modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
Muapi/majora-the-legend-of-zelda-majora-s-mask-illustrious-flux-pony-sd1.5
Muapi
2025-08-19T21:19:55Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:19:39Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Majora (The Legend of Zelda: Majora's Mask) [Illustrious & Flux & Pony & SD1.5] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: zzMajora,, zzMajora, spikes, yellow sclera, solo, 1boy, horns, glowing eyes, ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:243365@1616062", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/39734
crystalline7
2025-08-19T21:19:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:19:47Z
[View on Civ Archive](https://civarchive.com/models/28646?modelVersionId=55222)
ultratopaz/50909
ultratopaz
2025-08-19T21:19:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:19:26Z
[View on Civ Archive](https://civarchive.com/models/68796?modelVersionId=73485)
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755636612
katanyasekolah
2025-08-19T21:19:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:19:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/17560
seraphimzzzz
2025-08-19T21:19:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:55Z
[View on Civ Archive](https://civarchive.com/models/17829?modelVersionId=21070)
roeker/blockassist-bc-quick_wiry_owl_1755638250
roeker
2025-08-19T21:18:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:18:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/28092
seraphimzzzz
2025-08-19T21:18:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:38Z
[View on Civ Archive](https://civarchive.com/models/23128?modelVersionId=34142)
crystalline7/108814
crystalline7
2025-08-19T21:18:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:19Z
[View on Civ Archive](https://civarchive.com/models/133033?modelVersionId=146389)
ultratopaz/22481
ultratopaz
2025-08-19T21:18:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:06Z
[View on Civ Archive](https://civarchive.com/models/21745?modelVersionId=27137)
seraphimzzzz/46555
seraphimzzzz
2025-08-19T21:18:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:17:56Z
[View on Civ Archive](https://civarchive.com/models/61963?modelVersionId=66478)
seraphimzzzz/46345
seraphimzzzz
2025-08-19T21:17:49Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:17:45Z
[View on Civ Archive](https://civarchive.com/models/61681?modelVersionId=66178)
ultratopaz/74089
ultratopaz
2025-08-19T21:17:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:17:22Z
[View on Civ Archive](https://civarchive.com/models/98563?modelVersionId=105415)
lilTAT/blockassist-bc-gentle_rugged_hare_1755638201
lilTAT
2025-08-19T21:17:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:17:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/14050
seraphimzzzz
2025-08-19T21:16:46Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:16:44Z
[View on Civ Archive](https://civarchive.com/models/14160?modelVersionId=16665)
Muapi/abstract-oil-painting-art
Muapi
2025-08-19T21:16:43Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:16:27Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Abstract oil painting art ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Abstract art, oil painting , complex , expressive , blue , gold , purple , red , green ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:709702@793815", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755636621
quantumxnode
2025-08-19T21:16:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:16:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/57410
crystalline7
2025-08-19T21:16:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:16:35Z
[View on Civ Archive](https://civarchive.com/models/79193?modelVersionId=83990)
crystalline7/17720
crystalline7
2025-08-19T21:16:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:16:23Z
[View on Civ Archive](https://civarchive.com/models/17997?modelVersionId=21267)
Muapi/the-ratio-narrow-waist-wide-hips
Muapi
2025-08-19T21:16:21Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:16:12Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The Ratio - Narrow Waist : Wide Hips ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ratio_wh ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1328309@1499734", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/150876
seraphimzzzz
2025-08-19T21:16:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:15:52Z
[View on Civ Archive](https://civarchive.com/models/175613?modelVersionId=197172)
AnonymousCS/xlmr_immigration_combo3_3
AnonymousCS
