modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
madatnlp/kor-math-roberta-finetune
madatnlp
2022-05-02T11:44:14Z
4
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-30T11:16:10Z
--- tags: - generated_from_keras_callback model-index: - name: madatnlp/kor-math-roberta-finetune results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # madatnlp/kor-math-roberta-finetune This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3205 - Validation Loss: 1.1407 - Epoch: 26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_bfloat16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4242 | 2.0873 | 0 | | 1.9159 | 1.6264 | 1 | | 1.5933 | 1.4521 | 2 | | 1.3806 | 1.3584 | 3 | | 1.2487 | 1.2904 | 4 | | 1.1464 | 1.2388 | 5 | | 1.0552 | 1.2076 | 6 | | 0.9889 | 1.1818 | 7 | | 0.9118 | 1.1607 | 8 | | 0.8459 | 1.1349 | 9 | | 0.7838 | 1.1193 | 10 | | 0.7389 | 1.1193 | 11 | | 0.6864 | 1.1080 | 12 | | 0.6495 | 1.1001 | 13 | | 0.6103 | 1.1001 | 14 | | 0.5795 | 1.0990 | 15 | | 0.5436 | 1.0954 | 16 | | 0.5136 | 1.0997 | 17 | | 0.4906 | 1.0954 | 18 | | 0.4565 | 1.1021 | 19 | | 0.4347 | 1.1075 | 20 | | 0.4131 | 1.1075 | 21 | | 0.3924 | 1.1220 | 22 | | 0.3741 | 1.1298 | 23 | | 0.3549 | 1.1352 | 24 | | 0.3395 | 1.1286 | 25 | | 0.3205 | 1.1407 | 26 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
tristantristantristan/rumor
tristantristantristan
2022-05-02T09:33:47Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:tristantristantristan/autotrain-data-rumour_detection", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T09:27:38Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - tristantristantristan/autotrain-data-rumour_detection co2_eq_emissions: 0.056186258092819436 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 813825547 - CO2 Emissions (in grams): 0.056186258092819436 ## Validation Metrics - Loss: 0.15057753026485443 - Accuracy: 0.9738805970149254 - Precision: 0.9469026548672567 - Recall: 0.9304347826086956 - AUC: 0.9891149437157905 - F1: 0.9385964912280702 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/tristantristantristan/autotrain-rumour_detection-813825547 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("tristantristantristan/autotrain-rumour_detection-813825547", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("tristantristantristan/autotrain-rumour_detection-813825547", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
DioLiu/distilbert-base-uncased-finetuned-sst2
DioLiu
2022-05-02T03:06:36Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-02T02:28:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8967889908256881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5963 - Accuracy: 0.8968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.247 | 1.0 | 1404 | 0.3629 | 0.8865 | | 0.1532 | 2.0 | 2808 | 0.3945 | 0.8979 | | 0.0981 | 3.0 | 4212 | 0.4206 | 0.9025 | | 0.0468 | 4.0 | 5616 | 0.5358 | 0.9014 | | 0.0313 | 5.0 | 7020 | 0.5963 | 0.8968 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Ghost1/bert-finetuned-squad1
Ghost1
2022-05-02T02:28:59Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-02T00:04:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
voodooMaestro/finetuned-stories
voodooMaestro
2022-05-02T00:24:29Z
4
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-01T23:31:33Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: voodooMaestro/finetuned-stories results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # voodooMaestro/finetuned-stories This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9188 - Validation Loss: 1.5604 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9188 | 1.5604 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
fahadtouseef/wav2vec2-base-timit-demo-colab_1
fahadtouseef
2022-05-01T23:57:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T12:46:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab_1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3233 - Wer: 0.2574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.0949 | 3.52 | 500 | 1.1140 | 0.7136 | | 0.7584 | 7.04 | 1000 | 0.5312 | 0.5154 | | 0.4254 | 10.56 | 1500 | 0.4489 | 0.4401 | | 0.2708 | 14.08 | 2000 | 0.4108 | 0.3770 | | 0.1855 | 17.61 | 2500 | 0.3881 | 0.3257 | | 0.139 | 21.13 | 3000 | 0.3666 | 0.2958 | | 0.1057 | 24.65 | 3500 | 0.3351 | 0.2748 | | 0.0855 | 28.17 | 4000 | 0.3233 | 0.2574 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sherry7144/wav2vec2-base-timit-demo-colab2
sherry7144
2022-05-01T23:51:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T23:01:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7746 - Wer: 0.5855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1452 | 13.89 | 500 | 2.9679 | 1.0 | | 1.075 | 27.78 | 1000 | 0.7746 | 0.5855 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
SebastianS/bert-finetuned-ner
SebastianS
2022-05-01T21:38:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-01T21:12:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Accuracy type: accuracy value: 0.9910634321093416 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0452 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0544 | 1.0 | 1756 | 0.0440 | 0.9892 | | 0.0246 | 2.0 | 3512 | 0.0417 | 0.9906 | | 0.0105 | 3.0 | 5268 | 0.0452 | 0.9911 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Yanael/dummy-model
Yanael
2022-05-01T20:00:15Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-01T19:30:42Z
# Dummy Model Following the Hugging Face course
cuzeverynameistaken/wav2vec2-base-timit-demo-colab1
cuzeverynameistaken
2022-05-01T19:55:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T14:53:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7170 - Wer: 0.4784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1915 | 13.89 | 500 | 3.1318 | 1.0 | | 1.4993 | 27.78 | 1000 | 0.6736 | 0.5485 | | 0.3416 | 41.67 | 1500 | 0.7111 | 0.5092 | | 0.1937 | 55.56 | 2000 | 0.7170 | 0.4784 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
cfilt/HiNER-collapsed-muril-base-cased
cfilt
2022-05-01T19:48:15Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:cfilt/HiNER-collapsed", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-29T17:19:39Z
--- tags: - generated_from_trainer datasets: - cfilt/HiNER-collapsed metrics: - precision - recall - f1 model-index: - name: HiNER-collapsed-muril-base-cased results: - task: name: Token Classification type: token-classification dataset: type: cfilt/HiNER-collapsed name: HiNER Collapsed metrics: - name: Precision type: precision value: 0.9049101352603298 - name: Recall type: recall value: 0.9209156735555891 - name: F1 type: f1 value: 0.9128427506027924 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HiNER-collapsed-muril-base-cased This model was trained from scratch on the cfilt/HiNER-collapsed dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Framework versions - Transformers 4.14.0 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
voidism/diffcse-roberta-base-trans
voidism
2022-05-01T19:30:38Z
66
1
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "arxiv:2204.10298", "arxiv:2104.08821", "arxiv:2111.00899", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-14T15:20:39Z
--- license: apache-2.0 --- # DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings [![GitHub Stars](https://img.shields.io/github/stars/voidism/DiffCSE?style=social)](https://github.com/voidism/DiffCSE/) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb) arXiv link: https://arxiv.org/abs/2204.10298 To be published in [**NAACL 2022**](https://2022.naacl.org/) Authors: [Yung-Sung Chuang](https://people.csail.mit.edu/yungsung/), [Rumen Dangovski](http://super-ms.mit.edu/rumen.html), [Hongyin Luo](http://people.csail.mit.edu/hyluo/), [Yang Zhang](https://mitibmwatsonailab.mit.edu/people/yang-zhang/), [Shiyu Chang](https://code-terminator.github.io/), [Marin Soljačić](http://www.mit.edu/~soljacic/marin.html), [Shang-Wen Li](https://swdanielli.github.io/), [Scott Wen-tau Yih](https://scottyih.org/), [Yoon Kim](https://people.csail.mit.edu/yoonkim/), [James Glass](http://groups.csail.mit.edu/sls/people/glass.shtml) Our code is mainly based on the code of [SimCSE](https://arxiv.org/abs/2104.08821). Please refer to their [repository](https://github.com/princeton-nlp/SimCSE) for more detailed information. ## Overview ![DiffCSE](https://github.com/voidism/DiffCSE/raw/master/diffcse.png) We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings. DiffCSE learns sentence embeddings that are sensitive to the difference between the original sentence and an edited sentence, where the edited sentence is obtained by stochastically masking out the original sentence and then sampling from a masked language model. We show that DiffSCE is an instance of equivariant contrastive learning [(Dangovski et al., 2021)](https://arxiv.org/abs/2111.00899), which generalizes contrastive learning and learns representations that are insensitive to certain types of augmentations and sensitive to other "harmful" types of augmentations. Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods, outperforming unsupervised SimCSE by 2.3 absolute points on semantic textual similarity tasks. ## Setups [![Python](https://img.shields.io/badge/python-3.9.5-blue?logo=python&logoColor=FED643)](https://www.python.org/downloads/release/python-395/) ### Requirements * Python 3.9.5 ### Install our customized Transformers package ``` cd transformers-4.2.1 pip install . ``` > If you have already installed `transformers==4.2.1` through pip, you need to put `modeling_bert.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_bert.py` and `modeling_roberta.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_roberta.py`. > We modify these two files in the package so that we can perform _conditional_ pretraining tasks using BERT/RoBERTa. If possible, please directly pip install our customized Transformers package. ### Install other packages ``` pip install -r requirements.txt ``` ### Download the pretraining dataset ``` cd data bash download_wiki.sh ``` ### Download the downstream dataset ``` cd SentEval/data/downstream/ bash download_dataset.sh ``` ## Training (The same as `run_diffcse.sh`.) ```bash python train.py \ --model_name_or_path bert-base-uncased \ --generator_name distilbert-base-uncased \ --train_file data/wiki1m_for_simcse.txt \ --output_dir <your_output_model_dir> \ --num_train_epochs 2 \ --per_device_train_batch_size 64 \ --learning_rate 7e-6 \ --max_seq_length 32 \ --evaluation_strategy steps \ --metric_for_best_model stsb_spearman \ --load_best_model_at_end \ --eval_steps 125 \ --pooler_type cls \ --mlp_only_train \ --overwrite_output_dir \ --logging_first_step \ --logging_dir <your_logging_dir> \ --temp 0.05 \ --do_train \ --do_eval \ --batchnorm \ --lambda_weight 0.005 \ --fp16 --masking_ratio 0.30 ``` Our new arguments: * `--lambda_weight`: the lambda coefficient mentioned in Section 3 of our paper. * `--masking_ratio`: the masking ratio for MLM generator to randomly replace tokens. * `--generator_name`: the model name of generator. For `bert-base-uncased`, we use `distilbert-base-uncased`. For `roberta-base`, we use `distilroberta-base`. Arguments from [SimCSE](https://github.com/princeton-nlp/SimCSE): * `--train_file`: Training file path (`data/wiki1m_for_simcse.txt`). * `--model_name_or_path`: Pre-trained checkpoints to start with such as BERT-based models (`bert-base-uncased`, `bert-large-uncased`, etc.) and RoBERTa-based models (`RoBERTa-base`, `RoBERTa-large`). * `--temp`: Temperature for the contrastive loss. We always use `0.05`. * `--pooler_type`: Pooling method. * `--mlp_only_train`: For unsupervised SimCSE or DiffCSE, it works better to train the model with MLP layer but test the model without it. You should use this argument when training unsupervised SimCSE/DiffCSE models. For the results in our paper, we use a NVidia 2080Ti GPU with CUDA 11.2. Using different types of devices or different versions of CUDA/Python/PyTorch may lead to slightly different performance. ## Evaluation [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb) We provide a simple colab notebook to reproduce our results easily. We can also run the commands below for evaluation: ```bash python evaluation.py \ --model_name_or_path <your_output_model_dir> \ --pooler cls_before_pooler \ --task_set <sts|transfer|full> \ --mode test ``` To evaluate our pretrained DiffCSE checkpoints, we can use the following scripts: ### BERT #### STS ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-bert-base-uncased-sts \ --pooler cls_before_pooler \ --task_set sts \ --mode test ``` #### Transfer Tasks ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-bert-base-uncased-trans \ --pooler cls_before_pooler \ --task_set transfer \ --mode test ``` ### RoBERTa #### STS ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-roberta-base-sts \ --pooler cls_before_pooler \ --task_set sts \ --mode test ``` #### Transfer Tasks ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-roberta-base-trans \ --pooler cls_before_pooler \ --task_set transfer \ --mode test ``` For more detailed information, please check [SimCSE's GitHub repo](https://github.com/princeton-nlp/SimCSE). ## Pretrained models [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97-Models-yellow)](https://huggingface.co/voidism) * DiffCSE-BERT-base (STS): https://huggingface.co/voidism/diffcse-bert-base-uncased-sts * DiffCSE-BERT-base (transfer tasks): https://huggingface.co/voidism/diffcse-bert-base-uncased-trans * DiffCSE-RoBERTa-base (STS): https://huggingface.co/voidism/diffcse-roberta-base-sts * DiffCSE-RoBERTa-base (transfer tasks): https://huggingface.co/voidism/diffcse-roberta-base-trans We can load the models using the API provided by [SimCSE](https://github.com/princeton-nlp/SimCSE). See [Getting Started](https://github.com/princeton-nlp/SimCSE#getting-started) for more information. ```python from diffcse import DiffCSE model_bert_sts = DiffCSE("voidism/diffcse-bert-base-uncased-sts") model_bert_trans = DiffCSE("voidism/diffcse-bert-base-uncased-trans") model_roberta_sts = DiffCSE("voidism/diffcse-roberta-base-sts") model_roberta_trans = DiffCSE("voidism/diffcse-roberta-base-trans") ``` ## Citations [![DOI](https://img.shields.io/badge/DOI-10.48550/arXiv.2204.10298-green?color=FF8000?color=009922)](https://doi.org/10.48550/arXiv.2204.10298) Please cite our paper and the SimCSE paper if they are helpful to your work! ```bibtex @inproceedings{chuang2022diffcse, title={{DiffCSE}: Difference-based Contrastive Learning for Sentence Embeddings}, author={Chuang, Yung-Sung and Dangovski, Rumen and Luo, Hongyin and Zhang, Yang and Chang, Shiyu and Soljacic, Marin and Li, Shang-Wen and Yih, Wen-tau and Kim, Yoon and Glass, James}, booktitle={Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)}, year={2022} } @inproceedings{gao2021simcse, title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings}, author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi}, booktitle={Empirical Methods in Natural Language Processing (EMNLP)}, year={2021} } ```
voidism/diffcse-bert-base-uncased-trans
voidism
2022-05-01T19:24:20Z
4
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2204.10298", "arxiv:2104.08821", "arxiv:2111.00899", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-14T15:19:25Z
