4337 | 4.0 | 63308 | 0.5107 | 0.7406 | 0.5342 | 0.6023 | | 0.4045 | 5.0 | 79135 | 0.5115 | 0.7409 | 0.5343 | 0.6025 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/eigenrobot-moridinamael
huggingtweets
2022-03-23T18:42:22Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:37:05Z
--- language: en thumbnail: http://www.huggingtweets.com/eigenrobot-moridinamael/1648060937936/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/615582548010229761/0zg9awKn_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1492994204758278144/rDnqNReU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Twisted Mentat Matt & eigenrobot</div> <div style="text-align: center; font-size: 14px;">@eigenrobot-moridinamael</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Twisted Mentat Matt & eigenrobot. | Data | Twisted Mentat Matt | eigenrobot | | --- | --- | --- | | Tweets downloaded | 3145 | 3247 | | Retweets | 1670 | 119 | | Short tweets | 230 | 651 | | Tweets kept | 1245 | 2477 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3njfftkj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eigenrobot-moridinamael's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1nbxxa8l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1nbxxa8l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eigenrobot-moridinamael') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Zohar/distilgpt2-finetuned-hotel-reviews
Zohar
2022-03-23T18:42:18Z
4
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T17:17:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-hotel-reviews results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-hotel-reviews This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7533 | 1.0 | 1259 | 3.6803 | | 3.6644 | 2.0 | 2518 | 3.6366 | | 3.6426 | 3.0 | 3777 | 3.6253 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
DrishtiSharma
2022-03-23T18:35:27Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - rm-sursilv license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-xls-r-300m-rm-sursilv-d11 results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice 8 args: rm-sursilv metrics: - type: wer value: 0.24094169578811844 name: Test WER - name: Test CER type: cer value: 0.049832791672554284 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: rm-sursilv metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 - Wer: 0.2415 #### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 125.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 | | 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 | | 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 | | 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 | | 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 | | 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 | | 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2
DrishtiSharma
2022-03-23T18:35:22Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - sl datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-sl-with-LM-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 0.21695212999560826 - name: Test CER type: cer value: 0.052850080572474256 - name: Test WER (+LM) type: wer value: 0.14551310203484116 - name: Test CER (+LM) type: cer value: 0.03927566711277415 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Dev WER type: wer value: 0.560722380639029 - name: Dev CER type: cer value: 0.2279626093074681 - name: Dev WER (+LM) type: wer value: 0.46486802661402354 - name: Dev CER (+LM) type: cer value: 0.21105136194592422 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 46.69 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2401 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sl-with-LM-v2 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.9294 | 6.1 | 500 | 2.9712 | 1.0 | | 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 | | 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 | | 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 | | 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 | | 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 | | 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 | | 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 | | 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 | | 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 | | 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 | | 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 | | 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 | | 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 | | 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 | | 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
AndrewMcDowell/wav2vec2-xls-r-300m-german-de
AndrewMcDowell
2022-03-23T18:35:11Z
36
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: de metrics: - name: Test WER type: wer value: 20.16 - name: Test CER type: cer value: 5.06 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Test WER type: wer value: 39.79 - name: Test CER type: cer value: 15.02 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 47.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. eval results: WER: 0.20161578657865786 CER: 0.05062357805269733 --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.1768 - Wer: 0.2016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.7531 | 0.04 | 500 | 5.4564 | 1.0 | | 2.9882 | 0.08 | 1000 | 3.0041 | 1.0 | | 2.1953 | 0.13 | 1500 | 1.1723 | 0.7121 | | 1.2406 | 0.17 | 2000 | 0.3656 | 0.3623 | | 1.1294 | 0.21 | 2500 | 0.2843 | 0.2926 | | 1.0731 | 0.25 | 3000 | 0.2554 | 0.2664 | | 1.051 | 0.3 | 3500 | 0.2387 | 0.2535 | | 1.0479 | 0.34 | 4000 | 0.2345 | 0.2512 | | 1.0026 | 0.38 | 4500 | 0.2270 | 0.2452 | | 0.9921 | 0.42 | 5000 | 0.2212 | 0.2353 | | 0.9839 | 0.47 | 5500 | 0.2141 | 0.2330 | | 0.9907 | 0.51 | 6000 | 0.2122 | 0.2334 | | 0.9788 | 0.55 | 6500 | 0.2114 | 0.2270 | | 0.9687 | 0.59 | 7000 | 0.2066 | 0.2323 | | 0.9777 | 0.64 | 7500 | 0.2033 | 0.2237 | | 0.9476 | 0.68 | 8000 | 0.2020 | 0.2194 | | 0.9625 | 0.72 | 8500 | 0.1977 | 0.2191 | | 0.9497 | 0.76 | 9000 | 0.1976 | 0.2175 | | 0.9781 | 0.81 | 9500 | 0.1956 | 0.2159 | | 0.9552 | 0.85 | 10000 | 0.1958 | 0.2191 | | 0.9345 | 0.89 | 10500 | 0.1964 | 0.2158 | | 0.9528 | 0.93 | 11000 | 0.1926 | 0.2154 | | 0.9502 | 0.98 | 11500 | 0.1953 | 0.2149 | | 0.9358 | 1.02 | 12000 | 0.1927 | 0.2167 | | 0.941 | 1.06 | 12500 | 0.1901 | 0.2115 | | 0.9287 | 1.1 | 13000 | 0.1936 | 0.2090 | | 0.9491 | 1.15 | 13500 | 0.1900 | 0.2104 | | 0.9478 | 1.19 | 14000 | 0.1931 | 0.2120 | | 0.946 | 1.23 | 14500 | 0.1914 | 0.2134 | | 0.9499 | 1.27 | 15000 | 0.1931 | 0.2173 | | 0.9346 | 1.32 | 15500 | 0.1913 | 0.2105 | | 0.9509 | 1.36 | 16000 | 0.1902 | 0.2137 | | 0.9294 | 1.4 | 16500 | 0.1895 | 0.2086 | | 0.9418 | 1.44 | 17000 | 0.1913 | 0.2183 | | 0.9302 | 1.49 | 17500 | 0.1884 | 0.2114 | | 0.9418 | 1.53 | 18000 | 0.1894 | 0.2108 | | 0.9363 | 1.57 | 18500 | 0.1886 | 0.2132 | | 0.9338 | 1.61 | 19000 | 0.1856 | 0.2078 | | 0.9185 | 1.66 | 19500 | 0.1852 | 0.2056 | | 0.9216 | 1.7 | 20000 | 0.1874 | 0.2095 | | 0.9176 | 1.74 | 20500 | 0.1873 | 0.2078 | | 0.9288 | 1.78 | 21000 | 0.1865 | 0.2097 | | 0.9278 | 1.83 | 21500 | 0.1869 | 0.2100 | | 0.9295 | 1.87 | 22000 | 0.1878 | 0.2095 | | 0.9221 | 1.91 | 22500 | 0.1852 | 0.2121 | | 0.924 | 1.95 | 23000 | 0.1855 | 0.2042 | | 0.9104 | 2.0 | 23500 | 0.1858 | 0.2105 | | 0.9284 | 2.04 | 24000 | 0.1850 | 0.2080 | | 0.9162 | 2.08 | 24500 | 0.1839 | 0.2045 | | 0.9111 | 2.12 | 25000 | 0.1838 | 0.2080 | | 0.91 | 2.17 | 25500 | 0.1889 | 0.2106 | | 0.9152 | 2.21 | 26000 | 0.1856 | 0.2026 | | 0.9209 | 2.25 | 26500 | 0.1891 | 0.2133 | | 0.9094 | 2.29 | 27000 | 0.1857 | 0.2089 | | 0.9065 | 2.34 | 27500 | 0.1840 | 0.2052 | | 0.9156 | 2.38 | 28000 | 0.1833 | 0.2062 | | 0.8986 | 2.42 | 28500 | 0.1789 | 0.2001 | | 0.9045 | 2.46 | 29000 | 0.1769 | 0.2022 | | 0.9039 | 2.51 | 29500 | 0.1819 | 0.2073 | | 0.9145 | 2.55 | 30000 | 0.1828 | 0.2063 | | 0.9081 | 2.59 | 30500 | 0.1811 | 0.2049 | | 0.9252 | 2.63 | 31000 | 0.1833 | 0.2086 | | 0.8957 | 2.68 | 31500 | 0.1795 | 0.2083 | | 0.891 | 2.72 | 32000 | 0.1809 | 0.2058 | | 0.9023 | 2.76 | 32500 | 0.1812 | 0.2061 | | 0.8918 | 2.8 | 33000 | 0.1775 | 0.1997 | | 0.8852 | 2.85 | 33500 | 0.1790 | 0.1997 | | 0.8928 | 2.89 | 34000 | 0.1767 | 0.2013 | | 0.9079 | 2.93 | 34500 | 0.1735 | 0.1986 | | 0.9032 | 2.97 | 35000 | 0.1793 | 0.2024 | | 0.9018 | 3.02 | 35500 | 0.1778 | 0.2027 | | 0.8846 | 3.06 | 36000 | 0.1776 | 0.2046 | | 0.8848 | 3.1 | 36500 | 0.1812 | 0.2064 | | 0.9062 | 3.14 | 37000 | 0.1800 | 0.2018 | | 0.9011 | 3.19 | 37500 | 0.1783 | 0.2049 | | 0.8996 | 3.23 | 38000 | 0.1810 | 0.2036 | | 0.893 | 3.27 | 38500 | 0.1805 | 0.2056 | | 0.897 | 3.31 | 39000 | 0.1773 | 0.2035 | | 0.8992 | 3.36 | 39500 | 0.1804 | 0.2054 | | 0.8987 | 3.4 | 40000 | 0.1768 | 0.2016 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset mozilla-foundation/common_voice_7_0 --config de --split test --log_outputs ``` 2. To evaluate on test dev data ```bash python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-german-de --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ```
Akashpb13/Hausa_xlsr
Akashpb13
2022-03-23T18:35:09Z
53
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "ha", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - ha license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - ha - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: Akashpb13/Hausa_xlsr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ha metrics: - name: Test WER type: wer value: 0.20614541257934219 - name: Test CER type: cer value: 0.04358048053214061 --- # Akashpb13/Hausa_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.275118 - Wer: 0.329955 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv, dev.tsv, invalidated.tsv, reported.tsv and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.175900 | 2.750914 | 1.000000 | | 1000 | 1.028700 | 0.338649 | 0.497999 | | 1500 | 0.332200 | 0.246896 | 0.402241 | | 2000 | 0.227300 | 0.239640 | 0.395839 | | 2500 | 0.175000 | 0.239577 | 0.373966 | | 3000 | 0.140400 | 0.243272 | 0.356095 | | 3500 | 0.119200 | 0.263761 | 0.365164 | | 4000 | 0.099300 | 0.265954 | 0.353428 | | 4500 | 0.084400 | 0.276367 | 0.349693 | | 5000 | 0.073700 | 0.282631 | 0.343825 | | 5500 | 0.068000 | 0.282344 | 0.341158 | | 6000 | 0.064500 | 0.281591 | 0.342491 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Hausa_xlsr --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ```
sammy786/wav2vec2-xlsr-bashkir
sammy786
2022-03-23T18:35:07Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ba", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ba license: apache-2.0 tags: - automatic-speech-recognition - ba - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-bashkir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ba metrics: - name: Test WER type: wer value: 11.32 - name: Test CER type: cer value: 2.34 --- # sammy786/wav2vec2-xlsr-bashkir This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ba dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: - Wer: ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 5.387100 | 1.982867 | 1.000000 | | 400 | 1.269800 | 0.369958 | 0.545755 | | 600 | 0.903600 | 0.287705 | 0.465594 | | 800 | 0.787300 | 0.235142 | 0.417091 | | 1000 | 0.816300 | 0.206325 | 0.390534 | | 1200 | 0.700500 | 0.197106 | 0.383987 | | 1400 | 0.707100 | 0.179855 | 0.381368 | | 1600 | 0.657800 | 0.181605 | 0.370593 | | 1800 | 0.647800 | 0.168626 | 0.358767 | | 2000 | 0.650700 | 0.164833 | 0.351483 | | 2200 | 0.490900 | 0.168133 | 0.363309 | | 2400 | 0.431000 | 0.161201 | 0.344350 | | 2600 | 0.372100 | 0.160254 | 0.338280 | | 2800 | 0.367500 | 0.150885 | 0.329687 | | 3000 | 0.351300 | 0.154112 | 0.331392 | | 3200 | 0.314800 | 0.147147 | 0.326700 | | 3400 | 0.316800 | 0.142681 | 0.325090 | | 3600 | 0.313000 | 0.138736 | 0.319553 | | 3800 | 0.291800 | 0.138166 | 0.315570 | | 4000 | 0.311300 | 0.135977 | 0.322894 | | 4200 | 0.304900 | 0.128820 | 0.308627 | | 4400 | 0.301600 | 0.129475 | 0.307440 | | 4600 | 0.281800 | 0.131863 | 0.305967 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-bashkir --dataset mozilla-foundation/common_voice_8_0 --config ba --split test ```
masapasa/xls-r-300m-it-cv8-ds13
masapasa
2022-03-23T18:35:02Z
7
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "it", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - it license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: it metrics: - name: Test WER type: wer value: 100.0 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: it metrics: - name: Test WER type: wer value: 100.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset. It achieves the following results on the evaluation set: - Loss: 0.3549 - Wer: 0.3827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4129 | 5.49 | 500 | 3.3224 | 1.0 | | 2.9323 | 10.98 | 1000 | 2.9128 | 1.0000 | | 1.6839 | 16.48 | 1500 | 0.7740 | 0.6854 | | 1.485 | 21.97 | 2000 | 0.5830 | 0.5976 | | 1.362 | 27.47 | 2500 | 0.4866 | 0.4905 | | 1.2752 | 32.96 | 3000 | 0.4240 | 0.4967 | | 1.1957 | 38.46 | 3500 | 0.3899 | 0.4258 | | 1.1646 | 43.95 | 4000 | 0.3597 | 0.4014 | | 1.1265 | 49.45 | 4500 | 0.3559 | 0.3829 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
manifoldix/xlsr-sg-lm
manifoldix
2022-03-23T18:34:59Z
9
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "gsw", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: gsw tags: - hf-asr-leaderboard - robust-speech-event widget: - example_title: swiss parliament sample 1 src: https://huggingface.co/manifoldix/xlsr-sg-lm/resolve/main/07e73bcaa2ab192aea9524d72db45f34f274d1b3d5672434c462d32d44d792be.mp3 - example_title: swiss parliament sample 2 src: https://huggingface.co/manifoldix/xlsr-sg-lm/resolve/main/14a2f855363920f111c7b30e8632c19e5f340ab5031e1ed2621db39baf452ae0.mp3 model-index: - name: XLS-R-1b Wav2Vec2 Swiss German results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER on Swiss parliament type: wer value: 34.6% - name: Test WER on Swiss dialect test set type: wer value: 40% --- ## XLSR-1b Swiss German Fine-tuned on the Swiss parliament dataset from FHNW v1 (70h). Tested on the Swiss parliament test set with a WER of 34.6% Tested on the "Swiss German Dialects" with a WER of 40% Both test sets can be accessed here: [fhnw_datasets](https://www.cs.technik.fhnw.ch/i4ds-datasets) The Swiss German dialect private test set has been uploaded on huggingface: [huggingface_swiss_dialects](https://huggingface.co/datasets/manifoldix/swg_parliament_fhnw)
infinitejoy/wav2vec2-large-xls-r-300m-hungarian
infinitejoy
2022-03-23T18:34:54Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hu", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hungarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hu metrics: - name: Test WER type: wer value: 31.099 - name: Test CER type: cer value: 6.737 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 45.469 - name: Test CER type: cer value: 15.727 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 48.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hungarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HU dataset. It achieves the following results on the evaluation set: - Loss: 0.2562 - Wer: 0.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.3964 | 3.52 | 1000 | 1.2251 | 0.8781 | | 1.3176 | 7.04 | 2000 | 0.3872 | 0.4462 | | 1.1999 | 10.56 | 3000 | 0.3244 | 0.3922 | | 1.1633 | 14.08 | 4000 | 0.3014 | 0.3704 | | 1.1132 | 17.61 | 5000 | 0.2913 | 0.3623 | | 1.0888 | 21.13 | 6000 | 0.2864 | 0.3498 | | 1.0487 | 24.65 | 7000 | 0.2821 | 0.3435 | | 1.0431 | 28.17 | 8000 | 0.2739 | 0.3308 | | 0.9896 | 31.69 | 9000 | 0.2629 | 0.3243 | | 0.9839 | 35.21 | 10000 | 0.2806 | 0.3308 | | 0.9586 | 38.73 | 11000 | 0.2650 | 0.3235 | | 0.9501 | 42.25 | 12000 | 0.2585 | 0.3173 | | 0.938 | 45.77 | 13000 | 0.2561 | 0.3117 | | 0.921 | 49.3 | 14000 | 0.2559 | 0.3115 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-hindi
infinitejoy
2022-03-23T18:34:51Z
19
