modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
Ver-full-videos-shirley-arica-Clips/Ver.Viral.video.shirley.arica.polemica.viral.en.twitter.y.telegram
Ver-full-videos-shirley-arica-Clips
2025-08-19T17:06:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T17:06:14Z
[![image/png](https://cdn-uploads.huggingface.co/production/uploads/68581766e7f344a47d69f8b6/QBh4e5O6LYsJw4y93XWzs.png)](https://tinyurl.com/bdk3zxvb)
AnonymousCS/xlmr_all_immigration3
AnonymousCS
2025-08-19T17:05:54Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T16:59:34Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_all_immigration3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_all_immigration3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2604 - Accuracy: 0.9200 - 1-f1: 0.8792 - 1-recall: 0.8728 - 1-precision: 0.8856 - Balanced Acc: 0.9082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.617 | 1.0 | 33 | 0.6041 | 0.6663 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.4335 | 2.0 | 66 | 0.2853 | 0.9026 | 0.8477 | 0.8121 | 0.8864 | 0.8800 | | 0.3011 | 3.0 | 99 | 0.2753 | 0.9007 | 0.8314 | 0.7341 | 0.9585 | 0.8591 | | 0.2724 | 4.0 | 132 | 0.2583 | 0.9065 | 0.8428 | 0.7514 | 0.9594 | 0.8678 | | 0.1475 | 5.0 | 165 | 0.2445 | 0.9238 | 0.8805 | 0.8410 | 0.9238 | 0.9032 | | 0.104 | 6.0 | 198 | 0.2567 | 0.9161 | 0.8672 | 0.8208 | 0.9191 | 0.8923 | | 0.1543 | 7.0 | 231 | 0.2604 | 0.9200 | 0.8792 | 0.8728 | 0.8856 | 0.9082 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
EZCon/Qwen2.5-VL-3B-Instruct-4bit-mlx
EZCon
2025-08-19T17:03:56Z
57
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "multimodal", "unsloth", "mlx", "image-text-to-text", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-3B-Instruct", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
image-text-to-text
2025-04-18T03:43:44Z
--- base_model: - Qwen/Qwen2.5-VL-3B-Instruct license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text tags: - multimodal - unsloth - mlx library_name: transformers --- # EZCon/Qwen2.5-VL-3B-Instruct-4bit-mlx This model was converted to MLX format from [`unsloth/Qwen2.5-VL-3B-Instruct`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/unsloth/Qwen2.5-VL-3B-Instruct) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/Qwen2.5-VL-3B-Instruct-4bit-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
Mostefa-Terbeche/diabetic-retinopathy-eyepacs-resnet50-original-20250621-170251
Mostefa-Terbeche
2025-08-19T17:03:49Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:eyepacs", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T16:13:35Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - eyepacs metrics: - accuracy - quadratic-kappa - auc model-index: - name: eyepacs_resnet50_original results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: eyepacs name: EYEPACS metrics: - type: accuracy value: 0.1739254198690578 - type: quadratic-kappa value: 0.42562284681974993 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the eyepacs dataset with original preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: eyepacs - **Preprocessing**: original - **Training Date**: 20250621-170251 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: eyepacs_resnet50_20250621-170251_new ## Performance - **Test Accuracy**: 0.1739254198690578 - **Test Quadratic Kappa**: 0.42562284681974993 - **Validation Kappa**: 0.42562284681974993 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-eyepacs-resnet50-original", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755622837
Vasya777
2025-08-19T17:01:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T17:01:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EZCon/Qwen2-VL-2B-Instruct-abliterated-8bit-mlx
EZCon
2025-08-19T16:58:14Z
47
0
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-to-text", "chat", "abliterated", "uncensored", "mlx", "image-text-to-text", "conversational", "en", "base_model:Qwen/Qwen2-VL-2B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-2B-Instruct", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
image-text-to-text
2025-08-06T03:44:27Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: Qwen/Qwen2-VL-2B-Instruct tags: - chat - abliterated - uncensored - mlx --- # EZCon/Qwen2-VL-2B-Instruct-abliterated-8bit-mlx This model was converted to MLX format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/Qwen2-VL-2B-Instruct-abliterated-8bit-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
aleebaster/blockassist-bc-sly_eager_boar_1755621210
aleebaster
2025-08-19T16:57:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:57:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EZCon/Qwen2-VL-2B-Instruct-abliterated-4bit-mlx
EZCon
2025-08-19T16:57:56Z
27
0
transformers
[ "transformers", "safetensors", "qwen2_vl", "image-to-text", "chat", "abliterated", "uncensored", "mlx", "image-text-to-text", "conversational", "en", "base_model:Qwen/Qwen2-VL-2B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-2B-Instruct", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "4-bit", "region:us" ]
image-text-to-text
2025-08-06T03:35:24Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text base_model: Qwen/Qwen2-VL-2B-Instruct tags: - chat - abliterated - uncensored - mlx --- # EZCon/Qwen2-VL-2B-Instruct-abliterated-4bit-mlx This model was converted to MLX format from [`huihui-ai/Qwen2-VL-2B-Instruct-abliterated`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/huihui-ai/Qwen2-VL-2B-Instruct-abliterated) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/Qwen2-VL-2B-Instruct-abliterated-4bit-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
indoempatnol/blockassist-bc-fishy_wary_swan_1755621027
indoempatnol
2025-08-19T16:57:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:57:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-19-Dr-Eman-viral-video-Clip/New.full.videos.Dr.Eman.Viral.Video.Official.Tutorial
VIDEOS-19-Dr-Eman-viral-video-Clip
2025-08-19T16:56:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T16:56:35Z
[![image/png](https://cdn-uploads.huggingface.co/production/uploads/68581766e7f344a47d69f8b6/QBh4e5O6LYsJw4y93XWzs.png)](https://tinyurl.com/bdk3zxvb)
EZCon/LFM2-VL-1.6B-8bit-mlx
EZCon
2025-08-19T16:56:11Z
0
0
transformers
[ "transformers", "safetensors", "lfm2-vl", "image-text-to-text", "liquid", "lfm2", "edge", "mlx", "conversational", "custom_code", "en", "license:other", "8-bit", "region:us" ]
image-text-to-text
2025-08-17T16:15:12Z
--- library_name: transformers license: other license_name: lfm1.0 license_link: LICENSE language: - en pipeline_tag: image-text-to-text tags: - liquid - lfm2 - lfm2-vl - edge - mlx --- # EZCon/LFM2-VL-1.6B-8bit-mlx This model was converted to MLX format from [`LiquidAI/LFM2-VL-1.6B`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/LFM2-VL-1.6B-8bit-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755620903
hakimjustbao
2025-08-19T16:55:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:54:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
espnet/lid_voxlingua107_mms_ecapa
espnet
2025-08-19T16:55:00Z
6
0
espnet
[ "espnet", "tensorboard", "audio", "language-identification", "abk", "afr", "amh", "ara", "asm", "aze", "bak", "bel", "ben", "bod", "bos", "bre", "bul", "cat", "ceb", "ces", "cmn", "cym", "dan", "deu", "ell", "eng", "epo", "est", "eus", "fao", "fas", "fin", "fra", "glg", "glv", "grn", "guj", "hat", "hau", "haw", "heb", "hin", "hrv", "hun", "hye", "ina", "ind", "isl", "ita", "jav", "jpn", "kan", "kat", "kaz", "khm", "kor", "lao", "lat", "lav", "lin", "lit", "ltz", "mal", "mar", "mkd", "mlg", "mlt", "mon", "mri", "msa", "mya", "nep", "nld", "nno", "nor", "oci", "pan", "pol", "por", "pus", "ron", "rus", "san", "sco", "sin", "slk", "slv", "sna", "snd", "som", "spa", "sqi", "srp", "sun", "swa", "swe", "tam", "tat", "tel", "tgk", "tgl", "tha", "tuk", "tur", "ukr", "urd", "uzb", "vie", "war", "yid", "yor", "dataset:VoxLingua107", "arxiv:2005.07143", "license:cc-by-4.0", "region:us" ]
null
2025-06-26T04:13:36Z
--- tags: - espnet - audio - language-identification language: - abk - afr - amh - ara - asm - aze - bak - bel - ben - bod - bos - bre - bul - cat - ceb - ces - cmn - cym - dan - deu - ell - eng - epo - est - eus - fao - fas - fin - fra - glg - glv - grn - guj - hat - hau - haw - heb - hin - hrv - hun - hye - ina - ind - isl - ita - jav - jpn - kan - kat - kaz - khm - kor - lao - lat - lav - lin - lit - ltz - mal - mar - mkd - mlg - mlt - mon - mri - msa - mya - nep - nld - nno - nor - oci - pan - pol - por - pus - ron - rus - san - sco - sin - slk - slv - sna - snd - som - spa - sqi - srp - sun - swa - swe - tam - tat - tel - tgk - tgl - tha - tuk - tur - ukr - urd - uzb - vie - war - yid - yor datasets: - VoxLingua107 license: cc-by-4.0 --- ## ESPnet2 Spoken Language Identification (LID) model ### `espnet/lid_voxlingua107_mms_ecapa` This language identification model was trained using the ESPnet recipe from [ESPnet](https://github.com/espnet/espnet/) toolkit. It leverages the pretrained [MMS-1B](https://huggingface.co/facebook/mms-1b) as the encoder and [ECAPA-TDNN](https://arxiv.org/pdf/2005.07143) as the embedding extractor for robust spoken language identification. The model is trained on the [VoxLingua107](https://cs.taltech.ee/staff/tanel.alumae/data/voxlingua107/) dataset, which comprises over 6,600 hours of speech spanning 107 languages. Speech segments are sourced from YouTube videos and annotated using metadata. This repository provides comprehensive training logs, detailed inference results, and model checkpoints for reproducibility and further research. ### Usage Guide: How to use in ESPnet2 #### Prerequisites First, ensure you have ESPnet installed. If not, follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html). #### Quick Start Run the following commands to set up and use the pre-trained model: ```bash cd espnet pip install -e . cd egs2/voxlingua107/lid1 # Download the exp_voxlingua107_raw to egs2/voxlingua107/lid1 hf download espnet/lid_voxlingua107_mms_ecapa --local-dir . --exclude "README.md" "meta.yaml" ".gitattributes" ./run.sh --skip_data_prep false --skip_train true ``` This will download the pre-trained model and run inference using the VoxLingua107 test data. ### Train and Evaluation Datasets The model is evaluated on multiple language identification benchmarks with diverse characteristics: | Dataset | Domain | #Langs. Train/Test | Dialect | Training Setup (VL107-only) | | ------------- | ----------- | ------------------ | ------- | --------------------------- | | [VoxLingua107](https://cs.taltech.ee/staff/tanel.alumae/data/voxlingua107/) | YouTube | 107/33 | No | Seen | | [Babel](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=31a13cefb42647e924e0d2778d341decc44c40e9) | Telephone | 25/25 | No | Unseen | | [FLEURS](https://huggingface.co/datasets/google/xtreme_s) | Read speech | 102/102 | No | Unseen | | [ML-SUPERB 2.0](https://huggingface.co/datasets/espnet/ml_superb_hf) | Mixed | 137/(137, 8) | Yes | Unseen | | [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | Parliament | 16/16 | No | Unseen | ### Results **Accuracy (%) on In-domain and Out-of-domain Test Sets** <style> .hf-model-cell { max-width: 120px; overflow-x: auto; white-space: nowrap; scrollbar-width: thin; scrollbar-color: #888 #f1f1f1; } .config-cell { max-width: 100px; overflow-x: auto; white-space: nowrap; scrollbar-width: thin; scrollbar-color: #888 #f1f1f1; } .hf-model-cell::-webkit-scrollbar, .config-cell::-webkit-scrollbar { height: 6px; } .hf-model-cell::-webkit-scrollbar-track, .config-cell::-webkit-scrollbar-track { background: #f1f1f1; border-radius: 3px; } .hf-model-cell::-webkit-scrollbar-thumb, .config-cell::-webkit-scrollbar-thumb { background: #888; border-radius: 3px; } .hf-model-cell::-webkit-scrollbar-thumb:hover, .config-cell::-webkit-scrollbar-thumb:hover { background: #555; } </style> <div style="overflow-x: auto;"> | ESPnet Recipe | Config | VoxLingua107 | Babel | FLEURS | ML-SUPERB2.0 Dev | ML-SUPERB2.0 Dialect | VoxPopuli | Macro Avg. | | ------------------------- | ----------- | ------------ | ----- | ------ | ---------------- | -------------------- | --------- | ---------- | | <div class="hf-model-cell">[egs2/voxlingua107/lid1](https://github.com/espnet/espnet/tree/master/egs2/voxlingua107/lid1)</div> | <div class="config-cell">`conf/mms_ecapa_baseline`</div> | 94.2 | 86.7 | 95.8 | 89.0 | 73.4 | 85.6 | 87.5 | </div> For more detailed inference results, please refer to the `exp_voxlingua107_raw/lid_mms_ecapa_baseline_raw/inference` directory in this repository. > **Note (2025-08-18):** > The corresponding GitHub repository has not yet been merged into the ESPnet master branch. > See [PR #6174](https://github.com/espnet/espnet/pull/6174) for the latest updates. ## LID config <details><summary>expand</summary> ``` config: /work/nvme/bbjs/qwang20/espnet/egs2/lid_delta/lid1/conf/mms_1b_ecapa/mms_ecapa_bs3min_baseline.yaml print_config: false log_level: INFO drop_last_iter: false dry_run: false iterator_type: category valid_iterator_type: category output_dir: exp_voxlingua107_raw/lid_mms_ecapa_bs3min_baseline_delta_raw ngpu: 1 seed: 3702 num_workers: 8 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false use_deepspeed: false deepspeed_config: null gradient_as_bucket_view: true ddp_comm_hook: null cudnn_enabled: true cudnn_benchmark: true cudnn_deterministic: false use_tf32: false collect_stats: false write_collected_feats: false max_epoch: 30 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - accuracy - max keep_nbest_models: 2 nbest_averaging_interval: 0 grad_clip: 9999 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 100 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: true wandb_project: lid wandb_id: null wandb_entity: qingzhew-carnegie-mellon-university wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_adapter: false adapter: lora save_strategy: all adapter_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 1000 batch_size: 20 valid_batch_size: null batch_bins: 2880000 valid_batch_bins: null category_sample_size: 10 train_shape_file: - exp_voxlingua107_raw/lid_stats_16k/train/speech_shape valid_shape_file: - exp_voxlingua107_raw/lid_stats_16k/valid/speech_shape batch_type: catpow upsampling_factor: 0.5 language_upsampling_factor: 0.5 dataset_upsampling_factor: 0.5 dataset_scaling_factor: 1.2 max_batch_size: 16 valid_batch_type: null fold_length: - 120000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null chunk_max_abs_length: null chunk_discard_short_samples: true train_data_path_and_name_and_type: - - dump/raw/train_voxlingua107/wav.scp - speech - sound - - dump/raw/train_voxlingua107/utt2lang - lid_labels - text valid_data_path_and_name_and_type: - - dump/raw/dev_voxlingua107/wav.scp - speech - sound - - dump/raw/dev_voxlingua107/utt2lang - lid_labels - text multi_task_dataset: false allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 5.0e-06 betas: - 0.9 - 0.98 scheduler: tristagelr scheduler_conf: max_steps: 30000 warmup_ratio: 0.3 hold_ratio: 0.2 decay_ratio: 0.5 init_lr_scale: 0.6 final_lr_scale: 0.1 init: null use_preprocessor: true input_size: null target_duration: 3.0 lang2utt: dump/raw/train_voxlingua107/lang2utt lang_num: 107 sample_rate: 16000 num_eval: 10 rir_scp: '' model: espnet model_conf: extract_feats_in_collect_stats: false frontend: s3prl frontend_conf: frontend_conf: upstream: hf_wav2vec2_custom path_or_url: facebook/mms-1b download_dir: ./hub multilayer_feature: true specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: norm_vars: false encoder: ecapa_tdnn encoder_conf: model_scale: 8 ndim: 512 output_size: 1536 pooling: chn_attn_stat pooling_conf: {} projector: rawnet3 projector_conf: output_size: 192 encoder_condition: rawnet3 encoder_condition_conf: {} pooling_condition: chn_attn_stat pooling_condition_conf: {} projector_condition: rawnet3 projector_condition_conf: {} preprocessor: lid preprocessor_conf: fix_duration: false sample_rate: 16000 noise_apply_prob: 0.0 noise_info: - - 1.0 - dump/raw/musan_speech.scp - - 4 - 7 - - 13 - 20 - - 1.0 - dump/raw/musan_noise.scp - - 1 - 1 - - 0 - 15 - - 1.0 - dump/raw/musan_music.scp - - 1 - 1 - - 5 - 15 rir_apply_prob: 0.0 rir_scp: dump/raw/rirs.scp loss: aamsoftmax_sc_topk loss_conf: margin: 0.5 scale: 30 K: 3 mp: 0.06 k_top: 5 required: - output_dir version: '202412' distributed: false ``` </details> ### Citation ```BibTex @inproceedings{wang2025geolid, author={Qingzheng Wang, Hye-jin Shim, Jiancheng Sun, and Shinji Watanabe}, title={Geolocation-Aware Robust Spoken Language Identification}, year={2025}, booktitle={Procedings of ASRU}, } @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ```
EZCon/SmolVLM2-500M-Video-Instruct-mlx
EZCon
2025-08-19T16:54:59Z
71
0
transformers
[ "transformers", "safetensors", "smolvlm", "image-text-to-text", "mlx", "conversational", "en", "dataset:HuggingFaceM4/the_cauldron", "dataset:HuggingFaceM4/Docmatix", "dataset:lmms-lab/LLaVA-OneVision-Data", "dataset:lmms-lab/M4-Instruct-Data", "dataset:HuggingFaceFV/finevideo", "dataset:MAmmoTH-VL/MAmmoTH-VL-Instruct-12M", "dataset:lmms-lab/LLaVA-Video-178K", "dataset:orrzohar/Video-STaR", "dataset:Mutonix/Vript", "dataset:TIGER-Lab/VISTA-400K", "dataset:Enxin/MovieChat-1K_train", "dataset:ShareGPT4Video/ShareGPT4Video", "base_model:HuggingFaceTB/SmolVLM-500M-Instruct", "base_model:finetune:HuggingFaceTB/SmolVLM-500M-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-01T17:50:26Z
--- library_name: transformers license: apache-2.0 datasets: - HuggingFaceM4/the_cauldron - HuggingFaceM4/Docmatix - lmms-lab/LLaVA-OneVision-Data - lmms-lab/M4-Instruct-Data - HuggingFaceFV/finevideo - MAmmoTH-VL/MAmmoTH-VL-Instruct-12M - lmms-lab/LLaVA-Video-178K - orrzohar/Video-STaR - Mutonix/Vript - TIGER-Lab/VISTA-400K - Enxin/MovieChat-1K_train - ShareGPT4Video/ShareGPT4Video pipeline_tag: image-text-to-text language: - en base_model: - HuggingFaceTB/SmolVLM-500M-Instruct tags: - mlx --- # EZCon/SmolVLM2-500M-Video-Instruct-mlx This model was converted to MLX format from [`HuggingFaceTB/SmolVLM2-500M-Video-Instruct`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/SmolVLM2-500M-Video-Instruct-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
EZCon/SmolVLM2-2.2B-Instruct-4bit-mlx
EZCon
2025-08-19T16:54:17Z
21
0
transformers
[ "transformers", "safetensors", "smolvlm", "image-text-to-text", "video-text-to-text", "mlx", "conversational", "en", "dataset:HuggingFaceM4/the_cauldron", "dataset:HuggingFaceM4/Docmatix", "dataset:lmms-lab/LLaVA-OneVision-Data", "dataset:lmms-lab/M4-Instruct-Data", "dataset:HuggingFaceFV/finevideo", "dataset:MAmmoTH-VL/MAmmoTH-VL-Instruct-12M", "dataset:lmms-lab/LLaVA-Video-178K", "dataset:orrzohar/Video-STaR", "dataset:Mutonix/Vript", "dataset:TIGER-Lab/VISTA-400K", "dataset:Enxin/MovieChat-1K_train", "dataset:ShareGPT4Video/ShareGPT4Video", "base_model:HuggingFaceTB/SmolVLM-Instruct", "base_model:quantized:HuggingFaceTB/SmolVLM-Instruct", "license:apache-2.0", "endpoints_compatible", "4-bit", "region:us" ]
image-text-to-text
2025-08-01T02:41:44Z
--- library_name: transformers license: apache-2.0 datasets: - HuggingFaceM4/the_cauldron - HuggingFaceM4/Docmatix - lmms-lab/LLaVA-OneVision-Data - lmms-lab/M4-Instruct-Data - HuggingFaceFV/finevideo - MAmmoTH-VL/MAmmoTH-VL-Instruct-12M - lmms-lab/LLaVA-Video-178K - orrzohar/Video-STaR - Mutonix/Vript - TIGER-Lab/VISTA-400K - Enxin/MovieChat-1K_train - ShareGPT4Video/ShareGPT4Video pipeline_tag: image-text-to-text tags: - video-text-to-text - mlx language: - en base_model: - HuggingFaceTB/SmolVLM-Instruct --- # EZCon/SmolVLM2-2.2B-Instruct-4bit-mlx This model was converted to MLX format from [`HuggingFaceTB/SmolVLM2-2.2B-Instruct`]() using mlx-vlm version **0.3.2**. Refer to the [original model card](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) for more details on the model. ## Use with mlx ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model EZCon/SmolVLM2-2.2B-Instruct-4bit-mlx --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image> ```
nabilwalidrafi/medgemma-skinlesion-rafi-4-4-augdynamic1