--- license: apache-2.0 --- # DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings [![GitHub Stars](https://img.shields.io/github/stars/voidism/DiffCSE?style=social)](https://github.com/voidism/DiffCSE/) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb) arXiv link: https://arxiv.org/abs/2204.10298 To be published in [**NAACL 2022**](https://2022.naacl.org/) Authors: [Yung-Sung Chuang](https://people.csail.mit.edu/yungsung/), [Rumen Dangovski](http://super-ms.mit.edu/rumen.html), [Hongyin Luo](http://people.csail.mit.edu/hyluo/), [Yang Zhang](https://mitibmwatsonailab.mit.edu/people/yang-zhang/), [Shiyu Chang](https://code-terminator.github.io/), [Marin Soljačić](http://www.mit.edu/~soljacic/marin.html), [Shang-Wen Li](https://swdanielli.github.io/), [Scott Wen-tau Yih](https://scottyih.org/), [Yoon Kim](https://people.csail.mit.edu/yoonkim/), [James Glass](http://groups.csail.mit.edu/sls/people/glass.shtml) Our code is mainly based on the code of [SimCSE](https://arxiv.org/abs/2104.08821). Please refer to their [repository](https://github.com/princeton-nlp/SimCSE) for more detailed information. ## Overview ![DiffCSE](https://github.com/voidism/DiffCSE/raw/master/diffcse.png) We propose DiffCSE, an unsupervised contrastive learning framework for learning sentence embeddings. DiffCSE learns sentence embeddings that are sensitive to the difference between the original sentence and an edited sentence, where the edited sentence is obtained by stochastically masking out the original sentence and then sampling from a masked language model. We show that DiffSCE is an instance of equivariant contrastive learning [(Dangovski et al., 2021)](https://arxiv.org/abs/2111.00899), which generalizes contrastive learning and learns representations that are insensitive to certain types of augmentations and sensitive to other "harmful" types of augmentations. Our experiments show that DiffCSE achieves state-of-the-art results among unsupervised sentence representation learning methods, outperforming unsupervised SimCSE by 2.3 absolute points on semantic textual similarity tasks. ## Setups [![Python](https://img.shields.io/badge/python-3.9.5-blue?logo=python&logoColor=FED643)](https://www.python.org/downloads/release/python-395/) ### Requirements * Python 3.9.5 ### Install our customized Transformers package ``` cd transformers-4.2.1 pip install . ``` > If you have already installed `transformers==4.2.1` through pip, you need to put `modeling_bert.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_bert.py` and `modeling_roberta.py` into `<your_python_env>/site-packages/transformers/models/bert/modeling_roberta.py`. > We modify these two files in the package so that we can perform _conditional_ pretraining tasks using BERT/RoBERTa. If possible, please directly pip install our customized Transformers package. ### Install other packages ``` pip install -r requirements.txt ``` ### Download the pretraining dataset ``` cd data bash download_wiki.sh ``` ### Download the downstream dataset ``` cd SentEval/data/downstream/ bash download_dataset.sh ``` ## Training (The same as `run_diffcse.sh`.) ```bash python train.py \ --model_name_or_path bert-base-uncased \ --generator_name distilbert-base-uncased \ --train_file data/wiki1m_for_simcse.txt \ --output_dir <your_output_model_dir> \ --num_train_epochs 2 \ --per_device_train_batch_size 64 \ --learning_rate 7e-6 \ --max_seq_length 32 \ --evaluation_strategy steps \ --metric_for_best_model stsb_spearman \ --load_best_model_at_end \ --eval_steps 125 \ --pooler_type cls \ --mlp_only_train \ --overwrite_output_dir \ --logging_first_step \ --logging_dir <your_logging_dir> \ --temp 0.05 \ --do_train \ --do_eval \ --batchnorm \ --lambda_weight 0.005 \ --fp16 --masking_ratio 0.30 ``` Our new arguments: * `--lambda_weight`: the lambda coefficient mentioned in Section 3 of our paper. * `--masking_ratio`: the masking ratio for MLM generator to randomly replace tokens. * `--generator_name`: the model name of generator. For `bert-base-uncased`, we use `distilbert-base-uncased`. For `roberta-base`, we use `distilroberta-base`. Arguments from [SimCSE](https://github.com/princeton-nlp/SimCSE): * `--train_file`: Training file path (`data/wiki1m_for_simcse.txt`). * `--model_name_or_path`: Pre-trained checkpoints to start with such as BERT-based models (`bert-base-uncased`, `bert-large-uncased`, etc.) and RoBERTa-based models (`RoBERTa-base`, `RoBERTa-large`). * `--temp`: Temperature for the contrastive loss. We always use `0.05`. * `--pooler_type`: Pooling method. * `--mlp_only_train`: For unsupervised SimCSE or DiffCSE, it works better to train the model with MLP layer but test the model without it. You should use this argument when training unsupervised SimCSE/DiffCSE models. For the results in our paper, we use a NVidia 2080Ti GPU with CUDA 11.2. Using different types of devices or different versions of CUDA/Python/PyTorch may lead to slightly different performance. ## Evaluation [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/voidism/DiffCSE/blob/master/diffcse_evaluation.ipynb) We provide a simple colab notebook to reproduce our results easily. We can also run the commands below for evaluation: ```bash python evaluation.py \ --model_name_or_path <your_output_model_dir> \ --pooler cls_before_pooler \ --task_set <sts|transfer|full> \ --mode test ``` To evaluate our pretrained DiffCSE checkpoints, we can use the following scripts: ### BERT #### STS ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-bert-base-uncased-sts \ --pooler cls_before_pooler \ --task_set sts \ --mode test ``` #### Transfer Tasks ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-bert-base-uncased-trans \ --pooler cls_before_pooler \ --task_set transfer \ --mode test ``` ### RoBERTa #### STS ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-roberta-base-sts \ --pooler cls_before_pooler \ --task_set sts \ --mode test ``` #### Transfer Tasks ```bash python evaluation.py \ --model_name_or_path voidism/diffcse-roberta-base-trans \ --pooler cls_before_pooler \ --task_set transfer \ --mode test ``` For more detailed information, please check [SimCSE's GitHub repo](https://github.com/princeton-nlp/SimCSE). ## Pretrained models [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97-Models-yellow)](https://huggingface.co/voidism) * DiffCSE-BERT-base (STS): https://huggingface.co/voidism/diffcse-bert-base-uncased-sts * DiffCSE-BERT-base (transfer tasks): https://huggingface.co/voidism/diffcse-bert-base-uncased-trans * DiffCSE-RoBERTa-base (STS): https://huggingface.co/voidism/diffcse-roberta-base-sts * DiffCSE-RoBERTa-base (transfer tasks): https://huggingface.co/voidism/diffcse-roberta-base-trans We can load the models using the API provided by [SimCSE](https://github.com/princeton-nlp/SimCSE). See [Getting Started](https://github.com/princeton-nlp/SimCSE#getting-started) for more information. ```python from diffcse import DiffCSE model_bert_sts = DiffCSE("voidism/diffcse-bert-base-uncased-sts") model_bert_trans = DiffCSE("voidism/diffcse-bert-base-uncased-trans") model_roberta_sts = DiffCSE("voidism/diffcse-roberta-base-sts") model_roberta_trans = DiffCSE("voidism/diffcse-roberta-base-trans") ``` ## Citations [![DOI](https://img.shields.io/badge/DOI-10.48550/arXiv.2204.10298-green?color=FF8000?color=009922)](https://doi.org/10.48550/arXiv.2204.10298) Please cite our paper and the SimCSE paper if they are helpful to your work! ```bibtex @inproceedings{chuang2022diffcse, title={{DiffCSE}: Difference-based Contrastive Learning for Sentence Embeddings}, author={Chuang, Yung-Sung and Dangovski, Rumen and Luo, Hongyin and Zhang, Yang and Chang, Shiyu and Soljacic, Marin and Li, Shang-Wen and Yih, Wen-tau and Kim, Yoon and Glass, James}, booktitle={Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)}, year={2022} } @inproceedings{gao2021simcse, title={{SimCSE}: Simple Contrastive Learning of Sentence Embeddings}, author={Gao, Tianyu and Yao, Xingcheng and Chen, Danqi}, booktitle={Empirical Methods in Natural Language Processing (EMNLP)}, year={2021} } ```
agnihotri/cuad_contract_type
agnihotri
2022-05-01T18:49:12Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:agnihotri/autotrain-data-contract_type", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-01T18:36:58Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - agnihotri/autotrain-data-contract_type co2_eq_emissions: 0.07610944071640048 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 809725368 - CO2 Emissions (in grams): 0.07610944071640048 ## Validation Metrics - Loss: 0.05312908813357353 - Accuracy: 0.9911504424778761 - Macro F1: 0.9912087912087912 - Micro F1: 0.9911504424778761 - Weighted F1: 0.9908586988233007 - Macro Precision: 0.9942857142857143 - Micro Precision: 0.9911504424778761 - Weighted Precision: 0.9924146649810366 - Macro Recall: 0.99 - Micro Recall: 0.9911504424778761 - Weighted Recall: 0.9911504424778761 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/agnihotri/autotrain-contract_type-809725368 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("agnihotri/autotrain-contract_type-809725368", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("agnihotri/autotrain-contract_type-809725368", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
rjuez00/meddocan-beto-ner
rjuez00
2022-05-01T16:23:58Z
8
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-01T16:21:07Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: beto_full_train_3_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beto_full_train_3_epochs This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0445 - Precision: 0.9541 - Recall: 0.9481 - F1: 0.9511 - Accuracy: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.11.6
Siyam/SKYLy
Siyam
2022-05-01T16:02:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T08:47:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: SKYLy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SKYLy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7645 - Wer: 0.4083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.4215 | 4.26 | 400 | 1.6323 | 0.9857 | | 0.5716 | 8.51 | 800 | 0.6679 | 0.5107 | | 0.1721 | 12.77 | 1200 | 0.6935 | 0.4632 | | 0.1063 | 17.02 | 1600 | 0.7533 | 0.4432 | | 0.0785 | 21.28 | 2000 | 0.7208 | 0.4255 | | 0.0608 | 25.53 | 2400 | 0.7481 | 0.4117 | | 0.0493 | 29.79 | 2800 | 0.7645 | 0.4083 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 2.1.0 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab9
hassnain
2022-05-01T15:58:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T09:32:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab9 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1922 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---:| | 5.0683 | 1.42 | 500 | 3.2471 | 1.0 | | 3.1349 | 2.85 | 1000 | 3.2219 | 1.0 | | 3.1317 | 4.27 | 1500 | 3.2090 | 1.0 | | 3.1262 | 5.7 | 2000 | 3.2152 | 1.0 | | 3.1307 | 7.12 | 2500 | 3.2147 | 1.0 | | 3.1264 | 8.55 | 3000 | 3.2072 | 1.0 | | 3.1279 | 9.97 | 3500 | 3.2158 | 1.0 | | 3.1287 | 11.4 | 4000 | 3.2190 | 1.0 | | 3.1256 | 12.82 | 4500 | 3.2069 | 1.0 | | 3.1254 | 14.25 | 5000 | 3.2134 | 1.0 | | 3.1259 | 15.67 | 5500 | 3.2231 | 1.0 | | 3.1269 | 17.09 | 6000 | 3.2005 | 1.0 | | 3.1279 | 18.52 | 6500 | 3.1988 | 1.0 | | 3.1246 | 19.94 | 7000 | 3.1929 | 1.0 | | 3.128 | 21.37 | 7500 | 3.1864 | 1.0 | | 3.1245 | 22.79 | 8000 | 3.1868 | 1.0 | | 3.1266 | 24.22 | 8500 | 3.1852 | 1.0 | | 3.1239 | 25.64 | 9000 | 3.1855 | 1.0 | | 3.125 | 27.07 | 9500 | 3.1917 | 1.0 | | 3.1233 | 28.49 | 10000 | 3.1929 | 1.0 | | 3.1229 | 29.91 | 10500 | 3.1922 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
jcai1/distilbert-base-uncased-finetuned-imdb
jcai1
2022-05-01T15:16:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-01T15:10:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
sameearif88/wav2vec2-base-timit-demo-colab12
sameearif88
2022-05-01T14:25:58Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T12:17:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab12 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4831 - Wer: 0.3546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 420 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.1683 | 3.52 | 500 | 1.3684 | 0.7364 | | 0.7614 | 7.04 | 1000 | 0.6008 | 0.5218 | | 0.4721 | 10.56 | 1500 | 0.5319 | 0.4614 | | 0.3376 | 14.08 | 2000 | 0.5234 | 0.4308 | | 0.2508 | 17.61 | 2500 | 0.5109 | 0.3998 | | 0.1978 | 21.13 | 3000 | 0.5037 | 0.3721 | | 0.1645 | 24.65 | 3500 | 0.4918 | 0.3622 | | 0.1449 | 28.17 | 4000 | 0.4831 | 0.3546 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab50
hassnain
2022-05-01T13:32:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T10:57:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab50 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2257 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.4568 | 7.04 | 500 | 3.3002 | 1.0 | | 3.1795 | 14.08 | 1000 | 3.2170 | 1.0 | | 3.1607 | 21.13 | 1500 | 3.2119 | 1.0 | | 3.1537 | 28.17 | 2000 | 3.2257 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab52
hassnain
2022-05-01T12:59:06Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T12:14:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab52 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab52 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7941 - Wer: 0.7501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3424 | 7.04 | 500 | 3.3225 | 1.0 | | 2.518 | 14.08 | 1000 | 1.5884 | 0.8300 | | 1.0217 | 21.13 | 1500 | 1.6643 | 0.7719 | | 0.6074 | 28.17 | 2000 | 1.7941 | 0.7501 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab40
hassnain
2022-05-01T12:54:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T10:36:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab40 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab40 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7341 - Wer: 0.5578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0438 | 13.89 | 500 | 3.0671 | 1.0 | | 1.0734 | 27.78 | 1000 | 0.7341 | 0.5578 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab60
hassnain
2022-05-01T12:26:16Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T11:04:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab60 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab60 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1975 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.5799 | 7.04 | 500 | 3.2484 | 1.0 | | 3.1859 | 14.08 | 1000 | 3.1951 | 1.0 | | 3.1694 | 21.13 | 1500 | 3.1754 | 1.0 | | 3.1637 | 28.17 | 2000 | 3.1818 | 1.0 | | 3.1633 | 35.21 | 2500 | 3.1739 | 1.0 | | 3.16 | 42.25 | 3000 | 3.2030 | 1.0 | | 3.1602 | 49.3 | 3500 | 3.1974 | 1.0 | | 3.1544 | 56.34 | 4000 | 3.1975 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab51
hassnain
2022-05-01T11:59:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T11:15:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab51 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab51 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8395 - Wer: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.481 | 7.04 | 500 | 3.2834 | 1.0 | | 2.2521 | 14.08 | 1000 | 1.6333 | 0.8093 | | 0.9467 | 21.13 | 1500 | 1.7458 | 0.7560 | | 0.5888 | 28.17 | 2000 | 1.8395 | 0.7480 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab11
sameearif88
2022-05-01T11:54:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T11:05:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab11 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4922 - Wer: 0.4348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.2269 | 3.52 | 500 | 1.1191 | 0.7121 | | 0.8297 | 7.04 | 1000 | 0.6064 | 0.5228 | | 0.4988 | 10.56 | 1500 | 0.5057 | 0.4627 | | 0.3635 | 14.08 | 2000 | 0.4922 | 0.4348 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
obokkkk/mt5-base_2_3
obokkkk
2022-05-01T11:36:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-30T06:21:11Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mt5-base_2_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base_2_3 This model is a fine-tuned version of [obokkkk/mt5-base_2](https://huggingface.co/obokkkk/mt5-base_2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1465 - Bleu: 9.5474 - Gen Len: 17.854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 175 | 1.1739 | 9.0271 | 17.8543 | | No log | 2.0 | 350 | 1.1660 | 9.1398 | 17.8468 | | 1.3653 | 3.0 | 525 | 1.1585 | 9.251 | 17.8656 | | 1.3653 | 4.0 | 700 | 1.1538 | 9.3176 | 17.8476 | | 1.3653 | 5.0 | 875 | 1.1518 | 9.3529 | 17.8608 | | 1.2985 | 6.0 | 1050 | 1.1505 | 9.4818 | 17.8552 | | 1.2985 | 7.0 | 1225 | 1.1475 | 9.499 | 17.8575 | | 1.2985 | 8.0 | 1400 | 1.1471 | 9.5511 | 17.871 | | 1.2632 | 9.0 | 1575 | 1.1459 | 9.5315 | 17.8547 | | 1.2632 | 10.0 | 1750 | 1.1465 | 9.5474 | 17.854 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
sameearif88/wav2vec2-base-timit-demo-colab7
sameearif88
2022-05-01T11:12:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T10:15:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab7 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 - Wer: 0.5426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.1854 | 13.89 | 500 | 3.1687 | 1.0 | | 1.7033 | 27.78 | 1000 | 0.7289 | 0.5659 | | 0.4208 | 41.67 | 1500 | 0.6917 | 0.5426 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/a_ergt-sausifaktai-suuiluap
huggingtweets
2022-05-01T11:05:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-01T11:05:49Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1512730099614953472/dyaBioOx_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/703268070962372608/sWc1Y_Ch_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/783999503711997952/BHnn3C1Z_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Æ𝚐𝚛𝚝 & Sausi Faktai & Pαulius</div> <div style="text-align: center; font-size: 14px;">@a_ergt-sausifaktai-suuiluap</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Æ𝚐𝚛𝚝 & Sausi Faktai & Pαulius. | Data | Æ𝚐𝚛𝚝 | Sausi Faktai | Pαulius | | --- | --- | --- | --- | | Tweets downloaded | 3241 | 3194 | 3192 | | Retweets | 299 | 19 | 811 | | Short tweets | 977 | 16 | 484 | | Tweets kept | 1965 | 3159 | 1897 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bn9w1ob/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @a_ergt-sausifaktai-suuiluap's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3txmfh51) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3txmfh51/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/a_ergt-sausifaktai-suuiluap') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sameearif88/wav2vec2-base-timit-demo-colab10
sameearif88
2022-05-01T11:00:20Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T09:25:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab10 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4460 - Wer: 0.3425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9891 | 3.52 | 500 | 3.1554 | 1.0 | | 1.71 | 7.04 | 1000 | 0.7122 | 0.5811 | | 0.6164 | 10.56 | 1500 | 0.5149 | 0.4880 | | 0.4188 | 14.08 | 2000 | 0.4726 | 0.4344 | | 0.3038 | 17.61 | 2500 | 0.4765 | 0.4092 | | 0.2312 | 21.13 | 3000 | 0.4387 | 0.3765 | | 0.1867 | 24.65 | 3500 | 0.4411 | 0.3583 | | 0.1582 | 28.17 | 4000 | 0.4460 | 0.3425 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab11