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 100 - name: Test CER type: cer value: 92.98 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5414 - Wer: 1.0194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6095 | 3.38 | 500 | 4.5881 | 0.9999 | | 3.3396 | 6.76 | 1000 | 3.3301 | 1.0001 | | 2.0061 | 10.14 | 1500 | 1.2096 | 1.0063 | | 1.523 | 13.51 | 2000 | 0.7836 | 1.0051 | | 1.3868 | 16.89 | 2500 | 0.6837 | 1.0080 | | 1.2807 | 20.27 | 3000 | 0.6568 | 1.0112 | | 1.231 | 23.65 | 3500 | 0.6120 | 1.0105 | | 1.1673 | 27.03 | 4000 | 0.5972 | 1.0089 | | 1.1416 | 30.41 | 4500 | 0.5780 | 1.0132 | | 1.0738 | 33.78 | 5000 | 0.5806 | 1.0123 | | 1.0771 | 37.16 | 5500 | 0.5586 | 1.0067 | | 1.0287 | 40.54 | 6000 | 0.5464 | 1.0058 | | 1.0106 | 43.92 | 6500 | 0.5407 | 1.0062 | | 0.9538 | 47.3 | 7000 | 0.5334 | 1.0089 | | 0.9607 | 50.68 | 7500 | 0.5395 | 1.0110 | | 0.9108 | 54.05 | 8000 | 0.5502 | 1.0137 | | 0.9252 | 57.43 | 8500 | 0.5498 | 1.0062 | | 0.8943 | 60.81 | 9000 | 0.5448 | 1.0158 | | 0.8728 | 64.19 | 9500 | 0.5257 | 1.0113 | | 0.8577 | 67.57 | 10000 | 0.5550 | 1.0178 | | 0.8332 | 70.95 | 10500 | 0.5607 | 1.0166 | | 0.8174 | 74.32 | 11000 | 0.5429 | 1.0145 | | 0.8168 | 77.7 | 11500 | 0.5561 | 1.0116 | | 0.7872 | 81.08 | 12000 | 0.5478 | 1.0164 | | 0.7707 | 84.46 | 12500 | 0.5412 | 1.0216 | | 0.7742 | 87.84 | 13000 | 0.5391 | 1.0207 | | 0.7594 | 91.22 | 13500 | 0.5379 | 1.0208 | | 0.7678 | 94.59 | 14000 | 0.5415 | 1.0198 | | 0.7502 | 97.97 | 14500 | 0.5409 | 1.0191 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-galician
infinitejoy
2022-03-23T18:34:49Z
32
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "gl", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - gl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - gl - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: gl metrics: - name: Test WER type: wer value: 101.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: gl metrics: - name: Test WER type: wer value: 105.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: gl metrics: - name: Test WER type: wer value: 101.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-galician This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - GL dataset. It achieves the following results on the evaluation set: - Loss: 0.1525 - Wer: 0.1542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.0067 | 4.35 | 500 | 2.9632 | 1.0 | | 1.4939 | 8.7 | 1000 | 0.5005 | 0.4157 | | 0.9982 | 13.04 | 1500 | 0.1967 | 0.1857 | | 0.8726 | 17.39 | 2000 | 0.1587 | 0.1564 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-finnish
infinitejoy
2022-03-23T18:34:46Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: fi metrics: - name: Test WER type: wer value: 29.97 - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - FI dataset. It achieves the following results on the evaluation set: - Loss: 0.2307 - Wer: 0.2984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 70.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9032 | 4.39 | 500 | 2.8768 | 1.0 | | 1.5724 | 8.77 | 1000 | 0.5638 | 0.6438 | | 1.1818 | 13.16 | 1500 | 0.3338 | 0.4759 | | 1.0798 | 17.54 | 2000 | 0.2876 | 0.4086 | | 1.0296 | 21.93 | 2500 | 0.2694 | 0.4248 | | 1.0014 | 26.32 | 3000 | 0.2626 | 0.3733 | | 0.9616 | 30.7 | 3500 | 0.2391 | 0.3294 | | 0.9303 | 35.09 | 4000 | 0.2352 | 0.3218 | | 0.9248 | 39.47 | 4500 | 0.2351 | 0.3207 | | 0.8837 | 43.86 | 5000 | 0.2341 | 0.3103 | | 0.8887 | 48.25 | 5500 | 0.2311 | 0.3115 | | 0.8529 | 52.63 | 6000 | 0.2230 | 0.3001 | | 0.8404 | 57.02 | 6500 | 0.2279 | 0.3054 | | 0.8242 | 61.4 | 7000 | 0.2298 | 0.3006 | | 0.8288 | 65.79 | 7500 | 0.2333 | 0.2997 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
emre/wav2vec2-xls-r-300m-ab-CV8
emre
2022-03-23T18:34:41Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ab", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: ab tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ab-CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ab metrics: - name: Test WER type: wer value: 44.9 --- # wav2vec2-xls-r-300m-ab-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Wer: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 | | 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 | | 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 | | 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 | | 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 | | 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 | | 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 | | 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 | | 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 | | 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 | | 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 | | 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 | | 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 | | 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 | | 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 | | 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 | | 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 | | 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 | | 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 | | 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 | | 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 | | 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 | | 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
Baybars/wav2vec2-xls-r-300m-cv8-turkish
Baybars
2022-03-23T18:34:22Z
34
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - tr datasets: - common_voice model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4164 - Wer: 0.3098 - Cer: 0.0764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Language Model N-gram language model is trained by [mpoyraz](https://huggingface.co/mpoyraz/wav2vec2-xls-r-300m-cv7-turkish) on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6356 | 9.09 | 500 | 0.5055 | 0.5536 | 0.1381 | | 0.3847 | 18.18 | 1000 | 0.4002 | 0.4247 | 0.1065 | | 0.3377 | 27.27 | 1500 | 0.4193 | 0.4167 | 0.1078 | | 0.2175 | 36.36 | 2000 | 0.4351 | 0.3861 | 0.0974 | | 0.2074 | 45.45 | 2500 | 0.3962 | 0.3622 | 0.0916 | | 0.159 | 54.55 | 3000 | 0.4062 | 0.3526 | 0.0888 | | 0.1882 | 63.64 | 3500 | 0.3991 | 0.3445 | 0.0850 | | 0.1766 | 72.73 | 4000 | 0.4214 | 0.3396 | 0.0847 | | 0.116 | 81.82 | 4500 | 0.4182 | 0.3265 | 0.0812 | | 0.0718 | 90.91 | 5000 | 0.4259 | 0.3191 | 0.0781 | | 0.019 | 100.0 | 5500 | 0.4164 | 0.3098 | 0.0764 | ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
shahukareem/xls-r-300m-dv
shahukareem
2022-03-23T18:34:14Z
57
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "dv", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - dv license: apache-2.0 tags: - automatic-speech-recognition - dv - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Dhivehi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: dv metrics: - name: Test WER type: wer value: 21.31 - name: Test CER type: cer value: 3.82 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-dv This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2855 - Wer: 0.2665 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3386 | 0.66 | 400 | 1.1411 | 0.9432 | | 0.6543 | 1.33 | 800 | 0.5099 | 0.6749 | | 0.4646 | 1.99 | 1200 | 0.4133 | 0.5968 | | 0.3748 | 2.65 | 1600 | 0.3534 | 0.5515 | | 0.3323 | 3.32 | 2000 | 0.3635 | 0.5527 | | 0.3269 | 3.98 | 2400 | 0.3587 | 0.5423 | | 0.2984 | 4.64 | 2800 | 0.3340 | 0.5073 | | 0.2841 | 5.31 | 3200 | 0.3279 | 0.5004 | | 0.2664 | 5.97 | 3600 | 0.3114 | 0.4845 | | 0.2397 | 6.63 | 4000 | 0.3174 | 0.4920 | | 0.2332 | 7.3 | 4400 | 0.3110 | 0.4911 | | 0.2304 | 7.96 | 4800 | 0.3123 | 0.4785 | | 0.2134 | 8.62 | 5200 | 0.2984 | 0.4557 | | 0.2066 | 9.29 | 5600 | 0.3013 | 0.4723 | | 0.1951 | 9.95 | 6000 | 0.2934 | 0.4487 | | 0.1806 | 10.61 | 6400 | 0.2802 | 0.4547 | | 0.1727 | 11.28 | 6800 | 0.2842 | 0.4333 | | 0.1666 | 11.94 | 7200 | 0.2873 | 0.4272 | | 0.1562 | 12.6 | 7600 | 0.3042 | 0.4373 | | 0.1483 | 13.27 | 8000 | 0.3122 | 0.4313 | | 0.1465 | 13.93 | 8400 | 0.2760 | 0.4226 | | 0.1335 | 14.59 | 8800 | 0.3112 | 0.4243 | | 0.1293 | 15.26 | 9200 | 0.3002 | 0.4133 | | 0.1264 | 15.92 | 9600 | 0.2985 | 0.4145 | | 0.1179 | 16.58 | 10000 | 0.2925 | 0.4012 | | 0.1171 | 17.25 | 10400 | 0.3127 | 0.4012 | | 0.1141 | 17.91 | 10800 | 0.2980 | 0.3908 | | 0.108 | 18.57 | 11200 | 0.3108 | 0.3951 | | 0.1045 | 19.24 | 11600 | 0.3269 | 0.3908 | | 0.1047 | 19.9 | 12000 | 0.2998 | 0.3868 | | 0.0937 | 20.56 | 12400 | 0.2918 | 0.3875 | | 0.0949 | 21.23 | 12800 | 0.2906 | 0.3657 | | 0.0879 | 21.89 | 13200 | 0.2974 | 0.3731 | | 0.0854 | 22.55 | 13600 | 0.2943 | 0.3711 | | 0.0851 | 23.22 | 14000 | 0.2919 | 0.3580 | | 0.0789 | 23.88 | 14400 | 0.2983 | 0.3560 | | 0.0796 | 24.54 | 14800 | 0.3131 | 0.3544 | | 0.0761 | 25.21 | 15200 | 0.2996 | 0.3616 | | 0.0755 | 25.87 | 15600 | 0.2972 | 0.3506 | | 0.0726 | 26.53 | 16000 | 0.2902 | 0.3474 | | 0.0707 | 27.2 | 16400 | 0.3083 | 0.3480 | | 0.0669 | 27.86 | 16800 | 0.3035 | 0.3330 | | 0.0637 | 28.52 | 17200 | 0.2963 | 0.3370 | | 0.0596 | 29.19 | 17600 | 0.2830 | 0.3326 | | 0.0583 | 29.85 | 18000 | 0.2969 | 0.3287 | | 0.0566 | 30.51 | 18400 | 0.3002 | 0.3480 | | 0.0574 | 31.18 | 18800 | 0.2916 | 0.3296 | | 0.0536 | 31.84 | 19200 | 0.2933 | 0.3225 | | 0.0548 | 32.5 | 19600 | 0.2900 | 0.3179 | | 0.0506 | 33.17 | 20000 | 0.3073 | 0.3225 | | 0.0511 | 33.83 | 20400 | 0.2925 | 0.3275 | | 0.0483 | 34.49 | 20800 | 0.2919 | 0.3245 | | 0.0456 | 35.16 | 21200 | 0.2859 | 0.3105 | | 0.0445 | 35.82 | 21600 | 0.2864 | 0.3080 | | 0.0437 | 36.48 | 22000 | 0.2989 | 0.3084 | | 0.04 | 37.15 | 22400 | 0.2887 | 0.3060 | | 0.0406 | 37.81 | 22800 | 0.2870 | 0.3013 | | 0.0397 | 38.47 | 23200 | 0.2793 | 0.3020 | | 0.0383 | 39.14 | 23600 | 0.2955 | 0.2943 | | 0.0345 | 39.8 | 24000 | 0.2813 | 0.2905 | | 0.0331 | 40.46 | 24400 | 0.2845 | 0.2845 | | 0.0338 | 41.13 | 24800 | 0.2832 | 0.2925 | | 0.0333 | 41.79 | 25200 | 0.2889 | 0.2849 | | 0.0325 | 42.45 | 25600 | 0.2808 | 0.2847 | | 0.0314 | 43.12 | 26000 | 0.2867 | 0.2801 | | 0.0288 | 43.78 | 26400 | 0.2865 | 0.2834 | | 0.0291 | 44.44 | 26800 | 0.2863 | 0.2806 | | 0.0269 | 45.11 | 27200 | 0.2941 | 0.2736 | | 0.0275 | 45.77 | 27600 | 0.2897 | 0.2736 | | 0.0271 | 46.43 | 28000 | 0.2857 | 0.2695 | | 0.0251 | 47.1 | 28400 | 0.2881 | 0.2702 | | 0.0243 | 47.76 | 28800 | 0.2901 | 0.2684 | | 0.0244 | 48.42 | 29200 | 0.2849 | 0.2679 | | 0.0232 | 49.09 | 29600 | 0.2849 | 0.2677 | | 0.0224 | 49.75 | 30000 | 0.2855 | 0.2665 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-finnish
sammy786
2022-03-23T18:34:11Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "fi", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fi license: apache-2.0 tags: - automatic-speech-recognition - fi - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: fi metrics: - name: Test WER type: wer value: 13.72 - name: Test CER type: cer value: 2.35 --- # sammy786/wav2vec2-xlsr-finnish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - fi dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 8.7555 - Wer: 23.0231 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv, invalidated.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.253700 | 0.881733 | 0.967007 | | 400 | 0.864800 | 0.226977 | 0.420836 | | 600 | 0.607000 | 0.157473 | 0.343375 | | 800 | 0.380200 | 0.145640 | 0.302672 | | 1000 | 0.318400 | 0.128028 | 0.293886 | | 1200 | 0.261100 | 0.121414 | 0.289941 | | 1400 | 0.232300 | 0.113451 | 0.279182 | | 1600 | 0.216600 | 0.113649 | 0.282948 | | 1800 | 0.202500 | 0.112375 | 0.276134 | | 2000 | 0.190000 | 0.105725 | 0.273803 | | 2200 | 0.171000 | 0.109715 | 0.270755 | | 2400 | 0.156500 | 0.105042 | 0.264300 | | 2600 | 0.155600 | 0.108337 | 0.260714 | | 2800 | 0.149100 | 0.112435 | 0.263583 | | 3000 | 0.145100 | 0.106193 | 0.261969 | | 3200 | 0.131700 | 0.102860 | 0.251210 | | 3400 | 0.129100 | 0.096058 | 0.246907 | | 3600 | 0.121600 | 0.099932 | 0.246369 | | 3800 | 0.112000 | 0.099041 | 0.244397 | | 4000 | 0.114100 | 0.101566 | 0.242604 | | 4200 | 0.111500 | 0.089498 | 0.239197 | | 4400 | 0.099800 | 0.092835 | 0.240990 | | 4600 | 0.095300 | 0.093518 | 0.238121 | | 4800 | 0.094300 | 0.090783 | 0.240631 | | 5000 | 0.089000 | 0.094046 | 0.238479 | | 5200 | 0.088000 | 0.089342 | 0.235252 | | 5400 | 0.083600 | 0.087770 | 0.234535 | | 5600 | 0.083600 | 0.088804 | 0.234355 | | 5800 | 0.080300 | 0.090168 | 0.231307 | | 6000 | 0.078100 | 0.090163 | 0.230949 | | 6200 | 0.075600 | 0.088876 | 0.232383 | | 6400 | 0.078700 | 0.087235 | 0.232024 | | 6600 | 0.074800 | 0.086825 | 0.231486 | | 6800 | 0.076400 | 0.087308 | 0.231845 | | 7000 | 0.070700 | 0.087695 | 0.230769 | | 7200 | 0.075500 | 0.087555 | 0.230231 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-finnish --dataset mozilla-foundation/common_voice_8_0 --config fi --split test ```
reach-vb/wav2vec2-large-xls-r-1B-common_voice7-lv-ft
reach-vb
2022-03-23T18:34:08Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "lv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - lv tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-1B-common_voice7-lv-ft results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: lv metrics: - name: Test WER type: wer value: 11.179 - name: Test CER type: cer value: 2.78 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: lv metrics: - name: Test WER type: wer value: 44.33 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: lv metrics: - name: Test WER type: wer value: 50.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1B-common_voice7-lv-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Wer: 0.1137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 900 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6292 | 5.26 | 500 | 1.5562 | 0.9263 | | 0.1303 | 10.53 | 1000 | 0.8107 | 0.7666 | | 0.0974 | 15.79 | 1500 | 0.5290 | 0.4979 | | 0.0724 | 21.05 | 2000 | 0.2941 | 0.2247 | | 0.0591 | 26.32 | 2500 | 0.2838 | 0.2125 | | 0.0494 | 31.58 | 3000 | 0.2589 | 0.2102 | | 0.0417 | 36.84 | 3500 | 0.1987 | 0.1760 | | 0.0375 | 42.11 | 4000 | 0.1934 | 0.1690 | | 0.031 | 47.37 | 4500 | 0.1630 | 0.1460 | | 0.027 | 52.63 | 5000 | 0.1957 | 0.1447 | | 0.0256 | 57.89 | 5500 | 0.1747 | 0.1368 | | 0.0206 | 63.16 | 6000 | 0.1602 | 0.1299 | | 0.0178 | 68.42 | 6500 | 0.1809 | 0.1273 | | 0.0154 | 73.68 | 7000 | 0.1686 | 0.1216 | | 0.0137 | 78.95 | 7500 | 0.1585 | 0.1241 | | 0.0128 | 84.21 | 8000 | 0.1783 | 0.1278 | | 0.011 | 89.47 | 8500 | 0.1653 | 0.1228 | | 0.0096 | 94.74 | 9000 | 0.1620 | 0.1161 | | 0.0091 | 100.0 | 9500 | 0.1582 | 0.1137 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3
infinitejoy/wav2vec2-large-xls-r-300m-welsh
infinitejoy
2022-03-23T18:33:58Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "cy", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - cy license: apache-2.0 tags: - automatic-speech-recognition - cy - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Welsh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: cy metrics: - name: Test WER type: wer value: 31.003 - name: Test CER type: cer value: 7.775 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-welsh This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - CY dataset. It achieves the following results on the evaluation set: - Loss: 0.2650 - Wer: 0.2702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3454 | 8.2 | 3000 | 0.4926 | 0.5703 | | 1.1202 | 16.39 | 6000 | 0.3529 | 0.3944 | | 1.0058 | 24.59 | 9000 | 0.3143 | 0.3341 | | 0.9287 | 32.79 | 12000 | 0.2896 | 0.2980 | | 0.8849 | 40.98 | 15000 | 0.2727 | 0.2798 | | 0.8665 | 49.18 | 18000 | 0.2662 | 0.2696 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-romanian
infinitejoy
2022-03-23T18:33:55Z
471
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "ro", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ro license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - ro - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Romanian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ro metrics: - name: Test WER type: wer value: 14.194 - name: Test CER type: cer value: 3.288 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ro metrics: - name: Test WER type: wer value: 40.869 - name: Test CER type: cer value: 12.049 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ro metrics: - name: Test WER type: wer value: 47.2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-romanian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - RO dataset. It achieves the following results on the evaluation set: - Loss: 0.1167 - Wer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1973 | 8.89 | 2000 | 0.4481 | 0.4849 | | 0.6005 | 17.78 | 4000 | 0.1420 | 0.1777 | | 0.5248 | 26.67 | 6000 | 0.1303 | 0.1651 | | 0.4871 | 35.56 | 8000 | 0.1207 | 0.1523 | | 0.4428 | 44.44 | 10000 | 0.1143 | 0.1425 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-mongolian