2025-08-19T21:15:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:13:01Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo3_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo3_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2021 - Accuracy: 0.9422 - 1-f1: 0.9109 - 1-recall: 0.8880 - 1-precision: 0.9350 - Balanced Acc: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1568 | 1.0 | 25 | 0.1731 | 0.9447 | 0.9155 | 0.8996 | 0.932 | 0.9334 | | 0.064 | 2.0 | 50 | 0.2265 | 0.9422 | 0.9068 | 0.8456 | 0.9777 | 0.9180 | | 0.0524 | 3.0 | 75 | 0.2021 | 0.9422 | 0.9109 | 0.8880 | 0.9350 | 0.9286 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/108688
ultratopaz
2025-08-19T21:15:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:15:27Z
[View on Civ Archive](https://civarchive.com/models/128002?modelVersionId=146742)
Muapi/flux-graphic-t-shirt-designs
Muapi
2025-08-19T21:15:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:14:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Flux Graphic T-Shirt Designs ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: T-Shirt Art, Graphic T-Shirt, Vector Art, T-Shirt Graphic ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:721090@819874", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/39810
ultratopaz
2025-08-19T21:14:55Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:14:51Z
[View on Civ Archive](https://civarchive.com/models/50818?modelVersionId=55334)
Muapi/yfg-aarchy-flux
Muapi
2025-08-19T21:14:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:14:25Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # YFG Aarchy [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: YFG-Aarchy ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1108935@1245947", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
UnbeT/ppo_ai
UnbeT
2025-08-19T21:14:37Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:14:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
UmeshAkade/gemma3-270m-med-wikidoc-patientinfo-lora
UmeshAkade
2025-08-19T21:14:35Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T06:52:17Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** UmeshAkade - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755636377
kojeklollipop
2025-08-19T21:14:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:14:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/218873
seraphimzzzz
2025-08-19T21:14:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:14:07Z
[View on Civ Archive](https://civarchive.com/models/124031?modelVersionId=279464)
Muapi/vintage-movie
Muapi
2025-08-19T21:14:02Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:13:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Vintage Movie ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:722757@808139", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/topmodel
Muapi
2025-08-19T21:13:25Z
0
0
null
[ "safetensors", "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:13:18Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # topmodel ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A stunning woman with a sculpted body, perfectly proportioned curves, and a flawless face. Her skin is radiant, and her facial features are symmetrical and harmonious, highlighting large expressive eyes, full lips, and a captivating smile. She is wearing a casual outfit consisting of a fitted T-shirt and jeans that accentuate her figure. In another scene, she is dressed in elegant lingerie, including a delicate bra and matching panties, showcasing her perfect physique, A breathtaking woman, combining an athletic and well-defined body with a face of classic beauty. Her eyes are piercing, and her hair falls softly around her face, framing her delicate features. She is wearing a sophisticated dress that hugs her curves, enhancing her magnetic presence. In another setting, she is seen in a comfortable casual outfit with a stylish blouse and skirt, and later in luxurious lingerie, featuring a lacy bra and matching underwear, A woman with an impressive physique and an absolutely perfect face, worthy of a work of art. Her skin is smooth and flawless, her eyes shine with a captivating intensity, and her lips are perfectly shaped. She is in a luxurious setting, wearing a stunning evening dress that highlights every detail of her mesmerizing figure. In another scene, she is casually dressed in a fitted T-shirt and shorts, and also appears in intimate lingerie, including a silk bra and matching panties ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:708602@792571", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/33435
seraphimzzzz
2025-08-19T21:13:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:13:21Z
[View on Civ Archive](https://civarchive.com/models/38290?modelVersionId=44242)
ultratopaz/390791
ultratopaz
2025-08-19T21:13:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:13:01Z
[View on Civ Archive](https://civarchive.com/models/423811?modelVersionId=472196)
seraphimzzzz/93586
seraphimzzzz
2025-08-19T21:12:49Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:12:46Z
[View on Civ Archive](https://civarchive.com/models/118989?modelVersionId=129142)
AnonymousCS/xlmr_immigration_combo3_2
AnonymousCS