hassnain
2022-05-01T10:54:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T09:49:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab11 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6269 - Wer: 0.7418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.6439 | 7.04 | 500 | 3.3083 | 1.0 | | 2.3763 | 14.08 | 1000 | 1.5059 | 0.8146 | | 1.0161 | 21.13 | 1500 | 1.5101 | 0.7488 | | 0.6195 | 28.17 | 2000 | 1.6269 | 0.7418 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/umakomptonrose
huggingtweets
2022-05-01T10:41:45Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-01T10:40:44Z
--- language: en thumbnail: http://www.huggingtweets.com/umakomptonrose/1651401701205/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509685524361105414/-iZ0C4dW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Uma Kompton</div> <div style="text-align: center; font-size: 14px;">@umakomptonrose</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Uma Kompton. | Data | Uma Kompton | | --- | --- | | Tweets downloaded | 184 | | Retweets | 9 | | Short tweets | 22 | | Tweets kept | 153 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q3vjpe4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @umakomptonrose's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37a8dws9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37a8dws9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/umakomptonrose') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hassnain/wav2vec2-base-timit-demo-colab7
hassnain
2022-05-01T09:02:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T07:40:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab7 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1687 - Wer: 0.6478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8409 | 7.04 | 500 | 3.1487 | 1.0 | | 2.6259 | 14.08 | 1000 | 1.5598 | 0.8730 | | 1.083 | 21.13 | 1500 | 1.0600 | 0.7347 | | 0.6061 | 28.17 | 2000 | 1.0697 | 0.7006 | | 0.4022 | 35.21 | 2500 | 1.0617 | 0.6913 | | 0.2884 | 42.25 | 3000 | 1.1962 | 0.6768 | | 0.225 | 49.3 | 3500 | 1.1753 | 0.6567 | | 0.1852 | 56.34 | 4000 | 1.1687 | 0.6478 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
cuzeverynameistaken/wav2vec2-base-timit-demo-colab0
cuzeverynameistaken
2022-05-01T08:59:37Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T21:06:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6960 - Wer: 0.5694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3196 | 13.89 | 500 | 3.1225 | 1.0 | | 1.2756 | 27.78 | 1000 | 0.6960 | 0.5694 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab4
sameearif88
2022-05-01T08:37:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T07:59:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9149 - Wer: 0.5907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.9363 | 13.89 | 500 | 2.7532 | 1.0 | | 0.9875 | 27.78 | 1000 | 0.9149 | 0.5907 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sherry7144/wav2vec2-base-timit-demo-colab1
sherry7144
2022-05-01T08:08:05Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T07:01:31Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0358 - Wer: 0.5729 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3217 | 13.89 | 500 | 0.8951 | 0.5834 | | 0.2263 | 27.78 | 1000 | 1.0358 | 0.5729 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab3
sameearif88
2022-05-01T07:50:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T07:10:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8480 - Wer: 0.5608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7977 | 13.89 | 500 | 1.6491 | 0.8257 | | 0.7393 | 27.78 | 1000 | 0.8480 | 0.5608 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
shumail/wav2vec2-base-timit-demo-colab
shumail
2022-05-01T07:13:08Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T12:34:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8686 - Wer: 0.6263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0505 | 13.89 | 500 | 3.0760 | 1.0 | | 1.2748 | 27.78 | 1000 | 0.8686 | 0.6263 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab3
hassnain
2022-05-01T07:06:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-01T00:50:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1016 - Wer: 0.6704 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0006 | 13.89 | 500 | 3.0706 | 1.0 | | 1.8796 | 27.78 | 1000 | 1.1154 | 0.7414 | | 0.548 | 41.67 | 1500 | 1.0826 | 0.7034 | | 0.2747 | 55.56 | 2000 | 1.1016 | 0.6704 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab2
hassnain
2022-05-01T06:45:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T23:44:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2355 - Wer: 0.7320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.851 | 13.89 | 500 | 3.1260 | 1.0 | | 1.9721 | 27.78 | 1000 | 1.2435 | 0.7992 | | 0.5749 | 41.67 | 1500 | 1.1662 | 0.7374 | | 0.291 | 55.56 | 2000 | 1.2355 | 0.7320 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sameearif88/wav2vec2-base-timit-demo-colab1
sameearif88
2022-05-01T06:15:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-29T15:31:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7411 - Wer: 0.5600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0773 | 13.89 | 500 | 3.1073 | 1.0 | | 1.2444 | 27.78 | 1000 | 0.7411 | 0.5600 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
huggingtweets/chubbiverse
huggingtweets
2022-05-01T05:19:40Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-01T05:08:43Z
--- language: en thumbnail: http://www.huggingtweets.com/chubbiverse/1651382374986/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479680767261229056/JH8LZA4w_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chubbiverse</div> <div style="text-align: center; font-size: 14px;">@chubbiverse</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chubbiverse. | Data | Chubbiverse | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 881 | | Short tweets | 559 | | Tweets kept | 1780 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ywslmnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chubbiverse's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34yoo9j7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34yoo9j7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chubbiverse') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
charlieoneill/distilbert-base-uncased-finetuned-tweet_eval-offensive
charlieoneill
2022-05-01T03:36:21Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-01T03:22:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-tweet_eval-offensive results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: offensive metrics: - name: Accuracy type: accuracy value: 0.8089123867069486 - name: F1 type: f1 value: 0.8060281168230459 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-tweet_eval-offensive This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.4185 - Accuracy: 0.8089 - F1: 0.8060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 187 | 0.4259 | 0.8059 | 0.7975 | | 0.46 | 2.0 | 374 | 0.4185 | 0.8089 | 0.8060 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.12.1
princeton-nlp/CoFi-MNLI-s95
princeton-nlp
2022-05-01T01:20:45Z
15
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2204.00408", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T21:57:29Z
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 95% sparsity on dataset MNLI. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
princeton-nlp/CoFi-MNLI-s60
princeton-nlp
2022-05-01T01:20:27Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2204.00408", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T21:58:04Z
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 60% sparsity on dataset MNLI. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
princeton-nlp/CoFi-QNLI-s60
princeton-nlp
2022-05-01T01:19:53Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2204.00408", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-29T21:58:20Z
This is a model checkpoint for "[Structured Pruning Learns Compact and Accurate Models](https://arxiv.org/pdf/2204.00408.pdf)". The model is pruned from `bert-base-uncased` to a 60% sparsity on dataset QNLI. Please go to [our repository](https://github.com/princeton-nlp/CoFiPruning) for more details on how to use the model for inference. Note that you would have to use the model class specified in our repository to load the model.
ChrisZeng/bart-base-detox
ChrisZeng
2022-05-01T00:01:11Z
8
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-30T22:01:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-detox results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-detox This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5633 | 1.0 | 135 | 0.2524 | | 0.2589 | 2.0 | 270 | 0.2193 | | 0.2307 | 3.0 | 405 | 0.1993 | | 0.2171 | 4.0 | 540 | 0.2002 | | 0.2027 | 5.0 | 675 | 0.1937 | | 0.1946 | 6.0 | 810 | 0.1972 | | 0.1874 | 7.0 | 945 | 0.1917 | | 0.1853 | 8.0 | 1080 | 0.1868 | | 0.1811 | 9.0 | 1215 | 0.1890 | | 0.1776 | 10.0 | 1350 | 0.1871 | | 0.1798 | 11.0 | 1485 | 0.1858 | | 0.1745 | 12.0 | 1620 | 0.1820 | | 0.1689 | 13.0 | 1755 | 0.1827 | | 0.1707 | 14.0 | 1890 | 0.1843 | | 0.1658 | 15.0 | 2025 | 0.1834 | | 0.1647 | 16.0 | 2160 | 0.1820 | | 0.1645 | 17.0 | 2295 | 0.1837 | | 0.1633 | 18.0 | 2430 | 0.1814 | | 0.1612 | 19.0 | 2565 | 0.1815 | | 0.1603 | 20.0 | 2700 | 0.1819 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.12.0.dev20220429 - Datasets 2.1.0 - Tokenizers 0.10.3
Worldman/pegasus-samsum
Worldman
2022-04-30T23:42:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-30T22:35:12Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7073 | 0.54 | 500 | 1.4841 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
tahazakir/wav2vec2-base-timit-demo-colab2
tahazakir
2022-04-30T22:54:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T20:32:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1899 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.0486 | 13.89 | 500 | 3.6570 | 1.0 | | 3.2905 | 27.78 | 1000 | 3.1899 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
tahazakir/wav2vec2-base-timit-demo-colab1
tahazakir
2022-04-30T22:47:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T19:13:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1918 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.7104 | 13.89 | 500 | 3.2161 | 1.0 | | 3.1868 | 27.78 | 1000 | 3.1918 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
LiYuan/amazon-review-sentiment-analysis
LiYuan
2022-04-30T22:03:23Z
4,927
41
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T20:37:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-mnli-amazon-query-shopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli-amazon-query-shopping This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment?text=I+like+you.+I+love+you) on an [Amazon US Customer Reviews Dataset](https://www.kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-dataset). The code for the fine-tuning process can be found [here](https://github.com/vanderbilt-data-science/bigdata/blob/main/06-fine-tune-BERT-on-our-dataset.ipynb). This model is uncased: it does not make a difference between english and English. It achieves the following results on the evaluation set: - Loss: 0.5202942490577698 - Accuracy: 0.8 ## Model description This a bert-base-multilingual-uncased model finetuned for sentiment analysis on product reviews in six languages: English, Dutch, German, French, Spanish and Italian. It predicts the sentiment of the review as a number of stars (between 1 and 5). This model is intended for direct use as a sentiment analysis model for product reviews in any of the six languages above, or for further finetuning on related sentiment analysis tasks. We replaced its head with our customer reviews to fine-tune it on 17,280 rows of training set while validating it on 4,320 rows of dev set. Finally, we evaluated our model performance on a held-out test set: 2,400 rows. ## Intended uses & limitations Bert-base is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification, or question answering. This fine-tuned version of BERT-base is used to predict review rating star given the review. The limitations are this trained model is focusing on reviews and products on Amazon. If you apply this model to other domains, it may perform poorly. ## How to use You can use this model directly by downloading the trained weights and configurations like the below code snippet: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("LiYuan/amazon-review-sentiment-analysis") model = AutoModelForSequenceClassification.from_pretrained("LiYuan/amazon-review-sentiment-analysis") ``` ## Training and evaluation data Download all the raw [dataset](https://www.kaggle.com/datasets/cynthiarempel/amazon-us-customer-reviews-dataset) from the Kaggle website. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.555400 | 1.0 | 1080 | 0.520294 | 0.800000 | | 0.424300 | 2.0 | 1080 | 0.549649 | 0.798380 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ChrisZeng/t5-base-detox
ChrisZeng
2022-04-30T21:53:04Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-30T17:43:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-base-detox results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-detox This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.337 | 1.0 | 135 | 0.4810 | | 0.5238 | 2.0 | 270 | 0.3886 | | 0.4301 | 3.0 | 405 | 0.3378 | | 0.3755 | 4.0 | 540 | 0.3122 | | 0.3359 | 5.0 | 675 | 0.2910 | | 0.3068 | 6.0 | 810 | 0.2737 | | 0.2861 | 7.0 | 945 | 0.2710 | | 0.2744 | 8.0 | 1080 | 0.2617 | | 0.2649 | 9.0 | 1215 | 0.2630 | | 0.2585 | 10.0 | 1350 | 0.2615 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.12.0.dev20220429 - Datasets 2.1.0 - Tokenizers 0.10.3
hassnain/wav2vec2-base-timit-demo-colab0
hassnain
2022-04-30T21:39:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T20:59:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab0 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1808 - Wer: 0.7734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.8077 | 7.04 | 500 | 3.1554 | 1.0 | | 2.8549 | 14.08 | 1000 | 2.0683 | 1.0846 | | 1.3297 | 21.13 | 1500 | 1.2084 | 0.7984 | | 0.6725 | 28.17 | 2000 | 1.1808 | 0.7734 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
YKXBCi/vit-base-patch16-224-in21k-euroSat
YKXBCi
2022-04-30T20:19:42Z
34
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-15T14:35:58Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: YKXBCi/vit-base-patch16-224-in21k-euroSat results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # YKXBCi/vit-base-patch16-224-in21k-euroSat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0495 - Train Accuracy: 0.9948 - Train Top-3-accuracy: 0.9999 - Validation Loss: 0.0782 - Validation Accuracy: 0.9839 - Validation Top-3-accuracy: 1.0 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 0.4593 | 0.9478 | 0.9912 | 0.1558 | 0.9809 | 0.9995 | 0 | | 0.1008 | 0.9876 | 0.9997 | 0.0855 | 0.9856 | 1.0 | 1 | | 0.0495 | 0.9948 | 0.9999 | 0.0782 | 0.9839 | 1.0 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jg/distilbert-base-uncased-finetuned-emotion
jg
2022-04-30T18:34:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T12:10:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: F1 type: f1 value: 0.9235933186731068 - name: Accuracy type: accuracy value: 0.9235 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2199 - F1: 0.9236 - Accuracy: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.8072 | 1.0 | 250 | 0.3153 | 0.9023 | 0.905 | | 0.2442 | 2.0 | 500 | 0.2199 | 0.9236 | 0.9235 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ParanoidAndroid/bert-finetuned-squad
ParanoidAndroid
2022-04-30T18:29:58Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-30T18:16:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ali221000262/wav2vec2-base-timit-ali-hasan-colab
ali221000262
2022-04-30T17:36:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T17:04:44Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-ali-hasan-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-ali-hasan-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2471 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.5485 | 13.89 | 500 | 3.2471 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
ningkko/drug-stance-bert
ningkko
2022-04-30T17:29:17Z
13
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-17T21:05:00Z
