modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-13 06:30:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 556
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-13 06:27:56
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
aleebaster/blockassist-bc-sly_eager_boar_1755678942
|
aleebaster
| 2025-08-20T09:01:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sly eager boar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T09:01:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sly eager boar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Rubicon-Preview-i1-GGUF
|
mradermacher
| 2025-08-20T09:00:58Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:inclusionAI/Rubicon-Preview",
"base_model:quantized:inclusionAI/Rubicon-Preview",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-20T04:05:45Z |
---
base_model: inclusionAI/Rubicon-Preview
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/inclusionAI/Rubicon-Preview
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Rubicon-Preview-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Rubicon-Preview-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.imatrix.gguf) | imatrix | 0.2 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ1_S.gguf) | i1-IQ1_S | 6.5 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ1_M.gguf) | i1-IQ1_M | 7.2 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ2_XS.gguf) | i1-IQ2_XS | 9.2 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ2_S.gguf) | i1-IQ2_S | 9.4 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ2_M.gguf) | i1-IQ2_M | 10.3 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q2_K_S.gguf) | i1-Q2_K_S | 10.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q2_K.gguf) | i1-Q2_K | 11.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 11.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ3_XS.gguf) | i1-IQ3_XS | 12.7 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q3_K_S.gguf) | i1-Q3_K_S | 13.4 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ3_S.gguf) | i1-IQ3_S | 13.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ3_M.gguf) | i1-IQ3_M | 13.6 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q3_K_M.gguf) | i1-Q3_K_M | 14.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q3_K_L.gguf) | i1-Q3_K_L | 16.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-IQ4_XS.gguf) | i1-IQ4_XS | 16.5 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q4_0.gguf) | i1-Q4_0 | 17.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q4_K_S.gguf) | i1-Q4_K_S | 17.6 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q4_K_M.gguf) | i1-Q4_K_M | 18.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q4_1.gguf) | i1-Q4_1 | 19.3 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q5_K_S.gguf) | i1-Q5_K_S | 21.2 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q5_K_M.gguf) | i1-Q5_K_M | 21.8 | |
| [GGUF](https://huggingface.co/mradermacher/Rubicon-Preview-i1-GGUF/resolve/main/Rubicon-Preview.i1-Q6_K.gguf) | i1-Q6_K | 25.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
aralper18/blockassist-bc-gilded_tangled_albatross_1755680287
|
aralper18
| 2025-08-20T08:58:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gilded tangled albatross",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:58:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gilded tangled albatross
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1755680202
|
liukevin666
| 2025-08-20T08:58:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:57:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dongjuu/gemma-3-12b-it-Rude-LORA
|
dongjuu
| 2025-08-20T08:56:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T08:56:48Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755678475
|
katanyasekolah
| 2025-08-20T08:56:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:56:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
prithivMLmods/SimpleChat-4B-V1-f32-GGUF
|
prithivMLmods
| 2025-08-20T08:55:56Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"qwen3",
"text-generation-inference",
"Non-CoT",
"text-generation",
"en",
"base_model:OpenBuddy/SimpleChat-4B-V1",
"base_model:quantized:OpenBuddy/SimpleChat-4B-V1",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-08-20T06:00:32Z |
---
license: apache-2.0
language:
- en
base_model:
- OpenBuddy/SimpleChat-4B-V1
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- Non-CoT
---
# **SimpleChat-4B-V1-f32-GGUF**
> OpenBuddy’s SimpleChat-4B-V1 is a 4B-parameter conversational AI model built for streamlined, casual everyday interactions, emphasizing concise, rational, and creative responses without relying on complex chain-of-thought reasoning. Optimized for natural dialogue, SimpleChat-4B-V1 is part of the SimpleChat series exploring Non-Chain-of-Thought (Non-CoT) models, making it especially suitable for direct, engaging conversations that prioritize clarity and brevity while retaining the ability to enhance creativity and expressive capacity in outputs.