infinitejoy
2022-03-23T18:33:52Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: mn metrics: - name: Test WER type: wer value: 44.709 - name: Test CER type: cer value: 13.532 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 76.643 - name: Test CER type: cer value: 36.997 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 78.45 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.6003 - Wer: 0.4473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3677 | 15.87 | 2000 | 0.6432 | 0.6198 | | 1.1379 | 31.75 | 4000 | 0.6196 | 0.5592 | | 1.0093 | 47.62 | 6000 | 0.5828 | 0.5117 | | 0.8888 | 63.49 | 8000 | 0.5754 | 0.4822 | | 0.7985 | 79.37 | 10000 | 0.5987 | 0.4690 | | 0.697 | 95.24 | 12000 | 0.6014 | 0.4471 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
LegolasTheElf/Wav2Vec2_xls_r_lm_300m_hi
LegolasTheElf
2022-03-23T18:33:41Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "Openslr Multilingual", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - hi license: apache-2.0 tags: - Openslr Multilingual - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: Wav2Vec2_xls_r_300m_hi_final results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 34.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2Vec2_xls_r_300m_hi_final This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the ['Openslr Multilingual and code-switching ASR challenge'](http://www.openslr.org/103/) dataset and ['mozilla-foundation/common_voice_7_0'](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.3035 - Wer: 0.3137 - Cer: 0.0972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9821 | 0.64 | 400 | 0.5059 | 0.4783 | 0.1573 | | 0.6861 | 1.28 | 800 | 0.4201 | 0.4247 | 0.1356 | | 0.585 | 1.92 | 1200 | 0.3797 | 0.3811 | 0.1210 | | 0.5193 | 2.56 | 1600 | 0.3577 | 0.3652 | 0.1152 | | 0.4583 | 3.21 | 2000 | 0.3422 | 0.3519 | 0.1111 | | 0.4282 | 3.85 | 2400 | 0.3261 | 0.3450 | 0.1071 | | 0.3951 | 4.49 | 2800 | 0.3201 | 0.3325 | 0.1048 | | 0.3619 | 5.13 | 3200 | 0.3167 | 0.3296 | 0.1030 | | 0.345 | 5.77 | 3600 | 0.3157 | 0.3210 | 0.1013 | | 0.338 | 6.41 | 4000 | 0.3051 | 0.3143 | 0.0982 | | 0.3155 | 7.05 | 4400 | 0.3059 | 0.3154 | 0.0986 | | 0.3057 | 7.69 | 4800 | 0.3035 | 0.3137 | 0.0972 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Harveenchadha/vakyansh_hindi_base_pretrained
Harveenchadha
2022-03-23T18:33:38Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "pretraining", "hf-asr-leaderboard", "hi", "model_for_talk", "pretrained", "robust-speech-event", "speech", "arxiv:2107.07402", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04Z
--- language: hi tags: - hf-asr-leaderboard - hi - model_for_talk - pretrained - robust-speech-event - speech license: apache-2.0 --- Hindi Pretrained model on 4200 hours. [Link](https://arxiv.org/abs/2107.07402)
abidlabs/speech-text
abidlabs
2022-03-23T18:33:30Z
7
0
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "en", "hf-asr-leaderboard", "mozilla-foundation/common_voice_6_0", "robust-speech-event", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "dataset:mozilla-foundation/common_voice_6_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-07T19:09:18Z
--- language: en datasets: - common_voice - mozilla-foundation/common_voice_6_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - en - hf-asr-leaderboard - mozilla-foundation/common_voice_6_0 - robust-speech-event - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 English by Jonatas Grosman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice en type: common_voice args: en metrics: - name: Test WER type: wer value: 19.06 - name: Test CER type: cer value: 7.69 - name: Test WER (+LM) type: wer value: 14.81 - name: Test CER (+LM) type: cer value: 6.84 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: en metrics: - name: Dev WER type: wer value: 27.72 - name: Dev CER type: cer value: 11.65 - name: Dev WER (+LM) type: wer value: 20.85 - name: Dev CER (+LM) type: cer value: 11.01 --- # Wav2Vec2-Large-XLSR-53-English Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on English using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | "SHE'LL BE ALL RIGHT." | SHE'LL BE ALL RIGHT | | SIX | SIX | | "ALL'S WELL THAT ENDS WELL." | ALL AS WELL THAT ENDS WELL | | DO YOU MEAN IT? | DO YOU MEAN IT | | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. | THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION | | HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? | HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q | | "I GUESS YOU MUST THINK I'M KINDA BATTY." | RUSTIAN WASTIN PAN ONTE BATTLY | | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? | NO ONE NEAR THE REMOTE MACHINE YOU COULD RING | | SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. | SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER | | GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. | GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD | ## Evaluation 1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021wav2vec2-large-xlsr-53-english, title={XLSR Wav2Vec2 English by Jonatas Grosman}, author={Grosman, Jonatas}, publisher={Hugging Face}, journal={Hugging Face Hub}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}}, year={2021} } ```
infinitejoy/wav2vec2-large-xls-r-300m-kurdish
infinitejoy
2022-03-23T18:33:23Z
98
4
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "kmr", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - kmr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - kmr - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kurmanji Kurdish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: kmr metrics: - name: Test WER type: wer value: 102.308 - name: Test CER type: cer value: 538.748 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-kurdish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KMR dataset. It achieves the following results on the evaluation set: - Loss: 0.2548 - Wer: 0.2688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3161 | 12.27 | 2000 | 0.4199 | 0.4797 | | 1.0643 | 24.54 | 4000 | 0.2982 | 0.3721 | | 0.9718 | 36.81 | 6000 | 0.2762 | 0.3333 | | 0.8772 | 49.08 | 8000 | 0.2586 | 0.3051 | | 0.8236 | 61.35 | 10000 | 0.2575 | 0.2865 | | 0.7745 | 73.62 | 12000 | 0.2603 | 0.2816 | | 0.7297 | 85.89 | 14000 | 0.2539 | 0.2727 | | 0.7079 | 98.16 | 16000 | 0.2554 | 0.2681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12
DrishtiSharma
2022-03-23T18:33:15Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "or", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - or - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-or-dx12 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: or metrics: - name: Test WER type: wer value: 0.5947242206235012 - name: Test CER type: cer value: 0.18272388876724327 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: or metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or-dx12 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.4638 - Wer: 0.5602 ### Evaluation Commands 1. To evaluate on mozilla-foundation/common_voice_8_0 with test split python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-dx12 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs 2. To evaluate on speech-recognition-community-v2/dev_data Oriya language isn't available in speech-recognition-community-v2/dev_data ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 13.5059 | 4.17 | 100 | 10.3789 | 1.0 | | 4.5964 | 8.33 | 200 | 4.3294 | 1.0 | | 3.4448 | 12.5 | 300 | 3.7903 | 1.0 | | 3.3683 | 16.67 | 400 | 3.5289 | 1.0 | | 2.042 | 20.83 | 500 | 1.1531 | 0.7857 | | 0.5721 | 25.0 | 600 | 1.0267 | 0.7646 | | 0.3274 | 29.17 | 700 | 1.0773 | 0.6938 | | 0.2466 | 33.33 | 800 | 1.0323 | 0.6647 | | 0.2047 | 37.5 | 900 | 1.1255 | 0.6733 | | 0.1847 | 41.67 | 1000 | 1.1194 | 0.6515 | | 0.1453 | 45.83 | 1100 | 1.1215 | 0.6601 | | 0.1367 | 50.0 | 1200 | 1.1898 | 0.6627 | | 0.1334 | 54.17 | 1300 | 1.3082 | 0.6687 | | 0.1041 | 58.33 | 1400 | 1.2514 | 0.6177 | | 0.1024 | 62.5 | 1500 | 1.2055 | 0.6528 | | 0.0919 | 66.67 | 1600 | 1.4125 | 0.6369 | | 0.074 | 70.83 | 1700 | 1.4006 | 0.6634 | | 0.0681 | 75.0 | 1800 | 1.3943 | 0.6131 | | 0.0709 | 79.17 | 1900 | 1.3545 | 0.6296 | | 0.064 | 83.33 | 2000 | 1.2437 | 0.6237 | | 0.0552 | 87.5 | 2100 | 1.3762 | 0.6190 | | 0.056 | 91.67 | 2200 | 1.3763 | 0.6323 | | 0.0514 | 95.83 | 2300 | 1.2897 | 0.6164 | | 0.0409 | 100.0 | 2400 | 1.4257 | 0.6104 | | 0.0379 | 104.17 | 2500 | 1.4219 | 0.5853 | | 0.0367 | 108.33 | 2600 | 1.4361 | 0.6032 | | 0.0412 | 112.5 | 2700 | 1.4713 | 0.6098 | | 0.0353 | 116.67 | 2800 | 1.4132 | 0.6369 | | 0.0336 | 120.83 | 2900 | 1.5210 | 0.6098 | | 0.0302 | 125.0 | 3000 | 1.4686 | 0.5939 | | 0.0398 | 129.17 | 3100 | 1.5456 | 0.6204 | | 0.0291 | 133.33 | 3200 | 1.4111 | 0.5827 | | 0.0247 | 137.5 | 3300 | 1.3866 | 0.6151 | | 0.0196 | 141.67 | 3400 | 1.4513 | 0.5880 | | 0.0218 | 145.83 | 3500 | 1.5100 | 0.5899 | | 0.0196 | 150.0 | 3600 | 1.4936 | 0.5999 | | 0.0164 | 154.17 | 3700 | 1.5012 | 0.5701 | | 0.0168 | 158.33 | 3800 | 1.5601 | 0.5919 | | 0.0151 | 162.5 | 3900 | 1.4891 | 0.5761 | | 0.0137 | 166.67 | 4000 | 1.4839 | 0.5800 | | 0.0143 | 170.83 | 4100 | 1.4826 | 0.5754 | | 0.0114 | 175.0 | 4200 | 1.4950 | 0.5708 | | 0.0092 | 179.17 | 4300 | 1.5008 | 0.5694 | | 0.0104 | 183.33 | 4400 | 1.4774 | 0.5728 | | 0.0096 | 187.5 | 4500 | 1.4948 | 0.5767 | | 0.0105 | 191.67 | 4600 | 1.4557 | 0.5694 | | 0.009 | 195.83 | 4700 | 1.4615 | 0.5628 | | 0.0081 | 200.0 | 4800 | 1.4638 | 0.5602 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
shivam/wav2vec2-xls-r-hindi
shivam
2022-03-23T18:33:12Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hi", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hi - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer - cer model-index: - name: shivam/wav2vec2-xls-r-hindi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 52.3 - name: Test CER type: cer value: 26.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 1.2282 - Wer: 0.6838 ## Evaluation results on Common Voice 7 "test" (Running ./eval.py): ### With LM - WER: 52.30 - CER: 26.09 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3155 | 3.4 | 500 | 4.5582 | 1.0 | | 3.3369 | 6.8 | 1000 | 3.4269 | 1.0 | | 2.1785 | 10.2 | 1500 | 1.7191 | 0.8831 | | 1.579 | 13.6 | 2000 | 1.3604 | 0.7647 | | 1.3773 | 17.01 | 2500 | 1.2737 | 0.7519 | | 1.3165 | 20.41 | 3000 | 1.2457 | 0.7401 | | 1.2274 | 23.81 | 3500 | 1.3617 | 0.7301 | | 1.1787 | 27.21 | 4000 | 1.2068 | 0.7010 | | 1.1467 | 30.61 | 4500 | 1.2416 | 0.6946 | | 1.0801 | 34.01 | 5000 | 1.2312 | 0.6990 | | 1.0709 | 37.41 | 5500 | 1.2984 | 0.7138 | | 1.0307 | 40.81 | 6000 | 1.2049 | 0.6871 | | 1.0003 | 44.22 | 6500 | 1.1956 | 0.6841 | | 1.004 | 47.62 | 7000 | 1.2101 | 0.6793 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-breton
sammy786
2022-03-23T18:33:06Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "br", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - br license: apache-2.0 tags: - automatic-speech-recognition - br - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-breton results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: br metrics: - name: Test WER type: wer value: 48.2 - name: Test CER type: cer value: 15.02 --- # sammy786/wav2vec2-xlsr-breton This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - br dataset. ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 8 - eval_batch_size: 32 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-breton --dataset mozilla-foundation/common_voice_8_0 --config br --split test ```
samitizerxu/wav2vec2-xls-r-300m-fr
samitizerxu
2022-03-23T18:33:04Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "fr", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - fr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - fr - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-cls-r-300m-fr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 56.62 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 58.22 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-cls-r-300m-fr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - FR dataset. It achieves the following results on the evaluation set: - Loss: 0.6521 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6773 | 0.8 | 500 | 1.3907 | 0.9864 | | 0.9526 | 1.6 | 1000 | 0.7760 | 0.6448 | | 0.6418 | 2.4 | 1500 | 0.7605 | 0.6194 | | 0.5028 | 3.2 | 2000 | 0.6516 | 0.5322 | | 0.4133 | 4.0 | 2500 | 0.6303 | 0.5097 | | 0.3285 | 4.8 | 3000 | 0.6422 | 0.5062 | | 0.2764 | 5.6 | 3500 | 0.5936 | 0.4748 | | 0.2361 | 6.4 | 4000 | 0.6486 | 0.4683 | | 0.2049 | 7.2 | 4500 | 0.6321 | 0.4532 | | 0.176 | 8.0 | 5000 | 0.6230 | 0.4482 | | 0.1393 | 8.8 | 5500 | 0.6595 | 0.4403 | | 0.1141 | 9.6 | 6000 | 0.6552 | 0.4348 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-assamese-cv8
infinitejoy
2022-03-23T18:32:56Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "as", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - as license: apache-2.0 tags: - as - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Assamese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: as metrics: - name: Test WER type: wer value: 65.966 - name: Test CER type: cer value: 22.188 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-assamese-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AS dataset. It achieves the following results on the evaluation set: - Loss: 0.9814 - Wer: 0.7402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 20.0 | 400 | 3.1447 | 1.0 | | No log | 40.0 | 800 | 1.0074 | 0.8556 | | 3.1278 | 60.0 | 1200 | 0.9507 | 0.7711 | | 3.1278 | 80.0 | 1600 | 0.9730 | 0.7630 | | 0.8247 | 100.0 | 2000 | 0.9814 | 0.7402 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
anuragshas/wav2vec2-large-xls-r-300m-as
anuragshas
2022-03-23T18:32:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "as", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - as license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-as results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_7_0 name: Common Voice 7 args: as metrics: - type: wer value: 56.995 name: Test WER - name: Test CER type: cer value: 20.39 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9068 - Wer: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7027 | 21.05 | 400 | 3.4157 | 1.0 | | 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 | | 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 | | 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 | | 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 | | 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 | | 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 | | 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 | | 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 | | 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 | | 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-as" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 67 | 56.995 |
AlexN/xls-r-300m-fr
AlexN
2022-03-23T18:32:43Z
56
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "fr", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - fr tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-300m-fr results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 fr type: mozilla-foundation/common_voice_8_0 args: fr metrics: - name: Test WER type: wer value: 21.58 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: fr metrics: - name: Test WER type: wer value: 36.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: fr metrics: - name: Test WER type: wer value: 38.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - FR dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2700 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
sammy786/wav2vec2-xlsr-tatar
sammy786
