modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 18:33:19
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 18:33:14
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Muapi/majora-the-legend-of-zelda-majora-s-mask-illustrious-flux-pony-sd1.5
|
Muapi
| 2025-08-19T21:19:55Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:19:39Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Majora (The Legend of Zelda: Majora's Mask) [Illustrious & Flux & Pony & SD1.5]

**Base model**: Flux.1 D
**Trained words**: zzMajora,, zzMajora, spikes, yellow sclera, solo, 1boy, horns, glowing eyes,
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:243365@1616062", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
crystalline7/39734
|
crystalline7
| 2025-08-19T21:19:47Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:19:47Z |
[View on Civ Archive](https://civarchive.com/models/28646?modelVersionId=55222)
|
ultratopaz/50909
|
ultratopaz
| 2025-08-19T21:19:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:19:26Z |
[View on Civ Archive](https://civarchive.com/models/68796?modelVersionId=73485)
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755636612
|
katanyasekolah
| 2025-08-19T21:19:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:19:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/17560
|
seraphimzzzz
| 2025-08-19T21:19:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:18:55Z |
[View on Civ Archive](https://civarchive.com/models/17829?modelVersionId=21070)
|
roeker/blockassist-bc-quick_wiry_owl_1755638250
|
roeker
| 2025-08-19T21:18:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:18:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/28092
|
seraphimzzzz
| 2025-08-19T21:18:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:18:38Z |
[View on Civ Archive](https://civarchive.com/models/23128?modelVersionId=34142)
|
crystalline7/108814
|
crystalline7
| 2025-08-19T21:18:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:18:19Z |
[View on Civ Archive](https://civarchive.com/models/133033?modelVersionId=146389)
|
ultratopaz/22481
|
ultratopaz
| 2025-08-19T21:18:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:18:06Z |
[View on Civ Archive](https://civarchive.com/models/21745?modelVersionId=27137)
|
seraphimzzzz/46555
|
seraphimzzzz
| 2025-08-19T21:18:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:17:56Z |
[View on Civ Archive](https://civarchive.com/models/61963?modelVersionId=66478)
|
seraphimzzzz/46345
|
seraphimzzzz
| 2025-08-19T21:17:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:17:45Z |
[View on Civ Archive](https://civarchive.com/models/61681?modelVersionId=66178)
|
ultratopaz/74089
|
ultratopaz
| 2025-08-19T21:17:28Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:17:22Z |
[View on Civ Archive](https://civarchive.com/models/98563?modelVersionId=105415)
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755638201
|
lilTAT
| 2025-08-19T21:17:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:17:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/14050
|
seraphimzzzz
| 2025-08-19T21:16:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:16:44Z |
[View on Civ Archive](https://civarchive.com/models/14160?modelVersionId=16665)
|
Muapi/abstract-oil-painting-art
|
Muapi
| 2025-08-19T21:16:43Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:16:27Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Abstract oil painting art

**Base model**: Flux.1 D
**Trained words**: Abstract art, oil painting , complex , expressive , blue , gold , purple , red , green
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:709702@793815", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755636621
|
quantumxnode
| 2025-08-19T21:16:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:16:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crystalline7/57410
|
crystalline7
| 2025-08-19T21:16:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:16:35Z |
[View on Civ Archive](https://civarchive.com/models/79193?modelVersionId=83990)
|
crystalline7/17720
|
crystalline7
| 2025-08-19T21:16:27Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:16:23Z |
[View on Civ Archive](https://civarchive.com/models/17997?modelVersionId=21267)
|
Muapi/the-ratio-narrow-waist-wide-hips
|
Muapi
| 2025-08-19T21:16:21Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:16:12Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# The Ratio - Narrow Waist : Wide Hips