2025-08-19T21:12:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:09:17Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo3_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo3_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2134 - Accuracy: 0.9344 - 1-f1: 0.8994 - 1-recall: 0.8803 - 1-precision: 0.9194 - Balanced Acc: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1575 | 1.0 | 25 | 0.1814 | 0.9447 | 0.9142 | 0.8842 | 0.9463 | 0.9296 | | 0.1985 | 2.0 | 50 | 0.2058 | 0.9306 | 0.8958 | 0.8958 | 0.8958 | 0.9219 | | 0.0995 | 3.0 | 75 | 0.2134 | 0.9344 | 0.8994 | 0.8803 | 0.9194 | 0.9209 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/62716
ultratopaz
2025-08-19T21:12:02Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:11:59Z
[View on Civ Archive](https://civarchive.com/models/85682?modelVersionId=91116)
ultratopaz/86831
ultratopaz
2025-08-19T21:11:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:11:33Z
[View on Civ Archive](https://civarchive.com/models/111982?modelVersionId=120872)
NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes
NYUAD-ComNets
2025-08-19T21:11:23Z
5
0
transformers
[ "transformers", "safetensors", "mllama", "image-to-text", "text-generation-inference", "unsloth", "en", "arxiv:2412.14197", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-06-29T19:19:59Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- # Llama3.2-11B based Hate Detection in Arabic MultiModal Memes The rise of social media and online communication platforms has led to the spread of Arabic memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic meme. This work used Llama 3.2 with its vision capability to effectively identify hate content within Arabic memes. The evaluation is conducted using a dataset of Arabic memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of ***Llama 3.2-11B fine-tuned with Arabic memes***, to deliver the superior performance. They achieve **accuracy** of **80.3%** and **macro F1 score** of **73.3%**. The proposed solutions offer a more nuanced understanding of memes for accurate and efficient Arabic content moderation systems. # Examples of Arabic Memes from ArabicNLP MAHED 2025 challenge # Examples | | | | |:-------------------------:|:-------------------------:|:-------------------------:| |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jBuVCt5163WlugFRXkSgq.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jiPId6f5IiGXxpI898llC.jpeg"> | |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/61acyltUsTB--ZOAMkv0a.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/_alSRnwG0azE_iYq2BrpP.jpeg"> | ``` python import pandas as pd import os from unsloth import FastVisionModel import torch from datasets import load_dataset from transformers import TextStreamer from PIL import Image import os os.environ["TOKENIZERS_PARALLELISM"] = "false" model_name = "NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes" model, tokenizer = FastVisionModel.from_pretrained(model_name, token='xxxxxxxxxxxxxxxxxxxxxx') FastVisionModel.for_inference(model) dataset_test = load_dataset("QCRI/Prop2Hate-Meme", split = "test") print(dataset_test) def add_labels_column(example): example["labels"] = "no_hate" if example["hate_label"] == 0 else "hate" return example dataset_test = dataset_test.map(add_labels_column) pred=[] for k in range(606): image = dataset_test[k]["image"] text = dataset_test[k]["text"] lab = dataset_test[k]["labels"] messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text} ]} ] input_text = tokenizer.apply_chat_template(messages,add_generation_prompt = True) inputs = tokenizer( image, input_text, add_special_tokens = False, return_tensors = "pt", ).to("cuda") text_streamer = TextStreamer(tokenizer, skip_prompt = True) p = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = False, temperature = 0.3, min_p = 0.3) p = tokenizer.decode(p[0], skip_special_tokens=True) pred.append(p.split('assistant')[1].strip()) print(pred) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jRSB8JxqqoV-2E97N5QQM.png) We used Low-Rank Adaptation (LoRA) as the Parameter-Efficient Fine-Tuning (PEFT) method for fine-tuning utilizing the unsloth framework. The hyper-parameters of Llama 3.2-11B are as follows: the training batch size per device is set to 4. gradients are accumulated over 4 steps. the learning rate warm-up lasts for 5 steps. the total number of training steps is 150. the learning rate is set to 0.0002. the optimizer used is 8-bit AdamW weight decay is set to 0.01. a linear learning rate scheduler is used. # BibTeX entry and citation info ``` @misc{aldahoul2024advancingvehicleplaterecognition, title={Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models}, author={Nouar AlDahoul and Yasir Zaki}, year={2025}, eprint={2412.14197}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.14197}, } ```
seraphimzzzz/343374
seraphimzzzz
2025-08-19T21:11:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:11:14Z
[View on Civ Archive](https://civarchive.com/models/377663?modelVersionId=421726)