2022-03-23T18:32:40Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event - tt datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-tatar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tt metrics: - name: Test WER type: wer value: 16.87 - name: Test CER type: cer value: 3.64 --- # sammy786/wav2vec2-xlsr-tatar This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - tt dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 7.66 - Wer: 7.08 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |-------|---------------|-----------------|----------| | 200 | 4.849400 | 1.874908 | 0.995232 | | 400 | 1.105700 | 0.257292 | 0.367658 | | 600 | 0.723000 | 0.181150 | 0.250513 | | 800 | 0.660600 | 0.167009 | 0.226078 | | 1000 | 0.568000 | 0.135090 | 0.177339 | | 1200 | 0.721200 | 0.117469 | 0.166413 | | 1400 | 0.416300 | 0.115142 | 0.153765 | | 1600 | 0.346000 | 0.105782 | 0.153963 | | 1800 | 0.279700 | 0.102452 | 0.146149 | | 2000 | 0.273800 | 0.095818 | 0.128468 | | 2200 | 0.252900 | 0.102302 | 0.133766 | | 2400 | 0.255100 | 0.096592 | 0.121316 | | 2600 | 0.229600 | 0.091263 | 0.124561 | | 2800 | 0.213900 | 0.097748 | 0.125687 | | 3000 | 0.210700 | 0.091244 | 0.125422 | | 3200 | 0.202600 | 0.084076 | 0.106284 | | 3400 | 0.200900 | 0.093809 | 0.113238 | | 3600 | 0.192700 | 0.082918 | 0.108139 | | 3800 | 0.182000 | 0.084487 | 0.103371 | | 4000 | 0.167700 | 0.091847 | 0.104960 | | 4200 | 0.183700 | 0.085223 | 0.103040 | | 4400 | 0.174400 | 0.083862 | 0.100589 | | 4600 | 0.163100 | 0.086493 | 0.099728 | | 4800 | 0.162000 | 0.081734 | 0.097543 | | 5000 | 0.153600 | 0.077223 | 0.092974 | | 5200 | 0.153700 | 0.086217 | 0.090789 | | 5400 | 0.140200 | 0.093256 | 0.100457 | | 5600 | 0.142900 | 0.086903 | 0.097742 | | 5800 | 0.131400 | 0.083068 | 0.095225 | | 6000 | 0.126000 | 0.086642 | 0.091252 | | 6200 | 0.135300 | 0.083387 | 0.091186 | | 6400 | 0.126100 | 0.076479 | 0.086352 | | 6600 | 0.127100 | 0.077868 | 0.086153 | | 6800 | 0.118000 | 0.083878 | 0.087676 | | 7000 | 0.117600 | 0.085779 | 0.091054 | | 7200 | 0.113600 | 0.084197 | 0.084233 | | 7400 | 0.112000 | 0.078688 | 0.081319 | | 7600 | 0.110200 | 0.082534 | 0.086087 | | 7800 | 0.106400 | 0.077245 | 0.080988 | | 8000 | 0.102300 | 0.077497 | 0.079332 | | 8200 | 0.109500 | 0.079083 | 0.088339 | | 8400 | 0.095900 | 0.079721 | 0.077809 | | 8600 | 0.094700 | 0.079078 | 0.079730 | | 8800 | 0.097400 | 0.078785 | 0.079200 | | 9000 | 0.093200 | 0.077445 | 0.077015 | | 9200 | 0.088700 | 0.078207 | 0.076617 | | 9400 | 0.087200 | 0.078982 | 0.076485 | | 9600 | 0.089900 | 0.081209 | 0.076021 | | 9800 | 0.081900 | 0.078158 | 0.075757 | | 10000 | 0.080200 | 0.078074 | 0.074498 | | 10200 | 0.085000 | 0.078830 | 0.073373 | | 10400 | 0.080400 | 0.078144 | 0.073373 | | 10600 | 0.078200 | 0.077163 | 0.073902 | | 10800 | 0.080900 | 0.076394 | 0.072446 | | 11000 | 0.080700 | 0.075955 | 0.071585 | | 11200 | 0.076800 | 0.077031 | 0.072313 | | 11400 | 0.076300 | 0.077401 | 0.072777 | | 11600 | 0.076700 | 0.076613 | 0.071916 | | 11800 | 0.076000 | 0.076672 | 0.071916 | | 12000 | 0.077200 | 0.076490 | 0.070989 | | 12200 | 0.076200 | 0.076688 | 0.070856 | | 12400 | 0.074400 | 0.076780 | 0.071055 | | 12600 | 0.076300 | 0.076768 | 0.071320 | | 12800 | 0.077600 | 0.076727 | 0.071055 | | 13000 | 0.077700 | 0.076714 | 0.071254 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-tatar --dataset mozilla-foundation/common_voice_8_0 --config tt --split test ```
huggingtweets/mattiasinspace
huggingtweets
2022-03-23T18:30:31Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-23T18:30:21Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434246328788398081/M7Httz0A_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mattias in Deep</div> <div style="text-align: center; font-size: 14px;">@mattiasinspace</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mattias in Deep. | Data | Mattias in Deep | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 26 | | Short tweets | 196 | | Tweets kept | 3027 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2r9u5eoz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattiasinspace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ua0ungm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ua0ungm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattiasinspace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sammy786/wav2vec2-xlsr-mongolian
sammy786
2022-03-23T18:30:27Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mn", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mn - model_for_talk - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sammy786/wav2vec2-xlsr-mongolian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER type: wer value: 32.63 - name: Test CER type: cer value: 9.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 91.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 91.37 --- # sammy786/wav2vec2-xlsr-mongolian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - mn dataset. It achieves the following results on evaluation set (which is 10 percent of train data set merged with other and dev datasets): - Loss: 31.52 - Wer: 34.1522 ## Model description "facebook/wav2vec2-xls-r-1b" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Finnish train.tsv, dev.tsv and other.tsv ## Training procedure For creating the train dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000045637994662983496 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |:----:|:-------------:|:---------------:|:--------:| | 200 | 4.906200 | 3.012986 | 1.000000 | | 400 | 1.734600 | 0.704821 | 0.750497 | | 600 | 1.132100 | 0.496223 | 0.531241 | | 800 | 0.929300 | 0.468937 | 0.469043 | | 1000 | 0.772300 | 0.425313 | 0.448168 | | 1200 | 0.623900 | 0.394633 | 0.414229 | | 1400 | 0.512400 | 0.369225 | 0.397614 | | 1600 | 0.439900 | 0.346033 | 0.391650 | | 1800 | 0.391300 | 0.358454 | 0.379296 | | 2000 | 0.377000 | 0.346822 | 0.359415 | | 2200 | 0.347500 | 0.325205 | 0.348481 | | 2400 | 0.343600 | 0.315233 | 0.344078 | | 2600 | 0.328000 | 0.308826 | 0.341522 | | 2800 | 0.358200 | 0.331786 | 0.343084 | | 3000 | 0.417200 | 0.370051 | 0.356433 | | 3200 | 0.685300 | 0.595438 | 0.407413 | | 3400 | 0.764100 | 0.643449 | 0.359983 | | 3600 | 0.717100 | 0.505033 | 0.371911 | | 3800 | 0.620900 | 0.464138 | 0.369071 | | 4000 | 0.590700 | 0.445417 | 0.363249 | | 4200 | 0.561000 | 0.440727 | 0.360267 | | 4400 | 0.550600 | 0.447122 | 0.360267 | | 4600 | 0.562100 | 0.457020 | 0.359841 | | 4800 | 0.578800 | 0.470477 | 0.360551 | | 5000 | 0.580400 | 0.481413 | 0.362539 | | 5200 | 0.605500 | 0.485240 | 0.362823 | | 5400 | 0.582900 | 0.486654 | 0.362965 | | 5600 | 0.593900 | 0.486715 | 0.363107 | | 5800 | 0.590900 | 0.486716 | 0.363107 | | 6000 | 0.587200 | 0.486716 | 0.363107 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id sammy786/wav2vec2-xlsr-mongolian --dataset mozilla-foundation/common_voice_8_0 --config mn --split test ```
vitouphy/wav2vec2-xls-r-300m-japanese
vitouphy
2022-03-23T18:30:07Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "ja", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "doi:10.57967/hf/0124", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ja license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - ja - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER type: wer value: 54.05 - name: Test CER type: cer value: 27.54 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Validation WER type: wer value: 48.77 - name: Validation CER type: cer value: 24.87 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 27.36 --- # This model is for transcribing audio into Hiragana, one format of Japanese language. This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `mozilla-foundation/common_voice_8_0 dataset`. Note that the following results are achieved by: - Modify `eval.py` to suit the use case. - Since kanji and katakana shares the same sound as hiragana, we convert all texts to hiragana using [pykakasi](https://pykakasi.readthedocs.io) and tokenize them using [fugashi](https://github.com/polm/fugashi). It achieves the following results on the evaluation set: - Loss: 0.7751 - Cer: 0.2227 # Evaluation results (Running ./eval.py): | Model | Metric | Common-Voice-8/test | speech-recognition-community-v2/dev-data | |:--------:|:------:|:-------------------:|:------------------------------------------:| | w/o LM | WER | 0.5964 | 0.5532 | | | CER | 0.2944 | 0.2629 | | w/ LM | WER | 0.5405 | 0.4877 | | | CER | **0.2754** | **0.2487** | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.4081 | 1.6 | 500 | 4.0983 | 1.0 | | 3.303 | 3.19 | 1000 | 3.3563 | 1.0 | | 3.1538 | 4.79 | 1500 | 3.2066 | 0.9239 | | 2.1526 | 6.39 | 2000 | 1.1597 | 0.3355 | | 1.8726 | 7.98 | 2500 | 0.9023 | 0.2505 | | 1.7817 | 9.58 | 3000 | 0.8219 | 0.2334 | | 1.7488 | 11.18 | 3500 | 0.7915 | 0.2222 | | 1.7039 | 12.78 | 4000 | 0.7751 | 0.2227 | | Stop & Train | | | | | | 1.6571 | 15.97 | 5000 | 0.6788 | 0.1685 | | 1.520400 | 19.16 | 6000 | 0.6095 | 0.1409 | | 1.448200 | 22.35 | 7000 | 0.5843 | 0.1430 | | 1.385400 | 25.54 | 8000 | 0.5699 | 0.1263 | | 1.354200 | 28.73 | 9000 | 0.5686 | 0.1219 | | 1.331500 | 31.92 | 10000 | 0.5502 | 0.1144 | | 1.290800 | 35.11 | 11000 | 0.5371 | 0.1140 | | Stop & Train | | | | | | 1.235200 | 38.30 | 12000 | 0.5394 | 0.1106 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
phantomcoder1996/wav2vec2-large-xls-r-300m-arabic-colab
phantomcoder1996
2022-03-23T18:30:02Z
7
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "ar", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar thumbnail: wav2vec2-large-xls-r fine tuned on common voice data for Modern Standard Arabic tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event license: apache-2.0 datasets: - mozilla-foundation/common_voice_7_0 metrics: - WER model-index: - name: wav2vec2-large-xls-r-300m-arabic-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: 64.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 96.15 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 94.96 ---
lgris/wav2vec2-xls-r-1b-cv8
lgris
2022-03-23T18:29:59Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-xls-r-1b-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 17.7 - name: Test CER type: cer value: 5.21 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 45.68 - name: Test CER type: cer value: 18.67 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 45.29 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 48.03 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set: - Loss: 0.2007 - Wer: 0.1838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.1172 | 0.32 | 500 | 1.2852 | 0.9783 | | 1.4152 | 0.64 | 1000 | 0.6434 | 0.6105 | | 1.4342 | 0.96 | 1500 | 0.4844 | 0.3989 | | 1.4657 | 1.29 | 2000 | 0.5080 | 0.4490 | | 1.4961 | 1.61 | 2500 | 0.4764 | 0.4264 | | 1.4515 | 1.93 | 3000 | 0.4519 | 0.4068 | | 1.3924 | 2.25 | 3500 | 0.4472 | 0.4132 | | 1.4524 | 2.57 | 4000 | 0.4455 | 0.3939 | | 1.4328 | 2.89 | 4500 | 0.4369 | 0.4069 | | 1.3456 | 3.22 | 5000 | 0.4234 | 0.3774 | | 1.3725 | 3.54 | 5500 | 0.4387 | 0.3789 | | 1.3812 | 3.86 | 6000 | 0.4298 | 0.3825 | | 1.3282 | 4.18 | 6500 | 0.4025 | 0.3703 | | 1.3326 | 4.5 | 7000 | 0.3917 | 0.3502 | | 1.3028 | 4.82 | 7500 | 0.3889 | 0.3582 | | 1.293 | 5.14 | 8000 | 0.3859 | 0.3496 | | 1.321 | 5.47 | 8500 | 0.3875 | 0.3576 | | 1.3165 | 5.79 | 9000 | 0.3927 | 0.3589 | | 1.2701 | 6.11 | 9500 | 0.4058 | 0.3621 | | 1.2718 | 6.43 | 10000 | 0.4211 | 0.3916 | | 1.2683 | 6.75 | 10500 | 0.3968 | 0.3620 | | 1.2643 | 7.07 | 11000 | 0.4128 | 0.3848 | | 1.2485 | 7.4 | 11500 | 0.3849 | 0.3727 | | 1.2608 | 7.72 | 12000 | 0.3770 | 0.3474 | | 1.2388 | 8.04 | 12500 | 0.3774 | 0.3574 | | 1.2524 | 8.36 | 13000 | 0.3789 | 0.3550 | | 1.2458 | 8.68 | 13500 | 0.3770 | 0.3410 | | 1.2505 | 9.0 | 14000 | 0.3638 | 0.3403 | | 1.2254 | 9.32 | 14500 | 0.3770 | 0.3509 | | 1.2459 | 9.65 | 15000 | 0.3592 | 0.3349 | | 1.2049 | 9.97 | 15500 | 0.3600 | 0.3428 | | 1.2097 | 10.29 | 16000 | 0.3626 | 0.3347 | | 1.1988 | 10.61 | 16500 | 0.3740 | 0.3269 | | 1.1671 | 10.93 | 17000 | 0.3548 | 0.3245 | | 1.1532 | 11.25 | 17500 | 0.3394 | 0.3140 | | 1.1459 | 11.58 | 18000 | 0.3349 | 0.3156 | | 1.1511 | 11.9 | 18500 | 0.3272 | 0.3110 | | 1.1465 | 12.22 | 19000 | 0.3348 | 0.3084 | | 1.1426 | 12.54 | 19500 | 0.3193 | 0.3027 | | 1.1278 | 12.86 | 20000 | 0.3318 | 0.3021 | | 1.149 | 13.18 | 20500 | 0.3169 | 0.2947 | | 1.114 | 13.5 | 21000 | 0.3224 | 0.2986 | | 1.1249 | 13.83 | 21500 | 0.3227 | 0.2921 | | 1.0968 | 14.15 | 22000 | 0.3033 | 0.2878 | | 1.0851 | 14.47 | 22500 | 0.2996 | 0.2863 | | 1.0985 | 14.79 | 23000 | 0.3011 | 0.2843 | | 1.0808 | 15.11 | 23500 | 0.2932 | 0.2759 | | 1.069 | 15.43 | 24000 | 0.2919 | 0.2750 | | 1.0602 | 15.76 | 24500 | 0.2959 | 0.2713 | | 1.0369 | 16.08 | 25000 | 0.2931 | 0.2754 | | 1.0573 | 16.4 | 25500 | 0.2920 | 0.2722 | | 1.051 | 16.72 | 26000 | 0.2855 | 0.2632 | | 1.0279 | 17.04 | 26500 | 0.2850 | 0.2649 | | 1.0496 | 17.36 | 27000 | 0.2817 | 0.2585 | | 1.0516 | 17.68 | 27500 | 0.2961 | 0.2635 | | 1.0244 | 18.01 | 28000 | 0.2781 | 0.2589 | | 1.0099 | 18.33 | 28500 | 0.2783 | 0.2565 | | 1.0016 | 18.65 | 29000 | 0.2719 | 0.2537 | | 1.0157 | 18.97 | 29500 | 0.2621 | 0.2449 | | 0.9572 | 19.29 | 30000 | 0.2582 | 0.2427 | | 0.9802 | 19.61 | 30500 | 0.2707 | 0.2468 | | 0.9577 | 19.94 | 31000 | 0.2563 | 0.2389 | | 0.9562 | 20.26 | 31500 | 0.2592 | 0.2382 | | 0.962 | 20.58 | 32000 | 0.2539 | 0.2341 | | 0.9541 | 20.9 | 32500 | 0.2505 | 0.2288 | | 0.9587 | 21.22 | 33000 | 0.2486 | 0.2302 | | 0.9146 | 21.54 | 33500 | 0.2461 | 0.2269 | | 0.9215 | 21.86 | 34000 | 0.2387 | 0.2228 | | 0.9105 | 22.19 | 34500 | 0.2405 | 0.2222 | | 0.8949 | 22.51 | 35000 | 0.2316 | 0.2191 | | 0.9153 | 22.83 | 35500 | 0.2358 | 0.2180 | | 0.8907 | 23.15 | 36000 | 0.2369 | 0.2168 | | 0.8973 | 23.47 | 36500 | 0.2323 | 0.2120 | | 0.8878 | 23.79 | 37000 | 0.2293 | 0.2104 | | 0.8818 | 24.12 | 37500 | 0.2302 | 0.2132 | | 0.8919 | 24.44 | 38000 | 0.2262 | 0.2083 | | 0.8473 | 24.76 | 38500 | 0.2257 | 0.2040 | | 0.8516 | 25.08 | 39000 | 0.2246 | 0.2031 | | 0.8451 | 25.4 | 39500 | 0.2198 | 0.2000 | | 0.8288 | 25.72 | 40000 | 0.2199 | 0.1990 | | 0.8465 | 26.05 | 40500 | 0.2165 | 0.1972 | | 0.8305 | 26.37 | 41000 | 0.2128 | 0.1957 | | 0.8202 | 26.69 | 41500 | 0.2127 | 0.1937 | | 0.8223 | 27.01 | 42000 | 0.2100 | 0.1934 | | 0.8322 | 27.33 | 42500 | 0.2076 | 0.1905 | | 0.8139 | 27.65 | 43000 | 0.2054 | 0.1880 | | 0.8299 | 27.97 | 43500 | 0.2026 | 0.1868 | | 0.7937 | 28.3 | 44000 | 0.2045 | 0.1872 | | 0.7972 | 28.62 | 44500 | 0.2025 | 0.1861 | | 0.809 | 28.94 | 45000 | 0.2026 | 0.1858 | | 0.813 | 29.26 | 45500 | 0.2013 | 0.1838 | | 0.7718 | 29.58 | 46000 | 0.2010 | 0.1837 | | 0.7929 | 29.9 | 46500 | 0.2008 | 0.1840 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3.dev0 - Tokenizers 0.11.0
cahya/xls-r-ab-test
cahya
2022-03-23T18:29:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 135.4675 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3
shivam/xls-r-300m-marathi
shivam
2022-03-23T18:29:32Z
18
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "mr", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - mr - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: '' results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice Corpus 8.0 type: mozilla-foundation/common_voice_8_0 args: mr metrics: - name: Test WER type: wer value: 38.27 - name: Test CER type: cer value: 8.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the mozilla-foundation/common_voice_8_0 mr test set: - Without LM + WER: 48.53 + CER: 10.63 - With LM + WER: 38.27 + CER: 8.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 400.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.2706 | 22.73 | 500 | 4.0174 | 1.0 | | 3.2492 | 45.45 | 1000 | 3.2309 | 0.9908 | | 1.9709 | 68.18 | 1500 | 1.0651 | 0.8440 | | 1.4088 | 90.91 | 2000 | 0.5765 | 0.6550 | | 1.1326 | 113.64 | 2500 | 0.4842 | 0.5760 | | 0.9709 | 136.36 | 3000 | 0.4785 | 0.6013 | | 0.8433 | 159.09 | 3500 | 0.5048 | 0.5419 | | 0.7404 | 181.82 | 4000 | 0.5052 | 0.5339 | | 0.6589 | 204.55 | 4500 | 0.5237 | 0.5897 | | 0.5831 | 227.27 | 5000 | 0.5166 | 0.5447 | | 0.5375 | 250.0 | 5500 | 0.5292 | 0.5487 | | 0.4784 | 272.73 | 6000 | 0.5480 | 0.5596 | | 0.4421 | 295.45 | 6500 | 0.5682 | 0.5467 | | 0.4047 | 318.18 | 7000 | 0.5681 | 0.5447 | | 0.3779 | 340.91 | 7500 | 0.5783 | 0.5347 | | 0.3525 | 363.64 | 8000 | 0.5856 | 0.5367 | | 0.3393 | 386.36 | 8500 | 0.5960 | 0.5359 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu113 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
anuragshas
2022-03-23T18:29:27Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sl license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovenian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sl metrics: - name: Test WER type: wer value: 12.736 - name: Test CER type: cer value: 3.605 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sl metrics: - name: Test WER type: wer value: 45.587 - name: Test CER type: cer value: 20.886 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sl metrics: - name: Test WER type: wer value: 45.42 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