**Base model**: Flux.1 D
**Trained words**: ratio_wh
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1328309@1499734", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
seraphimzzzz/150876
|
seraphimzzzz
| 2025-08-19T21:16:10Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:15:52Z |
[View on Civ Archive](https://civarchive.com/models/175613?modelVersionId=197172)
|
AnonymousCS/xlmr_immigration_combo3_3
|
AnonymousCS
| 2025-08-19T21:15:39Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T21:13:01Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo3_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo3_3
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2021
- Accuracy: 0.9422
- 1-f1: 0.9109
- 1-recall: 0.8880
- 1-precision: 0.9350
- Balanced Acc: 0.9286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1568 | 1.0 | 25 | 0.1731 | 0.9447 | 0.9155 | 0.8996 | 0.932 | 0.9334 |
| 0.064 | 2.0 | 50 | 0.2265 | 0.9422 | 0.9068 | 0.8456 | 0.9777 | 0.9180 |
| 0.0524 | 3.0 | 75 | 0.2021 | 0.9422 | 0.9109 | 0.8880 | 0.9350 | 0.9286 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
ultratopaz/108688
|
ultratopaz
| 2025-08-19T21:15:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:15:27Z |
[View on Civ Archive](https://civarchive.com/models/128002?modelVersionId=146742)
|
Muapi/flux-graphic-t-shirt-designs
|
Muapi
| 2025-08-19T21:15:05Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:14:53Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Flux Graphic T-Shirt Designs

**Base model**: Flux.1 D
**Trained words**: T-Shirt Art, Graphic T-Shirt, Vector Art, T-Shirt Graphic
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:721090@819874", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
ultratopaz/39810
|
ultratopaz
| 2025-08-19T21:14:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:14:51Z |
[View on Civ Archive](https://civarchive.com/models/50818?modelVersionId=55334)
|
Muapi/yfg-aarchy-flux
|
Muapi
| 2025-08-19T21:14:48Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:14:25Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# YFG Aarchy [Flux]

**Base model**: Flux.1 D
**Trained words**: YFG-Aarchy
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1108935@1245947", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
UnbeT/ppo_ai
|
UnbeT
| 2025-08-19T21:14:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bart",
"text2text-generation",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T21:14:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
UmeshAkade/gemma3-270m-med-wikidoc-patientinfo-lora
|
UmeshAkade
| 2025-08-19T21:14:35Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:unsloth/gemma-3-270m-it",
"base_model:finetune:unsloth/gemma-3-270m-it",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T06:52:17Z |
---
base_model: unsloth/gemma-3-270m-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** UmeshAkade
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-270m-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755636377
|
kojeklollipop
| 2025-08-19T21:14:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:14:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/218873
|
seraphimzzzz
| 2025-08-19T21:14:25Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:14:07Z |
[View on Civ Archive](https://civarchive.com/models/124031?modelVersionId=279464)
|
Muapi/vintage-movie
|
Muapi
| 2025-08-19T21:14:02Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:13:35Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Vintage Movie

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:722757@808139", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/topmodel
|
Muapi
| 2025-08-19T21:13:25Z | 0 | 0 | null |
[
"safetensors",
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:13:18Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# topmodel