nabilwalidrafi
2025-08-19T16:53:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-08-19T12:27:04Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-skinlesion-rafi-4-4-augdynamic1 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-skinlesion-rafi-4-4-augdynamic1 This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nabilwalidrafi/medgemma-skinlesion-rafi-4-4-augdynamic1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kudozz/t5-citation-agent
kudozz
2025-08-19T16:53:35Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-16T07:52:08Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-citation-agent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-citation-agent This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2487 - Rouge1: 37.54 - Rouge2: 32.5 - Rougel: 37.23 - Rougelsum: 37.19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.4929 | 2.0 | 500 | 0.3395 | 30.42 | 24.44 | 29.83 | 29.85 | | 0.3738 | 4.0 | 1000 | 0.2487 | 37.54 | 32.5 | 37.23 | 37.19 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
kokoblueao/blockassist-bc-trotting_bipedal_cobra_1755622193
kokoblueao
2025-08-19T16:51:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "trotting bipedal cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:51:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - trotting bipedal cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Prathyusha101/tldr-ppco-g0p95-l1p0
Prathyusha101
2025-08-19T16:44:46Z
0
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-classification", "generated_from_trainer", "dataset:trl-internal-testing/tldr-preference-sft-trl-style", "arxiv:1909.08593", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T11:17:59Z
--- datasets: trl-internal-testing/tldr-preference-sft-trl-style library_name: transformers model_name: tldr-ppco-g0p95-l1p0 tags: - generated_from_trainer licence: license --- # Model Card for tldr-ppco-g0p95-l1p0 This model is a fine-tuned version of [None](https://huggingface.co/None) on the [trl-internal-testing/tldr-preference-sft-trl-style](https://huggingface.co/datasets/trl-internal-testing/tldr-preference-sft-trl-style) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Prathyusha101/tldr-ppco-g0p95-l1p0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prathyusha1-the-university-of-texas-at-austin/huggingface/runs/poeo9cdz) This model was trained with PPO, a method introduced in [Fine-Tuning Language Models from Human Preferences](https://huggingface.co/papers/1909.08593). ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.53.1 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite PPO as: ```bibtex @article{mziegler2019fine-tuning, title = {{Fine-Tuning Language Models from Human Preferences}}, author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving}, year = 2019, eprint = {arXiv:1909.08593} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755620608
Sayemahsjn
2025-08-19T16:43:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:43:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kokoblueao/blockassist-bc-trotting_bipedal_cobra_1755621669
kokoblueao
2025-08-19T16:42:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "trotting bipedal cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:42:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - trotting bipedal cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VER-milica-y-angel-david-debut-video/video.filtrado.milica.y.angel.david.debut.clip.viral.completo.en.twitter.y.telegram
VER-milica-y-angel-david-debut-video
2025-08-19T16:40:14Z
0
0
null
[ "region:us" ]
null
2025-08-19T16:39:51Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
phospho-app/Deimos252-ACT_BBOX-Light_dataset_deimos-6r50d
phospho-app
2025-08-19T16:40:13Z
0
0
phosphobot
[ "phosphobot", "safetensors", "act", "robotics", "dataset:phospho-app/Light_dataset_deimos_bboxes", "region:us" ]
robotics
2025-08-19T16:15:06Z
--- datasets: phospho-app/Light_dataset_deimos_bboxes library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successful, try it out on your robot! ## Training parameters: - **Dataset**: [phospho-app/Light_dataset_deimos_bboxes](https://huggingface.co/datasets/phospho-app/Light_dataset_deimos_bboxes) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
joackimagno/MASID-v1
joackimagno
2025-08-19T16:39:58Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "en", "base_model:joackimagno/Qwen-2.5-General-Recipe-Generation", "base_model:finetune:joackimagno/Qwen-2.5-General-Recipe-Generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T16:27:29Z
--- base_model: joackimagno/Qwen-2.5-General-Recipe-Generation tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** joackimagno - **License:** apache-2.0 - **Finetuned from model :** joackimagno/Qwen-2.5-General-Recipe-Generation This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
fengpeisheng1/mergekit-slerp-ariyvyf-IQ4_NL-GGUF
fengpeisheng1
2025-08-19T16:38:28Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:fengpeisheng1/mergekit-slerp-ariyvyf", "base_model:quantized:fengpeisheng1/mergekit-slerp-ariyvyf", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T16:30:50Z
--- base_model: fengpeisheng1/mergekit-slerp-ariyvyf library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # fengpeisheng1/mergekit-slerp-ariyvyf-IQ4_NL-GGUF This model was converted to GGUF format from [`fengpeisheng1/mergekit-slerp-ariyvyf`](https://huggingface.co/fengpeisheng1/mergekit-slerp-ariyvyf) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/fengpeisheng1/mergekit-slerp-ariyvyf) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo fengpeisheng1/mergekit-slerp-ariyvyf-IQ4_NL-GGUF --hf-file mergekit-slerp-ariyvyf-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo fengpeisheng1/mergekit-slerp-ariyvyf-IQ4_NL-GGUF --hf-file mergekit-slerp-ariyvyf-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo fengpeisheng1/mergekit-slerp-ariyvyf-IQ4_NL-GGUF --hf-file mergekit-slerp-ariyvyf-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo fengpeisheng1/mergekit-slerp-ariyvyf-IQ4_NL-GGUF --hf-file mergekit-slerp-ariyvyf-iq4_nl-imat.gguf -c 2048 ```
mohan1201/gemma-code-explainer
mohan1201
2025-08-19T16:38:05Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-2b-it", "lora", "transformers", "text-generation", "conversational", "base_model:google/gemma-2b-it", "license:gemma", "region:us" ]
text-generation
2025-08-19T16:38:01Z
--- library_name: peft license: gemma base_model: google/gemma-2b-it tags: - base_model:adapter:google/gemma-2b-it - lora - transformers pipeline_tag: text-generation model-index: - name: gemma-code-explainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-code-explainer This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 150 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.2
exala/db_auto_6.1.2e
exala
2025-08-19T16:37:58Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T16:37:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
concept-unlearning/Meta-Llama-3-8B_ft_lora_all_novels_v4_ft_npo_gdr_lora_positive_dataset_v4
concept-unlearning
2025-08-19T16:37:02Z
1
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-08T12:21:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
intimo-video-de-lalama-y-snayder-abigail/filtrado.video.de.abigail.lalama.y.snayder.influencer.viral
intimo-video-de-lalama-y-snayder-abigail
2025-08-19T16:36:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T16:36:04Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
OpenBuddy/SimpleChat-4B-V1
OpenBuddy
2025-08-19T16:36:08Z
0
0
null
[ "safetensors", "qwen3", "text-generation", "conversational", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "region:us" ]
text-generation
2025-08-19T16:23:21Z
--- language: - zh - en - fr - de - ja - ko - it - fi tags: - qwen3 pipeline_tag: text-generation base_model: Qwen/Qwen3-4B --- ### ✨ About the SimpleChat Model Series The SimpleChat series represents our new exploration into Non-Chain-of-Thought (Non-CoT) models. Its main features are: * **Distinct Chat Style:** * Designed to be concise, rational, and empathetic. * Specifically built for casual, everyday conversations. * **Enhanced Creativity:** * Boosts the creativity of its generated content and its capacity for emotional understanding. * This is achieved by distilling knowledge from advanced models, including K2. * **Efficient Reasoning within a Non-CoT Framework:** * Delivers the faster response times of a Non-CoT model while preserving strong reasoning skills. * It retains this ability because it was trained on CoT models before being transitioned to a Non-CoT framework, allowing it to think through complex problems. * **Known Trade-off:** * Compared to models that specialize in Chain-of-Thought, it may not perform as strongly on mathematical tasks. # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Model Info Context Length: **40K** Tokens License: Apache 2.0 Optimizer: **Muon + AdamW** # Prompt Format This model supports a **Qwen3-like** prompt format, with following system prompt recommended: ``` You(assistant) are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human(user). ``` Raw prompt template: ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {history_input}<|im_end|> <|im_start|>assistant {history_output}<|im_end|> <|im_start|>user {current_input}<|im_end|> <|im_start|>assistant ``` (There should be a `\n` at the end of prompt.) You may want to use `vllm` to deploy an OpenAI-like API service. For more information, please refer to the [vllm documentation](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html). ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
dgambettaphd/M_mis_run2_gen1_WXS_doc1000_synt64_lr1e-04_acm_LANG
dgambettaphd
2025-08-19T16:34:50Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T16:34:35Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/gemma3-4b-skin-cancer-classifier-GGUF
mradermacher
2025-08-19T16:33:58Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:doriankim/gemma3-4b-skin-cancer-classifier", "base_model:quantized:doriankim/gemma3-4b-skin-cancer-classifier", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T16:17:31Z