--- tags: - generated_from_trainer model-index: - name: drug-stance-bert results: [1, 0, 2] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # drug-stance-bert This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on [COVID-CQ](https://github.com/eceveco/COVID-CQ), a dataset that contains 3-label annotated opinions (negative, neutral, and positive) of the tweet initiators regarding the use of Chloroquine or Hydroxychloroquine for the treatment or prevention of the coronavirus. ## Intended uses & limitations Predict opinions (negative, neutral, and positive) of tweet initiators regarding the use of a drug for the treatment or prevention of the coronavirus. Note that having multiple drug names with different stances in a single tweet can confuse the model. ## Inference & understanding We followed COVID-CQ to use the following label representation: - 0 -> None/Neutral; - 1 -> Against; - 2 -> Favor Try these examples: - The gov's killing people by banning Ivm - Great news cheers everybody:) ivermectin proven to not work by rct lol ## Tutorial See our Github repo for [inference scripts](https://github.com/ningkko/COVID-drug/blob/main/stance_detection/inference.ipynb) ## Model description "We developed two COVID-drug-stance RoBERTa-base models by fine-tuning a pre-trained Twitter-specific stance detection model on a stance data set called COVID-CQ. The data were divided into training-dev-test validation datasets with a 70:10:20 ratio. Model I (COVID-drug-stance-BERT) was trained on the original tweet data, and Model II (COVID-drug-stance-BERT-masked) was trained on tweets with drug names masked as “[mask]” for model generalizability on different drugs. The two models had similar performance on the COVID-19 validation set: COVID-drug-stance-BERT had an accuracy of 86.88%, and the masked model had an accuracy of 86.67%. The two models were then evaluated by predicting tweet initiators’ attitudes towards the drug mentioned in each tweet using randomly selected test sets (100 tweets) of each drug (Hydroxychloquine, Ivermectin, Molnupiravir, Remdesivir). As suggested by the evaluation in Table 2, Model I had better performance and was therefore used in this study". | **Drug** | **Model I: Original Tweet** | | | **Model II: Drug Names Masked** | | | |------------------------|:---------------------------:|:-----------:|:------------:|:-------------------------------:|:-----------:|:------------:| | | **Precision** | **Recall** | **F1-Score** | **Precision** | **Recall** | **F1-Score** | | **Hydroxychloroquine** | 0.93 | 0.92 | **0.92** | 0.84 | 0.83 | 0.83 | | **Ivermectin** | 0.92 | 0.91 | **0.91** | 0.72 | 0.68 | 0.68 | | **Molnupiravir** | 0.89 | 0.89 | **0.89** | 0.78 | 0.77 | 0.77 | | **Remdesivir** | 0.82 | 0.79 | **0.79** | 0.70 | 0.66 | 0.66 | The model uploaded here is Model I. ## Training and evaluation data COVID-CQ ## Training procedure See Github ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.11.0 - Pytorch 1.8.1+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
Slavka/bert-base-cased-finetuned-log-parser-winlogbeat_nowhitespace_large
Slavka
2022-04-30T16:29:23Z
7
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-30T16:23:54Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-base-cased-finetuned-log-parser-winlogbeat_nowhitespace_large results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-log-parser-winlogbeat_nowhitespace_large This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 15321, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 15321, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-06, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
moaiz237/wav2vec2-base-timit-moaiz_exp2
moaiz237
2022-04-30T16:23:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T15:41:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-moaiz_exp2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-moaiz_exp2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1884 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 4.15 | 13.89 | 500 | 3.2020 | 1.0 | | 3.1522 | 27.78 | 1000 | 3.1884 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
moaiz237/wav2vec2-base-timit-moaiz_exp1
moaiz237
2022-04-30T15:13:12Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-30T12:17:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-moaiz_exp1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-moaiz_exp1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6910 - Wer: 0.5549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7261 | 13.89 | 500 | 2.4864 | 0.9942 | | 1.0036 | 27.78 | 1000 | 0.6910 | 0.5549 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Davincilee/door_inner
Davincilee
2022-04-30T15:07:38Z
0
1
null
[ "region:us" ]
null
2022-04-30T14:47:04Z
language: - "List of ISO 639-1 code for your language"
huggan/NeonGAN
huggan
2022-04-30T14:26:58Z
0
5
null
[ "gan", "unconditional image generation", "huggan", "style-transfer", "cyclegan", "Pytorch", "unconditional-image-generation", "arxiv:1703.10593", "license:mit", "region:us" ]
unconditional-image-generation
2022-04-24T19:46:41Z
--- license: mit tags: - gan - unconditional image generation - huggan - style-transfer - cyclegan - Pytorch - unconditional-image-generation --- This model is based on [CycleGAN](https://arxiv.org/abs/1703.10593) architecture. It takes images, and generates a futuristic neon image for the image provided.Hope this model neonifies your images. ![Demo.jpg](Demo_img.jpeg) # Dataset The model is trained on 256x256 high contrasted neon images as style images, and normal images (including people,scenery etc.) as base images. #### Dataset - https://www.kaggle.com/datasets/aanisha07/futuristic-images # Model All details regarding how to use the model, fine-tune it, are added to GitHub. #### Github - https://github.com/Aanisha/NeonGAN # Spaces Demo Check out the spaces demo, and try the model by yourselves. #### Demo - https://huggingface.co/spaces/huggan/NeonGAN_Demo Hope you all enjoy it!
Muennighoff/t5-small-finetuned-xsum
Muennighoff
2022-04-30T14:26:40Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-30T14:15:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.2881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4784 - Rouge1: 28.2881 - Rouge2: 7.6834 - Rougel: 22.2163 - Rougelsum: 22.219 - Gen Len: 18.8292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7184 | 1.0 | 12753 | 2.4784 | 28.2881 | 7.6834 | 22.2163 | 22.219 | 18.8292 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
sameearif88/wav2vec2-base-timit-demo-colab
sameearif88
2022-04-30T13:08:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-26T10:31:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
adielsa/distilbert-base-uncased-finetuned-cola
adielsa
2022-04-30T12:37:50Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T12:16:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5387376669923544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8256 - Matthews Correlation: 0.5387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5257 | 1.0 | 535 | 0.5286 | 0.4093 | | 0.3447 | 2.0 | 1070 | 0.5061 | 0.4972 | | 0.2303 | 3.0 | 1605 | 0.5878 | 0.5245 | | 0.1761 | 4.0 | 2140 | 0.7969 | 0.5153 | | 0.1346 | 5.0 | 2675 | 0.8256 | 0.5387 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ai4bharat/MultiIndicSentenceSummarizationSS
ai4bharat
2022-04-30T10:35:01Z
6
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "sentence-summarization", "multilingual", "nlp", "indicnlp", "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicSentenceSummarization", "arxiv:2203.05437", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-23T17:54:14Z
--- tags: - sentence-summarization - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicSentenceSummarization language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te license: - mit widget: - जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। <s> <2hi> --- # MultiIndicSentenceSummarizationSS This repository contains the [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint finetuned on the 11 languages of [IndicSentenceSummarization](https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization) dataset. For finetuning details, see the [paper](https://arxiv.org/abs/2203.05437). <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding. </li> <li> Trained on large Indic language corpora (5.53 million sentences). </li> <li> Unlike <a href="https://huggingface.co/ai4bharat/MultiIndicSentenceSummarization">MultiIndicSentenceSummarization</a> each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li> </ul> ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # For generation. Pardon the messiness. Note the decoder_start_token_id. model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3, num_beams=5, length_penalty=0.8, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # अनंतनाग में सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादी ढेर ``` ## Benchmarks Scores on the `IndicSentenceSummarization` test sets are as follows: Language | Rouge-1 / Rouge-2 / Rouge-L ---------|---------------------------- as | 63.56 / 49.90 / 62.57 bn | 52.52 / 36.15 / 50.60 gu | 47.69 / 29.77 / 45.61 hi | 50.43 / 28.13 / 45.15 kn | 77.06 / 69.36 / 76.33 ml | 65.00 / 51.99 / 63.76 mr | 47.05 / 25.97 / 45.52 or | 50.96 / 30.32 / 49.23 pa | 54.95 / 36.26 / 51.26 ta | 58.52 / 38.36 / 56.49 te | 53.75 / 35.17 / 52.66 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ```
ai4bharat/MultiIndicSentenceSummarization
ai4bharat
2022-04-30T10:26:02Z
25
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "sentence-summarization", "multilingual", "nlp", "indicnlp", "as", "bn", "gu", "hi", "kn", "ml", "mr", "or", "pa", "ta", "te", "dataset:ai4bharat/IndicSentenceSummarization", "arxiv:2203.05437", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-23T17:53:36Z
--- tags: - sentence-summarization - multilingual - nlp - indicnlp datasets: - ai4bharat/IndicSentenceSummarization language: - as - bn - gu - hi - kn - ml - mr - or - pa - ta - te license: - mit widget: - जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। </s> <2hi> --- # MultiIndicSentenceSummarization This repository contains the [IndicBART](https://huggingface.co/ai4bharat/IndicBART) checkpoint finetuned on the 11 languages of [IndicSentenceSummarization](https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization) dataset. For finetuning details, see the [paper](https://arxiv.org/abs/2203.05437). <ul> <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li> <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding. </li> <li> Trained on large Indic language corpora (431K sentences). </li> <li> All languages, have been represented in Devanagari script to encourage transfer learning among the related languages. </li> </ul> ## Using this model in `transformers` ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarization", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarization", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicSentenceSummarization") # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicSentenceSummarization") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>'] # First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". inp = tokenizer("जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # For generation. Pardon the messiness. Note the decoder_start_token_id. model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3, num_beams=5, length_penalty=0.8, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) # जम्मू एवं कश्मीरः अनंतनाग में सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादी ढेर # Note that if your output language is not Hindi or Marathi, you should convert its script from Devanagari to the desired language using the Indic NLP Library. ``` # Note: If you wish to use any language written in a non-Devanagari script, then you should first convert it to Devanagari using the <a href="https://github.com/anoopkunchukuttan/indic_nlp_library">Indic NLP Library</a>. After you get the output, you should convert it back into the original script. ## Benchmarks Scores on the `IndicSentenceSummarization` test sets are as follows: Language | Rouge-1 / Rouge-2 / Rouge-L ---------|---------------------------- as | 60.46 / 46.77 / 59.29 bn | 51.12 / 34.91 / 49.29 gu | 47.89 / 29.97 / 45.92 hi | 50.7 / 28.11 / 45.34 kn | 77.93 / 70.03 / 77.32 ml | 67.7 / 54.42 / 66.42 mr | 48.06 / 26.98 / 46.5 or | 45.2 / 23.66 / 43.65 pa | 55.96 / 37.2 / 52.22 ta | 58.85 / 38.97 / 56.83 te | 54.81 / 35.28 / 53.44 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{Kumar2022IndicNLGSM, title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, year={2022}, url = "https://arxiv.org/abs/2203.05437" } ```
DrishtiSharma/TEST123
DrishtiSharma
2022-04-30T10:24:56Z
0
0
null
[ "tflite", "mixtec", "region:us" ]
null
2022-04-30T10:11:52Z
--- tags: - mixtec # See a list of available tags here: # https://coqui.ai/mixtec/jemeyer/v1.0.0#model-details # task: Speech-to-Text for the Yoloxóchitl Mixtec Language on 16kHz, mono-channel audio --- # Model card for Yoloxóchitl Mixtec STT Jump to section: - [Model details](#model-details) - [Intended use](#intended-use) - [Performance Factors](#performance-factors) - [Metrics](#metrics) - [Training data](#training-data) - [Evaluation data](#evaluation-data) - [Ethical considerations](#ethical-considerations) - [Caveats and recommendations](#caveats-and-recommendations) ## Model details - Person or organization developing model: Originally trained by [Joe Meyer](https://www.linkedin.com/in/joe-meyer-25753951/). - Model language: Yoloxóchitl Mixtec / / `xty` - Model date: April 17, 2022 - Model type: `Speech-to-Text` - Model version: `v0.1.0` - Compatible with 🐸 STT version: `v1.0.0` - License: CC BY-NC-SA 3.0 - Citation details: `@techreport{xty-stt, author = {Meyer,Joe}, title = {Yoloxóchitl Mixtec STT 0.1}, institution = {Coqui}, address = {\url{https://github.com/coqui-ai/STT-models}} year = {2022}, month = {April}, number = {STT-SLR89-XTY-0.1} }` - Where to send questions or comments about the model: You can leave an issue on [`STT-model` issues](https://github.com/coqui-ai/STT-models/issues), open a new discussion on [`STT-model` discussions](https://github.com/coqui-ai/STT-models/discussions), or chat with us on [Gitter](https://gitter.im/coqui-ai/). ## Intended use Speech-to-Text for the [Yoloxóchitl Mixtec Language](https://en.wikipedia.org/wiki/Yolox%C3%B3chitl_Mixtec) on 16kHz, mono-channel audio. ## Performance Factors Factors relevant to Speech-to-Text performance include but are not limited to speaker demographics, recording quality, and background noise. Read more about STT performance factors [here](https://stt.readthedocs.io/en/latest/DEPLOYMENT.html#how-will-a-model-perform-on-my-data). ## Metrics STT models are usually evaluated in terms of their transcription accuracy, deployment Real-Time Factor, and model size on disk. #### Transcription Accuracy The following Word Error Rates and Character Error Rates are reported for a modified data set from OpenSLR [SLR89](https://www.openslr.org/89/). The official `validated.tsv` had rows removed which had errors processing, and the data was re-processed by [Cmmon Voice Utils](https://github.com/ftyers/commonvoice-utils) to convert to 16kHz mono-channel PCM .wav files. |Test Corpus|WER|CER| |-----------|---|---| |OpenSLR|48.85\%|18.04\%| #### Real-Time Factor Real-Time Factor (RTF) is defined as `processing-time / length-of-audio`. The exact real-time factor of an STT model will depend on the hardware setup, so you may experience a different RTF. Recorded average RTF on laptop CPU: `` #### Model Size `model.pbmm`: M `model.tflite`: M ### Approaches to uncertainty and variability Confidence scores and multiple paths from the decoding beam can be used to measure model uncertainty and provide multiple, variable transcripts for any processed audio. ## Training data This model was trained on a modified data set from OpenSLR [SLR89](https://www.openslr.org/89/). The official `validated.tsv` had rows removed which had errors processing, and the data was re-processed by [Cmmon Voice Utils](https://github.com/ftyers/commonvoice-utils) to convert to 16kHz mono-channel PCM .wav files. ## Evaluation data This model was evaluated on a modified data set from OpenSLR [SLR89](https://www.openslr.org/89/). The official `validated.tsv` had rows removed which had errors processing, and the data was re-processed by [Cmmon Voice Utils](https://github.com/ftyers/commonvoice-utils) to convert to 16kHz mono-channel PCM .wav files. ## Ethical considerations Deploying a Speech-to-Text model into any production setting has ethical implications. You should consider these implications before use. ### Demographic Bias You should assume every machine learning model has demographic bias unless proven otherwise. For STT models, it is often the case that transcription accuracy is better for men than it is for women. If you are using this model in production, you should acknowledge this as a potential issue. ### Surveillance Speech-to-Text may be mis-used to invade the privacy of others by recording and mining information from private conversations. This kind of individual privacy is protected by law in may countries. You should not assume consent to record and analyze private speech. ## Caveats and recommendations Machine learning models (like this STT model) perform best on data that is similar to the data on which they were trained. Read about what to expect from an STT model with regard to your data [here](https://stt.readthedocs.io/en/latest/DEPLOYMENT.html#how-will-a-model-perform-on-my-data). In most applications, it is recommended that you [train your own language model](https://stt.readthedocs.io/en/latest/LANGUAGE_MODEL.html) to improve transcription accuracy on your speech data.