**Base model**: Flux.1 D
**Trained words**: A stunning woman with a sculpted body, perfectly proportioned curves, and a flawless face. Her skin is radiant, and her facial features are symmetrical and harmonious, highlighting large expressive eyes, full lips, and a captivating smile. She is wearing a casual outfit consisting of a fitted T-shirt and jeans that accentuate her figure. In another scene, she is dressed in elegant lingerie, including a delicate bra and matching panties, showcasing her perfect physique, A breathtaking woman, combining an athletic and well-defined body with a face of classic beauty. Her eyes are piercing, and her hair falls softly around her face, framing her delicate features. She is wearing a sophisticated dress that hugs her curves, enhancing her magnetic presence. In another setting, she is seen in a comfortable casual outfit with a stylish blouse and skirt, and later in luxurious lingerie, featuring a lacy bra and matching underwear, A woman with an impressive physique and an absolutely perfect face, worthy of a work of art. Her skin is smooth and flawless, her eyes shine with a captivating intensity, and her lips are perfectly shaped. She is in a luxurious setting, wearing a stunning evening dress that highlights every detail of her mesmerizing figure. In another scene, she is casually dressed in a fitted T-shirt and shorts, and also appears in intimate lingerie, including a silk bra and matching panties
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:708602@792571", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
seraphimzzzz/33435
|
seraphimzzzz
| 2025-08-19T21:13:25Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:13:21Z |
[View on Civ Archive](https://civarchive.com/models/38290?modelVersionId=44242)
|
ultratopaz/390791
|
ultratopaz
| 2025-08-19T21:13:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:13:01Z |
[View on Civ Archive](https://civarchive.com/models/423811?modelVersionId=472196)
|
seraphimzzzz/93586
|
seraphimzzzz
| 2025-08-19T21:12:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:12:46Z |
[View on Civ Archive](https://civarchive.com/models/118989?modelVersionId=129142)
|
AnonymousCS/xlmr_immigration_combo3_2
|
AnonymousCS
| 2025-08-19T21:12:04Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T21:09:17Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo3_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo3_2
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2134
- Accuracy: 0.9344
- 1-f1: 0.8994
- 1-recall: 0.8803
- 1-precision: 0.9194
- Balanced Acc: 0.9209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1575 | 1.0 | 25 | 0.1814 | 0.9447 | 0.9142 | 0.8842 | 0.9463 | 0.9296 |
| 0.1985 | 2.0 | 50 | 0.2058 | 0.9306 | 0.8958 | 0.8958 | 0.8958 | 0.9219 |
| 0.0995 | 3.0 | 75 | 0.2134 | 0.9344 | 0.8994 | 0.8803 | 0.9194 | 0.9209 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
ultratopaz/62716
|
ultratopaz
| 2025-08-19T21:12:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:11:59Z |
[View on Civ Archive](https://civarchive.com/models/85682?modelVersionId=91116)
|
ultratopaz/86831
|
ultratopaz
| 2025-08-19T21:11:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:11:33Z |
[View on Civ Archive](https://civarchive.com/models/111982?modelVersionId=120872)
|
NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes
|
NYUAD-ComNets
| 2025-08-19T21:11:23Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mllama",
"image-to-text",
"text-generation-inference",
"unsloth",
"en",
"arxiv:2412.14197",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-to-text
| 2025-06-29T19:19:59Z |
---
base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mllama
license: apache-2.0
language:
- en
---
# Llama3.2-11B based Hate Detection in Arabic MultiModal Memes
The rise of social media and online communication platforms has led to the spread of Arabic memes as a key form of digital expression.
While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech.
Consequently, there is a growing demand for precise analysis of content in Arabic meme.
This work used Llama 3.2 with its vision capability to effectively identify hate content within Arabic memes.
The evaluation is conducted using a dataset of Arabic memes proposed in the ArabicNLP MAHED 2025 challenge.
The results underscore the capacity of ***Llama 3.2-11B fine-tuned with Arabic memes***, to deliver the superior performance.
They achieve **accuracy** of **80.3%** and **macro F1 score** of **73.3%**.
The proposed solutions offer a more nuanced understanding of memes for accurate and efficient Arabic content moderation systems.
# Examples of Arabic Memes from ArabicNLP MAHED 2025 challenge
# Examples
| | | |
|:-------------------------:|:-------------------------:|:-------------------------:|
|<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jBuVCt5163WlugFRXkSgq.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jiPId6f5IiGXxpI898llC.jpeg"> |
|<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/61acyltUsTB--ZOAMkv0a.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/_alSRnwG0azE_iYq2BrpP.jpeg"> |
``` python
import pandas as pd
import os
from unsloth import FastVisionModel
import torch
from datasets import load_dataset
from transformers import TextStreamer
from PIL import Image
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name = "NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes"
model, tokenizer = FastVisionModel.from_pretrained(model_name, token='xxxxxxxxxxxxxxxxxxxxxx')
FastVisionModel.for_inference(model)
dataset_test = load_dataset("QCRI/Prop2Hate-Meme", split = "test")
print(dataset_test)
def add_labels_column(example):
example["labels"] = "no_hate" if example["hate_label"] == 0 else "hate"
return example
dataset_test = dataset_test.map(add_labels_column)
pred=[]
for k in range(606):
image = dataset_test[k]["image"]
text = dataset_test[k]["text"]
lab = dataset_test[k]["labels"]
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": text}
]}
]
input_text = tokenizer.apply_chat_template(messages,add_generation_prompt = True)
inputs = tokenizer(
image,
input_text,
add_special_tokens = False,
return_tensors = "pt",
).to("cuda")
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
p = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128,
use_cache = False, temperature = 0.3, min_p = 0.3)
p = tokenizer.decode(p[0], skip_special_tokens=True)
pred.append(p.split('assistant')[1].strip())
print(pred)
```