--- base_model: doriankim/gemma3-4b-skin-cancer-classifier language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/doriankim/gemma3-4b-skin-cancer-classifier <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#gemma3-4b-skin-cancer-classifier-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.7 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.mmproj-f16.gguf) | mmproj-f16 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q5_K_M.gguf) | Q5_K_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q6_K.gguf) | Q6_K | 3.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.Q8_0.gguf) | Q8_0 | 4.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/gemma3-4b-skin-cancer-classifier-GGUF/resolve/main/gemma3-4b-skin-cancer-classifier.f16.gguf) | f16 | 7.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AnonymousCS/xlmr_norwegian_immigration2
AnonymousCS
2025-08-19T16:32:46Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T16:23:06Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_norwegian_immigration2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_norwegian_immigration2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2207 - Accuracy: 0.9231 - 1-f1: 0.8810 - 1-recall: 0.8605 - 1-precision: 0.9024 - Balanced Acc: 0.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6746 | 1.0 | 5 | 0.6397 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.5485 | 2.0 | 10 | 0.6313 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.6165 | 3.0 | 15 | 0.6220 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.7306 | 4.0 | 20 | 0.6108 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.604 | 5.0 | 25 | 0.5968 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.5031 | 6.0 | 30 | 0.5714 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.5496 | 7.0 | 35 | 0.5302 | 0.6692 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.5351 | 8.0 | 40 | 0.4655 | 0.7769 | 0.4912 | 0.3256 | 1.0 | 0.6628 | | 0.4308 | 9.0 | 45 | 0.3942 | 0.8538 | 0.7246 | 0.5814 | 0.9615 | 0.7850 | | 0.3575 | 10.0 | 50 | 0.3077 | 0.9231 | 0.8780 | 0.8372 | 0.9231 | 0.9014 | | 0.2808 | 11.0 | 55 | 0.2337 | 0.9308 | 0.8861 | 0.8140 | 0.9722 | 0.9012 | | 0.2272 | 12.0 | 60 | 0.2053 | 0.9308 | 0.8889 | 0.8372 | 0.9474 | 0.9071 | | 0.2462 | 13.0 | 65 | 0.2418 | 0.9 | 0.8539 | 0.8837 | 0.8261 | 0.8959 | | 0.1188 | 14.0 | 70 | 0.2207 | 0.9231 | 0.8810 | 0.8605 | 0.9024 | 0.9072 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
ChenWu98/statement_deepseek_v1.5_sft_cluster_split_0
ChenWu98
2025-08-19T16:30:21Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:deepseek-ai/DeepSeek-Prover-V1.5-SFT", "base_model:finetune:deepseek-ai/DeepSeek-Prover-V1.5-SFT", "endpoints_compatible", "region:us" ]
null
2025-08-19T16:20:56Z
--- base_model: deepseek-ai/DeepSeek-Prover-V1.5-SFT library_name: transformers model_name: statement_deepseek_v1.5_sft_cluster_split_0 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for statement_deepseek_v1.5_sft_cluster_split_0 This model is a fine-tuned version of [deepseek-ai/DeepSeek-Prover-V1.5-SFT](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-SFT). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/goggpbak) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kyoukarawattsu/blockassist-bc-tenacious_arctic_manatee_1755620807
kyoukarawattsu
2025-08-19T16:28:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tenacious arctic manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:28:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tenacious arctic manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755619195
ihsanridzi
2025-08-19T16:26:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:26:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
grgazziz/mosquito
grgazziz
2025-08-19T16:22:41Z
0
0
null
[ "license:other", "region:us" ]
null
2025-08-19T16:21:02Z
--- license: other license_name: other license_link: LICENSE ---
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755618948
lisaozill03
2025-08-19T16:22:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:22:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755620494
Elizavr
2025-08-19T16:22:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:21:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arshal13/echomimic-models
arshal13
2025-08-19T16:21:24Z
0
0
null
[ "dataset:fka/awesome-chatgpt-prompts", "base_model:openai/gpt-oss-120b", "base_model:finetune:openai/gpt-oss-120b", "license:apache-2.0", "region:us" ]
null
2025-08-19T16:15:45Z
--- license: apache-2.0 datasets: - fka/awesome-chatgpt-prompts base_model: - openai/gpt-oss-120b ---
oceanfish/intent_classify_slot
oceanfish
2025-08-19T16:20:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "region:us" ]
null
2025-08-19T16:15:20Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
thanobidex/blockassist-bc-colorful_shiny_hare_1755618622
thanobidex
2025-08-19T16:17:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:17:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
haji80mr-uoft/semi-wotype-Llama-tuned-Lora-only-V0
haji80mr-uoft
2025-08-19T16:16:17Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T16:16:08Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** haji80mr-uoft - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
chansung/Gemma2-2B-CCRL-CUR-EDGE-ONLY-1E
chansung
2025-08-19T16:14:15Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:chansung/verifiable-coding-problems-python-v2", "arxiv:2402.03300", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T06:59:03Z
--- base_model: google/gemma-2-2b-it datasets: chansung/verifiable-coding-problems-python-v2 library_name: transformers model_name: Gemma2-2B-CCRL-CUR-EDGE-ONLY-1E tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Gemma2-2B-CCRL-CUR-EDGE-ONLY-1E This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the [chansung/verifiable-coding-problems-python-v2](https://huggingface.co/datasets/chansung/verifiable-coding-problems-python-v2) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chansung/Gemma2-2B-CCRL-CUR-EDGE-ONLY-1E", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chansung18/huggingface/runs/6a4vn02u) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Mostefa-Terbeche/diabetic-retinopathy-aptos-resnet50-advanced-20250618-162329
Mostefa-Terbeche
2025-08-19T16:13:34Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:aptos", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T15:23:50Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - aptos metrics: - accuracy - quadratic-kappa - auc model-index: - name: aptos_resnet50_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: aptos name: APTOS metrics: - type: accuracy value: 0.7759562841530054 - type: quadratic-kappa value: 0.8835158192633705 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the aptos dataset with advanced preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: aptos - **Preprocessing**: advanced - **Training Date**: 20250618-162329 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: aptos_resnet50_20250618-162329_new ## Performance - **Test Accuracy**: 0.7759562841530054 - **Test Quadratic Kappa**: 0.8835158192633705 - **Validation Kappa**: 0.8835158192633705 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-aptos-resnet50-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
schirrmacher/malwi
schirrmacher
2025-08-19T16:10:50Z
2,023
0
null
[ "safetensors", "distilbert", "arxiv:2404.04991", "arxiv:2504.14886", "license:mit", "region:us" ]
null
2025-05-09T12:54:09Z
--- license: mit --- # malwi - AI Python Malware Scanner <img src="malwi-logo.png" alt="Logo"> ## malwi specializes in finding malware ### Key Features - 🛡️ **AI-Powered Python Malware Detection**: Leverages advanced AI to identify malicious code in Python projects with high accuracy. - ⚡ **Lightning-Fast Codebase Scanning**: Scans entire repositories in seconds, so you can focus on development—not security worries. - 🔒 **100% Offline & Private**: Your code never leaves your machine. Full control, zero data exposure. - 💰 **Free & Open-Source**: No hidden costs. Built on transparent research and openly available data. - 🇪🇺 **Developed in the EU**: Committed to open-source principles and European data standards. ### 1) Install ``` pip install --user malwi ``` ### 2) Run ```bash malwi scan examples/malicious ``` ### 3) Evaluate: a [recent zero-day](https://socket.dev/blog/malicious-pypi-package-targets-discord-developers-with-RAT) detected with high confidence ``` __ __ .--------.---.-| .--.--.--|__| | | _ | | | | | | |__|__|__|___._|__|________|__| AI Python Malware Scanner - target: examples - seconds: 1.87 - files: 14 ├── scanned: 4 (.py) ├── skipped: 10 (.cfg, .md, .toml, .txt) └── suspicious: ├── examples/malicious/discordpydebug-0.0.4/setup.py │ └── <module> │ ├── archive compression │ └── package installation execution └── examples/malicious/discordpydebug-0.0.4/src/discordpydebug/__init__.py ├── <module> │ ├── process management │ ├── deserialization │ ├── system interaction │ └── user io ├── run │ └── fs linking ├── debug │ ├── fs linking │ └── archive compression └── runcommand └── process management => 👹 malicious 0.98 ``` ## PyPI Package Scanning malwi can directly scan PyPI packages without executing malicious logic, typically placed in `setup.py` or `__init__.py` files: ```bash malwi pypi requests ```` ``` __ __ .--------.---.-| .--.--.