huggingtweets/itstomrobinson
huggingtweets
2022-04-30T07:06:15Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-30T06:45:28Z
--- language: en thumbnail: http://www.huggingtweets.com/itstomrobinson/1651302371165/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1388470365723168770/irz46Ykl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tom Robinson</div> <div style="text-align: center; font-size: 14px;">@itstomrobinson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tom Robinson. | Data | Tom Robinson | | --- | --- | | Tweets downloaded | 733 | | Retweets | 40 | | Short tweets | 52 | | Tweets kept | 641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bluc7sk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @itstomrobinson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ryc26oz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ryc26oz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/itstomrobinson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vegetable/test
vegetable
2022-04-30T02:48:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-28T10:12:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: test results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.7696078431372549 - name: Recall type: recall value: 0.839572192513369 - name: F1 type: f1 value: 0.8030690537084398 - name: Accuracy type: accuracy value: 0.8847040737893928 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.7372 - Precision: 0.7696 - Recall: 0.8396 - F1: 0.8031 - Accuracy: 0.8847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 2 | 1.9496 | 0.0 | 0.0 | 0.0 | 0.4889 | | No log | 2.0 | 4 | 1.6137 | 0.0 | 0.0 | 0.0 | 0.4919 | | No log | 3.0 | 6 | 1.3906 | 0.0 | 0.0 | 0.0 | 0.5650 | | No log | 4.0 | 8 | 1.2273 | 0.0652 | 0.0481 | 0.0554 | 0.6856 | | No log | 5.0 | 10 | 1.0565 | 0.2051 | 0.1711 | 0.1866 | 0.7125 | | No log | 6.0 | 12 | 0.9150 | 0.5094 | 0.4332 | 0.4682 | 0.7540 | | No log | 7.0 | 14 | 0.8051 | 0.5988 | 0.5187 | 0.5559 | 0.7679 | | No log | 8.0 | 16 | 0.7151 | 0.6707 | 0.5989 | 0.6328 | 0.7763 | | No log | 9.0 | 18 | 0.6334 | 0.6685 | 0.6364 | 0.6521 | 0.8086 | | No log | 10.0 | 20 | 0.5693 | 0.6957 | 0.6845 | 0.6900 | 0.8201 | | No log | 11.0 | 22 | 0.5192 | 0.7166 | 0.7166 | 0.7166 | 0.8363 | | No log | 12.0 | 24 | 0.4736 | 0.7135 | 0.7326 | 0.7230 | 0.8524 | | No log | 13.0 | 26 | 0.4448 | 0.6938 | 0.7754 | 0.7323 | 0.8555 | | No log | 14.0 | 28 | 0.4280 | 0.7177 | 0.8021 | 0.7576 | 0.8586 | | No log | 15.0 | 30 | 0.4179 | 0.7588 | 0.8075 | 0.7824 | 0.8663 | | No log | 16.0 | 32 | 0.4214 | 0.7356 | 0.8182 | 0.7747 | 0.8593 | | No log | 17.0 | 34 | 0.4070 | 0.7391 | 0.8182 | 0.7766 | 0.8616 | | No log | 18.0 | 36 | 0.4112 | 0.7586 | 0.8235 | 0.7897 | 0.8724 | | No log | 19.0 | 38 | 0.4530 | 0.7330 | 0.8075 | 0.7684 | 0.8693 | | No log | 20.0 | 40 | 0.4719 | 0.7766 | 0.8182 | 0.7969 | 0.8732 | | No log | 21.0 | 42 | 0.4886 | 0.7260 | 0.8075 | 0.7646 | 0.8632 | | No log | 22.0 | 44 | 0.5007 | 0.7217 | 0.8182 | 0.7669 | 0.8701 | | No log | 23.0 | 46 | 0.5169 | 0.7321 | 0.8182 | 0.7727 | 0.8762 | | No log | 24.0 | 48 | 0.5531 | 0.7238 | 0.8128 | 0.7657 | 0.8724 | | No log | 25.0 | 50 | 0.5895 | 0.7311 | 0.8289 | 0.7769 | 0.8655 | | No log | 26.0 | 52 | 0.5482 | 0.7330 | 0.8075 | 0.7684 | 0.8778 | | No log | 27.0 | 54 | 0.5361 | 0.7488 | 0.8128 | 0.7795 | 0.8832 | | No log | 28.0 | 56 | 0.5378 | 0.7427 | 0.8182 | 0.7786 | 0.8847 | | No log | 29.0 | 58 | 0.5543 | 0.7371 | 0.8396 | 0.7850 | 0.8824 | | No log | 30.0 | 60 | 0.5564 | 0.7585 | 0.8396 | 0.7970 | 0.8839 | | No log | 31.0 | 62 | 0.5829 | 0.7235 | 0.8396 | 0.7772 | 0.8724 | | No log | 32.0 | 64 | 0.5974 | 0.7269 | 0.8396 | 0.7792 | 0.8716 | | No log | 33.0 | 66 | 0.5750 | 0.7610 | 0.8342 | 0.7959 | 0.8839 | | No log | 34.0 | 68 | 0.5887 | 0.7723 | 0.8342 | 0.8021 | 0.8878 | | No log | 35.0 | 70 | 0.6219 | 0.7441 | 0.8396 | 0.7889 | 0.8747 | | No log | 36.0 | 72 | 0.6676 | 0.7269 | 0.8396 | 0.7792 | 0.8632 | | No log | 37.0 | 74 | 0.6517 | 0.7452 | 0.8289 | 0.7848 | 0.8693 | | No log | 38.0 | 76 | 0.6346 | 0.7828 | 0.8289 | 0.8052 | 0.8862 | | No log | 39.0 | 78 | 0.6239 | 0.7839 | 0.8342 | 0.8083 | 0.8855 | | No log | 40.0 | 80 | 0.6360 | 0.7277 | 0.8289 | 0.775 | 0.8762 | | No log | 41.0 | 82 | 0.6645 | 0.7336 | 0.8396 | 0.7830 | 0.8701 | | No log | 42.0 | 84 | 0.6611 | 0.7406 | 0.8396 | 0.7870 | 0.8747 | | No log | 43.0 | 86 | 0.6707 | 0.7488 | 0.8289 | 0.7868 | 0.8762 | | No log | 44.0 | 88 | 0.6901 | 0.7277 | 0.8289 | 0.775 | 0.8709 | | No log | 45.0 | 90 | 0.6911 | 0.7393 | 0.8342 | 0.7839 | 0.8709 | | No log | 46.0 | 92 | 0.6540 | 0.7761 | 0.8342 | 0.8041 | 0.8878 | | No log | 47.0 | 94 | 0.6381 | 0.7761 | 0.8342 | 0.8041 | 0.8916 | | No log | 48.0 | 96 | 0.6285 | 0.7745 | 0.8449 | 0.8082 | 0.8885 | | No log | 49.0 | 98 | 0.6449 | 0.7692 | 0.8556 | 0.8101 | 0.8862 | | No log | 50.0 | 100 | 0.6809 | 0.7442 | 0.8556 | 0.7960 | 0.8732 | | No log | 51.0 | 102 | 0.6898 | 0.7395 | 0.8503 | 0.7910 | 0.8716 | | No log | 52.0 | 104 | 0.6897 | 0.75 | 0.8503 | 0.7970 | 0.8762 | | No log | 53.0 | 106 | 0.6714 | 0.7656 | 0.8556 | 0.8081 | 0.8855 | | No log | 54.0 | 108 | 0.6612 | 0.7692 | 0.8556 | 0.8101 | 0.8855 | | No log | 55.0 | 110 | 0.6583 | 0.7692 | 0.8556 | 0.8101 | 0.8855 | | No log | 56.0 | 112 | 0.6648 | 0.7692 | 0.8556 | 0.8101 | 0.8855 | | No log | 57.0 | 114 | 0.6757 | 0.7656 | 0.8556 | 0.8081 | 0.8832 | | No log | 58.0 | 116 | 0.6803 | 0.7656 | 0.8556 | 0.8081 | 0.8839 | | No log | 59.0 | 118 | 0.6834 | 0.7692 | 0.8556 | 0.8101 | 0.8862 | | No log | 60.0 | 120 | 0.6889 | 0.7833 | 0.8503 | 0.8154 | 0.8878 | | No log | 61.0 | 122 | 0.6963 | 0.7772 | 0.8396 | 0.8072 | 0.8862 | | No log | 62.0 | 124 | 0.7057 | 0.7772 | 0.8396 | 0.8072 | 0.8862 | | No log | 63.0 | 126 | 0.7212 | 0.7910 | 0.8503 | 0.8196 | 0.8862 | | No log | 64.0 | 128 | 0.7334 | 0.7833 | 0.8503 | 0.8154 | 0.8824 | | No log | 65.0 | 130 | 0.7398 | 0.7833 | 0.8503 | 0.8154 | 0.8801 | | No log | 66.0 | 132 | 0.7400 | 0.7833 | 0.8503 | 0.8154 | 0.8809 | | No log | 67.0 | 134 | 0.7345 | 0.7783 | 0.8449 | 0.8103 | 0.8855 | | No log | 68.0 | 136 | 0.7270 | 0.79 | 0.8449 | 0.8165 | 0.8870 | | No log | 69.0 | 138 | 0.7245 | 0.7839 | 0.8342 | 0.8083 | 0.8862 | | No log | 70.0 | 140 | 0.7260 | 0.7868 | 0.8289 | 0.8073 | 0.8847 | | No log | 71.0 | 142 | 0.7275 | 0.7817 | 0.8235 | 0.8021 | 0.8839 | | No log | 72.0 | 144 | 0.7283 | 0.7778 | 0.8235 | 0.8000 | 0.8832 | | No log | 73.0 | 146 | 0.7296 | 0.78 | 0.8342 | 0.8062 | 0.8847 | | No log | 74.0 | 148 | 0.7344 | 0.7734 | 0.8396 | 0.8051 | 0.8832 | | No log | 75.0 | 150 | 0.7314 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 76.0 | 152 | 0.7299 | 0.7794 | 0.8503 | 0.8133 | 0.8832 | | No log | 77.0 | 154 | 0.7282 | 0.7794 | 0.8503 | 0.8133 | 0.8839 | | No log | 78.0 | 156 | 0.7252 | 0.7783 | 0.8449 | 0.8103 | 0.8839 | | No log | 79.0 | 158 | 0.7216 | 0.7756 | 0.8503 | 0.8112 | 0.8855 | | No log | 80.0 | 160 | 0.7194 | 0.7756 | 0.8503 | 0.8112 | 0.8870 | | No log | 81.0 | 162 | 0.7191 | 0.7756 | 0.8503 | 0.8112 | 0.8878 | | No log | 82.0 | 164 | 0.7201 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 83.0 | 166 | 0.7211 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 84.0 | 168 | 0.7222 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 85.0 | 170 | 0.7220 | 0.7696 | 0.8396 | 0.8031 | 0.8862 | | No log | 86.0 | 172 | 0.7239 | 0.7734 | 0.8396 | 0.8051 | 0.8870 | | No log | 87.0 | 174 | 0.7291 | 0.7772 | 0.8396 | 0.8072 | 0.8847 | | No log | 88.0 | 176 | 0.7344 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 89.0 | 178 | 0.7373 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 90.0 | 180 | 0.7391 | 0.7707 | 0.8449 | 0.8061 | 0.8832 | | No log | 91.0 | 182 | 0.7403 | 0.7745 | 0.8449 | 0.8082 | 0.8824 | | No log | 92.0 | 184 | 0.7412 | 0.7745 | 0.8449 | 0.8082 | 0.8832 | | No log | 93.0 | 186 | 0.7417 | 0.7707 | 0.8449 | 0.8061 | 0.8832 | | No log | 94.0 | 188 | 0.7402 | 0.7745 | 0.8449 | 0.8082 | 0.8839 | | No log | 95.0 | 190 | 0.7389 | 0.7745 | 0.8449 | 0.8082 | 0.8847 | | No log | 96.0 | 192 | 0.7381 | 0.7696 | 0.8396 | 0.8031 | 0.8839 | | No log | 97.0 | 194 | 0.7377 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | | No log | 98.0 | 196 | 0.7374 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | | No log | 99.0 | 198 | 0.7372 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | | No log | 100.0 | 200 | 0.7372 | 0.7696 | 0.8396 | 0.8031 | 0.8847 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
BigSalmon/CoverLetter
BigSalmon
2022-04-30T01:42:48Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-30T01:36:51Z
how to do initial prompt: captivated by [Enter Company Name]'s also trained on: https://huggingface.co/BigSalmon/InformalToFormalLincoln40 (so you can use those prompt outlines, too)
tonydiana1/distilroberta-base-finetuned-wikitext2
tonydiana1
2022-04-30T01:23:18Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-30T01:01:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0853 | 1.0 | 2406 | 1.9214 | | 1.986 | 2.0 | 4812 | 1.8799 | | 1.9568 | 3.0 | 7218 | 1.8202 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
tonydiana1/distilgpt2-finetuned-wikitext2
tonydiana1
2022-04-30T01:00:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-30T00:08:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6425 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.76 | 1.0 | 2334 | 3.6658 | | 3.6526 | 2.0 | 4668 | 3.6468 | | 3.6004 | 3.0 | 7002 | 3.6425 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
zasheza/wav2vec2-base-timit-demo-colab
zasheza
2022-04-30T00:09:46Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-27T19:34:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Ahmed9275/ALL-3
Ahmed9275
2022-04-29T23:42:36Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-29T23:42:24Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ALL-3 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9291744828224182 --- # ALL-3 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
Percival/finetuning-sentiment-model-3000-samples
Percival
2022-04-29T22:52:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-29T22:34:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
doc2query/msmarco-vietnamese-mt5-base-v1
doc2query
2022-04-29T22:06:03Z
18
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "vi", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T22:05:47Z
--- language: vi datasets: - unicamp-dl/mmarco widget: - text: "Python (phát âm tiếng Anh: /ˈpaɪθɑːn/) là một ngôn ngữ lập trình bậc cao cho các mục đích lập trình đa năng, do Guido van Rossum tạo ra và lần đầu ra mắt vào năm 1991. Python được thiết kế với ưu điểm mạnh là dễ đọc, dễ học và dễ nhớ. Python là ngôn ngữ có hình thức rất sáng sủa, cấu trúc rõ ràng, thuận tiện cho người mới học lập trình và là ngôn ngữ lập trình dễ học; được dùng rộng rãi trong phát triển trí tuệ nhân tạo. Cấu trúc của Python còn cho phép người sử dụng viết mã lệnh với số lần gõ phím tối thiểu. Vào tháng 7 năm 2018, van Rossum đã từ chức lãnh đạo trong cộng đồng ngôn ngữ Python sau 30 năm làm việc." license: apache-2.0 --- # doc2query/msmarco-vietnamese-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-vietnamese-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python (phát âm tiếng Anh: /ˈpaɪθɑːn/) là một ngôn ngữ lập trình bậc cao cho các mục đích lập trình đa năng, do Guido van Rossum tạo ra và lần đầu ra mắt vào năm 1991. Python được thiết kế với ưu điểm mạnh là dễ đọc, dễ học và dễ nhớ. Python là ngôn ngữ có hình thức rất sáng sủa, cấu trúc rõ ràng, thuận tiện cho người mới học lập trình và là ngôn ngữ lập trình dễ học; được dùng rộng rãi trong phát triển trí tuệ nhân tạo. Cấu trúc của Python còn cho phép người sử dụng viết mã lệnh với số lần gõ phím tối thiểu. Vào tháng 7 năm 2018, van Rossum đã từ chức lãnh đạo trong cộng đồng ngôn ngữ Python sau 30 năm làm việc." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
astrojihye/opus-mt-ko-en-finetuned-ko-to-en4
astrojihye
2022-04-29T22:02:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T14:09:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-ko-to-en4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-ko-to-en4 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9824 - Bleu: 0.5767 - Gen Len: 13.1529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 512 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 0.99 | 52 | 2.9824 | 0.5767 | 13.1529 | | No log | 1.99 | 104 | 2.9824 | 0.5767 | 13.1529 | | No log | 2.99 | 156 | 2.9824 | 0.5767 | 13.1529 | | No log | 3.99 | 208 | 2.9824 | 0.5767 | 13.1529 | | No log | 4.99 | 260 | 2.9824 | 0.5767 | 13.1529 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
espnet/arabic_commonvoice_blstm
espnet
2022-04-29T21:30:20Z
2
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "ar", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-04-29T21:28:42Z