chainway9/blockassist-bc-untamed_quick_eel_1755636278
chainway9
2025-08-19T21:11:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:11:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755636335
lisaozill03
2025-08-19T21:10:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:10:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux-handwriting
Muapi
2025-08-19T21:10:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:10:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # flux-handwriting ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: HWRIT handwriting ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1037313@1163532", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/gpt-image-1-style-flux
Muapi
2025-08-19T21:10:02Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:09:54Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # GPT Image 1 Style [FLUX] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: aidmagptimage ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1554812@1759376", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/362297
seraphimzzzz
2025-08-19T21:09:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:09:44Z
[View on Civ Archive](https://civarchive.com/models/47112?modelVersionId=442105)
crystalline7/37706
crystalline7
2025-08-19T21:09:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:09:37Z
[View on Civ Archive](https://civarchive.com/models/47112?modelVersionId=51697)
crystalline7/58446
crystalline7
2025-08-19T21:09:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:09:29Z
[View on Civ Archive](https://civarchive.com/models/80666?modelVersionId=85561)
Muapi/isobel-baldur-s-gate-3-flux-ponyxl-1.5
Muapi
2025-08-19T21:08:38Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:08:26Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Isobel - Baldur's Gate 3 [Flux/PonyXL/1.5] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: isobel, armor ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:416346@780583", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/40828
crystalline7
2025-08-19T21:08:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:08:34Z
[View on Civ Archive](https://civarchive.com/models/52843?modelVersionId=57236)
Muapi/3d-chibi-toy-air-dry-clay-style-flux
Muapi
2025-08-19T21:08:19Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:08:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 【3D chibi toy】Air dry clay style - FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Juaner_clay ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:689231@771373", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/57248
crystalline7
2025-08-19T21:08:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:08:09Z
[View on Civ Archive](https://civarchive.com/models/78918?modelVersionId=83723)
AnonymousCS/xlmr_immigration_combo3_1
AnonymousCS
2025-08-19T21:08:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:05:22Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo3_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo3_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Accuracy: 0.9319 - 1-f1: 0.8894 - 1-recall: 0.8224 - 1-precision: 0.9682 - Balanced Acc: 0.9045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1997 | 1.0 | 25 | 0.1769 | 0.9447 | 0.9131 | 0.8726 | 0.9576 | 0.9267 | | 0.1957 | 2.0 | 50 | 0.2013 | 0.9383 | 0.9008 | 0.8417 | 0.9689 | 0.9141 | | 0.1423 | 3.0 | 75 | 0.2290 | 0.9319 | 0.8894 | 0.8224 | 0.9682 | 0.9045 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
seraphimzzzz/33568
seraphimzzzz
2025-08-19T21:08:03Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:08:00Z
[View on Civ Archive](https://civarchive.com/models/38628?modelVersionId=44548)
Abdullah6395/COT_LLM
Abdullah6395
2025-08-19T21:07:58Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:LiquidAI/LFM2-350M", "base_model:adapter:LiquidAI/LFM2-350M", "license:other", "region:us" ]
text-to-image
2025-08-19T21:07:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/Screenshot from 2025-08-20 01-55-42.png text: None parameters: negative_prompt: None base_model: LiquidAI/LFM2-350M instance_prompt: null license: other license_name: none license_link: LICENSE --- # CAYOTES <Gallery /> ## Model description Model Description (Educational Purpose Only): This is a small-scale LLM developed for learning and experimentation. Initially, the model was distilled from a larger teacher model to reduce size and computation requirements. Subsequently, it was fine-tuned on a chain-of-thought (CoT) dataset. Due to limited resources, training is partial and the model&#39;s outputs remain largely random. This model is intended strictly for educational use, research practice, and demonstration purposes. It is not suitable for deployment, commercial applications, or production use. ## Download model [Download](/Abdullah6395/COT_LLM/tree/main) them in the Files & versions tab.