We used Low-Rank Adaptation (LoRA) as the Parameter-Efficient Fine-Tuning (PEFT) method for fine-tuning utilizing the unsloth framework.
The hyper-parameters of Llama 3.2-11B are as follows:
the training batch size per device is set to 4.
gradients are accumulated over 4 steps.
the learning rate warm-up lasts for 5 steps.
the total number of training steps is 150.
the learning rate is set to 0.0002.
the optimizer used is 8-bit AdamW
weight decay is set to 0.01.
a linear learning rate scheduler is used.
# BibTeX entry and citation info
```
@misc{aldahoul2024advancingvehicleplaterecognition,
title={Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models},
author={Nouar AlDahoul and Yasir Zaki},
year={2025},
eprint={2412.14197},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.14197},
}
```
|
seraphimzzzz/343374
|
seraphimzzzz
| 2025-08-19T21:11:22Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:11:14Z |
[View on Civ Archive](https://civarchive.com/models/377663?modelVersionId=421726)
|
chainway9/blockassist-bc-untamed_quick_eel_1755636278
|
chainway9
| 2025-08-19T21:11:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:11:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755636335
|
lisaozill03
| 2025-08-19T21:10:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:10:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/flux-handwriting
|
Muapi
| 2025-08-19T21:10:28Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:10:21Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# flux-handwriting

**Base model**: Flux.1 D
**Trained words**: HWRIT handwriting
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1037313@1163532", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/gpt-image-1-style-flux
|
Muapi
| 2025-08-19T21:10:02Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:09:54Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# GPT Image 1 Style [FLUX]

**Base model**: Flux.1 D
**Trained words**: aidmagptimage
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1554812@1759376", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
seraphimzzzz/362297
|
seraphimzzzz
| 2025-08-19T21:09:47Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:09:44Z |
[View on Civ Archive](https://civarchive.com/models/47112?modelVersionId=442105)
|
crystalline7/37706
|
crystalline7
| 2025-08-19T21:09:40Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:09:37Z |
[View on Civ Archive](https://civarchive.com/models/47112?modelVersionId=51697)
|
crystalline7/58446
|
crystalline7
| 2025-08-19T21:09:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:09:29Z |
[View on Civ Archive](https://civarchive.com/models/80666?modelVersionId=85561)
|
Muapi/isobel-baldur-s-gate-3-flux-ponyxl-1.5
|
Muapi
| 2025-08-19T21:08:38Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:08:26Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Isobel - Baldur's Gate 3 [Flux/PonyXL/1.5]

**Base model**: Flux.1 D
**Trained words**: isobel, armor
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:416346@780583", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
crystalline7/40828
|
crystalline7
| 2025-08-19T21:08:37Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:08:34Z |
[View on Civ Archive](https://civarchive.com/models/52843?modelVersionId=57236)
|
Muapi/3d-chibi-toy-air-dry-clay-style-flux
|
Muapi
| 2025-08-19T21:08:19Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:08:08Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# 【3D chibi toy】Air dry clay style - FLUX