## Model Files
| File Name | Quant Type | File Size |
| - | - | - |
| SimpleChat-4B-V1.BF16.gguf | BF16 | 8.05 GB |
| SimpleChat-4B-V1.F16.gguf | F16 | 8.05 GB |
| SimpleChat-4B-V1.F32.gguf | F32 | 16.1 GB |
| SimpleChat-4B-V1.Q2_K.gguf | Q2_K | 1.67 GB |
| SimpleChat-4B-V1.Q3_K_L.gguf | Q3_K_L | 2.24 GB |
| SimpleChat-4B-V1.Q3_K_M.gguf | Q3_K_M | 2.08 GB |
| SimpleChat-4B-V1.Q3_K_S.gguf | Q3_K_S | 1.89 GB |
| SimpleChat-4B-V1.Q4_K_M.gguf | Q4_K_M | 2.5 GB |
| SimpleChat-4B-V1.Q4_K_S.gguf | Q4_K_S | 2.38 GB |
| SimpleChat-4B-V1.Q5_K_M.gguf | Q5_K_M | 2.89 GB |
| SimpleChat-4B-V1.Q5_K_S.gguf | Q5_K_S | 2.82 GB |
| SimpleChat-4B-V1.Q6_K.gguf | Q6_K | 3.31 GB |
| SimpleChat-4B-V1.Q8_0.gguf | Q8_0 | 4.28 GB |
## Quants Usage
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755678400
|
kojeklollipop
| 2025-08-20T08:55:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:55:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
LSummer/my_awesome_video_cls_model
|
LSummer
| 2025-08-20T08:54:22Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2025-08-20T08:54:03Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
model-index:
- name: my_awesome_video_cls_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_video_cls_model
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 300
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755678318
|
vwzyrraz7l
| 2025-08-20T08:54:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:54:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755678244
|
manusiaperahu2012
| 2025-08-20T08:52:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:52:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1755678290
|
koloni
| 2025-08-20T08:51:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:50:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
indoempatnol/blockassist-bc-fishy_wary_swan_1755678078
|
indoempatnol
| 2025-08-20T08:48:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy wary swan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:48:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy wary swan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
18-Arovi-Nusrat-Ridhi-Viral-Video-links/New.full.videos.Arovi.Nusrat.Ridhi.Viral.Video.Official.Tutorial
|
18-Arovi-Nusrat-Ridhi-Viral-Video-links
| 2025-08-20T08:45:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:45:20Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1755679191
|
liukevin666
| 2025-08-20T08:43:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:41:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
goodragon/gemma-3-12b-it-Rude-LORA
|
goodragon
| 2025-08-20T08:43:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T08:42:54Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Donchocho/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-graceful_tricky_dolphin
|
Donchocho
| 2025-08-20T08:41:05Z | 106 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am graceful_tricky_dolphin",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-23T09:20:04Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am graceful_tricky_dolphin
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755677562
|
sampingkaca72
| 2025-08-20T08:38:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:38:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755679016
|
yaelahnal
| 2025-08-20T08:38:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:37:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-19-Nayeon-Sana-viral-video-Clips/New.full.videos.Nayeon.Sana.Viral.Video.Official.Tutorial
|
VIDEOS-19-Nayeon-Sana-viral-video-Clips
| 2025-08-20T08:37:28Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:37:16Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
lostinjamal/053c182c-e9ca-420e-b9fd-22199c23b1cb
|
lostinjamal
| 2025-08-20T08:37:25Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:unsloth/smollm-1.7b-bnb-4bit",
"lora",
"sft",
"transformers",
"trl",
"unsloth",
"text-generation",
"arxiv:1910.09700",
"region:us"
] |
text-generation
| 2025-08-20T08:37:12Z |
---
base_model: unsloth/smollm-1.7b-bnb-4bit
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:unsloth/smollm-1.7b-bnb-4bit
- lora
- sft
- transformers
- trl
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755677398
|
ihsanridzi
| 2025-08-20T08:36:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:36:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sdagsadgd/blockassist-bc-sedate_squeaky_salamander_1755675680
|
sdagsadgd
| 2025-08-20T08:35:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sedate squeaky salamander",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:35:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sedate squeaky salamander
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-19-Kim-Mariya-Viral-Video-Clips/New.full.videos.Kim.Mariya.Viral.Video.Official.Tutorial
|
VIDEOS-19-Kim-Mariya-Viral-Video-Clips
| 2025-08-20T08:34:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:34:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755677742
|
Sayemahsjn
| 2025-08-20T08:34:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"playful feline octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:34:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- playful feline octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kongleehan/my_awesome_video_cls_model
|
kongleehan
| 2025-08-20T08:34:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2025-08-20T08:34:14Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_video_cls_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_video_cls_model
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2957
- Accuracy: 0.9143
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0926 | 0.25 | 300 | 1.9448 | 0.3286 |
| 0.2963 | 1.25 | 600 | 0.7159 | 0.7429 |
| 0.0149 | 2.25 | 900 | 0.5006 | 0.8571 |
| 0.0027 | 3.25 | 1200 | 0.2957 | 0.9143 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
AmirRghp/distilbert-base-uncasedimdb-text-classification
|
AmirRghp
| 2025-08-20T08:33:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"code",
"movie",
"en",
"dataset:shawhin/imdb-truncated",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-18T12:38:24Z |
---
library_name: transformers
tags:
- code
- movie
license: mit
datasets:
- shawhin/imdb-truncated
language:
- en
metrics:
- accuracy
- f1
- precision
- recall
- confusion_matrix
base_model:
- distilbert/distilbert-base-uncased
pipeline_tag: text-classification
---
# Model Card for IMDB Movie Review Classifier
This model is built for classifying movie reviews from the IMDB dataset into positive or negative categories. It uses the Hugging Face's `DistilBERT` model, a lighter version of BERT, for text classification tasks.