ultratopaz/390765
ultratopaz
2025-08-19T21:07:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:07:40Z
[View on Civ Archive](https://civarchive.com/models/423776?modelVersionId=472159)
Muapi/richard-anderson
Muapi
2025-08-19T21:07:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:07:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Richard Anderson ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Art by Richard Anderson ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1349128@1523853", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/solo-leveling-style-by-readandsign-ill-flux
Muapi
2025-08-19T21:07:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:07:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Solo Leveling style by Readandsign | ILL |Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: slv50 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1258225@1455857", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/93397
ultratopaz
2025-08-19T21:07:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:07:07Z
[View on Civ Archive](https://civarchive.com/models/118690?modelVersionId=128800)
Muapi/aigis-persona
Muapi
2025-08-19T21:06:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:05:55Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Aigis - Persona ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Aigis ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:843111@943235", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
andy013567/gemma-3-1b-it-finetuned-wikitext2
andy013567
2025-08-19T21:06:44Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:google/gemma-3-1b-it", "lora", "transformers", "text-generation", "base_model:google/gemma-3-1b-it", "license:gemma", "region:us" ]
text-generation
2025-08-19T10:11:23Z
--- library_name: peft license: gemma base_model: google/gemma-3-1b-it tags: - base_model:adapter:google/gemma-3-1b-it - lora - transformers pipeline_tag: text-generation model-index: - name: gemma-3-1b-it-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-3-1b-it-finetuned-wikitext2 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.0041 | 1.0 | 1218 | 3.0835 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
woodwardmw/phase2
woodwardmw
2025-08-19T21:06:32Z
0
0
transformers
[ "transformers", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-08-19T18:48:51Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: phase2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phase2 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 3407 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:-----:|:---------------:| | 0.5917 | 2.6823 | 1000 | 0.5957 | | 0.5782 | 5.3627 | 2000 | 0.5542 | | 0.5593 | 8.0430 | 3000 | 0.5318 | | 0.4973 | 10.7253 | 4000 | 0.4915 | | 0.4883 | 13.4056 | 5000 | 0.4819 | | 0.4868 | 16.0860 | 6000 | 0.4706 | | 0.5138 | 18.7683 | 7000 | 0.4689 | | 0.4571 | 21.4486 | 8000 | 0.4650 | | 0.4557 | 24.1289 | 9000 | 0.4675 | | 0.5072 | 26.8113 | 10000 | 0.4631 | | 0.492 | 29.4916 | 11000 | 0.4604 | | 0.4535 | 32.1719 | 12000 | 0.4581 | | 0.4668 | 34.8543 | 13000 | 0.4550 | | 0.4825 | 37.5346 | 14000 | 0.4593 | | 0.4551 | 40.2149 | 15000 | 0.4568 | | 0.4285 | 42.8972 | 16000 | 0.4554 | | 0.4383 | 45.5776 | 17000 | 0.4544 | | 0.393 | 48.2579 | 18000 | 0.4529 | | 0.4406 | 50.9402 | 19000 | 0.4570 | | 0.4519 | 53.6206 | 20000 | 0.4544 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
Dejiat/blockassist-bc-savage_unseen_bobcat_1755637530
Dejiat
2025-08-19T21:06:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:05:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/83659
ultratopaz
2025-08-19T21:06:02Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:05:59Z
[View on Civ Archive](https://civarchive.com/models/18600?modelVersionId=117093)
ultratopaz/18387
ultratopaz
2025-08-19T21:05:53Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:05:48Z
[View on Civ Archive](https://civarchive.com/models/18600?modelVersionId=22068)
Muapi/illustrations-cute-cartoon-cute-manga-flux
Muapi
2025-08-19T21:05:33Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:05:09Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 【Illustrations】cute cartoon cute manga FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Juaner_cartoon ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:681642@762939", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/239862
crystalline7
2025-08-19T21:05:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:05:23Z
[View on Civ Archive](https://civarchive.com/models/124035?modelVersionId=303862)
AnonymousCS/xlmr_immigration_combo3_0
AnonymousCS
2025-08-19T21:04:57Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:01:36Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo3_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo3_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2386 - Accuracy: 0.9229 - 1-f1: 0.8780 - 1-recall: 0.8340 - 1-precision: 0.9270 - Balanced Acc: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2836 | 1.0 | 25 | 0.2080 | 0.9293 | 0.8911 | 0.8687 | 0.9146 | 0.9141 | | 0.1912 | 2.0 | 50 | 0.2152 | 0.9357 | 0.8980 | 0.8494 | 0.9524 | 0.9141 | | 0.1954 | 3.0 | 75 | 0.2386 | 0.9229 | 0.8780 | 0.8340 | 0.9270 | 0.9006 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/638392