**Base model**: Flux.1 D
**Trained words**: Juaner_clay
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:689231@771373", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
crystalline7/57248
|
crystalline7
| 2025-08-19T21:08:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:08:09Z |
[View on Civ Archive](https://civarchive.com/models/78918?modelVersionId=83723)
|
AnonymousCS/xlmr_immigration_combo3_1
|
AnonymousCS
| 2025-08-19T21:08:10Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T21:05:22Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo3_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo3_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2290
- Accuracy: 0.9319
- 1-f1: 0.8894
- 1-recall: 0.8224
- 1-precision: 0.9682
- Balanced Acc: 0.9045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1997 | 1.0 | 25 | 0.1769 | 0.9447 | 0.9131 | 0.8726 | 0.9576 | 0.9267 |
| 0.1957 | 2.0 | 50 | 0.2013 | 0.9383 | 0.9008 | 0.8417 | 0.9689 | 0.9141 |
| 0.1423 | 3.0 | 75 | 0.2290 | 0.9319 | 0.8894 | 0.8224 | 0.9682 | 0.9045 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
seraphimzzzz/33568
|
seraphimzzzz
| 2025-08-19T21:08:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:08:00Z |
[View on Civ Archive](https://civarchive.com/models/38628?modelVersionId=44548)
|
Abdullah6395/COT_LLM
|
Abdullah6395
| 2025-08-19T21:07:58Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:LiquidAI/LFM2-350M",
"base_model:adapter:LiquidAI/LFM2-350M",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-19T21:07:53Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/Screenshot from 2025-08-20 01-55-42.png
text: None
parameters:
negative_prompt: None
base_model: LiquidAI/LFM2-350M
instance_prompt: null
license: other
license_name: none
license_link: LICENSE
---
# CAYOTES
<Gallery />
## Model description
Model Description (Educational Purpose Only):
This is a small-scale LLM developed for learning and experimentation. Initially, the model was distilled from a larger teacher model to reduce size and computation requirements. Subsequently, it was fine-tuned on a chain-of-thought (CoT) dataset. Due to limited resources, training is partial and the model's outputs remain largely random. This model is intended strictly for educational use, research practice, and demonstration purposes. It is not suitable for deployment, commercial applications, or production use.
## Download model
[Download](/Abdullah6395/COT_LLM/tree/main) them in the Files & versions tab.
|
ultratopaz/390765
|
ultratopaz
| 2025-08-19T21:07:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:07:40Z |
[View on Civ Archive](https://civarchive.com/models/423776?modelVersionId=472159)
|
Muapi/richard-anderson
|
Muapi
| 2025-08-19T21:07:49Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:07:35Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Richard Anderson

**Base model**: Flux.1 D
**Trained words**: Art by Richard Anderson
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1349128@1523853", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/solo-leveling-style-by-readandsign-ill-flux
|
Muapi
| 2025-08-19T21:07:28Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:07:21Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Solo Leveling style by Readandsign | ILL |Flux

**Base model**: Flux.1 D
**Trained words**: slv50
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1258225@1455857", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
ultratopaz/93397
|
ultratopaz
| 2025-08-19T21:07:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:07:07Z |
[View on Civ Archive](https://civarchive.com/models/118690?modelVersionId=128800)
|
Muapi/aigis-persona
|
Muapi
| 2025-08-19T21:06:49Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:05:55Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Aigis - Persona