## Model Details
### Model Description
This model is fine-tuned for binary classification, trained on the IMDb dataset, and can predict whether a given review is positive or negative. It utilizes the `distilbert-base-uncased` model, a pre-trained transformer-based architecture.
- **Developed by:** Amirreza Gholipour
- **Funded by:** Amirreza Gholipour
- **Model type:** Transformer-based Text Classifier
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** distilbert-base-uncased
## Uses
### Direct Use
This model can be used directly for classifying movie reviews. Given an IMDB review, the model will return a sentiment classification: positive or negative. The input text is tokenized, passed through the `DistilBERT` model, and the output is processed to classify the review sentiment.
### Downstream Use [optional]
The model can be fine-tuned further on other similar datasets to specialize it for different domains, such as classifying product reviews, news sentiment, or other text-based sentiment analysis tasks.
### Out-of-Scope Use
This model is not intended for use in detecting sarcasm, irony, or more nuanced sentiment expressions that require deeper contextual understanding. It may not perform well on non-English reviews.
## Bias, Risks, and Limitations
The model is trained on the IMDb dataset, which may introduce bias due to the nature of the content of movie reviews. It might not generalize well to domains outside of movie review sentiment classification. The dataset could be biased in terms of the types of movies reviewed (e.g., biased toward Hollywood blockbusters).
### Recommendations
Users should ensure they are aware of potential biases in the training data. The model should not be relied on for applications requiring high accuracy in specialized domains or nuanced text understanding.
## How to Get Started with the Model
```python
from transformers import pipeline
# Load the pre-trained model
classifier = pipeline('text-classification', model='AmirRghp/distilbert-base-uncasedimdb-text-classification')
# Classify a sample text
text = "The movie was absolutely amazing and I loved every minute of it!"
result = classifier(text)
print(result)
```
## Training Details
### Training Data
The model was trained on the IMDb dataset, a collection of 50,000 movie reviews categorized as either positive or negative.
- Dataset: IMDb dataset
- Number of samples: 50,000
- Categories: Positive, Negative
- Data Preprocessing: Tokenization and padding were applied to the raw text data to ensure compatibility with the DistilBERT model.
### Training Procedure
#### Preprocessing [optional]
The text data is tokenized using the DistilBERT tokenizer.
#### Training Hyperparameters
- Learning rate: 2e-5
- Batch size: 4
- Epochs: 5
#### Speeds, Sizes, Times [optional]
Training was conducted on a GPU with the following specifications:
- Hardware Type: Nvidia RTX 5060 TI
- Training Time: 5 Min
## Evaluation
The model was evaluated on accuracy, F1 score, precision, recall, and confusion matrix metrics. Here are the key evaluation results:
- Accuracy: 89.2%
- F1 Score: 0.89
- Precision: 0.88
- Recall: 0.90
#### Summary
The model performs well on the IMDb dataset, with a high accuracy rate and strong performance across other metrics. It’s ready for use in practical sentiment analysis tasks.
## Technical Specifications [optional]
### Model Architecture and Objective
The model is based on the DistilBERT architecture, which is a smaller and faster variant of the BERT model, designed to provide similar performance with fewer parameters.