--- tags: - espnet - audio - automatic-speech-recognition language: ar datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/arabic_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 716eb8f92e19708acfd08ba3bd39d40890d3a84b pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/arabic_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Apr 16 17:11:01 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `5e6e95d087af8a7a4c33c4248b75114237eae64b` - Commit date: `Mon Apr 4 21:04:45 2022 -0400` ## asr_train_asr_rnn_raw_ar_bpe150_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ar|10388|54204|52.6|44.2|3.2|2.2|49.6|81.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ar|10388|302630|87.9|5.7|6.5|8.1|20.3|81.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.ave/test_ar|10388|231713|82.4|10.1|7.5|9.4|27.0|81.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_rnn_raw_ar_bpe150_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_ar_bpe150_sp/train/speech_shape - exp/asr_stats_raw_ar_bpe150_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_ar_bpe150_sp/valid/speech_shape - exp/asr_stats_raw_ar_bpe150_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_ar_sp/wav.scp - speech - sound - - dump/raw/train_ar_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_ar/wav.scp - speech - sound - - dump/raw/dev_ar/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - َ - ا - ِ - ْ - م - ي - ل - ن - ُ - ر - ه - ▁ال - ت - ب - ع - ك - د - و - ▁و - . - س - ▁أ - ق - ة - ▁م - َّ - ح - ▁ل - ف - ▁ي - ▁ب - ▁ف - ج - ▁ت - أ - ذ - ▁ع - ال - ّ - ً - ص - ▁ك - ى - ط - ض - خ - ون - ش - ▁ق - ين - ز - ▁أن - ▁س - ▁من - ▁إ - ث - ▁ر - ▁ن - وا - ٌ - ٍ - ▁ا - غ - ▁ح - اء - ▁في - إ - ان - ▁ج - ▁ - ِّ - ظ - ▁؟ - ▁ه - اب - ▁ش - ُّ - ول - ▁خ - ار - ئ - ▁ص - ▁سامي - ▁إن - ▁لا - ▁الل - ▁كان - يد - اد - ائ - ات - ؟ - ▁الأ - ▁د - ▁إلى - ير - ▁غ - ▁هل - آ - ؤ - ء - '!' - ـ - '"' - ، - ',' - ':' - ی - ٰ - '-' - ک - ؛ - “ - ” - T - '?' - I - ; - E - O - G - » - A - L - U - F - ۛ - — - S - M - D - « - N - ۗ - _ - ۚ - H - '''' - W - Y - چ - ڨ - ھ - ۘ - ☭ - C - ۖ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/ar_token_list/bpe_unigram150/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_ar_bpe150_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/german_commonvoice_blstm
espnet
2022-04-29T21:11:06Z
2
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "de", "dataset:commonvoice", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-04-05T01:07:06Z
--- tags: - espnet - audio - automatic-speech-recognition language: de datasets: - commonvoice license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/german_commonvoice_blstm` This model was trained by dzeinali using commonvoice recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 716eb8f92e19708acfd08ba3bd39d40890d3a84b pip install -e . cd egs2/commonvoice/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/german_commonvoice_blstm ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Mon Apr 4 16:41:54 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.6a1` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `fa1b865352475b744c37f70440de1cc6b257ba70` - Commit date: `Wed Feb 16 16:42:36 2022 -0500` ## asr_de_blstm_specaug_num_time_mask_2_lr_0.1 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.best/test_de|15341|137512|80.0|18.0|2.0|2.5|22.5|69.9| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.best/test_de|15341|959619|94.6|3.0|2.3|1.5|6.8|69.9| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnn_asr_model_valid.acc.best/test_de|15341|974965|94.7|3.0|2.3|1.5|6.7|69.9| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_rnn.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_de_blstm_specaug_num_time_mask_2_lr_0.1 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - train - loss - min - - valid - loss - min - - train - acc - max - - valid - acc - max keep_nbest_models: - 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 30 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_de_bpe204_sp/train/speech_shape - exp/asr_stats_raw_de_bpe204_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_de_bpe204_sp/valid/speech_shape - exp/asr_stats_raw_de_bpe204_sp/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_de_sp/wav.scp - speech - sound - - dump/raw/train_de_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_de/wav.scp - speech - sound - - dump/raw/dev_de/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adadelta optim_conf: lr: 0.1 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - ▁ - T - S - E - I - R - M - A - N - L - U - D - . - O - H - B - G - F - Z - K - P - ü - W - ',' - ä - V - ö - J - '?' - ß - '-' - Y - C - '!' - '"' - X - Q - “ - Ä - Ö - '''' - ':' - ’ - – - é - ; - í - á - ó - ō - ã - š - » - « - ú - ‘ - ł - ş - ă - ř - ʻ - '&' - à - ø - č - ı - É - ý - â - ô - ū - ñ - ā - ë - ž - '@' - / - ʿ - ě - ī - ” - ə - å - ń - ′ - æ - ň - ś - ð - ą - ė - Œ - Ç - ( - ) - ò - đ - î - '=' - − - ů - Ú - и - ġ - а - ę - › - ṣ - '`' - ì - õ - ď - ť - ả - — - ‹ - œ - ő - û - ế - ф - р - о - м - е - в - С - Ḫ - ź - Î - Æ - Ż - Ś - ï - Ó - Ř - ğ - Ł - İ - Đ - Ž - Ş - ț - ê - Á - Ō - ́ - Š - Č - ć - ‚ - ș - „ - + - Ø - μ - ‐ - $ - '[' - ']' - ¡ -  - Í - Ô - ù - ē - Ħ - Ī - ņ - ŏ - ż - ǐ - О - Ш - к - ч - ш - ་ - ན - ṟ - ṭ - ạ - ắ - ễ - ộ - ‟ - ≡ - ⟨ - ⟩ - カ - 临 - 孙 - 尣 - 支 - 無 - 臣 - → - À - 道 - Ü - Þ - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null model_conf: ctc_weight: 0.5 use_preprocessor: true token_type: bpe bpemodel: data/de_token_list/bpe_unigram204/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 27 num_freq_mask: 2 apply_time_mask: true time_mask_width_ratio_range: - 0.0 - 0.05 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_de_bpe204_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: vgg_rnn encoder_conf: rnn_type: lstm bidirectional: true use_projection: true num_layers: 4 hidden_size: 1024 output_size: 1024 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: num_layers: 2 hidden_size: 1024 sampling_probability: 0 att_conf: atype: location adim: 1024 aconv_chans: 10 aconv_filts: 100 required: - output_dir - token_list version: 0.10.6a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
zoha/wav2vec2-base-common-voice-fa-demo-colab
zoha
2022-04-29T21:09:20Z
2
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-18T18:58:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-common-voice-fa-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-common-voice-fa-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0558 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 5.1626 | 0.3 | 100 | 4.0692 | 1.0 | | 5.1776 | 0.6 | 200 | 3.6640 | 1.0 | | 3.6628 | 0.9 | 300 | 3.3832 | 1.0 | | 3.2022 | 1.2 | 400 | 3.3492 | 1.0 | | 3.1714 | 1.5 | 500 | 3.3215 | 1.0 | | 3.0689 | 1.8 | 600 | 3.0806 | 1.0 | | 3.1478 | 2.1 | 700 | 3.0624 | 1.0 | | 3.1818 | 2.4 | 800 | 3.0777 | 1.0 | | 3.159 | 2.7 | 900 | 3.0558 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
umarkhalid96/t5-small-trainings
umarkhalid96
2022-04-29T18:36:13Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-04-29T18:27:40Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-trainings results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-trainings This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2580 - Rouge1: 41.5251 - Rouge2: 19.8842 - Rougel: 36.4895 - Rougelsum: 37.2565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.1338 | 1.0 | 51 | 2.5825 | 35.4169 | 15.379 | 30.8859 | 31.524 | | 2.5905 | 2.0 | 102 | 2.3975 | 38.4266 | 17.2571 | 33.5912 | 34.312 | | 2.3881 | 3.0 | 153 | 2.3329 | 39.8082 | 19.1925 | 34.8269 | 35.5295 | | 2.3167 | 4.0 | 204 | 2.2938 | 41.3488 | 20.1513 | 35.6879 | 36.5864 | | 2.2357 | 5.0 | 255 | 2.2727 | 41.2457 | 19.5358 | 36.0033 | 36.8405 | | 2.232 | 6.0 | 306 | 2.2645 | 41.2746 | 20.0345 | 35.9226 | 36.7001 | | 2.1986 | 7.0 | 357 | 2.2595 | 41.7542 | 19.9428 | 36.6819 | 37.4718 | | 2.1457 | 8.0 | 408 | 2.2580 | 41.5251 | 19.8842 | 36.4895 | 37.2565 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Nadhiya/distilbert-base-uncased-finetuned-squad
Nadhiya
2022-04-29T18:20:29Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-24T20:58:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.6023 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 54 | 5.8535 | | No log | 2.0 | 108 | 6.4469 | | No log | 3.0 | 162 | 6.6023 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
aneuraz/awesome-align-with-co
aneuraz
2022-04-29T16:16:12Z
1,527
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "sentence alignment", "de", "fr", "en", "ro", "zh", "arxiv:2101.08231", "license:bsd-3-clause", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-29T14:55:54Z
--- language: - de - fr - en - ro - zh thumbnail: tags: - sentence alignment license: bsd-3-clause --- # AWESOME: Aligning Word Embedding Spaces of Multilingual Encoders This model comes from the following GitHub repository: [https://github.com/neulab/awesome-align](https://github.com/neulab/awesome-align) It corresponds to this paper: [https://arxiv.org/abs/2101.08231](https://arxiv.org/abs/2101.08231) Please cite the original paper if you decide to use the model: ``` @inproceedings{dou2021word, title={Word Alignment by Fine-tuning Embeddings on Parallel Corpora}, author={Dou, Zi-Yi and Neubig, Graham}, booktitle={Conference of the European Chapter of the Association for Computational Linguistics (EACL)}, year={2021} } ``` `awesome-align` is a tool that can extract word alignments from multilingual BERT (mBERT) [Demo](https://colab.research.google.com/drive/1205ubqebM0OsZa1nRgbGJBtitgHqIVv6?usp=sharing) and allows you to fine-tune mBERT on parallel corpora for better alignment quality (see our paper for more details). ## Usage (copied from this [DEMO](https://colab.research.google.com/drive/1205ubqebM0OsZa1nRgbGJBtitgHqIVv6?usp=sharing) ) ```python from transformers import AutoModel, AutoTokenizer import itertools import torch # load model model = AutoModel.from_pretrained("aneuraz/awesome-align-with-co") tokenizer = AutoTokenizer.from_pretrained("aneuraz/awesome-align-with-co") # model parameters align_layer = 8 threshold = 1e-3 # define inputs src = 'awesome-align is awesome !' tgt = '牛对齐 是 牛 !' # pre-processing sent_src, sent_tgt = src.strip().split(), tgt.strip().split() token_src, token_tgt = [tokenizer.tokenize(word) for word in sent_src], [tokenizer.tokenize(word) for word in sent_tgt] wid_src, wid_tgt = [tokenizer.convert_tokens_to_ids(x) for x in token_src], [tokenizer.convert_tokens_to_ids(x) for x in token_tgt] ids_src, ids_tgt = tokenizer.prepare_for_model(list(itertools.chain(*wid_src)), return_tensors='pt', model_max_length=tokenizer.model_max_length, truncation=True)['input_ids'], tokenizer.prepare_for_model(list(itertools.chain(*wid_tgt)), return_tensors='pt', truncation=True, model_max_length=tokenizer.model_max_length)['input_ids'] sub2word_map_src = [] for i, word_list in enumerate(token_src): sub2word_map_src += [i for x in word_list] sub2word_map_tgt = [] for i, word_list in enumerate(token_tgt): sub2word_map_tgt += [i for x in word_list] # alignment align_layer = 8 threshold = 1e-3 model.eval() with torch.no_grad(): out_src = model(ids_src.unsqueeze(0), output_hidden_states=True)[2][align_layer][0, 1:-1] out_tgt = model(ids_tgt.unsqueeze(0), output_hidden_states=True)[2][align_layer][0, 1:-1] dot_prod = torch.matmul(out_src, out_tgt.transpose(-1, -2)) softmax_srctgt = torch.nn.Softmax(dim=-1)(dot_prod) softmax_tgtsrc = torch.nn.Softmax(dim=-2)(dot_prod) softmax_inter = (softmax_srctgt > threshold)*(softmax_tgtsrc > threshold) align_subwords = torch.nonzero(softmax_inter, as_tuple=False) align_words = set() for i, j in align_subwords: align_words.add( (sub2word_map_src[i], sub2word_map_tgt[j]) ) print(align_words) ```
huggingtweets/cokedupoptions-greg16676935420-parikpatelcfa
huggingtweets
2022-04-29T15:09:43Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-29T07:44:08Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1514648481281056772/ACunKh0I_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1484924573032148993/qdB7hbSU_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1341030286386192386/TzEiVCaJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">greg & John W. Rich (Fake Tech Exec) & Dr. Parik Patel, BA, CFA, ACCA Esq. (drpatel.eth)</div> <div style="text-align: center; font-size: 14px;">@cokedupoptions-greg16676935420-parikpatelcfa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from greg & John W. Rich (Fake Tech Exec) & Dr. Parik Patel, BA, CFA, ACCA Esq. (drpatel.eth). | Data | greg | John W. Rich (Fake Tech Exec) | Dr. Parik Patel, BA, CFA, ACCA Esq. (drpatel.eth) | | --- | --- | --- | --- | | Tweets downloaded | 3247 | 3247 | 3250 | | Retweets | 27 | 202 | 22 | | Short tweets | 664 | 331 | 719 | | Tweets kept | 2556 | 2714 | 2509 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/snhk0760/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cokedupoptions-greg16676935420-parikpatelcfa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/iresidwo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/iresidwo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cokedupoptions-greg16676935420-parikpatelcfa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Goud/DziriBERT-summarization-goud