--|__| | | _ | | | | | | |__|__|__|___._|__|________|__| AI Python Malware Scanner - target: downloads/requests-2.32.4.tar - seconds: 3.10 - files: 84 ├── scanned: 34 └── skipped: 50 => 🟢 good ``` ## Python API malwi provides a comprehensive Python API for integrating malware detection into your applications. ### Quick Start ```python import malwi report = malwi.MalwiReport.create(input_path="suspicious_file.py") for obj in report.malicious_objects: print(f"File: {obj.file_path}") ``` ### `MalwiReport` ```python MalwiReport.create( input_path, # str or Path - file/directory to scan accepted_extensions=None, # List[str] - file extensions to scan (e.g., ['py', 'js']) silent=False, # bool - suppress progress messages malicious_threshold=0.7, # float - threshold for malicious classification (0.0-1.0) on_finding=None # callable - callback when malicious objects found ) -> MalwiReport # Returns: MalwiReport instance with scan results ``` ```python import malwi report = malwi.MalwiReport.create("suspicious_directory/") # Properties report.malicious # bool: True if malicious objects detected report.confidence # float: Overall confidence score (0.0-1.0) report.duration # float: Scan duration in seconds report.all_objects # List[MalwiObject]: All analyzed code objects report.malicious_objects # List[MalwiObject]: Objects exceeding threshold report.threshold # float: Maliciousness threshold used (0.0-1.0) report.all_files # List[Path]: All files found in input path report.skipped_files # List[Path]: Files skipped (wrong extension) report.processed_files # int: Number of files successfully processed report.activities # List[str]: Suspicious activities detected report.input_path # str: Original input path scanned report.start_time # str: ISO 8601 timestamp when scan started report.all_file_types # List[str]: All file extensions found report.version # str: Malwi version with model hash # Methods report.to_demo_text() # str: Human-readable tree summary report.to_json() # str: JSON formatted report report.to_yaml() # str: YAML formatted report report.to_markdown() # str: Markdown formatted report # Pre-load models to avoid delay on first prediction malwi.MalwiReport.load_models_into_memory() ``` ### `MalwiObject` ```python obj = report.all_objects[0] # Core properties obj.name # str: Function/class/module name obj.file_path # str: Path to source file obj.language # str: Programming language ('python'/'javascript') obj.maliciousness # float|None: ML confidence score (0.0-1.0) obj.warnings # List[str]: Compilation warnings/errors # Source code and AST compilation obj.file_source_code # str: Complete content of source file obj.source_code # str|None: Extracted source for this specific object obj.byte_code # List[Instruction]|None: Compiled AST bytecode obj.location # Tuple[int,int]|None: Start and end line numbers obj.embedding_count # int: Number of DistilBERT tokens (cached) # Analysis methods obj.predict() # dict: Run ML prediction and update maliciousness obj.to_tokens() # List[str]: Extract tokens for analysis obj.to_token_string() # str: Space-separated token string obj.to_string() # str: Bytecode as readable string obj.to_hash() # str: SHA256 hash of bytecode obj.to_dict() # dict: Serializable representation obj.to_yaml() # str: YAML formatted output obj.to_json() # str: JSON formatted output # Class methods MalwiObject.all_tokens(language="python") # List[str]: All possible tokens ``` ## Why malwi? Malicious actors are increasingly [targeting open-source projects](https://arxiv.org/pdf/2404.04991), introducing packages designed to compromise security. Common malicious behaviors include: - **Data exfiltration**: Theft of sensitive information such as credentials, API keys, or user data. - **Backdoors**: Unauthorized remote access to systems, enabling attackers to exploit vulnerabilities. - **Destructive actions**: Deliberate sabotage, including file deletion, database corruption, or application disruption. ## How does it work? malwi is based on the design of [_Zero Day Malware Detection with Alpha: Fast DBI with Transformer Models for Real World Application_ (2025)](https://arxiv.org/pdf/2504.14886v1). Imagine there is a function like: ```python def runcommand(value): output = subprocess.run(value, shell=True, capture_output=True) return [output.stdout, output.stderr] ``` ### 1. Files are compiled to create an Abstract Syntax Tree with [Tree-sitter](https://tree-sitter.github.io/tree-sitter/index.html) ``` module [0, 0] - [3, 0] function_definition [0, 0] - [2, 41] name: identifier [0, 4] - [0, 14] parameters: parameters [0, 14] - [0, 21] identifier [0, 15] - [0, 20] ... ``` ### 2. The AST is transpiled to dummy bytecode The bytecode is enhanced with security related instructions. ``` TARGETED_FILE PUSH_NULL LOAD_GLOBAL PROCESS_MANAGEMENT LOAD_ATTR run LOAD_PARAM value LOAD_CONST BOOLEAN LOAD_CONST BOOLEAN KW_NAMES shell capture_output CALL STRING_VERSION STORE_GLOBAL output LOAD_GLOBAL output LOAD_ATTR stdout LOAD_GLOBAL output LOAD_ATTR stderr BUILD_LIST STRING_VERSION RETURN_VALUE ``` ### 3. The bytecode is fed into a pre-trained [DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert) A DistilBERT model trained on [malware-samples](https://github.com/schirrmacher/malwi-samples) is used to identify suspicious code patterns. ``` => Maliciousness: 0.98 ``` ## Benchmarks? ``` training_loss: 0.0110 epochs_completed: 3.0000 original_train_samples: 598540.0000 windowed_train_features: 831865.0000 original_validation_samples: 149636.0000 windowed_validation_features: 204781.0000 benign_samples_used: 734930.0000 malicious_samples_used: 13246.0000 benign_to_malicious_ratio: 60.0000 vocab_size: 30522.0000 max_length: 512.0000 window_stride: 128.0000 batch_size: 16.0000 eval_loss: 0.0107 eval_accuracy: 0.9980 eval_f1: 0.9521 eval_precision: 0.9832 eval_recall: 0.9229 eval_runtime: 115.5982 eval_samples_per_second: 1771.4900 eval_steps_per_second: 110.7200 epoch: 3.0000 ``` ## Contributing & Support - Found a bug or have a feature request? [Open an issue](https://github.com/schirrmacher/malwi/issues). - Do you have access to malicious packages in Rust, Go, or other languages? [Contact via GitHub profile](https://github.com/schirrmacher). - Struggling with false-positive findings? [Create a Pull-Request](https://github.com/schirrmacher/malwi-samples/pulls). ## Research ### Prerequisites 1. **Package Manager**: Install [uv](https://docs.astral.sh/uv/) for fast Python dependency management 2. **Training Data**: The research CLI will automatically clone [malwi-samples](https://github.com/schirrmacher/malwi-samples) when needed ### Quick Start ```bash # Install dependencies uv sync # Run tests uv run pytest tests # Train a model from scratch (full pipeline with automatic data download) ./research download preprocess train ``` #### Individual Pipeline Steps ```bash # 1. Download training data (clones malwi-samples + downloads repositories) ./research download # 2. Data preprocessing only (parallel processing, ~4 min on 32 cores) ./research preprocess --language python # 3. Model training only (tokenizer + DistilBERT, ~40 minutes on NVIDIA RTX 4090) ./research train ``` ## Limitations The malicious dataset includes some boilerplate functions, such as setup functions, which can also appear in benign code. These cause false positives during scans. The goal is to triage and reduce such false positives to improve malwi's accuracy. ## What's next? The first iteration focuses on **maliciousness of Python source code**. Future iterations will cover malware scanning for more languages (JavaScript, Rust, Go) and more formats (binaries, logs).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755619661
lqpl
2025-08-19T16:09:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:09:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755618074
helmutsukocok
2025-08-19T16:08:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T16:08:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/git-commit-message-splitter-Qwen3-4B-i1-GGUF
mradermacher
2025-08-19T16:08:07Z
0
0
null
[ "gguf", "region:us" ]
null
2025-08-19T16:08:01Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-4B
mehdirafiei/bert_resume_category_prediction
mehdirafiei
2025-08-19T16:07:36Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T16:07:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnonymousCS/xlmr_finnish_immigration2
AnonymousCS
2025-08-19T16:04:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T16:00:05Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_finnish_immigration2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_finnish_immigration2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1698 - Accuracy: 0.9538 - 1-f1: 0.9318 - 1-recall: 0.9535 - 1-precision: 0.9111 - Balanced Acc: 0.9538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.5778 | 1.0 | 5 | 0.2275 | 0.9154 | 0.8571 | 0.7674 | 0.9706 | 0.8780 | | 0.1219 | 2.0 | 10 | 0.3406 | 0.9385 | 0.9130 | 0.9767 | 0.8571 | 0.9481 | | 0.2571 | 3.0 | 15 | 0.2051 | 0.9462 | 0.9213 | 0.9535 | 0.8913 | 0.9480 | | 0.1514 | 4.0 | 20 | 0.1689 | 0.9538 | 0.9318 | 0.9535 | 0.9111 | 0.9538 | | 0.1368 | 5.0 | 25 | 0.1816 | 0.9462 | 0.9231 | 0.9767 | 0.875 | 0.9539 | | 0.1073 | 6.0 | 30 | 0.1698 | 0.9538 | 0.9318 | 0.9535 | 0.9111 | 0.9538 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
rambetiko/blockassist-bc-soft_lanky_marmot_1755618848
rambetiko
2025-08-19T16:00:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft lanky marmot", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:59:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft lanky marmot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
annasoli/Qwen2.5-14B_SVt_l24_lr2e-4_a256_2E_technical-engineering2_KLBPA_5e6
annasoli
2025-08-19T15:59:44Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T14:51:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755617165
ihsanridzi
2025-08-19T15:53:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:53:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755616921
lisaozill03
2025-08-19T15:49:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:48:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jacoboss/MyGemmaNPC
jacoboss
2025-08-19T15:48:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T21:28:50Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jacoboss/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
concept-unlearning/Meta-Llama-3-8B_ft_lora_all_novels_v4_ft_npo_gdr_lora_positive_dataset_v2
concept-unlearning