- Architecture: Transformer-based encoder-decoder model
- Objective: Binary classification of text (positive or negative sentiment)
### Compute Infrastructure
- Hardware: Nvidia RTX 5060 TI
- Libraries: Hugging Face Transformers, PyTorch
## More Information [optional]
For more details on the model architecture and training, please refer to the Hugging Face documentation
## Model Card Authors [optional]
- Author: Amirreza Gholipour
- Contact: [](https://www.linkedin.com/in/amirreza-gholipour-11a05a323/)
|
Sunbird/qwen3-14b-ug40-sft-translation-plus-multilingual-tasks-merged
|
Sunbird
| 2025-08-20T08:32:27Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T08:15:06Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bimabk/053c182c-e9ca-420e-b9fd-22199c23b1cb
|
bimabk
| 2025-08-20T08:32:26Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:unsloth/smollm-1.7b-bnb-4bit",
"lora",
"sft",
"transformers",
"trl",
"unsloth",
"text-generation",
"arxiv:1910.09700",
"region:us"
] |
text-generation
| 2025-08-20T08:32:20Z |
---
base_model: unsloth/smollm-1.7b-bnb-4bit
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:unsloth/smollm-1.7b-bnb-4bit
- lora
- sft
- transformers
- trl
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
Milica-y-Angel-David/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
|
Milica-y-Angel-David
| 2025-08-20T08:32:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:31:49Z |
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a>
<a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
vuitton/LouisVuitton_model5
|
vuitton
| 2025-08-20T08:30:43Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T08:24:45Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
jo-mengr/geneformer-fork
|
jo-mengr
| 2025-08-20T08:30:21Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T08:30:21Z |
---
license: apache-2.0
---
|
BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm
|
BootesVoid
| 2025-08-20T08:29:07Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-20T08:29:05Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: G3RMNGRL
---
# Cm8Tb7Xkk0000Wzj24Pkk2M5G_Cmejoukqo0U4Jrts8H12D5Rpm
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `G3RMNGRL` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "G3RMNGRL",
"lora_weights": "https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm', weight_name='lora.safetensors')
image = pipeline('G3RMNGRL').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm/discussions) to add images that show off what you’ve made with this LoRA.
|
sehun96/gemma-3-12b-it-Rude-LORA
|
sehun96
| 2025-08-20T08:28:42Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T08:28:36Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Official-Archita-Phukan-first-film-video/Archita.Phukan.first.film.video.Clip
|
Official-Archita-Phukan-first-film-video
| 2025-08-20T08:28:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:27:52Z |
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a>
<a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
playdatakoo/omar-ax-lora-skt-4.0
|
playdatakoo
| 2025-08-20T08:27:02Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"lora",
"skt",
"korean",
"ax",
"ko",
"base_model:skt/A.X-4.0-Light",
"base_model:adapter:skt/A.X-4.0-Light",
"region:us"
] | null | 2025-08-20T08:26:41Z |
---
base_model: skt/A.X-4.0-Light
tags:
- lora
- peft
- skt
- korean
- ax
language:
- ko
library_name: peft
---
# Omar AX LoRA Adapter for SKT A.X-4.0-Light
This is a LoRA adapter fine-tuned for the Korean language model.
## Model Details
- **Base Model**: [skt/A.X-4.0-Light](https://huggingface.co/skt/A.X-4.0-Light)
- **LoRA Rank**: 24
- **LoRA Alpha**: 12
- **LoRA Dropout**: 0.1
- **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- **Task Type**: CAUSAL_LM
## Usage with vLLM
INFO 08-20 08:26:21 [__init__.py:241] Automatically detected platform cuda.
[1;36m(APIServer pid=15975)[0;0m INFO 08-20 08:26:24 [api_server.py:1805] vLLM API server version 0.10.1
[1;36m(APIServer pid=15975)[0;0m INFO 08-20 08:26:24 [utils.py:326] non-default args: {'model_tag': 'skt/A.X-4.0-Light', 'lora_modules': [LoRAModulePath(name='omar_ax', path='playdatakoo/omar-ax-lora-skt-4.0', base_model_name=None)], 'model': 'skt/A.X-4.0-Light', 'enable_lora': True}
[1;36m(APIServer pid=15975)[0;0m INFO 08-20 08:26:30 [__init__.py:711] Resolved architecture: Qwen2ForCausalLM
[1;36m(APIServer pid=15975)[0;0m INFO 08-20 08:26:30 [__init__.py:1750] Using max model len 16384
[1;36m(APIServer pid=15975)[0;0m INFO 08-20 08:26:31 [scheduler.py:222] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 08-20 08:26:36 [__init__.py:241] Automatically detected platform cuda.