**Base model**: Flux.1 D
**Trained words**: Aigis
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:843111@943235", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
andy013567/gemma-3-1b-it-finetuned-wikitext2
|
andy013567
| 2025-08-19T21:06:44Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"base_model:adapter:google/gemma-3-1b-it",
"lora",
"transformers",
"text-generation",
"base_model:google/gemma-3-1b-it",
"license:gemma",
"region:us"
] |
text-generation
| 2025-08-19T10:11:23Z |
---
library_name: peft
license: gemma
base_model: google/gemma-3-1b-it
tags:
- base_model:adapter:google/gemma-3-1b-it
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: gemma-3-1b-it-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-3-1b-it-finetuned-wikitext2
This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0835
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.0041 | 1.0 | 1218 | 3.0835 |
### Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
woodwardmw/phase2
|
woodwardmw
| 2025-08-19T21:06:32Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-audio
| 2025-08-19T18:48:51Z |
---
library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: phase2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phase2
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4544
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 20000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.5917 | 2.6823 | 1000 | 0.5957 |
| 0.5782 | 5.3627 | 2000 | 0.5542 |
| 0.5593 | 8.0430 | 3000 | 0.5318 |
| 0.4973 | 10.7253 | 4000 | 0.4915 |
| 0.4883 | 13.4056 | 5000 | 0.4819 |
| 0.4868 | 16.0860 | 6000 | 0.4706 |
| 0.5138 | 18.7683 | 7000 | 0.4689 |
| 0.4571 | 21.4486 | 8000 | 0.4650 |
| 0.4557 | 24.1289 | 9000 | 0.4675 |
| 0.5072 | 26.8113 | 10000 | 0.4631 |
| 0.492 | 29.4916 | 11000 | 0.4604 |
| 0.4535 | 32.1719 | 12000 | 0.4581 |
| 0.4668 | 34.8543 | 13000 | 0.4550 |
| 0.4825 | 37.5346 | 14000 | 0.4593 |
| 0.4551 | 40.2149 | 15000 | 0.4568 |
| 0.4285 | 42.8972 | 16000 | 0.4554 |
| 0.4383 | 45.5776 | 17000 | 0.4544 |
| 0.393 | 48.2579 | 18000 | 0.4529 |
| 0.4406 | 50.9402 | 19000 | 0.4570 |
| 0.4519 | 53.6206 | 20000 | 0.4544 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755637530
|
Dejiat
| 2025-08-19T21:06:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T21:05:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ultratopaz/83659
|
ultratopaz
| 2025-08-19T21:06:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:05:59Z |
[View on Civ Archive](https://civarchive.com/models/18600?modelVersionId=117093)
|
ultratopaz/18387
|
ultratopaz
| 2025-08-19T21:05:53Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:05:48Z |
[View on Civ Archive](https://civarchive.com/models/18600?modelVersionId=22068)
|
Muapi/illustrations-cute-cartoon-cute-manga-flux
|
Muapi
| 2025-08-19T21:05:33Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:05:09Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# 【Illustrations】cute cartoon cute manga FLUX