2025-08-19T15:48:17Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T15:46:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755618244
Elizavr
2025-08-19T15:44:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:44:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755616194
unitova
2025-08-19T15:37:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:37:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Christopher-Lim/Butter
Christopher-Lim
2025-08-19T15:37:35Z
0
0
null
[ "object-detection", "dataset:rafaelpadilla/coco2017", "dataset:nateraw/kitti", "dataset:Chris1/cityscapes", "dataset:dgural/bdd100k", "arxiv:2507.13373", "license:agpl-3.0", "region:us" ]
object-detection
2025-08-19T15:09:15Z
--- license: agpl-3.0 datasets: - rafaelpadilla/coco2017 - nateraw/kitti - Chris1/cityscapes - dgural/bdd100k metrics: - precision - f1 - recall pipeline_tag: object-detection --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Butter is a novel 2D object detection framework designed to enhance hierarchical feature representations for improved detection robustness. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Xiaojian Lin et al.] - **Funded by:** [National Natural Science Foundation of China] - **Model type:** [Object Detection] - **License:** [AGPL-3.0 license] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/Aveiro-Lin/Butter] - **Paper:** [https://www.arxiv.org/pdf/2507.13373] ## Uses The training and inference details, as well as the environment configuration, can be found in our GitHub repository, where a comprehensive description is provided. The model’s performance metrics and training details are thoroughly described in the paper we provide.
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755616149
vwzyrraz7l
2025-08-19T15:36:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:36:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755616023
helmutsukocok
2025-08-19T15:33:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:33:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755615849
chainway9
2025-08-19T15:33:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:33:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/z1c0-gr00t-pick_and_place-mrulf
phospho-app
2025-08-19T15:32:40Z
0
0
phosphobot
[ "phosphobot", "safetensors", "gr00t_n1_5", "gr00t", "robotics", "dataset:z1c0/pick_and_place", "region:us" ]
robotics
2025-08-19T10:16:01Z
--- datasets: z1c0/pick_and_place library_name: phosphobot pipeline_tag: robotics model_name: gr00t tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successful, try it out on your robot! ## Training parameters: - **Dataset**: [z1c0/pick_and_place](https://huggingface.co/datasets/z1c0/pick_and_place) - **Wandb run URL**: None - **Epochs**: 5 - **Batch size**: 8 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
Ba2han/qwen3-a3b-merged-coder-experiment
Ba2han
2025-08-19T15:27:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen3_moe", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "base_model:Qwen/Qwen3-30B-A3B-Thinking-2507", "base_model:merge:Qwen/Qwen3-30B-A3B-Thinking-2507", "base_model:unsloth/Qwen3-Coder-30B-A3B-Instruct", "base_model:merge:unsloth/Qwen3-Coder-30B-A3B-Instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T15:13:02Z
--- base_model: - unsloth/Qwen3-Coder-30B-A3B-Instruct - Qwen/Qwen3-30B-A3B-Thinking-2507 library_name: transformers tags: - mergekit - merge --- # output_new_merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using merged_model as a base. ### Models Merged The following models were included in the merge: * [unsloth/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/unsloth/Qwen3-Coder-30B-A3B-Instruct) * [Qwen/Qwen3-30B-A3B-Thinking-2507](https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: "merged_model" - model: Qwen/Qwen3-30B-A3B-Thinking-2507 parameters: density: 0.35 weight: 0.35 - model: unsloth/Qwen3-Coder-30B-A3B-Instruct parameters: density: 0.25 weight: 0.25 merge_method: dare_ties base_model: "merged_model" parameters: int8_mask: true dtype: bfloat16 ```
Noredine67/mon-redacteur-evaluation-externe-Q8_0-GGUF
Noredine67
2025-08-19T15:24:17Z
0
0
peft
[ "peft", "gguf", "base_model:adapter:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "llama-cpp", "gguf-my-lora", "text-generation", "base_model:Noredine67/mon-redacteur-evaluation-externe", "base_model:adapter:Noredine67/mon-redacteur-evaluation-externe", "region:us" ]
text-generation
2025-08-19T15:24:15Z
--- base_model: Noredine67/mon-redacteur-evaluation-externe library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/mistral-7b-instruct-v0.3-bnb-4bit - lora - sft - transformers - trl - unsloth - llama-cpp - gguf-my-lora --- # Noredine67/mon-redacteur-evaluation-externe-Q8_0-GGUF This LoRA adapter was converted to GGUF format from [`Noredine67/mon-redacteur-evaluation-externe`](https://huggingface.co/Noredine67/mon-redacteur-evaluation-externe) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/Noredine67/mon-redacteur-evaluation-externe) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora mon-redacteur-evaluation-externe-q8_0.gguf (...other args) # with server llama-server -m base_model.gguf --lora mon-redacteur-evaluation-externe-q8_0.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
vohuutridung/bartpho-word-vietnews-summarization
vohuutridung
2025-08-19T15:24:00Z
0
0
transformers
[ "transformers", "safetensors", "mbart", "text2text-generation", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T15:23:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sekirr22/blockassist-bc-furry_rugged_camel_1755616873
sekirr22
2025-08-19T15:22:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry rugged camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:22:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry rugged camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755616839
lqpl
2025-08-19T15:22:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:21:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/Meta-Llama-3-8B_ft_lora_all_novels_v4_ft_npo_gdr_lora_positive_dataset_v1
concept-unlearning
2025-08-19T15:21:07Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T15:18:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/vintage-drawing-ce
Muapi
2025-08-19T15:18:13Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T15:18:02Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Vintage Drawing - CE ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: vntgdrwngCE style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:660535@811004", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1755616585
zenqqq
2025-08-19T15:17:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless reptilian caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:17:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless reptilian caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755615004
lisaozill03
2025-08-19T15:15:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:15:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Soughing/gla_xl
Soughing
2025-08-19T15:15:31Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-01T17:49:23Z
--- license: apache-2.0 ---
kodetr/stunting-7B-Qwen
kodetr
2025-08-19T15:15:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "stunting", "kesehatan", "anak", "conversational", "id", "dataset:kodetr/penelitian-fundamental-stunting-qa", "base_model:Qwen/Qwen1.5-7B-Chat", "base_model:finetune:Qwen/Qwen1.5-7B-Chat", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T14:59:41Z
--- library_name: transformers tags: - stunting - kesehatan - anak license: apache-2.0 datasets: - kodetr/penelitian-fundamental-stunting-qa language: - id metrics: - rouge - bleu pipeline_tag: text-generation base_model: - Qwen/Qwen1.5-7B-Chat --- ### Model Description <!-- Provide a longer summary of what this model is. --> Konsultasi(Q&A) stunting pada anak - **Developed by:** Tanwir - **Language :** Indonesia ### Training ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d6d2f8b06abf924b24349d/ZmKG5B9AapbcvAzXdfkYZ.png) ### Use with transformers Pastikan untuk memperbarui instalasi transformer Anda melalui pip install --upgrade transformer. ```python import torch from transformers import pipeline model_id = "kodetr/stunting-7B-Qwen" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "Jelaskan definisi 1000 hari pertama kehidupan."}, {"role": "user", "content": "Apa itu 1000 hari pertama kehidupan?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ```
Muapi/flux-christmas-living-room
Muapi
2025-08-19T15:14:26Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T15:14:12Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX Christmas living room ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: christmas living room ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1011849@1134274", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/cogito-v2-preview-llama-405B-GGUF
mradermacher
2025-08-19T15:14:16Z
0
0
transformers
[ "transformers", "en", "base_model:deepcogito/cogito-v2-preview-llama-405B", "base_model:finetune:deepcogito/cogito-v2-preview-llama-405B", "license:llama3.1", "endpoints_compatible", "region:us" ]
null
2025-08-02T00:32:16Z