[1;36m(EngineCore_0 pid=16412)[0;0m INFO 08-20 08:26:37 [core.py:636] Waiting for init message from front-end.
[1;36m(EngineCore_0 pid=16412)[0;0m INFO 08-20 08:26:37 [core.py:74] Initializing a V1 LLM engine (v0.10.1) with config: model='skt/A.X-4.0-Light', speculative_config=None, tokenizer='skt/A.X-4.0-Light', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=16384, download_dir=None, load_format=auto, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=skt/A.X-4.0-Light, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, pooler_config=None, compilation_config={"level":3,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":[],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output","vllm.mamba_mixer2"],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"cudagraph_mode":1,"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"pass_config":{},"max_capture_size":512,"local_cache_dir":null}
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] EngineCore failed to start.
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] Traceback (most recent call last):
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core.py", line 691, in run_engine_core
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] engine_core = EngineCoreProc(*args, **kwargs)
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core.py", line 492, in __init__
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] super().__init__(vllm_config, executor_class, log_stats,
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/v1/engine/core.py", line 80, in __init__
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] self.model_executor = executor_class(vllm_config)
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/executor/executor_base.py", line 54, in __init__
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] self._init_executor()
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/executor/uniproc_executor.py", line 48, in _init_executor
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] self.collective_rpc("init_device")
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/executor/uniproc_executor.py", line 58, in collective_rpc
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] answer = run_method(self.driver_worker, method, args, kwargs)
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/utils/__init__.py", line 3007, in run_method
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] return func(*args, **kwargs)
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] ^^^^^^^^^^^^^^^^^^^^^
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/worker/worker_base.py", line 603, in init_device
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] self.worker.init_device() # type: ignore
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] ^^^^^^^^^^^^^^^^^^^^^^^^^
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] File "/usr/local/lib/python3.11/dist-packages/vllm/v1/worker/gpu_worker.py", line 179, in init_device
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] raise ValueError(
[1;36m(EngineCore_0 pid=16412)[0;0m ERROR 08-20 08:26:38 [core.py:700] ValueError: Free memory on device (2.96/44.34 GiB) on startup is less than desired GPU memory utilization (0.9, 39.91 GiB). Decrease GPU memory utilization or reduce GPU memory used by other processes.
### API Usage
## Usage with PEFT
## Performance
- **Hot-swap Speed**: 0.18s (switching between base and LoRA)
- **GPU Memory**: ~14.8 GiB
- **Inference Speed**: 0.18-0.19s per request after warmup
## Files
- : LoRA configuration
- : LoRA weights (SafeTensors format)
- Tokenizer files included for convenience
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755676741
|
quantumxnode
| 2025-08-20T08:25:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:25:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Abigail-video-viral-original/New.full.videos.Abigail.Viral.Video.Official.Tutorial
|
Abigail-video-viral-original
| 2025-08-20T08:24:44Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:23:27Z |
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://the-amarican-dream.blogspot.com/2025/08/han-ty.html)
[►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️ ](https://the-amarican-dream.blogspot.com/2025/08/han-ty.html)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://the-amarican-dream.blogspot.com/2025/08/han-ty.html)
|
thomasht86/Qwen3-Embedding-0.6B-ONNX-Vespa
|
thomasht86
| 2025-08-20T08:24:19Z | 0 | 0 | null |
[
"onnx",
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T08:19:41Z |
---
license: apache-2.0
---
|
Archita-Phukan-Viral-full-Video-hq/New.full.Videos.Archita.Phukan.Viral.Video.New.MMS.Original
|
Archita-Phukan-Viral-full-Video-hq
| 2025-08-20T08:23:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:23:36Z |
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a>
<a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
evanurasyifa-Official-video-Clip/New.full.videos.evanurasyifa.Viral.Video.Official.Tutorial
|
evanurasyifa-Official-video-Clip
| 2025-08-20T08:23:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:22:50Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
evanurasyifa-Official-video-Clip/New.full.videos.Bindura.University.Viral.Video.Official.Tutorial
|
evanurasyifa-Official-video-Clip
| 2025-08-20T08:21:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:21:37Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755676496
|
mang3dd
| 2025-08-20T08:20:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:20:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