ultratopaz
2025-08-19T21:04:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:04:44Z
[View on Civ Archive](https://civarchive.com/models/646957?modelVersionId=723774)
matboz/ring-gemma-3
matboz
2025-08-19T21:04:28Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-3-27b-it", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-3-27b-it", "region:us" ]
text-generation
2025-08-19T21:04:07Z
--- base_model: google/gemma-3-27b-it library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-3-27b-it - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
crystalline7/20731
crystalline7
2025-08-19T21:04:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:04:14Z
[View on Civ Archive](https://civarchive.com/models/21003?modelVersionId=24998)
ultratopaz/48777
ultratopaz
2025-08-19T21:04:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:04:04Z
[View on Civ Archive](https://civarchive.com/models/65245?modelVersionId=69869)
ultratopaz/42969
ultratopaz
2025-08-19T21:04:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:03:57Z
[View on Civ Archive](https://civarchive.com/models/56314?modelVersionId=60719)
crystalline7/75403
crystalline7
2025-08-19T21:03:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:03:39Z
[View on Civ Archive](https://civarchive.com/models/71861?modelVersionId=107072)
crystalline7/49268
crystalline7
2025-08-19T21:03:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:03:31Z
[View on Civ Archive](https://civarchive.com/models/66057?modelVersionId=70701)
ultratopaz/39813
ultratopaz
2025-08-19T21:03:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:03:22Z
[View on Civ Archive](https://civarchive.com/models/50821?modelVersionId=55337)
saberbx/GraniteSentry
saberbx
2025-08-19T21:03:19Z
11
0
transformers
[ "transformers", "safetensors", "granite", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-06T04:58:17Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
crystalline7/634081
crystalline7
2025-08-19T21:02:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:02:52Z
[View on Civ Archive](https://civarchive.com/models/210536?modelVersionId=719459)
ultratopaz/81964
ultratopaz
2025-08-19T21:02:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:02:22Z
[View on Civ Archive](https://civarchive.com/models/107074?modelVersionId=115110)
ultratopaz/85547
ultratopaz
2025-08-19T21:02:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:02:16Z
[View on Civ Archive](https://civarchive.com/models/110723?modelVersionId=119386)
seraphimzzzz/19648
seraphimzzzz
2025-08-19T21:02:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:01:58Z
[View on Civ Archive](https://civarchive.com/models/19939?modelVersionId=23677)
UnbeT/ppo_400
UnbeT
2025-08-19T21:01:34Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T20:47:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ultratopaz/77712
ultratopaz
2025-08-19T21:01:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:01:28Z
[View on Civ Archive](https://civarchive.com/models/102801?modelVersionId=110019)
VIDEOS-18-vietnamese-viral-video-Clip-hq/Original.New.full.videos.vietnamese.Viral.Video.Official.Tutorial
VIDEOS-18-vietnamese-viral-video-Clip-hq
2025-08-19T21:00:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:00:34Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Muapi/moreface-lora
Muapi
2025-08-19T21:00:26Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:00:11Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # MoreFace-lora ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:866492@969610", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/wizard-s-vintage-minimalism-cartoon
Muapi
2025-08-19T20:59:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:59:38Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wizard's Vintage Minimalism Cartoon ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: vintage minimalism cartoon, 2Tone_CRTN ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1108391@1245363", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755635345
ihsanridzi
2025-08-19T20:55:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:55:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
New-original-archita-phukan-viral-video-on/New.full.videos.archita.Phukan.Viral.Video.Official.Tutorial
New-original-archita-phukan-viral-video-on
2025-08-19T20:55:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:55:08Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
mradermacher/ege-8b-1.1-i1-GGUF
mradermacher
2025-08-19T20:54:54Z
0
0
transformers
[ "transformers", "gguf", "trl", "sft", "unsloth", "tr", "dataset:orkungedik/function_call", "base_model:orkungedik/ege-8b-1.1", "base_model:quantized:orkungedik/ege-8b-1.1", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T19:58:06Z