RASMUS/wav2vec2-xlsr-1b-ru
RASMUS
2022-03-23T18:29:08Z
43
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "audio", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "speech", "ru", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: ru datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer tags: - audio - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - speech model-index: - name: XLS-R 1B Wav2Vec2 Russian by Rasmus Toivanen results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ru metrics: - name: Test WER type: wer value: 10.83 - name: Test CER type: cer value: 2.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 37.71 - name: Test CER type: cer value: 12.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 31.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-1b-ru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1352 - Wer: 0.0971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5462 | 0.35 | 500 | 0.4027 | 0.3575 | | 0.498 | 0.69 | 1000 | 0.2588 | 0.2513 | | 0.4279 | 1.04 | 1500 | 0.2265 | 0.2204 | | 0.4099 | 1.38 | 2000 | 0.2189 | 0.1979 | | 0.4688 | 1.73 | 2500 | 0.2100 | 0.1920 | | 0.2241 | 2.07 | 3000 | 0.1980 | 0.1767 | | 0.2056 | 2.42 | 3500 | 0.2020 | 0.1683 | | 0.3423 | 2.76 | 4000 | 0.1862 | 0.1606 | | 0.2478 | 3.11 | 4500 | 0.1787 | 0.1563 | | 0.3079 | 3.45 | 5000 | 0.1759 | 0.1555 | | 0.2477 | 3.8 | 5500 | 0.1713 | 0.1423 | | 0.1718 | 4.14 | 6000 | 0.1695 | 0.1391 | | 0.1675 | 4.49 | 6500 | 0.1677 | 0.1372 | | 0.1631 | 4.83 | 7000 | 0.1652 | 0.1333 | | 0.1429 | 5.18 | 7500 | 0.1605 | 0.1308 | | 0.1505 | 5.52 | 8000 | 0.1612 | 0.1245 | | 0.1385 | 5.87 | 8500 | 0.1487 | 0.1225 | | 0.1285 | 6.22 | 9000 | 0.1526 | 0.1201 | | 0.1153 | 6.56 | 9500 | 0.1464 | 0.1172 | | 0.1159 | 6.91 | 10000 | 0.1505 | 0.1143 | | 0.1061 | 7.25 | 10500 | 0.1444 | 0.1106 | | 0.1016 | 7.6 | 11000 | 0.1427 | 0.1075 | | 0.1125 | 7.94 | 11500 | 0.1386 | 0.1045 | | 0.0937 | 8.29 | 12000 | 0.1403 | 0.1022 | | 0.1059 | 8.63 | 12500 | 0.1406 | 0.1022 | | 0.0857 | 8.98 | 13000 | 0.1372 | 0.0992 | | 0.0901 | 9.32 | 13500 | 0.1380 | 0.0977 | | 0.0913 | 9.67 | 14000 | 0.1352 | 0.0971 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
samitizerxu/wav2vec2-xls-r-300m-eo
samitizerxu
2022-03-23T18:29:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "eo", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - common_voice - eo - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-eo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: eo metrics: - name: Test WER type: wer value: 34.72 - name: Test CER type: cer value: 7.54 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-eo This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - EO dataset. It achieves the following results on the evaluation set: - Loss: 0.2584 - Wer: 0.3114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.1701 | 0.8 | 500 | 2.8105 | 1.0 | | 1.9143 | 1.6 | 1000 | 0.5977 | 0.7002 | | 1.1259 | 2.4 | 1500 | 0.5063 | 0.6157 | | 0.9732 | 3.2 | 2000 | 0.4264 | 0.5673 | | 0.8983 | 4.0 | 2500 | 0.4249 | 0.4902 | | 0.8507 | 4.8 | 3000 | 0.3811 | 0.4536 | | 0.8064 | 5.6 | 3500 | 0.3643 | 0.4467 | | 0.7866 | 6.4 | 4000 | 0.3600 | 0.4453 | | 0.7773 | 7.2 | 4500 | 0.3724 | 0.4470 | | 0.747 | 8.0 | 5000 | 0.3501 | 0.4189 | | 0.7279 | 8.8 | 5500 | 0.3500 | 0.4261 | | 0.7153 | 9.6 | 6000 | 0.3328 | 0.3966 | | 0.7 | 10.4 | 6500 | 0.3314 | 0.3869 | | 0.6784 | 11.2 | 7000 | 0.3396 | 0.4051 | | 0.6582 | 12.0 | 7500 | 0.3236 | 0.3899 | | 0.6478 | 12.8 | 8000 | 0.3263 | 0.3832 | | 0.6277 | 13.6 | 8500 | 0.3139 | 0.3769 | | 0.6053 | 14.4 | 9000 | 0.2955 | 0.3536 | | 0.5777 | 15.2 | 9500 | 0.2793 | 0.3413 | | 0.5631 | 16.0 | 10000 | 0.2789 | 0.3353 | | 0.5446 | 16.8 | 10500 | 0.2709 | 0.3264 | | 0.528 | 17.6 | 11000 | 0.2693 | 0.3234 | | 0.5169 | 18.4 | 11500 | 0.2656 | 0.3193 | | 0.5041 | 19.2 | 12000 | 0.2575 | 0.3102 | | 0.4971 | 20.0 | 12500 | 0.2584 | 0.3114 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id samitizerxu/wav2vec2-xls-r-300m-eo --dataset mozilla-foundation/common_voice_7_0 --config eo --split test ```
mpoyraz/wav2vec2-xls-r-300m-cv8-turkish
mpoyraz
2022-03-23T18:29:03Z
54
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv8-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: tr metrics: - name: Test WER type: wer value: 10.61 - name: Test CER type: cer value: 2.67 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 36.46 - name: Test CER type: cer value: 12.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 40.91 --- # wav2vec2-xls-r-300m-cv8-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 8.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) All `validated` split except `test` split was used for training. ## Training procedure To support the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2.5e-4 - num_train_epochs 20 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 8 TR test split| 10.61 | 2.67 | |Speech Recognition Community dev data| 36.46 | 12.38 |
lgris/sew-tiny-portuguese-cv8
lgris
2022-03-23T18:29:00Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "sew", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "pt", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - pt license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - pt - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: sew-tiny-portuguese-cv8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: pt metrics: - name: Test WER type: wer value: 33.71 - name: Test CER type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 52.79 - name: Test CER type: cer value: 20.98 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 53.18 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 55.23 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sew-tiny-portuguese-cv8 This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4082 - Wer: 0.3053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.93 | 1000 | 2.9134 | 0.9767 | | 2.9224 | 3.86 | 2000 | 2.8405 | 0.9789 | | 2.9224 | 5.79 | 3000 | 2.8094 | 0.9800 | | 2.8531 | 7.72 | 4000 | 2.7439 | 0.9891 | | 2.8531 | 9.65 | 5000 | 2.7057 | 1.0159 | | 2.7721 | 11.58 | 6000 | 2.7235 | 1.0709 | | 2.7721 | 13.51 | 7000 | 2.5931 | 1.1035 | | 2.6566 | 15.44 | 8000 | 2.2171 | 0.9884 | | 2.6566 | 17.37 | 9000 | 1.2399 | 0.8081 | | 1.9558 | 19.31 | 10000 | 0.9045 | 0.6353 | | 1.9558 | 21.24 | 11000 | 0.7705 | 0.5533 | | 1.4987 | 23.17 | 12000 | 0.7068 | 0.5165 | | 1.4987 | 25.1 | 13000 | 0.6641 | 0.4718 | | 1.3811 | 27.03 | 14000 | 0.6043 | 0.4470 | | 1.3811 | 28.96 | 15000 | 0.5532 | 0.4268 | | 1.2897 | 30.89 | 16000 | 0.5371 | 0.4101 | | 1.2897 | 32.82 | 17000 | 0.5924 | 0.4150 | | 1.225 | 34.75 | 18000 | 0.4949 | 0.3894 | | 1.225 | 36.68 | 19000 | 0.5591 | 0.4045 | | 1.193 | 38.61 | 20000 | 0.4927 | 0.3731 | | 1.193 | 40.54 | 21000 | 0.4922 | 0.3712 | | 1.1482 | 42.47 | 22000 | 0.4799 | 0.3662 | | 1.1482 | 44.4 | 23000 | 0.4846 | 0.3648 | | 1.1201 | 46.33 | 24000 | 0.4770 | 0.3623 | | 1.1201 | 48.26 | 25000 | 0.4530 | 0.3426 | | 1.0892 | 50.19 | 26000 | 0.4523 | 0.3527 | | 1.0892 | 52.12 | 27000 | 0.4573 | 0.3443 | | 1.0583 | 54.05 | 28000 | 0.4488 | 0.3353 | | 1.0583 | 55.98 | 29000 | 0.4295 | 0.3285 | | 1.0319 | 57.92 | 30000 | 0.4321 | 0.3220 | | 1.0319 | 59.85 | 31000 | 0.4244 | 0.3236 | | 1.0076 | 61.78 | 32000 | 0.4197 | 0.3201 | | 1.0076 | 63.71 | 33000 | 0.4230 | 0.3208 | | 0.9851 | 65.64 | 34000 | 0.4090 | 0.3127 | | 0.9851 | 67.57 | 35000 | 0.4088 | 0.3133 | | 0.9695 | 69.5 | 36000 | 0.4123 | 0.3088 | | 0.9695 | 71.43 | 37000 | 0.4017 | 0.3090 | | 0.9514 | 73.36 | 38000 | 0.4184 | 0.3086 | | 0.9514 | 75.29 | 39000 | 0.4075 | 0.3043 | | 0.944 | 77.22 | 40000 | 0.4082 | 0.3053 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-abkhaz
infinitejoy
2022-03-23T18:28:58Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ab", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ab license: apache-2.0 tags: - ab - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Abkhaz results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ab metrics: - name: Test WER type: wer value: 60.07 - name: Test CER type: cer value: 12.5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-abkhaz This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AB dataset. It achieves the following results on the evaluation set: - Loss: 0.5359 - Wer: 0.6192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8617 | 22.73 | 500 | 2.6264 | 1.0013 | | 1.2716 | 45.45 | 1000 | 0.6218 | 0.6942 | | 1.049 | 68.18 | 1500 | 0.5442 | 0.6368 | | 0.9632 | 90.91 | 2000 | 0.5364 | 0.6242 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
vutankiet2901/wav2vec2-large-xlsr-53-ja
vutankiet2901
2022-03-23T18:28:48Z
8
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "ja", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ja tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - ja - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xlsr-53-ja results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 15.37 - name: Test CER (with LM) type: cer value: 6.91 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: ja metrics: - name: Test WER (with LM) type: wer value: 16.09 - name: Test CER (with LM) type: cer value: 7.15 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ja metrics: - name: Test WER (with LM) type: wer value: 37.96 - name: Test CER (with LM) type: cer value: 21.11 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ja metrics: - name: Test CER type: cer value: 26.02 --- ## Model description This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset. ### Benchmark WER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 15.74 | 25.10 | |with 4-grams LM| 15.37 | 16.09 | ### Benchmark CER result: | | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---| |without LM| 9.51 | 9.95 | |with 4-grams LM| 6.91 | 7.15 | ## Evaluation Please use the eval.py file to run the evaluation: ```python python eval.py --model_id vutankiet2901/wav2vec2-large-xlsr-53-ja --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 4.7776 | 4.73 | 1500 | 2.9540 | 0.9772 | 0.8489 | | 1.9076 | 9.46 | 3000 | 0.7146 | 0.5371 | 0.2484 | | 1.507 | 14.2 | 4500 | 0.5843 | 0.4689 | 0.2196 | | 1.3742 | 18.93 | 6000 | 0.5286 | 0.4321 | 0.1988 | | 1.2776 | 23.66 | 7500 | 0.5007 | 0.4056 | 0.1870 | | 1.2003 | 28.39 | 9000 | 0.4676 | 0.3848 | 0.1802 | | 1.1281 | 33.12 | 10500 | 0.4524 | 0.3694 | 0.1720 | | 1.0657 | 37.85 | 12000 | 0.4449 | 0.3590 | 0.1681 | | 1.0129 | 42.59 | 13500 | 0.4266 | 0.3423 | 0.1617 | | 0.9691 | 47.32 | 15000 | 0.4214 | 0.3375 | 0.1587 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
reichenbach/wav2vec2-large-xls-r-300m-pa-in
reichenbach
2022-03-23T18:28:40Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - pa - pa-IN tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-pa-in results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pa-in This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9680 - Wer: 0.7283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 180 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.2615 | 24.97 | 400 | 3.4784 | 1.0 | | 3.366 | 49.97 | 800 | 2.3662 | 0.9917 | | 1.1678 | 74.97 | 1200 | 1.4806 | 0.7709 | | 0.5496 | 99.97 | 1600 | 1.7166 | 0.7476 | | 0.4101 | 124.97 | 2000 | 1.8473 | 0.7510 | | 0.3317 | 149.97 | 2400 | 1.9177 | 0.7322 | | 0.2956 | 174.97 | 2800 | 1.9680 | 0.7283 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 ### Evaluations Result - WER: 0.7539 - CER: 0.2928
anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm
anuragshas
2022-03-23T18:28:35Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - sk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-300M - Slovak results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sk metrics: - name: Test WER type: wer value: 18.609 - name: Test CER type: cer value: 5.488 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sk metrics: - name: Test WER type: wer value: 40.548 - name: Test CER type: cer value: 17.733 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: sk metrics: - name: Test WER type: wer value: 44.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset. It achieves the following results on the evaluation set: - Loss: 0.3067 - Wer: 0.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.175 | 2.41 | 400 | 4.6909 | 1.0 | | 3.3785 | 4.82 | 800 | 3.3080 | 1.0 | | 2.6964 | 7.23 | 1200 | 2.0651 | 1.1055 | | 1.3008 | 9.64 | 1600 | 0.5845 | 0.6207 | | 1.1185 | 12.05 | 2000 | 0.4195 | 0.4193 | | 1.0252 | 14.46 | 2400 | 0.3824 | 0.3570 | | 0.935 | 16.87 | 2800 | 0.3693 | 0.3462 | | 0.8818 | 19.28 | 3200 | 0.3587 | 0.3318 | | 0.8534 | 21.69 | 3600 | 0.3420 | 0.3180 | | 0.8137 | 24.1 | 4000 | 0.3426 | 0.3130 | | 0.7968 | 26.51 | 4400 | 0.3349 | 0.3102 | | 0.7558 | 28.92 | 4800 | 0.3216 | 0.3019 | | 0.7313 | 31.33 | 5200 | 0.3451 | 0.3060 | | 0.7358 | 33.73 | 5600 | 0.3272 | 0.2967 | | 0.718 | 36.14 | 6000 | 0.3315 | 0.2882 | | 0.6991 | 38.55 | 6400 | 0.3299 | 0.2830 | | 0.6529 | 40.96 | 6800 | 0.3140 | 0.2836 | | 0.6225 | 43.37 | 7200 | 0.3128 | 0.2751 | | 0.633 | 45.78 | 7600 | 0.3211 | 0.2774 | | 0.5876 | 48.19 | 8000 | 0.3162 | 0.2764 | | 0.588 | 50.6 | 8400 | 0.3082 | 0.2722 | | 0.5915 | 53.01 | 8800 | 0.3120 | 0.2681 | | 0.5798 | 55.42 | 9200 | 0.3133 | 0.2709 | | 0.5736 | 57.83 | 9600 | 0.3086 | 0.2676 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.707 | 18.609 |
mpoyraz/wav2vec2-xls-r-300m-cv7-turkish
mpoyraz
2022-03-23T18:28:32Z
567,583
10
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "tr", "dataset:mozilla-foundation/common_voice_7_0", "license:cc-by-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: cc-by-4.0 language: tr tags: - automatic-speech-recognition - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event - tr datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv7-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: tr metrics: - name: Test WER type: wer value: 8.62 - name: Test CER type: cer value: 2.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 30.87 - name: Test CER type: cer value: 10.69 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 32.09 --- # wav2vec2-xls-r-300m-cv7-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 7.0 TR](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.05 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.05 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv7-turkish --dataset mozilla-foundation/common_voice_7_0 --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv7-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 7 TR test split| 8.62 | 2.26 | |Speech Recognition Community dev data| 30.87 | 10.69 |
infinitejoy/wav2vec2-large-xls-r-300m-arabic
infinitejoy
2022-03-23T18:28:27Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ar", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - ar - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Arabic results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: NA - name: Test CER type: cer value: NA --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300m-SV This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: NA - Wer: NA ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic \ --dataset mozilla-foundation/common_voice_7_0 --config ar --split test --log_outputs ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py \ --model_id infinitejoy/wav2vec2-large-xls-r-300m-arabic --dataset speech-recognition-community-v2/dev_data \ --config ar --split validation --chunk_length_s 10 --stride_length_s 1 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "infinitejoy/wav2vec2-large-xls-r-300m-arabic" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ar", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | NA | NA |
emre/wav2vec2-xls-r-300m-Russian-small
emre
2022-03-23T18:28:22Z
19