--- base_model: deepcogito/cogito-v2-preview-llama-405B language: - en library_name: transformers license: llama3.1 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/deepcogito/cogito-v2-preview-llama-405B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#cogito-v2-preview-llama-405B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [PART 1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q2_K.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q2_K.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q2_K.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q2_K.gguf.part4of4) | Q2_K | 149.4 | | | [PART 1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_S.gguf.part4of4) | Q3_K_S | 175.3 | | | [PART 1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_M.gguf.part4of4) | Q3_K_M | 195.5 | lower quality | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_L.gguf.part1of5) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_L.gguf.part2of5) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_L.gguf.part3of5) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_L.gguf.part4of5) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q3_K_L.gguf.part5of5) | Q3_K_L | 212.9 | | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.IQ4_XS.gguf.part1of5) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.IQ4_XS.gguf.part2of5) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.IQ4_XS.gguf.part3of5) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.IQ4_XS.gguf.part4of5) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.IQ4_XS.gguf.part5of5) | IQ4_XS | 218.7 | | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_S.gguf.part5of5) | Q4_K_S | 230.6 | fast, recommended | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q4_K_M.gguf.part5of5) | Q4_K_M | 243.2 | fast, recommended | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_S.gguf.part6of6) | Q5_K_S | 279.4 | | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_M.gguf.part1of6) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_M.gguf.part2of6) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_M.gguf.part3of6) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_M.gguf.part4of6) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_M.gguf.part5of6) [P6](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q5_K_M.gguf.part6of6) | Q5_K_M | 286.7 | | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part1of7) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part2of7) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part3of7) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part4of7) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part5of7) [P6](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part6of7) [P7](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q6_K.gguf.part7of7) | Q6_K | 333.0 | very good quality | | [P1](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part1of9) [P2](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part2of9) [P3](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part3of9) [P4](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part4of9) [P5](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part5of9) [P6](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part6of9) [P7](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part7of9) [P8](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part8of9) [P9](https://huggingface.co/mradermacher/cogito-v2-preview-llama-405B-GGUF/resolve/main/cogito-v2-preview-llama-405B.Q8_0.gguf.part9of9) | Q8_0 | 431.3 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Muapi/ps1-style-flux
Muapi
2025-08-19T15:11:21Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T15:11:09Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # PS1 Style Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ps1 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:648058@725031", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
2hpsatt/blockassist-bc-huge_deft_eagle_1755616186
2hpsatt
2025-08-19T15:10:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:10:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/3d_flux-style
Muapi
2025-08-19T15:07:43Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T15:07:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 3D_Flux Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: 3D01S , kawaii, anime ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:689478@771650", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Kurosawama/gemma-3-1b-it-Inference-align
Kurosawama
2025-08-19T15:04:40Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T15:04:35Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rbelanec/train_svamp_1755615499
rbelanec
2025-08-19T15:03:29Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-19T14:58:45Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_svamp_1755615499 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_1755615499 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.1893 - Num Input Tokens Seen: 705184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.7697 | 0.5 | 79 | 0.6681 | 35776 | | 0.5968 | 1.0 | 158 | 0.5173 | 70672 | | 0.1124 | 1.5 | 237 | 0.1794 | 105904 | | 0.132 | 2.0 | 316 | 0.1370 | 141328 | | 0.1259 | 2.5 | 395 | 0.1006 | 176752 | | 0.0482 | 3.0 | 474 | 0.0846 | 211808 | | 0.0378 | 3.5 | 553 | 0.1207 | 247104 | | 0.0761 | 4.0 | 632 | 0.0935 | 282048 | | 0.0108 | 4.5 | 711 | 0.1449 | 317248 | | 0.0208 | 5.0 | 790 | 0.1160 | 352592 | | 0.0152 | 5.5 | 869 | 0.1450 | 388176 | | 0.0132 | 6.0 | 948 | 0.1488 | 423184 | | 0.0151 | 6.5 | 1027 | 0.1474 | 458640 | | 0.0004 | 7.0 | 1106 | 0.1693 | 493440 | | 0.0006 | 7.5 | 1185 | 0.1817 | 528768 | | 0.0001 | 8.0 | 1264 | 0.1838 | 563872 | | 0.0 | 8.5 | 1343 | 0.1869 | 599232 | | 0.0002 | 9.0 | 1422 | 0.1876 | 634544 | | 0.0004 | 9.5 | 1501 | 0.1893 | 670064 | | 0.0001 | 10.0 | 1580 | 0.1893 | 705184 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
unitova/blockassist-bc-zealous_sneaky_raven_1755614105
unitova
2025-08-19T15:03:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:03:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/gigachad-flux1.d-sdxl
Muapi
2025-08-19T15:03:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T15:02:54Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Gigachad - Flux1.D & SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Gigachad is a muscular man ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:237712@786259", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
DurstewitzLab/dynamix-3d-v1.0
DurstewitzLab
2025-08-19T15:02:25Z
0
1
null
[ "dynamix", "time-series-forecasting", "dataset:williamgilpin/dysts", "arxiv:2505.13192", "license:mit", "region:us" ]
time-series-forecasting
2025-08-19T13:37:35Z
--- license: mit pipeline_tag: time-series-forecasting datasets: - williamgilpin/dysts --- # DynaMix-3D v1.0 DynaMix is a foundation model for zero-shot inference of dynamical systems that preserves long-term statistics. Unlike traditional approaches that require retraining for each new system, DynaMix generalizes across dynamical systems by learning universal representations that capture the underlying patterns governing temporal evolution. - **Accurate Zero-Shot DSR**: DynaMix generalizes across diverse dynamical systems without fine-tuning, accurately capturing attractor geometry and long-term statistics. - **Context Felxible Dynamics Modeling**: The multivariate architecture captures dependencies across system dimensions and adapts flexibly to different dimensionalities and context lengths. - **Efficient and Lightweight**: Designed to be efficient, DynaMix can run on CPU for inference, enabling orders-of-magnitude faster inference than traditional foundation models. - **Interpretable Dynamics**: Provides insights into the structure of reconstructed systems, revealing similarities across different dynamical systems. - **General Time Series Forecasting**: Extends beyond DSR to general time series forecasting using adaptable embedding techniques. The paper can be found here: [![arXiv](https://img.shields.io/badge/arXiv-2505.13192-b31b1b.svg)](https://arxiv.org/abs/2505.13192) ## Model Description DynaMix is based on a sparse mixture of experts (MoE) architecture operating in latent space: 1. **Expert Networks**: Each expert is a specialized dynamical model, given through Almost-Linear Recurrent Neural Networks 2. **Gating Network**: Selects experts based on the provided context and current latent representation of the dynamics By aggregating the expert weighting with the expert prediction $z_t^i$ the next state is predicted. The model is lightweight (~10K parameters), making it orders-of-magnitude faster than traditional approaches while maintaining high accuracy in reconstructing complex dynamics. ## Usage To procuce predictions the model inputs a **Context tensor** as numpy array of shape `(T_C, S, N)` (where `T_C` is the context length, `S` the number of sewuences that should get processed and `N` the data dimensionality). The output is provided as **Reconstruction tensor** of shape `(T, S, N)` (where `T` is the predictions length) To load the model in python use: ```python import torch # Load the model model = torch.load("dynamix-3d-v1.0.safetensors") ``` Inference using python is done via the prediction pieline: ```python import torch from src.model.model_utilities import DynaMix_forecasting_pipeline # Make prediction with torch.no_grad(): # No gradient tracking needed for inference reconstruction = DynaMix_forecasting_pipeline( model=model, context=context_tensor, T=prediction_length, preprocessing_method="delay_embedding", standardize=True, ) ``` The forecasting pipeline requires the following inputs: - *model*: DynaMix foundation model. Model can be loaded using the `load_model` function from `src.utilities.utilities`. - *context*: Context data in the form of a tensor with shape ($T_C$, $S$, $N$) - *T*: Forecast horizon, i.e. an integer specifying how many future steps to forecast Optional arguments: - *preprocessing_method*: for time series forecasting, choose between `pos_embedding`, `delay_embedding`, `delay_embedding_random` and `zero_embedding` as preprocessing method (default: `zero_embedding`) - *standardize*: standardize data? `True`/`False` (default: `False`) - *initial_x*: Optional initial condition for the model as tensor of shape ($S$, $N$), else last context value is used (default: `None`) ## Citation If you use DynaMix in your research, please cite our paper: ``` @misc{hemmer2025truezeroshotinferencedynamical, title={True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics}, author={Christoph Jürgen Hemmer and Daniel Durstewitz}, year={2025}, eprint={2505.13192}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2505.13192}, } ``` For complete documentation and code, visit the [GitHub repository](https://github.com/yourusername/zero-shot-DSR).