--- base_model: orkungedik/ege-8b-1.1 datasets: - orkungedik/function_call language: - tr library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - trl - sft - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/orkungedik/ege-8b-1.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ege-8b-1.1-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/ege-8b-1.1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ1_S.gguf) | i1-IQ1_S | 2.2 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ1_M.gguf) | i1-IQ1_M | 2.4 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_S.gguf) | i1-IQ2_S | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ2_M.gguf) | i1-IQ2_M | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 3.2 | very low quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q2_K.gguf) | i1-Q2_K | 3.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_S.gguf) | i1-IQ3_S | 3.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ3_M.gguf) | i1-IQ3_M | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_0.gguf) | i1-Q4_0 | 4.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.9 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q4_1.gguf) | i1-Q4_1 | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF/resolve/main/ege-8b-1.1.i1-Q6_K.gguf) | i1-Q6_K | 6.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755636686
Leoar
2025-08-19T20:53:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:53:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755635203
sampingkaca72
2025-08-19T20:51:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:51:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux.1-dev-cctv-mania
Muapi
2025-08-19T20:51:46Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:51:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX.1 DEV - CCTV Mania ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: CCTV Footage ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:684810@766464", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
roeker/blockassist-bc-quick_wiry_owl_1755636624
roeker
2025-08-19T20:51:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:51:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo2_3
AnonymousCS
2025-08-19T20:50:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T20:47:12Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo2_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo2_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2533 - Accuracy: 0.9396 - 1-f1: 0.9058 - 1-recall: 0.8726 - 1-precision: 0.9417 - Balanced Acc: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1208 | 1.0 | 25 | 0.1931 | 0.9447 | 0.9138 | 0.8803 | 0.95 | 0.9286 | | 0.0845 | 2.0 | 50 | 0.2122 | 0.9434 | 0.9124 | 0.8842 | 0.9424 | 0.9286 | | 0.1345 | 3.0 | 75 | 0.2533 | 0.9396 | 0.9058 | 0.8726 | 0.9417 | 0.9228 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755636537
Dombili2038
2025-08-19T20:49:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping beaked hamster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:49:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping beaked hamster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755636372
Dejiat
2025-08-19T20:47:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:46:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755636206
roeker
2025-08-19T20:44:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:44:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755634665
thanobidex
2025-08-19T20:43:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:43:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TikToker-Abigail-Lalama-intimo-video/viral.ver.filtrado.video.de.abigail.lalama.y.snayder.influencer.se.hace.viral
TikToker-Abigail-Lalama-intimo-video
2025-08-19T20:43:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:43:12Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mradermacher/ege-8b-1.1-GGUF
mradermacher
2025-08-19T20:43:18Z
0
0
transformers
[ "transformers", "gguf", "trl", "sft", "unsloth", "tr", "dataset:orkungedik/function_call", "base_model:orkungedik/ege-8b-1.1", "base_model:quantized:orkungedik/ege-8b-1.1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T15:03:51Z
--- base_model: orkungedik/ege-8b-1.1 datasets: - orkungedik/function_call language: - tr library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - trl - sft - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/orkungedik/ege-8b-1.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#ege-8b-1.1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/ege-8b-1.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q2_K.gguf) | Q2_K | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_S.gguf) | Q3_K_S | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q3_K_L.gguf) | Q3_K_L | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.IQ4_XS.gguf) | IQ4_XS | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_S.gguf) | Q5_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q5_K_M.gguf) | Q5_K_M | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q6_K.gguf) | Q6_K | 6.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/ege-8b-1.1-GGUF/resolve/main/ege-8b-1.1.f16.gguf) | f16 | 16.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nice2mitya/a_133421939
nice2mitya
2025-08-19T20:40:50Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-19T20:13:48Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755634468
lisaozill03
2025-08-19T20:39:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:38:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).