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "ru", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - ru tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-Russian-small results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ru type: common_voice args: ru metrics: - name: Test WER type: wer value: 48.38 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ru metrics: - name: Test WER type: wer value: 58.25 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ru metrics: - name: Test WER type: wer value: 56.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-Russian-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3514 - Wer: 0.4838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.512 | 1.32 | 400 | 3.2207 | 1.0 | | 3.1562 | 2.65 | 800 | 3.0166 | 1.0 | | 1.5211 | 3.97 | 1200 | 0.7134 | 0.8275 | | 0.6724 | 5.3 | 1600 | 0.4713 | 0.6402 | | 0.4693 | 6.62 | 2000 | 0.3904 | 0.5668 | | 0.3693 | 7.95 | 2400 | 0.3609 | 0.5121 | | 0.3004 | 9.27 | 2800 | 0.3514 | 0.4838 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
edugp/wav2vec2-xls-r-300m-36-tokens-with-lm-es
edugp
2022-03-23T18:28:19Z
17
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - es tags: - es - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-36-tokens-with-lm-es results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: common_voice es type: common_voice args: es metrics: - name: Test WER type: wer value: 0.08677014042867702 - name: Test CER type: cer value: 0.02810974186831335 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 31.68 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 34.45 --- # Wav2Vec2-xls-r-300m-36-tokens-with-lm-es <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Wer: 0.0868 - Cer: 0.0281 This model consists of a Wav2Vec2 model with an additional KenLM 5-gram language model for CTC decoding. The model is trained removing all characters that are not lower-case unaccented letters between `a-z` or the Spanish accented vowels `á`, `é`, `í`, `ó`, `ú` or the dieresis on the vowel `u` - `ü`. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 3.6512 | 0.07 | 400 | 0.5734 | 0.4325 | | 0.4404 | 0.14 | 800 | 0.3329 | 0.3021 | | 0.3465 | 0.22 | 1200 | 0.3067 | 0.2871 | | 0.3214 | 0.29 | 1600 | 0.2808 | 0.2694 | | 0.319 | 0.36 | 2000 | 0.2755 | 0.2677 | | 0.3015 | 0.43 | 2400 | 0.2667 | 0.2437 | | 0.3102 | 0.51 | 2800 | 0.2679 | 0.2475 | | 0.2955 | 0.58 | 3200 | 0.2591 | 0.2421 | | 0.292 | 0.65 | 3600 | 0.2547 | 0.2404 | | 0.2961 | 0.72 | 4000 | 0.2824 | 0.2716 | | 0.2906 | 0.8 | 4400 | 0.2531 | 0.2321 | | 0.2886 | 0.87 | 4800 | 0.2668 | 0.2573 | | 0.2934 | 0.94 | 5200 | 0.2608 | 0.2454 | | 0.2844 | 1.01 | 5600 | 0.2414 | 0.2233 | | 0.2649 | 1.09 | 6000 | 0.2412 | 0.2198 | | 0.2587 | 1.16 | 6400 | 0.2432 | 0.2211 | | 0.2631 | 1.23 | 6800 | 0.2414 | 0.2225 | | 0.2584 | 1.3 | 7200 | 0.2489 | 0.2290 | | 0.2588 | 1.37 | 7600 | 0.2341 | 0.2156 | | 0.2581 | 1.45 | 8000 | 0.2323 | 0.2155 | | 0.2603 | 1.52 | 8400 | 0.2423 | 0.2231 | | 0.2527 | 1.59 | 8800 | 0.2381 | 0.2192 | | 0.2588 | 1.66 | 9200 | 0.2323 | 0.2176 | | 0.2543 | 1.74 | 9600 | 0.2391 | 0.2151 | | 0.2528 | 1.81 | 10000 | 0.2295 | 0.2091 | | 0.2535 | 1.88 | 10400 | 0.2317 | 0.2099 | | 0.2501 | 1.95 | 10800 | 0.2225 | 0.2105 | | 0.2441 | 2.03 | 11200 | 0.2356 | 0.2180 | | 0.2275 | 2.1 | 11600 | 0.2341 | 0.2115 | | 0.2281 | 2.17 | 12000 | 0.2269 | 0.2117 | | 0.227 | 2.24 | 12400 | 0.2367 | 0.2125 | | 0.2471 | 2.32 | 12800 | 0.2307 | 0.2090 | | 0.229 | 2.39 | 13200 | 0.2231 | 0.2005 | | 0.2325 | 2.46 | 13600 | 0.2243 | 0.2100 | | 0.2314 | 2.53 | 14000 | 0.2252 | 0.2098 | | 0.2309 | 2.6 | 14400 | 0.2269 | 0.2089 | | 0.2267 | 2.68 | 14800 | 0.2155 | 0.1976 | | 0.225 | 2.75 | 15200 | 0.2263 | 0.2067 | | 0.2309 | 2.82 | 15600 | 0.2196 | 0.2041 | | 0.225 | 2.89 | 16000 | 0.2212 | 0.2052 | | 0.228 | 2.97 | 16400 | 0.2192 | 0.2028 | | 0.2136 | 3.04 | 16800 | 0.2169 | 0.2042 | | 0.2038 | 3.11 | 17200 | 0.2173 | 0.1998 | | 0.2035 | 3.18 | 17600 | 0.2185 | 0.2002 | | 0.207 | 3.26 | 18000 | 0.2358 | 0.2120 | | 0.2102 | 3.33 | 18400 | 0.2213 | 0.2019 | | 0.211 | 3.4 | 18800 | 0.2176 | 0.1980 | | 0.2099 | 3.47 | 19200 | 0.2186 | 0.1960 | | 0.2093 | 3.55 | 19600 | 0.2208 | 0.2016 | | 0.2046 | 3.62 | 20000 | 0.2138 | 0.1960 | | 0.2095 | 3.69 | 20400 | 0.2222 | 0.2023 | | 0.2106 | 3.76 | 20800 | 0.2159 | 0.1964 | | 0.2066 | 3.83 | 21200 | 0.2083 | 0.1931 | | 0.2119 | 3.91 | 21600 | 0.2130 | 0.1957 | | 0.2167 | 3.98 | 22000 | 0.2210 | 0.1987 | | 0.1973 | 4.05 | 22400 | 0.2112 | 0.1930 | | 0.1917 | 4.12 | 22800 | 0.2107 | 0.1891 | | 0.1903 | 4.2 | 23200 | 0.2132 | 0.1911 | | 0.1903 | 4.27 | 23600 | 0.2077 | 0.1883 | | 0.1914 | 4.34 | 24000 | 0.2054 | 0.1901 | | 0.1943 | 4.41 | 24400 | 0.2059 | 0.1885 | | 0.1943 | 4.49 | 24800 | 0.2095 | 0.1899 | | 0.1936 | 4.56 | 25200 | 0.2078 | 0.1879 | | 0.1963 | 4.63 | 25600 | 0.2018 | 0.1884 | | 0.1934 | 4.7 | 26000 | 0.2034 | 0.1872 | | 0.2011 | 4.78 | 26400 | 0.2051 | 0.1896 | | 0.1901 | 4.85 | 26800 | 0.2059 | 0.1858 | | 0.1934 | 4.92 | 27200 | 0.2028 | 0.1832 | | 0.191 | 4.99 | 27600 | 0.2046 | 0.1870 | | 0.1775 | 5.07 | 28000 | 0.2081 | 0.1891 | | 0.175 | 5.14 | 28400 | 0.2084 | 0.1904 | | 0.19 | 5.21 | 28800 | 0.2086 | 0.1920 | | 0.1798 | 5.28 | 29200 | 0.2079 | 0.1935 | | 0.1765 | 5.35 | 29600 | 0.2145 | 0.1930 | | 0.181 | 5.43 | 30000 | 0.2062 | 0.1918 | | 0.1808 | 5.5 | 30400 | 0.2083 | 0.1875 | | 0.1769 | 5.57 | 30800 | 0.2117 | 0.1895 | | 0.1788 | 5.64 | 31200 | 0.2055 | 0.1857 | | 0.181 | 5.72 | 31600 | 0.2057 | 0.1870 | | 0.1781 | 5.79 | 32000 | 0.2053 | 0.1872 | | 0.1852 | 5.86 | 32400 | 0.2077 | 0.1904 | | 0.1832 | 5.93 | 32800 | 0.1979 | 0.1821 | | 0.1758 | 6.01 | 33200 | 0.1957 | 0.1754 | | 0.1611 | 6.08 | 33600 | 0.2028 | 0.1773 | | 0.1606 | 6.15 | 34000 | 0.2018 | 0.1780 | | 0.1702 | 6.22 | 34400 | 0.1977 | 0.1759 | | 0.1649 | 6.3 | 34800 | 0.2073 | 0.1845 | | 0.1641 | 6.37 | 35200 | 0.1947 | 0.1774 | | 0.1703 | 6.44 | 35600 | 0.2009 | 0.1811 | | 0.1716 | 6.51 | 36000 | 0.2091 | 0.1817 | | 0.1732 | 6.58 | 36400 | 0.1942 | 0.1743 | | 0.1642 | 6.66 | 36800 | 0.1930 | 0.1749 | | 0.1685 | 6.73 | 37200 | 0.1962 | 0.1716 | | 0.1647 | 6.8 | 37600 | 0.1977 | 0.1822 | | 0.1647 | 6.87 | 38000 | 0.1917 | 0.1748 | | 0.1667 | 6.95 | 38400 | 0.1948 | 0.1774 | | 0.1647 | 7.02 | 38800 | 0.2018 | 0.1783 | | 0.15 | 7.09 | 39200 | 0.2010 | 0.1796 | | 0.1663 | 7.16 | 39600 | 0.1969 | 0.1731 | | 0.1536 | 7.24 | 40000 | 0.1935 | 0.1726 | | 0.1544 | 7.31 | 40400 | 0.2030 | 0.1799 | | 0.1536 | 7.38 | 40800 | 0.1973 | 0.1772 | | 0.1559 | 7.45 | 41200 | 0.1973 | 0.1763 | | 0.1547 | 7.53 | 41600 | 0.2052 | 0.1782 | | 0.1584 | 7.6 | 42000 | 0.1965 | 0.1737 | | 0.1542 | 7.67 | 42400 | 0.1878 | 0.1725 | | 0.1525 | 7.74 | 42800 | 0.1946 | 0.1750 | | 0.1547 | 7.81 | 43200 | 0.1934 | 0.1691 | | 0.1534 | 7.89 | 43600 | 0.1919 | 0.1711 | | 0.1574 | 7.96 | 44000 | 0.1935 | 0.1745 | | 0.1471 | 8.03 | 44400 | 0.1915 | 0.1689 | | 0.1433 | 8.1 | 44800 | 0.1956 | 0.1719 | | 0.1433 | 8.18 | 45200 | 0.1980 | 0.1720 | | 0.1424 | 8.25 | 45600 | 0.1906 | 0.1681 | | 0.1428 | 8.32 | 46000 | 0.1892 | 0.1649 | | 0.1424 | 8.39 | 46400 | 0.1916 | 0.1698 | | 0.1466 | 8.47 | 46800 | 0.1970 | 0.1739 | | 0.1496 | 8.54 | 47200 | 0.1902 | 0.1662 | | 0.1408 | 8.61 | 47600 | 0.1858 | 0.1649 | | 0.1445 | 8.68 | 48000 | 0.1893 | 0.1648 | | 0.1459 | 8.76 | 48400 | 0.1875 | 0.1686 | | 0.1433 | 8.83 | 48800 | 0.1920 | 0.1673 | | 0.1448 | 8.9 | 49200 | 0.1833 | 0.1631 | | 0.1461 | 8.97 | 49600 | 0.1904 | 0.1693 | | 0.1451 | 9.04 | 50000 | 0.1969 | 0.1661 | | 0.1336 | 9.12 | 50400 | 0.1950 | 0.1674 | | 0.1362 | 9.19 | 50800 | 0.1971 | 0.1685 | | 0.1316 | 9.26 | 51200 | 0.1928 | 0.1648 | | 0.132 | 9.33 | 51600 | 0.1908 | 0.1615 | | 0.1301 | 9.41 | 52000 | 0.1842 | 0.1569 | | 0.1322 | 9.48 | 52400 | 0.1892 | 0.1616 | | 0.1391 | 9.55 | 52800 | 0.1956 | 0.1656 | | 0.132 | 9.62 | 53200 | 0.1876 | 0.1598 | | 0.1349 | 9.7 | 53600 | 0.1870 | 0.1624 | | 0.1325 | 9.77 | 54000 | 0.1834 | 0.1586 | | 0.1389 | 9.84 | 54400 | 0.1892 | 0.1647 | | 0.1364 | 9.91 | 54800 | 0.1840 | 0.1597 | | 0.1339 | 9.99 | 55200 | 0.1858 | 0.1626 | | 0.1269 | 10.06 | 55600 | 0.1875 | 0.1619 | | 0.1229 | 10.13 | 56000 | 0.1909 | 0.1619 | | 0.1258 | 10.2 | 56400 | 0.1933 | 0.1631 | | 0.1256 | 10.27 | 56800 | 0.1930 | 0.1640 | | 0.1207 | 10.35 | 57200 | 0.1823 | 0.1585 | | 0.1248 | 10.42 | 57600 | 0.1889 | 0.1596 | | 0.1264 | 10.49 | 58000 | 0.1845 | 0.1584 | | 0.1251 | 10.56 | 58400 | 0.1869 | 0.1588 | | 0.1251 | 10.64 | 58800 | 0.1885 | 0.1613 | | 0.1276 | 10.71 | 59200 | 0.1855 | 0.1575 | | 0.1303 | 10.78 | 59600 | 0.1836 | 0.1597 | | 0.1246 | 10.85 | 60000 | 0.1810 | 0.1573 | | 0.1283 | 10.93 | 60400 | 0.1830 | 0.1581 | | 0.1273 | 11.0 | 60800 | 0.1837 | 0.1619 | | 0.1202 | 11.07 | 61200 | 0.1865 | 0.1588 | | 0.119 | 11.14 | 61600 | 0.1889 | 0.1580 | | 0.1179 | 11.22 | 62000 | 0.1884 | 0.1592 | | 0.1187 | 11.29 | 62400 | 0.1824 | 0.1565 | | 0.1198 | 11.36 | 62800 | 0.1848 | 0.1552 | | 0.1154 | 11.43 | 63200 | 0.1866 | 0.1565 | | 0.1211 | 11.51 | 63600 | 0.1862 | 0.1563 | | 0.1177 | 11.58 | 64000 | 0.1816 | 0.1527 | | 0.1156 | 11.65 | 64400 | 0.1834 | 0.1540 | | 0.1144 | 11.72 | 64800 | 0.1837 | 0.1524 | | 0.119 | 11.79 | 65200 | 0.1859 | 0.1538 | | 0.1183 | 11.87 | 65600 | 0.1869 | 0.1558 | | 0.122 | 11.94 | 66000 | 0.1853 | 0.1535 | | 0.1197 | 12.01 | 66400 | 0.1871 | 0.1586 | | 0.1096 | 12.08 | 66800 | 0.1838 | 0.1540 | | 0.1074 | 12.16 | 67200 | 0.1915 | 0.1592 | | 0.1084 | 12.23 | 67600 | 0.1845 | 0.1545 | | 0.1097 | 12.3 | 68000 | 0.1904 | 0.1552 | | 0.112 | 12.37 | 68400 | 0.1846 | 0.1578 | | 0.1109 | 12.45 | 68800 | 0.1862 | 0.1549 | | 0.1114 | 12.52 | 69200 | 0.1889 | 0.1552 | | 0.1119 | 12.59 | 69600 | 0.1828 | 0.1530 | | 0.1124 | 12.66 | 70000 | 0.1822 | 0.1540 | | 0.1127 | 12.74 | 70400 | 0.1865 | 0.1589 | | 0.1128 | 12.81 | 70800 | 0.1786 | 0.1498 | | 0.1069 | 12.88 | 71200 | 0.1813 | 0.1522 | | 0.1069 | 12.95 | 71600 | 0.1895 | 0.1558 | | 0.1083 | 13.02 | 72000 | 0.1925 | 0.1557 | | 0.1009 | 13.1 | 72400 | 0.1883 | 0.1522 | | 0.1007 | 13.17 | 72800 | 0.1829 | 0.1480 | | 0.1014 | 13.24 | 73200 | 0.1861 | 0.1510 | | 0.0974 | 13.31 | 73600 | 0.1836 | 0.1486 | | 0.1006 | 13.39 | 74000 | 0.1821 | 0.1462 | | 0.0973 | 13.46 | 74400 | 0.1857 | 0.1484 | | 0.1011 | 13.53 | 74800 | 0.1822 | 0.1471 | | 0.1031 | 13.6 | 75200 | 0.1823 | 0.1489 | | 0.1034 | 13.68 | 75600 | 0.1809 | 0.1452 | | 0.0998 | 13.75 | 76000 | 0.1817 | 0.1490 | | 0.1071 | 13.82 | 76400 | 0.1808 | 0.1501 | | 0.1083 | 13.89 | 76800 | 0.1796 | 0.1475 | | 0.1053 | 13.97 | 77200 | 0.1785 | 0.1470 | | 0.0978 | 14.04 | 77600 | 0.1886 | 0.1495 | | 0.094 | 14.11 | 78000 | 0.1854 | 0.1489 | | 0.0915 | 14.18 | 78400 | 0.1854 | 0.1498 | | 0.0947 | 14.25 | 78800 | 0.1888 | 0.1500 | | 0.0939 | 14.33 | 79200 | 0.1885 | 0.1494 | | 0.0973 | 14.4 | 79600 | 0.1877 | 0.1466 | | 0.0946 | 14.47 | 80000 | 0.1904 | 0.1494 | | 0.0931 | 14.54 | 80400 | 0.1815 | 0.1473 | | 0.0958 | 14.62 | 80800 | 0.1905 | 0.1508 | | 0.0982 | 14.69 | 81200 | 0.1881 | 0.1511 | | 0.0963 | 14.76 | 81600 | 0.1823 | 0.1449 | | 0.0943 | 14.83 | 82000 | 0.1782 | 0.1458 | | 0.0981 | 14.91 | 82400 | 0.1795 | 0.1465 | | 0.0995 | 14.98 | 82800 | 0.1811 | 0.1484 | | 0.0909 | 15.05 | 83200 | 0.1822 | 0.1450 | | 0.0872 | 15.12 | 83600 | 0.1890 | 0.1466 | | 0.0878 | 15.2 | 84000 | 0.1859 | 0.1468 | | 0.0884 | 15.27 | 84400 | 0.1825 | 0.1429 | | 0.0871 | 15.34 | 84800 | 0.1816 | 0.1438 | | 0.0883 | 15.41 | 85200 | 0.1817 | 0.1433 | | 0.0844 | 15.48 | 85600 | 0.1821 | 0.1412 | | 0.0843 | 15.56 | 86000 | 0.1863 | 0.1411 | | 0.0805 | 15.63 | 86400 | 0.1863 | 0.1441 | | 0.085 | 15.7 | 86800 | 0.1808 | 0.1440 | | 0.0848 | 15.77 | 87200 | 0.1808 | 0.1421 | | 0.0844 | 15.85 | 87600 | 0.1841 | 0.1406 | | 0.082 | 15.92 | 88000 | 0.1850 | 0.1442 | | 0.0854 | 15.99 | 88400 | 0.1773 | 0.1426 | | 0.0835 | 16.06 | 88800 | 0.1888 | 0.1436 | | 0.0789 | 16.14 | 89200 | 0.1922 | 0.1434 | | 0.081 | 16.21 | 89600 | 0.1864 | 0.1448 | | 0.0799 | 16.28 | 90000 | 0.1902 | 0.1428 | | 0.0848 | 16.35 | 90400 | 0.1873 | 0.1422 | | 0.084 | 16.43 | 90800 | 0.1835 | 0.1421 | | 0.083 | 16.5 | 91200 | 0.1878 | 0.1390 | | 0.0794 | 16.57 | 91600 | 0.1877 | 0.1398 | | 0.0807 | 16.64 | 92000 | 0.1800 | 0.1385 | | 0.0829 | 16.71 | 92400 | 0.1910 | 0.1434 | | 0.0839 | 16.79 | 92800 | 0.1843 | 0.1381 | | 0.0815 | 16.86 | 93200 | 0.1812 | 0.1365 | | 0.0831 | 16.93 | 93600 | 0.1889 | 0.1383 | | 0.0803 | 17.0 | 94000 | 0.1902 | 0.1403 | | 0.0724 | 17.08 | 94400 | 0.1934 | 0.1380 | | 0.0734 | 17.15 | 94800 | 0.1865 | 0.1394 | | 0.0739 | 17.22 | 95200 | 0.1876 | 0.1395 | | 0.0758 | 17.29 | 95600 | 0.1938 | 0.1411 | | 0.0733 | 17.37 | 96000 | 0.1933 | 0.1410 | | 0.077 | 17.44 | 96400 | 0.1848 | 0.1385 | | 0.0754 | 17.51 | 96800 | 0.1876 | 0.1407 | | 0.0746 | 17.58 | 97200 | 0.1863 | 0.1371 | | 0.0732 | 17.66 | 97600 | 0.1927 | 0.1401 | | 0.0746 | 17.73 | 98000 | 0.1874 | 0.1390 | | 0.0755 | 17.8 | 98400 | 0.1853 | 0.1381 | | 0.0724 | 17.87 | 98800 | 0.1849 | 0.1365 | | 0.0716 | 17.94 | 99200 | 0.1848 | 0.1380 | | 0.074 | 18.02 | 99600 | 0.1891 | 0.1362 | | 0.0687 | 18.09 | 100000 | 0.1974 | 0.1357 | | 0.0651 | 18.16 | 100400 | 0.1942 | 0.1353 | | 0.0672 | 18.23 | 100800 | 0.1823 | 0.1363 | | 0.0671 | 18.31 | 101200 | 0.1959 | 0.1357 | | 0.0684 | 18.38 | 101600 | 0.1959 | 0.1374 | | 0.0688 | 18.45 | 102000 | 0.1904 | 0.1353 | | 0.0696 | 18.52 | 102400 | 0.1926 | 0.1364 | | 0.0661 | 18.6 | 102800 | 0.1905 | 0.1351 | | 0.0684 | 18.67 | 103200 | 0.1955 | 0.1343 | | 0.0712 | 18.74 | 103600 | 0.1873 | 0.1353 | | 0.0701 | 18.81 | 104000 | 0.1822 | 0.1354 | | 0.0688 | 18.89 | 104400 | 0.1905 | 0.1373 | | 0.0695 | 18.96 | 104800 | 0.1879 | 0.1335 | | 0.0661 | 19.03 | 105200 | 0.2005 | 0.1351 | | 0.0644 | 19.1 | 105600 | 0.1972 | 0.1351 | | 0.0627 | 19.18 | 106000 | 0.1956 | 0.1340 | | 0.0633 | 19.25 | 106400 | 0.1962 | 0.1340 | | 0.0629 | 19.32 | 106800 | 0.1937 | 0.1342 | | 0.0636 | 19.39 | 107200 | 0.1905 | 0.1355 | | 0.0631 | 19.46 | 107600 | 0.1917 | 0.1326 | | 0.0624 | 19.54 | 108000 | 0.1977 | 0.1355 | | 0.0621 | 19.61 | 108400 | 0.1941 | 0.1345 | | 0.0635 | 19.68 | 108800 | 0.1949 | 0.1336 | | 0.063 | 19.75 | 109200 | 0.1919 | 0.1317 | | 0.0636 | 19.83 | 109600 | 0.1928 | 0.1317 | | 0.0612 | 19.9 | 110000 | 0.1923 | 0.1314 | | 0.0636 | 19.97 | 110400 | 0.1923 | 0.1343 | | 0.0581 | 20.04 | 110800 | 0.2036 | 0.1332 | | 0.0573 | 20.12 | 111200 | 0.2007 | 0.1315 | | 0.0566 | 20.19 | 111600 | 0.1974 | 0.1319 | | 0.0589 | 20.26 | 112000 | 0.1958 | 0.1322 | | 0.0577 | 20.33 | 112400 | 0.1946 | 0.1307 | | 0.0587 | 20.41 | 112800 | 0.1957 | 0.1295 | | 0.0588 | 20.48 | 113200 | 0.2013 | 0.1306 | | 0.0594 | 20.55 | 113600 | 0.2010 | 0.1312 | | 0.0602 | 20.62 | 114000 | 0.1993 | 0.1314 | | 0.0583 | 20.69 | 114400 | 0.1931 | 0.1297 | | 0.059 | 20.77 | 114800 | 0.1974 | 0.1305 | | 0.0566 | 20.84 | 115200 | 0.1979 | 0.1294 | | 0.0588 | 20.91 | 115600 | 0.1944 | 0.1292 | | 0.0569 | 20.98 | 116000 | 0.1974 | 0.1309 | | 0.0554 | 21.06 | 116400 | 0.2080 | 0.1307 | | 0.0542 | 21.13 | 116800 | 0.2056 | 0.1301 | | 0.0532 | 21.2 | 117200 | 0.2027 | 0.1309 | | 0.0535 | 21.27 | 117600 | 0.1970 | 0.1287 | | 0.0533 | 21.35 | 118000 | 0.2124 | 0.1310 | | 0.0546 | 21.42 | 118400 | 0.2043 | 0.1300 | | 0.0544 | 21.49 | 118800 | 0.2056 | 0.1281 | | 0.0562 | 21.56 | 119200 | 0.1986 | 0.1273 | | 0.0549 | 21.64 | 119600 | 0.2075 | 0.1283 | | 0.0522 | 21.71 | 120000 | 0.2058 | 0.1278 | | 0.052 | 21.78 | 120400 | 0.2057 | 0.1280 | | 0.0563 | 21.85 | 120800 | 0.1966 | 0.1295 | | 0.0546 | 21.92 | 121200 | 0.2002 | 0.1285 | | 0.0539 | 22.0 | 121600 | 0.1996 | 0.1279 | | 0.0504 | 22.07 | 122000 | 0.2077 | 0.1273 | | 0.0602 | 22.14 | 122400 | 0.2055 | 0.1278 | | 0.0503 | 22.21 | 122800 | 0.2037 | 0.1283 | | 0.0496 | 22.29 | 123200 | 0.2109 | 0.1279 | | 0.0523 | 22.36 | 123600 | 0.2068 | 0.1276 | | 0.0508 | 22.43 | 124000 | 0.2051 | 0.1257 | | 0.0505 | 22.5 | 124400 | 0.2056 | 0.1269 | | 0.05 | 22.58 | 124800 | 0.1995 | 0.1268 | | 0.0496 | 22.65 | 125200 | 0.2022 | 0.1290 | | 0.0484 | 22.72 | 125600 | 0.2095 | 0.1291 | | 0.0518 | 22.79 | 126000 | 0.2132 | 0.1271 | | 0.0499 | 22.87 | 126400 | 0.2124 | 0.1263 | | 0.0485 | 22.94 | 126800 | 0.2092 | 0.1252 | | 0.0476 | 23.01 | 127200 | 0.2138 | 0.1256 | | 0.0467 | 23.08 | 127600 | 0.2119 | 0.1256 | | 0.048 | 23.15 | 128000 | 0.2138 | 0.1269 | | 0.0461 | 23.23 | 128400 | 0.2036 | 0.1244 | | 0.0467 | 23.3 | 128800 | 0.2163 | 0.1255 | | 0.0475 | 23.37 | 129200 | 0.2180 | 0.1258 | | 0.0468 | 23.44 | 129600 | 0.2129 | 0.1245 | | 0.0456 | 23.52 | 130000 | 0.2122 | 0.1250 | | 0.0458 | 23.59 | 130400 | 0.2157 | 0.1257 | | 0.0453 | 23.66 | 130800 | 0.2088 | 0.1242 | | 0.045 | 23.73 | 131200 | 0.2144 | 0.1247 | | 0.0469 | 23.81 | 131600 | 0.2113 | 0.1246 | | 0.0453 | 23.88 | 132000 | 0.2151 | 0.1234 | | 0.0471 | 23.95 | 132400 | 0.2130 | 0.1229 | | 0.0443 | 24.02 | 132800 | 0.2150 | 0.1225 | | 0.0446 | 24.1 | 133200 | 0.2166 | 0.1235 | | 0.0435 | 24.17 | 133600 | 0.2143 | 0.1222 | | 0.0407 | 24.24 | 134000 | 0.2175 | 0.1218 | | 0.0421 | 24.31 | 134400 | 0.2147 | 0.1227 | | 0.0435 | 24.38 | 134800 | 0.2193 | 0.1233 | | 0.0414 | 24.46 | 135200 | 0.2172 | 0.1225 | | 0.0419 | 24.53 | 135600 | 0.2156 | 0.1225 | | 0.0419 | 24.6 | 136000 | 0.2143 | 0.1235 | | 0.0423 | 24.67 | 136400 | 0.2179 | 0.1226 | | 0.0423 | 24.75 | 136800 | 0.2144 | 0.1221 | | 0.0424 | 24.82 | 137200 | 0.2135 | 0.1210 | | 0.0419 | 24.89 | 137600 | 0.2166 | 0.1218 | | 0.0408 | 24.96 | 138000 | 0.2151 | 0.1211 | | 0.0433 | 25.04 | 138400 | 0.2174 | 0.1214 | | 0.0395 | 25.11 | 138800 | 0.2242 | 0.1210 | | 0.0403 | 25.18 | 139200 | 0.2219 | 0.1215 | | 0.0413 | 25.25 | 139600 | 0.2225 | 0.1207 | | 0.0389 | 25.33 | 140000 | 0.2187 | 0.1202 | | 0.0395 | 25.4 | 140400 | 0.2244 | 0.1204 | | 0.0398 | 25.47 | 140800 | 0.2263 | 0.1199 | | 0.0386 | 25.54 | 141200 | 0.2165 | 0.1187 | | 0.0396 | 25.61 | 141600 | 0.2171 | 0.1187 | | 0.0406 | 25.69 | 142000 | 0.2199 | 0.1190 | | 0.0404 | 25.76 | 142400 | 0.2224 | 0.1190 | | 0.0391 | 25.83 | 142800 | 0.2230 | 0.1185 | | 0.04 | 25.9 | 143200 | 0.2208 | 0.1200 | | 0.0396 | 25.98 | 143600 | 0.2179 | 0.1191 | | 0.0353 | 26.05 | 144000 | 0.2285 | 0.1178 | | 0.0368 | 26.12 | 144400 | 0.2273 | 0.1186 | | 0.0393 | 26.19 | 144800 | 0.2247 | 0.1196 | | 0.0368 | 26.27 | 145200 | 0.2314 | 0.1181 | | 0.0373 | 26.34 | 145600 | 0.2215 | 0.1188 | | 0.038 | 26.41 | 146000 | 0.2262 | 0.1180 | | 0.0363 | 26.48 | 146400 | 0.2250 | 0.1172 | | 0.0365 | 26.56 | 146800 | 0.2299 | 0.1174 | | 0.0382 | 26.63 | 147200 | 0.2292 | 0.1165 | | 0.0365 | 26.7 | 147600 | 0.2282 | 0.1165 | | 0.0371 | 26.77 | 148000 | 0.2276 | 0.1172 | | 0.0365 | 26.85 | 148400 | 0.2280 | 0.1173 | | 0.0376 | 26.92 | 148800 | 0.2248 | 0.1164 | | 0.0365 | 26.99 | 149200 | 0.2230 | 0.1158 | | 0.0343 | 27.06 | 149600 | 0.2300 | 0.1157 | | 0.0354 | 27.13 | 150000 | 0.2298 | 0.1166 | | 0.0333 | 27.21 | 150400 | 0.2307 | 0.1158 | | 0.0353 | 27.28 | 150800 | 0.2300 | 0.1157 | | 0.036 | 27.35 | 151200 | 0.2335 | 0.1160 | | 0.0343 | 27.42 | 151600 | 0.2324 | 0.1155 | | 0.0361 | 27.5 | 152000 | 0.2300 | 0.1150 | | 0.0352 | 27.57 | 152400 | 0.2279 | 0.1146 | | 0.0353 | 27.64 | 152800 | 0.2307 | 0.1149 | | 0.0342 | 27.71 | 153200 | 0.2315 | 0.1152 | | 0.0345 | 27.79 | 153600 | 0.2290 | 0.1146 | | 0.034 | 27.86 | 154000 | 0.2319 | 0.1141 | | 0.0347 | 27.93 | 154400 | 0.2312 | 0.1144 | | 0.0338 | 28.0 | 154800 | 0.2328 | 0.1146 | | 0.0347 | 28.08 | 155200 | 0.2352 | 0.1151 | | 0.033 | 28.15 | 155600 | 0.2337 | 0.1142 | | 0.0336 | 28.22 | 156000 | 0.2345 | 0.1141 | | 0.0337 | 28.29 | 156400 | 0.2315 | 0.1143 | | 0.0314 | 28.36 | 156800 | 0.2353 | 0.1140 | | 0.0333 | 28.44 | 157200 | 0.2338 | 0.1146 | | 0.0317 | 28.51 | 157600 | 0.2345 | 0.1139 | | 0.0326 | 28.58 | 158000 | 0.2336 | 0.1143 | | 0.033 | 28.65 | 158400 | 0.2352 | 0.1137 | | 0.0325 | 28.73 | 158800 | 0.2312 | 0.1130 | | 0.0321 | 28.8 | 159200 | 0.2338 | 0.1133 | | 0.0334 | 28.87 | 159600 | 0.2335 | 0.1130 | | 0.0317 | 28.94 | 160000 | 0.2340 | 0.1126 | | 0.0321 | 29.02 | 160400 | 0.2349 | 0.1126 | | 0.032 | 29.09 | 160800 | 0.2369 | 0.1127 | | 0.0312 | 29.16 | 161200 | 0.2363 | 0.1124 | | 0.0303 | 29.23 | 161600 | 0.2363 | 0.1123 | | 0.0322 | 29.31 | 162000 | 0.2354 | 0.1124 | | 0.03 | 29.38 | 162400 | 0.2360 | 0.1122 | | 0.0299 | 29.45 | 162800 | 0.2378 | 0.1124 | | 0.0313 | 29.52 | 163200 | 0.2377 | 0.1120 | | 0.0299 | 29.59 | 163600 | 0.2367 | 0.1124 | | 0.0313 | 29.67 | 164000 | 0.2380 | 0.1120 | | 0.031 | 29.74 | 164400 | 0.2369 | 0.1120 | | 0.0327 | 29.81 | 164800 | 0.2358 | 0.1117 | | 0.0316 | 29.88 | 165200 | 0.2358 | 0.1118 | | 0.0307 | 29.96 | 165600 | 0.2362 | 0.1118 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
FremyCompany/xls-r-2b-nl-v2_lm-5gram-os
FremyCompany
2022-03-23T18:28:14Z
5
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "nl", "nl_BE", "nl_NL", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: - nl tags: - automatic-speech-recognition - hf-asr-leaderboard - model_for_talk - mozilla-foundation/common_voice_8_0 - nl - nl_BE - nl_NL - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-nl-v1-cv8-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 4.06 - name: Test CER type: cer value: 1.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 17.77 - name: Test CER type: cer value: 9.77 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 16.32 --- # XLS-R-based CTC model with 5-gram language model from Open Subtitles This model is a version of [facebook/wav2vec2-xls-r-2b-22-to-16](https://huggingface.co/facebook/wav2vec2-xls-r-2b-22-to-16) fine-tuned mainly on the [CGN dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/), as well as the [MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL](https://commonvoice.mozilla.org) dataset (see details below), on which a large 5-gram language model is added based on the Open Subtitles Dutch corpus. This model achieves the following results on the evaluation set (of Common Voice 8.0): - Wer: 0.04057 - Cer: 0.01222 ## Model description The model takes 16kHz sound input, and uses a Wav2Vec2ForCTC decoder with 48 letters to output the letter-transcription probabilities per frame. To improve accuracy, a beam-search decoder based on `pyctcdecode` is then used; it reranks the most promising alignments based on a 5-gram language model trained on the Open Subtitles Dutch corpus. ## Intended uses & limitations This model can be used to transcribe Dutch or Flemish spoken dutch to text (without punctuation). ## Training and evaluation data The model was: 0. initialized with [the 2B parameter model from Facebook](facebook/wav2vec2-xls-r-2b-22-to-16). 1. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). 2. trained `1` epoch (36000 iterations of batch size 32) on [the `cgn` dataset](https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/). 3. trained `5` epochs (6000 iterations of batch size 32) on [the `cv8/nl` dataset](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0). ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
yaswanth/xls-r-300m-yaswanth-hindi2
yaswanth
2022-03-23T18:28:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-r-300m-yaswanth-hindi2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-yaswanth-hindi2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7163 - Wer: 0.6951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.986 | 4.46 | 500 | 2.0194 | 1.1857 | | 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 | | 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 | | 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 | | 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 | | 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 | | 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 | | 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 | | 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 | | 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 | | 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 | | 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 | | 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 | | 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 | | 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 | | 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 | | 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 | | 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 | | 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 | | 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 | | 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 | | 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
geninhu/xls-asr-vi-40h-1B
geninhu
2022-03-23T18:27:57Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common-voice", "hf-asr-leaderboard", "robust-speech-event", "vi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: - vi tags: - automatic-speech-recognition - common-voice - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: xls-asr-vi-40h-1B results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 25.846 - name: Test CER (with LM) type: cer value: 12.961 - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: vi metrics: - name: Test WER (with LM) type: wer value: 31.158 - name: Test CER (with LM) type: cer value: 16.179 --- # xls-asr-vi-40h-1B This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on 40 hours of FPT Open Speech Dataset (FOSD) and Common Voice 7.0. ### Benchmark WER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 25.93 | 34.21 | |with 4-grams LM| 24.11 | 25.84 | 31.158 | ### Benchmark CER result: | | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |---|---|---|---| |without LM| 9.24 | 19.94 | |with 4-grams LM| 10.37 | 12.96 | 16.179 | ## Evaluation Please use the eval.py file to run the evaluation ```python python eval.py --model_id geninhu/xls-asr-vi-40h-1B --dataset mozilla-foundation/common_voice_7_0 --config vi --split test --log_outputs ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.6222 | 1.85 | 1500 | 5.9479 | 0.5474 | | 1.1362 | 3.7 | 3000 | 7.9799 | 0.5094 | | 0.7814 | 5.56 | 4500 | 5.0330 | 0.4724 | | 0.6281 | 7.41 | 6000 | 2.3484 | 0.5020 | | 0.5472 | 9.26 | 7500 | 2.2495 | 0.4793 | | 0.4827 | 11.11 | 9000 | 1.1530 | 0.4768 | | 0.4327 | 12.96 | 10500 | 1.6160 | 0.4646 | | 0.3989 | 14.81 | 12000 | 3.2633 | 0.4703 | | 0.3522 | 16.67 | 13500 | 2.2337 | 0.4708 | | 0.3201 | 18.52 | 15000 | 3.6879 | 0.4565 | | 0.2899 | 20.37 | 16500 | 5.4389 | 0.4599 | | 0.2776 | 22.22 | 18000 | 3.5284 | 0.4537 | | 0.2574 | 24.07 | 19500 | 2.1759 | 0.4649 | | 0.2378 | 25.93 | 21000 | 3.3901 | 0.4448 | | 0.217 | 27.78 | 22500 | 1.1632 | 0.4565 | | 0.2115 | 29.63 | 24000 | 1.7441 | 0.4232 | | 0.1959 | 31.48 | 25500 | 3.4992 | 0.4304 | | 0.187 | 33.33 | 27000 | 3.6163 | 0.4369 | | 0.1748 | 35.19 | 28500 | 3.6038 | 0.4467 | | 0.17 | 37.04 | 30000 | 2.9708 | 0.4362 | | 0.159 | 38.89 | 31500 | 3.2045 | 0.4279 | | 0.153 | 40.74 | 33000 | 3.2427 | 0.4287 | | 0.1463 | 42.59 | 34500 | 3.5439 | 0.4270 | | 0.139 | 44.44 | 36000 | 3.9381 | 0.4150 | | 0.1352 | 46.3 | 37500 | 4.1744 | 0.4092 | | 0.1369 | 48.15 | 39000 | 4.2279 | 0.4154 | | 0.1273 | 50.0 | 40500 | 4.1691 | 0.4133 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
arijitx/wav2vec2-xls-r-300m-bengali
arijitx
2022-03-23T18:27:52Z
427
6
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event", "dataset:openslr", "dataset:SLR53", "dataset:AI4Bharat/IndicCorp", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - bn license: apache-2.0 tags: - automatic-speech-recognition - bn - hf-asr-leaderboard - openslr_SLR53 - robust-speech-event datasets: - openslr - SLR53 - AI4Bharat/IndicCorp metrics: - wer - cer model-index: - name: arijitx/wav2vec2-xls-r-300m-bengali results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR53 metrics: - type: wer value: 0.21726385291857586 name: Test WER - type: cer value: 0.04725010353701041 name: Test CER - type: wer value: 0.15322879016421437 name: Test WER with lm - type: cer value: 0.03413696666806267 name: Test CER with lm --- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from [AI4Bharat IndicCorp](https://indicnlp.ai4bharat.org/corpora/) dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event. - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
kapilkd13/xls-r-300m-hi-prod
kapilkd13
2022-03-23T18:27:33Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - hi license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: '' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7.0 type: mozilla-foundation/common_voice_7_0 args: hi metrics: - name: Test WER type: wer value: 39.21 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7805 - Wer: 0.4340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.36 | 400 | 1.9130 | 0.9244 | | 5.0013 | 2.71 | 800 | 0.7789 | 0.5944 | | 0.6544 | 4.07 | 1200 | 0.7298 | 0.5852 | | 0.4021 | 5.42 | 1600 | 0.6978 | 0.5667 | | 0.3003 | 6.78 | 2000 | 0.6764 | 0.5382 | | 0.3003 | 8.14 | 2400 | 0.7249 | 0.5463 | | 0.2345 | 9.49 | 2800 | 0.7280 | 0.5124 | | 0.1993 | 10.85 | 3200 | 0.7289 | 0.4690 | | 0.1617 | 12.2 | 3600 | 0.7431 | 0.4733 | | 0.1432 | 13.56 | 4000 | 0.7448 | 0.4733 | | 0.1432 | 14.92 | 4400 | 0.7746 | 0.4485 | | 0.1172 | 16.27 | 4800 | 0.7589 | 0.4742 | | 0.1035 | 17.63 | 5200 | 0.7539 | 0.4353 | | 0.0956 | 18.98 | 5600 | 0.7648 | 0.4495 | | 0.0845 | 20.34 | 6000 | 0.7877 | 0.4719 | | 0.0845 | 21.69 | 6400 | 0.7884 | 0.4434 | | 0.0761 | 23.05 | 6800 | 0.7796 | 0.4386 | | 0.0634 | 24.41 | 7200 | 0.7729 | 0.4306 | | 0.0571 | 25.76 | 7600 | 0.7826 | 0.4298 | | 0.0508 | 27.12 | 8000 | 0.7805 | 0.4340 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
infinitejoy/wav2vec2-large-xls-r-300m-odia
infinitejoy
2022-03-23T18:26:57Z
9
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "or", "robust-speech-event", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - or license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_7_0 - or - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Odia results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: or metrics: - name: Test WER type: wer value: 97.91 - name: Test CER type: cer value: 247.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-odia This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - OR dataset. It achieves the following results on the evaluation set: ``` python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config as --split test --log_outputs ``` - WER: 1.0921052631578947 - CER: 2.5547945205479454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Training machine details - Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10 - CPU cores: 60 - Python version: 3.8.8 - PyTorch version: 1.10.1+cu102 - GPU is visible: True - Transformers version: 4.16.0.dev0 - Datasets version: 1.17.1.dev0 - soundfile version: 0.10.3 Training script ```bash python run_speech_recognition_ctc.py \ --dataset_name="mozilla-foundation/common_voice_7_0" \ --model_name_or_path="facebook/wav2vec2-xls-r-300m" \ --dataset_config_name="or" \ --output_dir="./wav2vec2-large-xls-r-300m-odia" \ --overwrite_output_dir \ --num_train_epochs="120" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --gradient_accumulation_steps="2" \ --learning_rate="7.5e-5" \ --warmup_steps="500" \ --length_column_name="input_length" \ --evaluation_strategy="steps" \ --text_column_name="sentence" \ --chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — \’ … \– \' \’ \– \ --save_steps="500" \ --eval_steps="500" \ --logging_steps="100" \ --layerdrop="0.0" \ --activation_dropout="0.1" \ --save_total_limit="3" \ --freeze_feature_encoder \ --feat_proj_dropout="0.0" \ --mask_time_prob="0.75" \ --mask_time_length="10" \ --mask_feature_prob="0.25" \ --mask_feature_length="64" \ --gradient_checkpointing \ --use_auth_token \ --fp16 \ --group_by_length \ --do_train --do_eval \ --push_to_hub ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 120.0 - mixed_precision_training: Native AMP ### Training results | | eval_loss | eval_wer | eval_runtime | eval_samples_per_second | eval_steps_per_second | epoch | |---:|------------:|-----------:|---------------:|--------------------------:|------------------------:|--------:| | 0 | 3.35224 | 0.998972 | 5.0475 | 22.189 | 1.387 | 29.41 | | 1 | 1.33679 | 0.938335 | 5.0633 | 22.12 | 1.382 | 58.82 | | 2 | 0.737202 | 0.957862 | 5.0913 | 21.998 | 1.375 | 88.24 | | 3 | 0.658212 | 0.96814 | 5.0953 | 21.981 | 1.374 | 117.65 | | 4 | 0.658 | 0.9712 | 5.0953 | 22.115 | 1.382 | 120 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
jsnfly/wav2vec2-xls-r-1b-de-cv8
jsnfly
2022-03-23T18:26:40Z
11
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "de", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - de - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: XLS-R-1B - German results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: de metrics: - name: Test WER type: wer value: 11.37 - name: Test CER type: cer value: 2.89 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: de metrics: - name: Dev WER type: wer value: 31.16 - name: Dev CER type: cer value: 13.41 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: de metrics: - name: Test WER type: wer value: 36.79 --- # XLS-R-1b-DE This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset. (See `run.sh` for training parameters).