**Base model**: Flux.1 D
**Trained words**: Juaner_cartoon
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:681642@762939", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
crystalline7/239862
|
crystalline7
| 2025-08-19T21:05:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:05:23Z |
[View on Civ Archive](https://civarchive.com/models/124035?modelVersionId=303862)
|
AnonymousCS/xlmr_immigration_combo3_0
|
AnonymousCS
| 2025-08-19T21:04:57Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T21:01:36Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo3_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo3_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2386
- Accuracy: 0.9229
- 1-f1: 0.8780
- 1-recall: 0.8340
- 1-precision: 0.9270
- Balanced Acc: 0.9006
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2836 | 1.0 | 25 | 0.2080 | 0.9293 | 0.8911 | 0.8687 | 0.9146 | 0.9141 |
| 0.1912 | 2.0 | 50 | 0.2152 | 0.9357 | 0.8980 | 0.8494 | 0.9524 | 0.9141 |
| 0.1954 | 3.0 | 75 | 0.2386 | 0.9229 | 0.8780 | 0.8340 | 0.9270 | 0.9006 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
ultratopaz/638392
|
ultratopaz
| 2025-08-19T21:04:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:04:44Z |
[View on Civ Archive](https://civarchive.com/models/646957?modelVersionId=723774)
|
matboz/ring-gemma-3
|
matboz
| 2025-08-19T21:04:28Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:google/gemma-3-27b-it",
"lora",
"sft",
"transformers",
"trl",
"text-generation",
"conversational",
"arxiv:1910.09700",
"base_model:google/gemma-3-27b-it",
"region:us"
] |
text-generation
| 2025-08-19T21:04:07Z |
---
base_model: google/gemma-3-27b-it
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:google/gemma-3-27b-it
- lora
- sft
- transformers
- trl
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
crystalline7/20731
|
crystalline7
| 2025-08-19T21:04:19Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:04:14Z |
[View on Civ Archive](https://civarchive.com/models/21003?modelVersionId=24998)
|
ultratopaz/48777
|
ultratopaz
| 2025-08-19T21:04:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:04:04Z |
[View on Civ Archive](https://civarchive.com/models/65245?modelVersionId=69869)
|
ultratopaz/42969
|
ultratopaz
| 2025-08-19T21:04:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:03:57Z |
[View on Civ Archive](https://civarchive.com/models/56314?modelVersionId=60719)
|
crystalline7/75403
|
crystalline7
| 2025-08-19T21:03:44Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:03:39Z |
[View on Civ Archive](https://civarchive.com/models/71861?modelVersionId=107072)
|
crystalline7/49268
|
crystalline7
| 2025-08-19T21:03:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:03:31Z |
[View on Civ Archive](https://civarchive.com/models/66057?modelVersionId=70701)
|
ultratopaz/39813
|
ultratopaz
| 2025-08-19T21:03:25Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:03:22Z |
[View on Civ Archive](https://civarchive.com/models/50821?modelVersionId=55337)
|
saberbx/GraniteSentry
|
saberbx
| 2025-08-19T21:03:19Z | 11 | 0 |
transformers
|
[
"transformers",
"safetensors",
"granite",
"text-generation",
"unsloth",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-06T04:58:17Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
crystalline7/634081
|
crystalline7
| 2025-08-19T21:02:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:02:52Z |
[View on Civ Archive](https://civarchive.com/models/210536?modelVersionId=719459)
|
ultratopaz/81964
|
ultratopaz
| 2025-08-19T21:02:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:02:22Z |
[View on Civ Archive](https://civarchive.com/models/107074?modelVersionId=115110)
|
ultratopaz/85547
|
ultratopaz
| 2025-08-19T21:02:16Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:02:16Z |
[View on Civ Archive](https://civarchive.com/models/110723?modelVersionId=119386)
|
seraphimzzzz/19648
|
seraphimzzzz
| 2025-08-19T21:02:04Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:01:58Z |
[View on Civ Archive](https://civarchive.com/models/19939?modelVersionId=23677)
|
UnbeT/ppo_400
|
UnbeT
| 2025-08-19T21:01:34Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bart",
"text2text-generation",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T20:47:14Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ultratopaz/77712
|
ultratopaz
| 2025-08-19T21:01:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:01:28Z |
[View on Civ Archive](https://civarchive.com/models/102801?modelVersionId=110019)
|
VIDEOS-18-vietnamese-viral-video-Clip-hq/Original.New.full.videos.vietnamese.Viral.Video.Official.Tutorial
|
VIDEOS-18-vietnamese-viral-video-Clip-hq
| 2025-08-19T21:00:59Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T21:00:34Z |
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd
"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
|
Muapi/moreface-lora
|
Muapi
| 2025-08-19T21:00:26Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T21:00:11Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# MoreFace-lora

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:866492@969610", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/wizard-s-vintage-minimalism-cartoon
|
Muapi
| 2025-08-19T20:59:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T20:59:38Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Wizard's Vintage Minimalism Cartoon