2hpsatt/blockassist-bc-huge_deft_eagle_1755615679
2hpsatt
2025-08-19T15:02:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge deft eagle", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:01:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge deft eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755614041
helmutsukocok
2025-08-19T15:01:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T15:01:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
climb-mao/spanish-babylm-urop-shivan
climb-mao
2025-08-19T15:01:31Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T11:07:13Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: spanish-babylm-urop-shivan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanish-babylm-urop-shivan This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.4505 | 1.0 | 2267 | 4.0353 | | 3.8921 | 2.0 | 4534 | 3.7753 | | 3.7193 | 3.0 | 6801 | 3.6895 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0.dev20250610+cu118 - Datasets 4.0.0 - Tokenizers 0.21.4
kiethuynhanh/gemma-3-1b-it-unsloth-bnb-4bit-legal-vn
kiethuynhanh
2025-08-19T15:01:12Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T14:57:37Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** kiethuynhanh - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
WenFengg/21_14l1_19_8_
WenFengg
2025-08-19T14:59:23Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T14:42:18Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Bczerw/katex
Bczerw
2025-08-19T14:58:29Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-11T14:53:55Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Katex <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/Bczerw/katex/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Bczerw/katex', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Bczerw/katex/discussions) to add images that show off what you’ve made with this LoRA.
yaelahnal/blockassist-bc-mute_clawed_crab_1755615403
yaelahnal
2025-08-19T14:57:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T14:57:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
michaelcpage345/blockassist-bc-miniature_deadly_anteater_1755613952
michaelcpage345
2025-08-19T14:57:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature deadly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T14:57:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature deadly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/imax-70mm-cinematic-film-style-f1d-xl-sd1.5
Muapi
2025-08-19T14:57:36Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T14:57:27Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # IMAX 70mm cinematic film style F1D + XL + SD1.5 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: cinematic film style, IMAX70mm , filmstrip border ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1249970@1409079", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
fengpeisheng1/mergekit-slerp-zhlbqbl
fengpeisheng1
2025-08-19T14:57:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:fengpeisheng1/mergekit-slerp-ariyvyf", "base_model:merge:fengpeisheng1/mergekit-slerp-ariyvyf", "base_model:maywell/Qwen2-7B-Multilingual-RP", "base_model:merge:maywell/Qwen2-7B-Multilingual-RP", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T14:51:11Z
--- base_model: - maywell/Qwen2-7B-Multilingual-RP - fengpeisheng1/mergekit-slerp-ariyvyf library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [maywell/Qwen2-7B-Multilingual-RP](https://huggingface.co/maywell/Qwen2-7B-Multilingual-RP) * [fengpeisheng1/mergekit-slerp-ariyvyf](https://huggingface.co/fengpeisheng1/mergekit-slerp-ariyvyf) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: maywell/Qwen2-7B-Multilingual-RP layer_range: [0,28] - model: fengpeisheng1/mergekit-slerp-ariyvyf layer_range: [0,28] merge_method: slerp base_model: maywell/Qwen2-7B-Multilingual-RP parameters: t: - filter: self_attn value: [0, 0.3, 0.5, 0.7, 1] - filter: mlp value: [1, 0.7, 0.5, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF
tensorblock
2025-08-19T14:57:30Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "image-text-to-text", "base_model:mlabonne/gemma-3-12b-it-qat-abliterated", "base_model:quantized:mlabonne/gemma-3-12b-it-qat-abliterated", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-19T12:47:25Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text base_model: mlabonne/gemma-3-12b-it-qat-abliterated tags: - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlabonne/gemma-3-12b-it-qat-abliterated - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building ↗ </a> </div> This repo contains GGUF format model files for [mlabonne/gemma-3-12b-it-qat-abliterated](https://huggingface.co/mlabonne/gemma-3-12b-it-qat-abliterated). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">🚀 Try it now! 🚀</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> </tr> </table> ## Prompt template ``` <bos><start_of_turn>user {system_prompt} {prompt}<end_of_turn> <start_of_turn>model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-3-12b-it-qat-abliterated-Q2_K.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q2_K.gguf) | Q2_K | 4.768 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-3-12b-it-qat-abliterated-Q3_K_S.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q3_K_S.gguf) | Q3_K_S | 5.458 GB | very small, high quality loss | | [gemma-3-12b-it-qat-abliterated-Q3_K_M.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q3_K_M.gguf) | Q3_K_M | 6.009 GB | very small, high quality loss | | [gemma-3-12b-it-qat-abliterated-Q3_K_L.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q3_K_L.gguf) | Q3_K_L | 6.480 GB | small, substantial quality loss | | [gemma-3-12b-it-qat-abliterated-Q4_0.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q4_0.gguf) | Q4_0 | 6.887 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-3-12b-it-qat-abliterated-Q4_K_S.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q4_K_S.gguf) | Q4_K_S | 6.935 GB | small, greater quality loss | | [gemma-3-12b-it-qat-abliterated-Q4_K_M.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q4_K_M.gguf) | Q4_K_M | 7.301 GB | medium, balanced quality - recommended | | [gemma-3-12b-it-qat-abliterated-Q5_0.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q5_0.gguf) | Q5_0 | 8.232 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-3-12b-it-qat-abliterated-Q5_K_S.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q5_K_S.gguf) | Q5_K_S | 8.232 GB | large, low quality loss - recommended | | [gemma-3-12b-it-qat-abliterated-Q5_K_M.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q5_K_M.gguf) | Q5_K_M | 8.445 GB | large, very low quality loss - recommended | | [gemma-3-12b-it-qat-abliterated-Q6_K.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q6_K.gguf) | Q6_K | 9.661 GB | very large, extremely low quality loss | | [gemma-3-12b-it-qat-abliterated-Q8_0.gguf](https://huggingface.co/tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF/blob/main/gemma-3-12b-it-qat-abliterated-Q8_0.gguf) | Q8_0 | 12.510 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF --include "gemma-3-12b-it-qat-abliterated-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mlabonne_gemma-3-12b-it-qat-abliterated-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755615379
Vasya777
2025-08-19T14:57:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T14:56:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/tifa-lockhart-ffviir
Muapi
2025-08-19T14:56:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T14:55:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Tifa Lockhart (FFVIIR) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: TifaLockhart, croptop, skirt, suspenders, fingerless gloves ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:661363@740105", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
pasithbas159/Typhoon2_HII_satellite_v2
pasithbas159
2025-08-19T14:55:57Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-05T17:59:19Z
--- base_model: pasithbas/typhoon2-qwen2vl-7b-vision-instruct tags: - text-generation-inference - transformers - unsloth - qwen2_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** pasithbas159 - **License:** apache-2.0 - **Finetuned from model :** pasithbas/typhoon2-qwen2vl-7b-vision-instruct This qwen2_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
matheoqtb/EuroBertV2180M_pairs
matheoqtb
2025-08-19T14:55:16Z
0
0
null
[ "safetensors", "eurobert", "custom_code", "region:us" ]
null
2025-08-19T14:55:03Z
# Checkpoint exporté: 180M_pairs Ce dépôt contient un checkpoint extrait de `matheoqtb/euroBertV2_test2` (sous-dossier `180M_pairs`) et les fichiers de code nécessaires provenant de `EuroBERT/EuroBERT-610m`. Chargement: from transformers import AutoTokenizer, AutoModel tok = AutoTokenizer.from_pretrained('<THIS_REPO>', trust_remote_code=True) mdl = AutoModel.from_pretrained('<THIS_REPO>', trust_remote_code=True) Tâche: feature-extraction (embeddings)