arampacha/wav2vec2-xls-r-1b-uk
arampacha
2022-03-23T18:26:29Z
12
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - uk license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-1b-hy results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice uk args: uk metrics: - type: wer value: 10.406342913776015 name: WER LM - type: cer value: 2.0387492208601703 name: CER LM - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: uk metrics: - name: Test WER type: wer value: 40.57 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: uk metrics: - name: Test WER type: wer value: 28.95 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1752 - Cer: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 | | 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 | | 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 | | 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 | | 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 | | 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 | | 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 | | 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 | | 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 | | 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 | | 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 | | 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 | | 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 | | 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 | | 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 | | 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 | | 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 | | 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 | | 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 | | 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 | | 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 | | 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 | | 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 | | 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
mpoyraz/wav2vec2-xls-r-300m-cv6-turkish
mpoyraz
2022-03-23T18:26:27Z
9
7
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "hf-asr-leaderboard", "robust-speech-event", "tr", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 language: tr tags: - automatic-speech-recognition - common_voice - hf-asr-leaderboard - robust-speech-event - tr datasets: - common_voice model-index: - name: mpoyraz/wav2vec2-xls-r-300m-cv6-turkish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: common_voice args: tr metrics: - name: Test WER type: wer value: 8.83 - name: Test CER type: cer value: 2.37 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: tr metrics: - name: Test WER type: wer value: 32.81 - name: Test CER type: cer value: 11.22 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: tr metrics: - name: Test WER type: wer value: 34.86 --- # wav2vec2-xls-r-300m-cv6-turkish ## Model description This ASR model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Turkish language. ## Training and evaluation data The following datasets were used for finetuning: - [Common Voice 6.1 TR](https://huggingface.co/datasets/common_voice) All `validated` split except `test` split was used for training. - [MediaSpeech](https://www.openslr.org/108/) ## Training procedure To support both of the datasets above, custom pre-processing and loading steps was performed and [wav2vec2-turkish](https://github.com/mpoyraz/wav2vec2-turkish) repo was used for that purpose. ### Training hyperparameters The following hypermaters were used for finetuning: - learning_rate 2e-4 - num_train_epochs 10 - warmup_steps 500 - freeze_feature_extractor - mask_time_prob 0.1 - mask_feature_prob 0.1 - feat_proj_dropout 0.05 - attention_dropout 0.05 - final_dropout 0.1 - activation_dropout 0.05 - per_device_train_batch_size 8 - per_device_eval_batch_size 8 - gradient_accumulation_steps 8 ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.3 - Tokenizers 0.10.3 ## Language Model N-gram language model is trained on a Turkish Wikipedia articles using KenLM and [ngram-lm-wiki](https://github.com/mpoyraz/ngram-lm-wiki) repo was used to generate arpa LM and convert it into binary format. ## Evaluation Commands Please install [unicode_tr](https://pypi.org/project/unicode_tr/) package before running evaluation. It is used for Turkish text processing. 1. To evaluate on `common_voice` with split `test` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset common_voice --config tr --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id mpoyraz/wav2vec2-xls-r-300m-cv6-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ## Evaluation results: | Dataset | WER | CER | |---|---|---| |Common Voice 6.1 TR test split| 8.83 | 2.37 | |Speech Recognition Community dev data| 32.81 | 11.22 |
glob-asr/xls-r-es-test-lm
glob-asr
2022-03-23T18:26:19Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es - generated_from_trainer - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: xls-r-es-test-lm results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8.0 type: mozilla-foundation/common_voice_8_0 args: es metrics: - name: Test WER type: wer value: 9.4 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: es metrics: - name: Test WER type: wer value: 27.95 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: es metrics: - name: Test WER type: wer value: 30.86 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-es-test-lm This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ES dataset. It achieves the following results on the test set with lm model: - Loss: 0.1304 - WER: 0.094 - CER: 0.031 It achieves the following results on the val set with lm model: - Loss: 0.1304 - WER: 0.081 - CER: 0.025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.9613 | 0.07 | 500 | 2.9647 | 1.0 | | 2.604 | 0.14 | 1000 | 1.8300 | 0.9562 | | 1.177 | 0.21 | 1500 | 0.3652 | 0.3077 | | 1.0745 | 0.28 | 2000 | 0.2707 | 0.2504 | | 1.0103 | 0.35 | 2500 | 0.2338 | 0.2157 | | 0.9858 | 0.42 | 3000 | 0.2321 | 0.2129 | | 0.974 | 0.49 | 3500 | 0.2164 | 0.2031 | | 0.9699 | 0.56 | 4000 | 0.2078 | 0.1970 | | 0.9513 | 0.63 | 4500 | 0.2173 | 0.2139 | | 0.9657 | 0.7 | 5000 | 0.2050 | 0.1979 | | 0.9484 | 0.77 | 5500 | 0.2008 | 0.1919 | | 0.9317 | 0.84 | 6000 | 0.2012 | 0.1911 | | 0.9366 | 0.91 | 6500 | 0.2024 | 0.1976 | | 0.9242 | 0.98 | 7000 | 0.2062 | 0.2028 | | 0.9138 | 1.05 | 7500 | 0.1924 | 0.1863 | | 0.921 | 1.12 | 8000 | 0.1935 | 0.1836 | | 0.9117 | 1.19 | 8500 | 0.1887 | 0.1815 | | 0.9064 | 1.26 | 9000 | 0.1909 | 0.1839 | | 0.9118 | 1.32 | 9500 | 0.1869 | 0.1830 | | 0.9121 | 1.39 | 10000 | 0.1863 | 0.1802 | | 0.9048 | 1.46 | 10500 | 0.1845 | 0.1791 | | 0.8955 | 1.53 | 11000 | 0.1863 | 0.1774 | | 0.8947 | 1.6 | 11500 | 0.1907 | 0.1814 | | 0.9073 | 1.67 | 12000 | 0.1892 | 0.1853 | | 0.8927 | 1.74 | 12500 | 0.1821 | 0.1750 | | 0.8732 | 1.81 | 13000 | 0.1815 | 0.1768 | | 0.8761 | 1.88 | 13500 | 0.1822 | 0.1749 | | 0.8751 | 1.95 | 14000 | 0.1789 | 0.1715 | | 0.8889 | 2.02 | 14500 | 0.1819 | 0.1791 | | 0.8864 | 2.09 | 15000 | 0.1826 | 0.1794 | | 0.886 | 2.16 | 15500 | 0.1788 | 0.1776 | | 0.8915 | 2.23 | 16000 | 0.1756 | 0.1719 | | 0.8689 | 2.3 | 16500 | 0.1769 | 0.1711 | | 0.879 | 2.37 | 17000 | 0.1777 | 0.1739 | | 0.8692 | 2.44 | 17500 | 0.1765 | 0.1705 | | 0.8504 | 2.51 | 18000 | 0.1699 | 0.1652 | | 0.8728 | 2.58 | 18500 | 0.1705 | 0.1694 | | 0.8523 | 2.65 | 19000 | 0.1674 | 0.1645 | | 0.8513 | 2.72 | 19500 | 0.1661 | 0.1611 | | 0.8498 | 2.79 | 20000 | 0.1660 | 0.1631 | | 0.8432 | 2.86 | 20500 | 0.1636 | 0.1610 | | 0.8492 | 2.93 | 21000 | 0.1708 | 0.1688 | | 0.8561 | 3.0 | 21500 | 0.1663 | 0.1604 | | 0.842 | 3.07 | 22000 | 0.1690 | 0.1625 | | 0.857 | 3.14 | 22500 | 0.1642 | 0.1605 | | 0.8518 | 3.21 | 23000 | 0.1626 | 0.1585 | | 0.8506 | 3.28 | 23500 | 0.1651 | 0.1605 | | 0.8394 | 3.35 | 24000 | 0.1647 | 0.1585 | | 0.8431 | 3.42 | 24500 | 0.1632 | 0.1573 | | 0.8566 | 3.49 | 25000 | 0.1614 | 0.1550 | | 0.8534 | 3.56 | 25500 | 0.1645 | 0.1589 | | 0.8386 | 3.63 | 26000 | 0.1632 | 0.1582 | | 0.8357 | 3.7 | 26500 | 0.1631 | 0.1556 | | 0.8299 | 3.77 | 27000 | 0.1612 | 0.1550 | | 0.8421 | 3.84 | 27500 | 0.1602 | 0.1552 | | 0.8375 | 3.91 | 28000 | 0.1592 | 0.1537 | | 0.8328 | 3.97 | 28500 | 0.1587 | 0.1537 | | 0.8155 | 4.04 | 29000 | 0.1587 | 0.1520 | | 0.8335 | 4.11 | 29500 | 0.1624 | 0.1556 | | 0.8138 | 4.18 | 30000 | 0.1581 | 0.1547 | | 0.8195 | 4.25 | 30500 | 0.1560 | 0.1507 | | 0.8092 | 4.32 | 31000 | 0.1561 | 0.1534 | | 0.8191 | 4.39 | 31500 | 0.1549 | 0.1493 | | 0.8008 | 4.46 | 32000 | 0.1540 | 0.1493 | | 0.8138 | 4.53 | 32500 | 0.1544 | 0.1493 | | 0.8173 | 4.6 | 33000 | 0.1553 | 0.1511 | | 0.8081 | 4.67 | 33500 | 0.1541 | 0.1484 | | 0.8192 | 4.74 | 34000 | 0.1560 | 0.1506 | | 0.8068 | 4.81 | 34500 | 0.1540 | 0.1503 | | 0.8105 | 4.88 | 35000 | 0.1529 | 0.1483 | | 0.7976 | 4.95 | 35500 | 0.1507 | 0.1451 | | 0.8143 | 5.02 | 36000 | 0.1505 | 0.1462 | | 0.8053 | 5.09 | 36500 | 0.1517 | 0.1476 | | 0.785 | 5.16 | 37000 | 0.1526 | 0.1478 | | 0.7936 | 5.23 | 37500 | 0.1489 | 0.1421 | | 0.807 | 5.3 | 38000 | 0.1483 | 0.1420 | | 0.8092 | 5.37 | 38500 | 0.1481 | 0.1435 | | 0.793 | 5.44 | 39000 | 0.1503 | 0.1438 | | 0.814 | 5.51 | 39500 | 0.1495 | 0.1480 | | 0.807 | 5.58 | 40000 | 0.1472 | 0.1424 | | 0.7913 | 5.65 | 40500 | 0.1471 | 0.1422 | | 0.7844 | 5.72 | 41000 | 0.1473 | 0.1422 | | 0.7888 | 5.79 | 41500 | 0.1445 | 0.1385 | | 0.7806 | 5.86 | 42000 | 0.1435 | 0.1394 | | 0.7773 | 5.93 | 42500 | 0.1461 | 0.1424 | | 0.786 | 6.0 | 43000 | 0.1450 | 0.1413 | | 0.7784 | 6.07 | 43500 | 0.1463 | 0.1424 | | 0.7937 | 6.14 | 44000 | 0.1438 | 0.1386 | | 0.7738 | 6.21 | 44500 | 0.1437 | 0.1383 | | 0.7728 | 6.28 | 45000 | 0.1424 | 0.1371 | | 0.7681 | 6.35 | 45500 | 0.1416 | 0.1376 | | 0.776 | 6.42 | 46000 | 0.1415 | 0.1380 | | 0.7773 | 6.49 | 46500 | 0.1416 | 0.1371 | | 0.7692 | 6.56 | 47000 | 0.1398 | 0.1345 | | 0.7642 | 6.62 | 47500 | 0.1381 | 0.1341 | | 0.7692 | 6.69 | 48000 | 0.1392 | 0.1334 | | 0.7667 | 6.76 | 48500 | 0.1392 | 0.1348 | | 0.7712 | 6.83 | 49000 | 0.1398 | 0.1333 | | 0.7628 | 6.9 | 49500 | 0.1392 | 0.1344 | | 0.7622 | 6.97 | 50000 | 0.1377 | 0.1329 | | 0.7639 | 7.04 | 50500 | 0.1361 | 0.1316 | | 0.742 | 7.11 | 51000 | 0.1376 | 0.1327 | | 0.7526 | 7.18 | 51500 | 0.1387 | 0.1342 | | 0.7606 | 7.25 | 52000 | 0.1363 | 0.1316 | | 0.7626 | 7.32 | 52500 | 0.1365 | 0.1313 | | 0.752 | 7.39 | 53000 | 0.1354 | 0.1309 | | 0.7562 | 7.46 | 53500 | 0.1362 | 0.1312 | | 0.7557 | 7.53 | 54000 | 0.1358 | 0.1325 | | 0.7588 | 7.6 | 54500 | 0.1343 | 0.1311 | | 0.7485 | 7.67 | 55000 | 0.1346 | 0.1301 | | 0.7466 | 7.74 | 55500 | 0.1354 | 0.1314 | | 0.7558 | 7.81 | 56000 | 0.1359 | 0.1325 | | 0.7578 | 7.88 | 56500 | 0.1363 | 0.1334 | | 0.7411 | 7.95 | 57000 | 0.1346 | 0.1301 | | 0.7478 | 8.02 | 57500 | 0.1355 | 0.1305 | | 0.7451 | 8.09 | 58000 | 0.1349 | 0.1302 | | 0.7383 | 8.16 | 58500 | 0.1349 | 0.1294 | | 0.7482 | 8.23 | 59000 | 0.1341 | 0.1293 | | 0.742 | 8.3 | 59500 | 0.1338 | 0.1296 | | 0.7343 | 8.37 | 60000 | 0.1348 | 0.1307 | | 0.7385 | 8.44 | 60500 | 0.1324 | 0.1282 | | 0.7567 | 8.51 | 61000 | 0.1334 | 0.1281 | | 0.7342 | 8.58 | 61500 | 0.1338 | 0.1289 | | 0.7401 | 8.65 | 62000 | 0.1331 | 0.1285 | | 0.7362 | 8.72 | 62500 | 0.1329 | 0.1283 | | 0.7241 | 8.79 | 63000 | 0.1323 | 0.1277 | | 0.7244 | 8.86 | 63500 | 0.1317 | 0.1269 | | 0.7274 | 8.93 | 64000 | 0.1308 | 0.1260 | | 0.7411 | 9.0 | 64500 | 0.1309 | 0.1256 | | 0.7255 | 9.07 | 65000 | 0.1316 | 0.1265 | | 0.7406 | 9.14 | 65500 | 0.1315 | 0.1270 | | 0.7418 | 9.21 | 66000 | 0.1315 | 0.1269 | | 0.7301 | 9.27 | 66500 | 0.1315 | 0.1273 | | 0.7248 | 9.34 | 67000 | 0.1323 | 0.1274 | | 0.7423 | 9.41 | 67500 | 0.1309 | 0.1267 | | 0.7152 | 9.48 | 68000 | 0.1312 | 0.1271 | | 0.7295 | 9.55 | 68500 | 0.1306 | 0.1262 | | 0.7231 | 9.62 | 69000 | 0.1308 | 0.1263 | | 0.7344 | 9.69 | 69500 | 0.1313 | 0.1267 | | 0.7264 | 9.76 | 70000 | 0.1305 | 0.1263 | | 0.7309 | 9.83 | 70500 | 0.1303 | 0.1262 | | 0.73 | 9.9 | 71000 | 0.1303 | 0.1261 | | 0.7353 | 9.97 | 71500 | 0.1304 | 0.1260 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
ravirajoshi/wav2vec2-large-xls-r-300m-marathi
ravirajoshi
2022-03-23T18:25:45Z
20
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "mr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mr license: apache-2.0 tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event model-index: - name: wav2vec2-large-xls-r-300m-marathi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-marathi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5656 - Wer: 0.2156
bakrianoo/sinai-voice-ar-stt
bakrianoo
2022-03-23T18:25:21Z
54
11
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "ar", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ar license: apache-2.0 tags: - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: Sinai Voice Arabic Speech Recognition Model results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice ar args: ar metrics: - type: wer value: 0.181 name: Test WER - type: cer value: 0.049 name: Test CER - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ar metrics: - name: Test WER type: wer value: 93.03 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ar metrics: - name: Test WER type: wer value: 90.79 widget: - example_title: Example 1 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19077324.mp3 - example_title: Example 2 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19205138.mp3 - example_title: Example 3 src: https://huggingface.co/bakrianoo/sinai-voice-ar-stt/raw/main/examples/common_voice_ar_19331711.mp3 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sinai Voice Arabic Speech Recognition Model # نموذج **صوت سيناء** للتعرف على الأصوات العربية الفصحى و تحويلها إلى نصوص This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AR dataset. It achieves the following results on the evaluation set: - Loss: 0.2141 - Wer: 0.1808 It achieves the following results on the evaluation set: - eval_loss = 0.2141 - eval_samples = 10388 - eval_wer = 0.181 - eval_cer = 0.049 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id bakrianoo/sinai-voice-ar-stt --dataset mozilla-foundation/common_voice_8_0 --config ar --split test ``` ### Inference Without LM ```python from transformers import (Wav2Vec2Processor, Wav2Vec2ForCTC) import torchaudio import torch def speech_file_to_array_fn(voice_path, resampling_to=16000): speech_array, sampling_rate = torchaudio.load(voice_path) resampler = torchaudio.transforms.Resample(sampling_rate, resampling_to) return resampler(speech_array)[0].numpy(), sampling_rate # load the model cp = "bakrianoo/sinai-voice-ar-stt" processor = Wav2Vec2Processor.from_pretrained(cp) model = Wav2Vec2ForCTC.from_pretrained(cp) # recognize the text in a sample sound file sound_path = './my_voice.mp3' sample, sr = speech_file_to_array_fn(sound_path) inputs = processor([sample], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values,).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 10 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.354 | 0.64 | 1000 | 0.4109 | 0.4493 | | 0.5886 | 1.28 | 2000 | 0.2798 | 0.3099 | | 0.4977 | 1.92 | 3000 | 0.2387 | 0.2673 | | 0.4253 | 2.56 | 4000 | 0.2266 | 0.2523 | | 0.3942 | 3.2 | 5000 | 0.2171 | 0.2437 | | 0.3619 | 3.84 | 6000 | 0.2076 | 0.2253 | | 0.3245 | 4.48 | 7000 | 0.2088 | 0.2186 | | 0.308 | 5.12 | 8000 | 0.2086 | 0.2206 | | 0.2881 | 5.76 | 9000 | 0.2089 | 0.2105 | | 0.2557 | 6.4 | 10000 | 0.2015 | 0.2004 | | 0.248 | 7.04 | 11000 | 0.2044 | 0.1953 | | 0.2251 | 7.68 | 12000 | 0.2058 | 0.1932 | | 0.2052 | 8.32 | 13000 | 0.2117 | 0.1878 | | 0.1976 | 8.96 | 14000 | 0.2104 | 0.1825 | | 0.1845 | 9.6 | 15000 | 0.2156 | 0.1821 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
airesearch/wav2vec2-large-xlsr-53-th
airesearch
2022-03-23T18:24:45Z
91,660
20
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "robust-speech-event", "speech", "xlsr-fine-tuning", "th", "dataset:common_voice", "doi:10.57967/hf/0404", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: th datasets: - common_voice tags: - audio - automatic-speech-recognition - hf-asr-leaderboard - robust-speech-event - speech - xlsr-fine-tuning license: cc-by-sa-4.0 model-index: - name: XLS-R-53 - Thai results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: th metrics: - name: Test WER type: wer value: 0.9524 - name: Test SER type: ser value: 1.2346 - name: Test CER type: cer value: 0.1623 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: null - name: Test SER type: ser value: null - name: Test CER type: cer value: null --- # `wav2vec2-large-xlsr-53-th` Finetuning `wav2vec2-large-xlsr-53` on Thai [Common Voice 7.0](https://commonvoice.mozilla.org/en/datasets) [Read more on our blog](https://medium.com/airesearch-in-th/airesearch-in-th-3c1019a99cd) We finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) based on [Fine-tuning Wav2Vec2 for English ASR](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tuning_Wav2Vec2_for_English_ASR.ipynb) using Thai examples of [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets). The notebooks and scripts can be found in [vistec-ai/wav2vec2-large-xlsr-53-th](https://github.com/vistec-ai/wav2vec2-large-xlsr-53-th). The pretrained model and processor can be found at [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th). ## `robust-speech-event` Add `syllable_tokenize`, `word_tokenize` ([PyThaiNLP](https://github.com/PyThaiNLP/pythainlp)) and [deepcut](https://github.com/rkcosmos/deepcut) tokenizers to `eval.py` from [robust-speech-event](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#evaluation) ``` > python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config th --split test --log_outputs --thai_tokenizer newmm/syllable/deepcut/cer ``` ### Eval results on Common Voice 7 "test": | | WER PyThaiNLP 2.3.1 | WER deepcut | SER | CER | |---------------------------------|---------------------|-------------|---------|---------| | Only Tokenization | 0.9524% | 2.5316% | 1.2346% | 0.1623% | | Cleaning rules and Tokenization | TBD | TBD | TBD | TBD | ## Usage ``` #load pretrained processor and model processor = Wav2Vec2Processor.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th") model = Wav2Vec2ForCTC.from_pretrained("airesearch/wav2vec2-large-xlsr-53-th") #function to resample to 16_000 def speech_file_to_array_fn(batch, text_col="sentence", fname_col="path", resampling_to=16000): speech_array, sampling_rate = torchaudio.load(batch[fname_col]) resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to) batch["speech"] = resampler(speech_array)[0].numpy() batch["sampling_rate"] = resampling_to batch["target_text"] = batch[text_col] return batch #get 2 examples as sample input test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) #infer with torch.no_grad(): logits = model(inputs.input_values,).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) >> Prediction: ['และ เขา ก็ สัมผัส ดีบุก', 'คุณ สามารถ รับทราบ เมื่อ ข้อความ นี้ ถูก อ่าน แล้ว'] >> Reference: ['และเขาก็สัมผัสดีบุก', 'คุณสามารถรับทราบเมื่อข้อความนี้ถูกอ่านแล้ว'] ``` ## Datasets Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with `pythainlp.tokenize.word_tokenize`. We preprocess the dataset using cleaning rules described in `notebooks/cv-preprocess.ipynb` by [@tann9949](https://github.com/tann9949). We then deduplicate and split as described in [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) in order to 1) avoid data leakage due to random splits after cleaning in [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) and 2) preserve the majority of the data for the training set. The dataset loading script is `scripts/th_common_voice_70.py`. You can use this scripts together with `train_cleand.tsv`, `validation_cleaned.tsv` and `test_cleaned.tsv` to have the same splits as we do. The resulting dataset is as follows: ``` DatasetDict({ train: Dataset({ features: ['path', 'sentence'], num_rows: 86586 }) test: Dataset({ features: ['path', 'sentence'], num_rows: 2502 }) validation: Dataset({ features: ['path', 'sentence'], num_rows: 3027 }) }) ``` ## Training We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is `scripts/wav2vec2_finetune.py` ``` # create model model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-large-xlsr-53", attention_dropout=0.1, hidden_dropout=0.1, feat_proj_dropout=0.0, mask_time_prob=0.05, layerdrop=0.1, gradient_checkpointing=True, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer) ) model.freeze_feature_extractor() training_args = TrainingArguments( output_dir="../data/wav2vec2-large-xlsr-53-thai", group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=1, per_device_eval_batch_size=16, metric_for_best_model='wer', evaluation_strategy="steps", eval_steps=1000, logging_strategy="steps", logging_steps=1000, save_strategy="steps", save_steps=1000, num_train_epochs=100, fp16=True, learning_rate=1e-4, warmup_steps=1000, save_total_limit=3, report_to="tensorboard" ) ``` ## Evaluation We benchmark on the test set using WER with words tokenized by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) 2.3.1 and [deepcut](https://github.com/rkcosmos/deepcut), and CER. We also measure performance when spell correction using [TNC](http://www.arts.chula.ac.th/ling/tnc/) ngrams is applied. Evaluation codes can be found in `notebooks/wav2vec2_finetuning_tutorial.ipynb`. Benchmark is performed on `test-unique` split. | | WER PyThaiNLP 2.3.1 | WER deepcut | CER | |--------------------------------|---------------------|----------------|----------------| | [Kaldi from scratch](https://github.com/vistec-AI/commonvoice-th) | 23.04 | | 7.57 | | Ours without spell correction | 13.634024 | **8.152052** | **2.813019** | | Ours with spell correction | 17.996397 | 14.167975 | 5.225761 | | Google Web Speech API※ | 13.711234 | 10.860058 | 7.357340 | | Microsoft Bing Speech API※ | **12.578819** | 9.620991 | 5.016620 | | Amazon Transcribe※ | 21.86334 | 14.487553 | 7.077562 | | NECTEC AI for Thai Partii API※ | 20.105887 | 15.515631 | 9.551027 | ※ APIs are not finetuned with Common Voice 7.0 data ## LICENSE [cc-by-sa 4.0](https://github.com/vistec-AI/wav2vec2-large-xlsr-53-th/blob/main/LICENSE) ## Ackowledgements * model training and validation notebooks/scripts [@cstorm125](https://github.com/cstorm125/) * dataset cleaning scripts [@tann9949](https://github.com/tann9949) * dataset splits [@ekapolc](https://github.com/ekapolc/) and [@14mss](https://github.com/14mss) * running the training [@mrpeerat](https://github.com/mrpeerat) * spell correction [@wannaphong](https://github.com/wannaphong)
zuppif/dummy
zuppif
2022-03-23T17:54:43Z
0
0
null
[ "vision", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "region:us" ]
image-classification
2022-03-23T12:39:10Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycl). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("") >>> model = RegNetForImageClassification.from_pretrained("") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).