**Base model**: Flux.1 D
**Trained words**: vintage minimalism cartoon, 2Tone_CRTN
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1108391@1245363", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755635345
|
ihsanridzi
| 2025-08-19T20:55:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:55:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
New-original-archita-phukan-viral-video-on/New.full.videos.archita.Phukan.Viral.Video.Official.Tutorial
|
New-original-archita-phukan-viral-video-on
| 2025-08-19T20:55:16Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T20:55:08Z |
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd
"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
|
mradermacher/ege-8b-1.1-i1-GGUF
|
mradermacher
| 2025-08-19T20:54:54Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"trl",
"sft",
"unsloth",
"tr",
"dataset:orkungedik/function_call",
"base_model:orkungedik/ege-8b-1.1",
"base_model:quantized:orkungedik/ege-8b-1.1",
"license:mit",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-19T19:58:06Z |
---
base_model: orkungedik/ege-8b-1.1
datasets:
- orkungedik/function_call
language:
- tr
library_name: transformers
license: mit
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- trl
- sft
- unsloth
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/orkungedik/ege-8b-1.1
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ege-8b-1.1-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/ege-8b-1.1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.2 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.4 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_S.gguf) | i1-IQ2_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.2 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q2_K.gguf) | i1-Q2_K | 3.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.9 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.9 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.5 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.9 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_1.gguf) | i1-Q4_1 | 5.3 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q6_K.gguf) | i1-Q6_K | 6.8 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755636686
|
Leoar
| 2025-08-19T20:53:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:53:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755635203
|
sampingkaca72
| 2025-08-19T20:51:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:51:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/flux.1-dev-cctv-mania
|
Muapi
| 2025-08-19T20:51:46Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T20:51:36Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# FLUX.1 DEV - CCTV Mania

**Base model**: Flux.1 D
**Trained words**: CCTV Footage
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:684810@766464", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
roeker/blockassist-bc-quick_wiry_owl_1755636624
|
roeker
| 2025-08-19T20:51:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:51:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo2_3
|
AnonymousCS
| 2025-08-19T20:50:06Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T20:47:12Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo2_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo2_3
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2533
- Accuracy: 0.9396
- 1-f1: 0.9058
- 1-recall: 0.8726
- 1-precision: 0.9417
- Balanced Acc: 0.9228
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1208 | 1.0 | 25 | 0.1931 | 0.9447 | 0.9138 | 0.8803 | 0.95 | 0.9286 |
| 0.0845 | 2.0 | 50 | 0.2122 | 0.9434 | 0.9124 | 0.8842 | 0.9424 | 0.9286 |
| 0.1345 | 3.0 | 75 | 0.2533 | 0.9396 | 0.9058 | 0.8726 | 0.9417 | 0.9228 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755636537
|
Dombili2038
| 2025-08-19T20:49:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"jumping beaked hamster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:49:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- jumping beaked hamster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755636372
|
Dejiat
| 2025-08-19T20:47:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:46:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755636206
|
roeker
| 2025-08-19T20:44:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:44:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755634665
|
thanobidex
| 2025-08-19T20:43:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:43:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
TikToker-Abigail-Lalama-intimo-video/viral.ver.filtrado.video.de.abigail.lalama.y.snayder.influencer.se.hace.viral
|
TikToker-Abigail-Lalama-intimo-video
| 2025-08-19T20:43:54Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T20:43:12Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
mradermacher/ege-8b-1.1-GGUF
|
mradermacher
| 2025-08-19T20:43:18Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"trl",
"sft",
"unsloth",
"tr",
"dataset:orkungedik/function_call",
"base_model:orkungedik/ege-8b-1.1",
"base_model:quantized:orkungedik/ege-8b-1.1",
"license:mit",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-19T15:03:51Z |
---
base_model: orkungedik/ege-8b-1.1
datasets:
- orkungedik/function_call
language:
- tr
library_name: transformers
license: mit
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- trl
- sft
- unsloth
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/orkungedik/ege-8b-1.1
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ege-8b-1.1-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_S.gguf) | Q3_K_S | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_L.gguf) | Q3_K_L | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.IQ4_XS.gguf) | IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_S.gguf) | Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_M.gguf) | Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q6_K.gguf) | Q6_K | 6.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.f16.gguf) | f16 | 16.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
nice2mitya/a_133421939
|
nice2mitya
| 2025-08-19T20:40:50Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2025-08-19T20:13:48Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755634468
|
lisaozill03
| 2025-08-19T20:39:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T20:38:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.