Goud
2022-04-29T15:06:30Z
14
2
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "summarization", "dataset:Goud/Goud-sum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-04-20T22:16:15Z
--- datasets: - Goud/Goud-sum language: - "Moroccan Arabic (MA)" - "Modern Standard Arabic (MSA)" metrics: - rouge tags: - summarization widget: - text: "توصل الاتحاد الأوروبي، في وقت مبكر من اليوم السبت، إلى اتفاق تاريخي يستهدف خطاب الكراهية والمعلومات المضللة والمحتويات الضارة الأخرى الموجودة على شبكة الإنترنيت. وحسب تقارير صحفية، سيجبر القانون شركات التكنولوجيا الكبرى على مراقبة نفسها بشكل أكثر صرامة، ويسهل على المستخدمين الإبلاغ عن المشاكل، ويمكن الاتفاق المنظمين من معاقبة الشركات غير الممتثلة بغرامات تقدر بالملايير. ويركز الاتفاق على قواعد جديدة تتطلب من شركات التكنولوجيا العملاقة بذل المزيد من الجهد لمراقبة المحتوى على منصاتها ودفع رسوم للجهات المنظمة التي تراقب مدى امتثالها. ويعد قانون الخدمات الرقمية الشق الثاني من إستراتيجية المفوضة الأوروبية لشؤون المنافسة، مارغريت فيستاغر، للحد من هيمنة وحدة غوغل التابعة لألفابت، وميتا (فيسبوك سابقا) وغيرهما من شركات التكنولوجيا الأمريكية العملاقة. وقالت فيستاغر في تغريدة “توصلنا إلى اتفاق بشأن قانون الخدمات الرقمية، موضحة أن القانون سيضمن أن ما يعتبر غير قانوني في حالة عدم الاتصال بالشبكة ينظر إليه أيضا ويتم التعامل معه على أنه غير قانوني عبر الشبكة (الإنترنت) – ليس كشعار (ولكن) كواقع”. وتواجه الشركات بموجب قانون الخدمات الرقمية غرامات تصل إلى 6 في المائة من إجمالي عملياتها على مستوى العالم لانتهاك القواعد بينما قد تؤدي الانتهاكات المتكررة إلى حظرها من ممارسة أعمالها في الاتحاد الأوروبي. وأيدت دول الاتحاد والمشرعون الشهر الماضي القواعد التي طرحتها فيستاغر والمسماة قانون الأسواق الرقمية التي قد تجبر غوغل وأمازون وأبل وميتا وميكروسوفت على تغيير ممارساتها الأساسية في أوروبا. " --- This model was introduced in [this paper](https://openreview.net/forum?id=BMVq5MELb9). It is an encoder-decoder model that was initialized with [DziriBERT](https://huggingface.co/alger-ia/dziribert) checkpoint. The model is finetuned for text summarization on [Goud dataset](https://huggingface.co/datasets/Goud/Goud-sum). ## How to use This is how you can use this model ```python from transformers import EncoderDecoderModel, BertTokenizer article = """توصل الاتحاد الأوروبي، في وقت مبكر من اليوم السبت، إلى اتفاق تاريخي يستهدف خطاب الكراهية والمعلومات المضللة والمحتويات الضارة الأخرى الموجودة على شبكة الإنترنيت. وحسب تقارير صحفية، سيجبر القانون شركات التكنولوجيا الكبرى على مراقبة نفسها بشكل أكثر صرامة، ويسهل على المستخدمين الإبلاغ عن المشاكل، ويمكن الاتفاق المنظمين من معاقبة الشركات غير الممتثلة بغرامات تقدر بالملايير. ويركز الاتفاق على قواعد جديدة تتطلب من شركات التكنولوجيا العملاقة بذل المزيد من الجهد لمراقبة المحتوى على منصاتها ودفع رسوم للجهات المنظمة التي تراقب مدى امتثالها. ويعد قانون الخدمات الرقمية الشق الثاني من إستراتيجية المفوضة الأوروبية لشؤون المنافسة، مارغريت فيستاغر، للحد من هيمنة وحدة غوغل التابعة لألفابت، وميتا (فيسبوك سابقا) وغيرهما من شركات التكنولوجيا الأمريكية العملاقة. وقالت فيستاغر في تغريدة “توصلنا إلى اتفاق بشأن قانون الخدمات الرقمية، موضحة أن القانون سيضمن أن ما يعتبر غير قانوني في حالة عدم الاتصال بالشبكة ينظر إليه أيضا ويتم التعامل معه على أنه غير قانوني عبر الشبكة (الإنترنت) – ليس كشعار (ولكن) كواقع”. وتواجه الشركات بموجب قانون الخدمات الرقمية غرامات تصل إلى 6 في المائة من إجمالي عملياتها على مستوى العالم لانتهاك القواعد بينما قد تؤدي الانتهاكات المتكررة إلى حظرها من ممارسة أعمالها في الاتحاد الأوروبي. وأيدت دول الاتحاد والمشرعون الشهر الماضي القواعد التي طرحتها فيستاغر والمسماة قانون الأسواق الرقمية التي قد تجبر غوغل وأمازون وأبل وميتا وميكروسوفت على تغيير ممارساتها الأساسية في أوروبا. """ tokenizer = BertTokenizer.from_pretrained("Goud/DziriBERT-summarization-goud") model = EncoderDecoderModel.from_pretrained("Goud/DziriBERT-summarization-goud") input_ids = tokenizer(article, return_tensors="pt", truncation=True, padding=True).input_ids generated = model.generate(input_ids)[0] output = tokenizer.decode(generated, skip_special_tokens=True) ``` ## Citation Information ``` @inproceedings{issam2022goudma, title={Goud.ma: a News Article Dataset for Summarization in Moroccan Darija}, author={Abderrahmane Issam and Khalil Mrini}, booktitle={3rd Workshop on African Natural Language Processing}, year={2022}, url={https://openreview.net/forum?id=BMVq5MELb9} } ```
gsarti/it5-efficient-small-el32-question-answering
gsarti
2022-04-29T14:28:58Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tensorboard", "t5", "text2text-generation", "Italian", "efficient", "sequence-to-sequence", "squad_it", "text2text-question-answering", "it", "dataset:squad_it", "arxiv:2203.03759", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T14:11:55Z
--- language: - it license: apache-2.0 datasets: - squad_it tags: - Italian - efficient - sequence-to-sequence - squad_it - text2text-question-answering - text2text-generation widget: - text: "In seguito all' evento di estinzione del Cretaceo-Paleogene, l' estinzione dei dinosauri e il clima umido possono aver permesso alla foresta pluviale tropicale di diffondersi in tutto il continente. Dal 66-34 Mya, la foresta pluviale si estendeva fino a sud fino a 45°. Le fluttuazioni climatiche degli ultimi 34 milioni di anni hanno permesso alle regioni della savana di espandersi fino ai tropici. Durante l' Oligocene, ad esempio, la foresta pluviale ha attraversato una banda relativamente stretta. Si espandeva di nuovo durante il Miocene medio, poi si ritrasse ad una formazione prevalentemente interna all' ultimo massimo glaciale. Tuttavia, la foresta pluviale è riuscita ancora a prosperare durante questi periodi glaciali, consentendo la sopravvivenza e l' evoluzione di un' ampia varietà di specie. Domanda: La foresta pluviale amazzonica è diventata per lo più una foresta interna intorno a quale evento globale?" - text: "L' embargo non era uniforme in tutta Europa. Dei nove membri della Comunità Economica Europea (CEE), i Paesi Bassi hanno dovuto affrontare un embargo totale, il Regno Unito e la Francia hanno ricevuto forniture quasi ininterrotte (poichè si sono rifiutati di consentire all' America di utilizzare i loro aerodromi e le armi e forniture embargo sia agli arabi che agli israeliani), mentre gli altri sei hanno dovuto affrontare tagli parziali. Il Regno Unito era tradizionalmente un alleato di Israele, e il governo di Harold Wilson ha sostenuto gli israeliani durante la guerra dei sei giorni. Il suo successore, Ted Heath, ribaltò questa politica nel 1970, chiedendo a Israele di ritirarsi ai suoi confini prima del 1967. Domanda: Il Regno Unito e la Francia non hanno avuto interruzioni dell' approvvigionamento petrolifero in quanto non hanno consentito a quale paese di utilizzare il loro aeroporto?" - text: "Nel 1962, il grafico Paul Rand ridisegna il logo ABC nella sua forma più conosciuta (e attuale) con le lettere minuscole \"abc\" racchiuse in un unico cerchio nero. Il nuovo logo esordisce in onda per le promozioni di ABC all' inizio della stagione 1963-64. Le lettere ricordano fortemente il carattere tipografico Bauhaus disegnato da Herbert Bayer negli anni Venti, ma condividono anche similitudini con diversi altri caratteri, come ITC Avant Garde e Horatio, e lo Chalet più simile. La semplicità del logo ha reso più facile la riprogettazione e la duplicazione, il che ha conferito un beneficio per ABC (soprattutto prima dell' avvento della computer grafica). Domanda: Di quale carattere tipografico ricordano le lettere dell' iconico logo ABC?" - text: "La fotorespirazione può verificarsi quando la concentrazione di ossigeno è troppo elevata. Rubisco non è in grado di distinguere molto bene tra ossigeno e anidride carbonica, quindi può accidentalmente aggiungere O2 invece di CO2 a RuBP. Questo processo riduce l' efficienza della fotosintesi: consuma ATP e ossigeno, rilascia CO2 e non produce zucchero. Può sprecare fino alla metà del carbonio fissato dal ciclo di Calvin. Diversi meccanismi si sono evoluti in diversi lignaggi che aumentano la concentrazione di anidride carbonica rispetto all' ossigeno all' interno del cloroplasto, aumentando l' efficienza della fotosintesi. Questi meccanismi sono chiamati meccanismi di concentrazione dell' anidride carbonica, o CCM. Tra questi figurano il metabolismo degli acidi crassulaceanici, la fissazione del carbonio C4 e i pirenoidi. I cloroplasti negli impianti C4 sono notevoli in quanto presentano un chiaro dimorfismo cloroplastico. Domanda: Che cosa può fare rubisco per errore?" metrics: - f1 - exact-match model-index: - name: it5-efficient-small-el32-question-answering results: - task: type: question-answering name: "Question Answering" dataset: type: squad_it name: "SQuAD-IT" metrics: - type: f1 value: 0.747 name: "Test F1" - type: exact-match value: 0.645 name: "Test Exact Match" thumbnail: https://gsarti.com/publication/it5/featured.png --- # IT5 Cased Small Efficient EL32 for Question Answering ⁉️ 🇮🇹 *Shout-out to [Stefan Schweter](https://github.com/stefan-it) for contributing the pre-trained efficient model!* This repository contains the checkpoint for the [IT5 Cased Small Efficient EL32](https://huggingface.co/it5/it5-efficient-small-el32) model fine-tuned on extractive question answering on the [SQuAD-IT corpus](https://huggingface.co/datasets/squad_it) as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. ## Using the model Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: ```python from transformers import pipelines qa = pipeline("text2text-generation", model='it5/it5-efficient-small-el32-question-answering') qa("In seguito all' evento di estinzione del Cretaceo-Paleogene, l' estinzione dei dinosauri e il clima umido possono aver permesso alla foresta pluviale tropicale di diffondersi in tutto il continente. Dal 66-34 Mya, la foresta pluviale si estendeva fino a sud fino a 45°. Le fluttuazioni climatiche degli ultimi 34 milioni di anni hanno permesso alle regioni della savana di espandersi fino ai tropici. Durante l' Oligocene, ad esempio, la foresta pluviale ha attraversato una banda relativamente stretta. Si espandeva di nuovo durante il Miocene medio, poi si ritrasse ad una formazione prevalentemente interna all' ultimo massimo glaciale. Tuttavia, la foresta pluviale è riuscita ancora a prosperare durante questi periodi glaciali, consentendo la sopravvivenza e l' evoluzione di un' ampia varietà di specie. Domanda: La foresta pluviale amazzonica è diventata per lo più una foresta interna intorno a quale evento globale?") >>> [{"generated_text": "ultimo massimo glaciale"}] ``` or loaded using autoclasses: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("it5/it5-efficient-small-el32-question-answering") model = AutoModelForSeq2SeqLM.from_pretrained("it5/it5-efficient-small-el32-question-answering") ``` If you use this model in your research, please cite our work as: ```bibtex @article{sarti-nissim-2022-it5, title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, author={Sarti, Gabriele and Nissim, Malvina}, journal={ArXiv preprint 2203.03759}, url={https://arxiv.org/abs/2203.03759}, year={2022}, month={mar} } ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
faisalahmad2/autotrain-nlp-text-summarization-by-faisal-793224456
faisalahmad2
2022-04-29T14:05:30Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "en", "dataset:faisalahmad2/autotrain-data-nlp-text-summarization-by-faisal", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T15:03:43Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - faisalahmad2/autotrain-data-nlp-text-summarization-by-faisal co2_eq_emissions: 27.26671996544415 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 793224456 - CO2 Emissions (in grams): 27.26671996544415 ## Validation Metrics - Loss: 1.5189369916915894 - Rouge1: 38.7852 - Rouge2: 17.0785 - RougeL: 32.1082 - RougeLsum: 32.1103 - Gen Len: 18.7332 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/faisalahmad2/autotrain-nlp-text-summarization-by-faisal-793224456 ```
huggingtweets/corpsecrusader
huggingtweets
2022-04-29T13:57:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/corpsecrusader/1651240626010/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1515787050334801925/tyxpMmj1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪</div> <div style="text-align: center; font-size: 14px;">@corpsecrusader</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪. | Data | Corpse Crusader 🫀🇫🇮 gamedev hours🧱🍐💨💪 | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 405 | | Short tweets | 658 | | Tweets kept | 2181 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ogdqtie2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @corpsecrusader's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ecpg08j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ecpg08j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/corpsecrusader') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
umarkhalid96/t5-small-train
umarkhalid96
2022-04-29T12:36:08Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-04-24T19:52:13Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: t5-small-train results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-train This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2669 - Rouge1: 43.2372 - Rouge2: 21.6755 - Rougel: 38.1637 - Rougelsum: 38.5444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 3.2032 | 1.0 | 45 | 2.6305 | 34.393 | 15.4821 | 30.3601 | 30.5865 | | 2.6291 | 2.0 | 90 | 2.4169 | 38.2327 | 18.4622 | 34.2887 | 34.3385 | | 2.4294 | 3.0 | 135 | 2.3395 | 40.4405 | 19.927 | 36.559 | 36.8095 | | 2.3191 | 4.0 | 180 | 2.3059 | 41.4214 | 20.4534 | 36.6399 | 36.9088 | | 2.2949 | 5.0 | 225 | 2.2857 | 42.6906 | 21.1492 | 37.5557 | 37.8722 | | 2.2591 | 6.0 | 270 | 2.2762 | 43.1598 | 21.6179 | 38.1235 | 38.5053 | | 2.1722 | 7.0 | 315 | 2.2680 | 43.4447 | 21.8048 | 38.4077 | 38.7384 | | 2.1993 | 8.0 | 360 | 2.2669 | 43.2372 | 21.6755 | 38.1637 | 38.5444 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
BlackSamorez/ebanko-base
BlackSamorez
2022-04-29T12:29:02Z
4
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "PyTorch", "Transformers", "ru", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-28T18:43:43Z
--- language: - ru tags: - PyTorch - Transformers --- # ebanko-base Model was finetuned by [black_samorez](https://github.com/BlackSamorez). Based off [sberbank-ai/ruT5-base](https://huggingface.co/sberbank-ai/ruT5-base). Finetuned on [ russe_detox_2022](https://github.com/skoltech-nlp/russe_detox_2022) train to toxify text. I recommend using it with **temperature = 1.5** * Task: `text2text generation` * Type: `encoder-decoder` * Tokenizer: `bpe` * Dict size: `32 101` * Num Parameters: `222 M` --- license: apache-2.0 ---
doc2query/msmarco-spanish-mt5-base-v1
doc2query
2022-04-29T12:11:59Z
4
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "es", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T12:11:43Z
--- language: es datasets: - unicamp-dl/mmarco widget: - text: "Python es un lenguaje de alto nivel de programación interpretado cuya filosofía hace hincapié en la legibilidad de su código, se utiliza para desarrollar aplicaciones de todo tipo, ejemplos: Instagram, Netflix, Panda 3D, entre otros.2​ Se trata de un lenguaje de programación multiparadigma, ya que soporta parcialmente la orientación a objetos, programación imperativa y, en menor medida, programación funcional. Es un lenguaje interpretado, dinámico y multiplataforma." license: apache-2.0 --- # doc2query/msmarco-spanish-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-spanish-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python es un lenguaje de alto nivel de programación interpretado cuya filosofía hace hincapié en la legibilidad de su código, se utiliza para desarrollar aplicaciones de todo tipo, ejemplos: Instagram, Netflix, Panda 3D, entre otros.2​ Se trata de un lenguaje de programación multiparadigma, ya que soporta parcialmente la orientación a objetos, programación imperativa y, en menor medida, programación funcional. Es un lenguaje interpretado, dinámico y multiplataforma." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
doc2query/msmarco-russian-mt5-base-v1
doc2query
2022-04-29T12:10:29Z
21
8
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "ru", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T12:10:14Z
--- language: ru datasets: - unicamp-dl/mmarco widget: - text: "Python (МФА: [ˈpʌɪθ(ə)n]; в русском языке встречаются названия пито́н или па́йтон) — высокоуровневый язык программирования общего назначения с динамической строгой типизацией и автоматическим управлением памятью, ориентированный на повышение производительности разработчика, читаемости кода и его качества, а также на обеспечение переносимости написанных на нём программ." license: apache-2.0 --- # doc2query/msmarco-russian-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-russian-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python (МФА: [ˈpʌɪθ(ə)n]; в русском языке встречаются названия пито́н или па́йтон) — высокоуровневый язык программирования общего назначения с динамической строгой типизацией и автоматическим управлением памятью, ориентированный на повышение производительности разработчика, читаемости кода и его качества, а также на обеспечение переносимости написанных на нём программ." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
doc2query/msmarco-italian-mt5-base-v1
doc2query
2022-04-29T12:06:16Z
12
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "it", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T12:00:49Z
--- language: it datasets: - unicamp-dl/mmarco widget: - text: "Python è un linguaggio di programmazione di alto livello, orientato a oggetti, adatto, tra gli altri usi, a sviluppare applicazioni distribuite, scripting, computazione numerica e system testing." license: apache-2.0 --- # doc2query/msmarco-italian-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-italian-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python è un linguaggio di programmazione di alto livello, orientato a oggetti, adatto, tra gli altri usi, a sviluppare applicazioni distribuite, scripting, computazione numerica e system testing." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
doc2query/msmarco-japanese-mt5-base-v1
doc2query
2022-04-29T12:05:37Z
28
5
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "ja", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T12:05:21Z
--- language: ja datasets: - unicamp-dl/mmarco widget: - text: "Python(パイソン)はインタープリタ型の高水準汎用プログラミング言語である。グイド・ヴァン・ロッサムにより創り出され、1991年に最初にリリースされたPythonの設計哲学は、有意なホワイトスペース(オフサイドルール)の顕著な使用によってコードの可読性を重視している。その言語構成とオブジェクト指向のアプローチは、プログラマが小規模なプロジェクトから大規模なプロジェクトまで、明確で論理的なコードを書くのを支援することを目的としている。" license: apache-2.0 --- # doc2query/msmarco-japanese-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-japanese-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python(パイソン)はインタープリタ型の高水準汎用プログラミング言語である。グイド・ヴァン・ロッサムにより創り出され、1991年に最初にリリースされたPythonの設計哲学は、有意なホワイトスペース(オフサイドルール)の顕著な使用によってコードの可読性を重視している。その言語構成とオブジェクト指向のアプローチは、プログラマが小規模なプロジェクトから大規模なプロジェクトまで、明確で論理的なコードを書くのを支援することを目的としている。" def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
huggan/stylegan_car512
huggan
2022-04-29T12:01:09Z
0
0
null
[ "pytorch", "gan", "stylegan", "huggan", "unconditional-image-generation", "license:apache-2.0", "region:us" ]
unconditional-image-generation
2022-04-18T21:43:45Z
--- tags: - gan - stylegan - huggan - unconditional-image-generation license: apache-2.0 --- The model provided is a StyleGan generator trained on the Cars dataset with a resolution of 512px. It is uploaded as part of porting this project: https://github.com/genforce/sefa to hugginface spaces.
doc2query/msmarco-indonesian-mt5-base-v1
doc2query
2022-04-29T11:58:59Z
23
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "id", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T11:58:44Z
--- language: id datasets: - unicamp-dl/mmarco widget: - text: "Python adalah bahasa pemrograman tujuan umum yang ditafsirkan, tingkat tinggi. Dibuat oleh Guido van Rossum dan pertama kali dirilis pada tahun 1991, filosofi desain Python menekankan keterbacaan kode dengan penggunaan spasi putih yang signifikan. Konstruksi bahasanya dan pendekatan berorientasi objek bertujuan untuk membantu pemrogram menulis kode yang jelas dan logis untuk proyek skala kecil dan besar." license: apache-2.0 --- # doc2query/msmarco-indonesian-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-indonesian-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python adalah bahasa pemrograman tujuan umum yang ditafsirkan, tingkat tinggi. Dibuat oleh Guido van Rossum dan pertama kali dirilis pada tahun 1991, filosofi desain Python menekankan keterbacaan kode dengan penggunaan spasi putih yang signifikan. Konstruksi bahasanya dan pendekatan berorientasi objek bertujuan untuk membantu pemrogram menulis kode yang jelas dan logis untuk proyek skala kecil dan besar." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
huggan/pggan-celebahq-1024
huggan
2022-04-29T11:58:41Z
0
0
null
[ "pytorch", "gan", "pggan", "huggan", "unconditional-image-generation", "license:apache-2.0", "region:us" ]
unconditional-image-generation
2022-04-17T19:15:25Z
--- license: apache-2.0 tags: - gan - pggan - huggan - unconditional-image-generation --- The model provided is a PGGAN generator trained on the celebahq dataset with a resolution of 1024px. It is uploaded as part of porting this project: https://github.com/genforce/sefa to hugginface spaces.
doc2query/msmarco-french-mt5-base-v1
doc2query
2022-04-29T11:53:01Z
13
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "fr", "dataset:unicamp-dl/mmarco", "arxiv:1904.08375", "arxiv:2104.08663", "arxiv:2112.07577", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T11:52:40Z
--- language: fr datasets: - unicamp-dl/mmarco widget: - text: "Python (prononcé /pi.tɔ̃/) est un langage de programmation interprété, multi-paradigme et multiplateformes. Il favorise la programmation impérative structurée, fonctionnelle et orientée objet. Il est doté d'un typage dynamique fort, d'une gestion automatique de la mémoire par ramasse-miettes et d'un système de gestion d'exceptions ; il est ainsi similaire à Perl, Ruby, Scheme, Smalltalk et Tcl." license: apache-2.0 --- # doc2query/msmarco-french-mt5-base-v1 This is a [doc2query](https://arxiv.org/abs/1904.08375) model based on mT5 (also known as [docT5query](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)). It can be used for: - **Document expansion**: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph. In our [BEIR](https://arxiv.org/abs/2104.08663) paper we showed that BM25+docT5query is a powerful search engine. In the [BEIR repository](https://github.com/beir-cellar/beir) we have an example how to use docT5query with Pyserini. - **Domain Specific Training Data Generation**: It can be used to generate training data to learn an embedding model. In our [GPL-Paper](https://arxiv.org/abs/2112.07577) / [GPL Example on SBERT.net](https://www.sbert.net/examples/domain_adaptation/README.html#gpl-generative-pseudo-labeling) we have an example how to use the model to generate (query, text) pairs for a given collection of unlabeled texts. These pairs can then be used to train powerful dense embedding models. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch model_name = 'doc2query/msmarco-french-mt5-base-v1' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) text = "Python (prononcé /pi.tɔ̃/) est un langage de programmation interprété, multi-paradigme et multiplateformes. Il favorise la programmation impérative structurée, fonctionnelle et orientée objet. Il est doté d'un typage dynamique fort, d'une gestion automatique de la mémoire par ramasse-miettes et d'un système de gestion d'exceptions ; il est ainsi similaire à Perl, Ruby, Scheme, Smalltalk et Tcl." def create_queries(para): input_ids = tokenizer.encode(para, return_tensors='pt') with torch.no_grad(): # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality sampling_outputs = model.generate( input_ids=input_ids, max_length=64, do_sample=True, top_p=0.95, top_k=10, num_return_sequences=5 ) # Here we use Beam-search. It generates better quality queries, but with less diversity beam_outputs = model.generate( input_ids=input_ids, max_length=64, num_beams=5, no_repeat_ngram_size=2, num_return_sequences=5, early_stopping=True ) print("Paragraph:") print(para) print("\nBeam Outputs:") for i in range(len(beam_outputs)): query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') print("\nSampling Outputs:") for i in range(len(sampling_outputs)): query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True) print(f'{i + 1}: {query}') create_queries(text) ``` **Note:** `model.generate()` is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it. ## Training This model fine-tuned [google/mt5-base](https://huggingface.co/google/mt5-base) for 66k training steps (4 epochs on the 500k training pairs from MS MARCO). For the training script, see the `train_script.py` in this repository. The input-text was truncated to 320 word pieces. Output text was generated up to 64 word pieces. This model was trained on a (query, passage) from the [mMARCO dataset](https://github.com/unicamp-dl/mMARCO).
norefly/opus-mt-ko-en-finetuned-ko-to-en3
norefly
2022-04-29T11:48:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-29T04:28:20Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-ko-en-finetuned-ko-to-en3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ko-en-finetuned-ko-to-en3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ko-en](https://huggingface.co/Helsinki-NLP/opus-mt-ko-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1864 - Bleu: 0.7037 - Gen Len: 11.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 0.99 | 119 | 4.4541 | 0.0 | 5.0 | | No log | 1.99 | 238 | 2.4214 | 0.3414 | 16.0 | | No log | 2.99 | 357 | 2.2158 | 0.3212 | 15.0 | | No log | 3.99 | 476 | 2.1737 | 0.3283 | 12.0 | | 3.2958 | 4.99 | 595 | 2.1864 | 0.7037 | 11.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1