18-Clip-Sophie-Rain-Viral-video-original/New.full.videos.Sophie.Rain.Spiderman.Viral.Video.Official.Tutorial
|
18-Clip-Sophie-Rain-Viral-video-original
| 2025-08-20T08:20:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:20:45Z |
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a>
<a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
koloni/blockassist-bc-deadly_graceful_stingray_1755676489
|
koloni
| 2025-08-20T08:20:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:20:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Medved444/blockassist-bc-bellowing_finicky_manatee_1755676845
|
Medved444
| 2025-08-20T08:19:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bellowing finicky manatee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:19:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bellowing finicky manatee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755676360
|
kojeklollipop
| 2025-08-20T08:18:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:18:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Uppal-Farm-Girl-Viral-Video-Link-Orginal/New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
|
Uppal-Farm-Girl-Viral-Video-Link-Orginal
| 2025-08-20T08:18:45Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:18:37Z |
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a>
<a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755676082
|
vwzyrraz7l
| 2025-08-20T08:17:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:17:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-19-afrin-apu-viral-links/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
|
VIDEOS-19-afrin-apu-viral-links
| 2025-08-20T08:17:20Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:17:03Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
VIDEOS-19-fooni-fun-Viral-Video-Clip-XX/New.full.videos.fooni.fun.Viral.Video.Official.Tutorial
|
VIDEOS-19-fooni-fun-Viral-Video-Clip-XX
| 2025-08-20T08:16:18Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:16:11Z |
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a>
<a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a>
<a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755676003
|
manusiaperahu2012
| 2025-08-20T08:16:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:16:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755676050
|
unitova
| 2025-08-20T08:15:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:15:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
armonio/my-bert-fine-tuned1
|
armonio
| 2025-08-20T08:15:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T08:15:30Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Orginal-afrin-apu-viral-video-link/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
|
Orginal-afrin-apu-viral-video-link
| 2025-08-20T08:15:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:15:25Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
coppertoy/blockassist-bc-dappled_purring_bobcat_1755677667
|
coppertoy
| 2025-08-20T08:14:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dappled purring bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:14:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dappled purring bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
TonevitItaly/TonevitItaly
|
TonevitItaly
| 2025-08-20T08:14:28Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T08:13:40Z |
---
license: apache-2.0
---
Cos'è Tonevit?
Tonevit Capsula è una capsula per l'ipertensione progettata per aiutare a mantenere livelli di pressione sanguigna sani in modo sicuro ed efficace. È sviluppata per le persone che desiderano prendersi cura della propria salute cardiovascolare riducendo al contempo i rischi legati all'ipertensione. A differenza dei trattamenti chimici intensivi che a volte possono avere effetti collaterali, Tonevit Pillole è formulato per agire delicatamente sull'organismo, rendendolo una scelta affidabile per l'uso quotidiano. Offre un supporto a lungo termine per le persone che desiderano bilanciare la pressione sanguigna e proteggere la salute del cuore in modo naturale.
Sito ufficiale:<a href="https://www.nutritionsee.com/tonevitaly">www.Tonevit.com</a>
<p><a href="https://www.nutritionsee.com/tonevitaly"> <img src="https://www.nutritionsee.com/wp-content/uploads/2025/08/Tonevit-Italy.png" alt="enter image description here"> </a></p>
<a href="https://www.nutritionsee.com/tonevitaly">Acquista ora!! Clicca sul link qui sotto per maggiori informazioni e ottieni subito il 50% di sconto... Affrettati</a>
Sito ufficiale:<a href="https://www.nutritionsee.com/tonevitaly">www.Tonevit.com</a>
|
Danisalah/Homefixsolutions
|
Danisalah
| 2025-08-20T08:13:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T07:52:25Z |
import React, { useState, useEffect } from 'react';
import { View, Text, TouchableOpacity, StyleSheet, Linking, Image } from 'react-native';
export default function App() {
const [showMain, setShowMain] = useState(false);
useEffect(() => {
// Splash Screen مدة 2 ثانية
const timer = setTimeout(() => {
setShowMain(true);
}, 2000);
return () => clearTimeout(timer);
}, []);
const openWhatsApp = () => {
Linking.openURL('https://wa.me/213666061838');
};
const sendEmail = () => {
Linking.openURL('mailto:Dendanisalah30@gmail.com');
};
const openPayPal = () => {
Linking.openURL('https://www.paypal.com/paypalme/dendanisalah30/5');
};
if (!showMain) {
// Splash Screen
return (
<View style={styles.splash}>
<Text style={styles.splashText}>Home Fix Solutions</Text>
<Image
source={{ uri: 'https://i.postimg.cc/Fzf9X6d6/homefix-icon.png' }}
style={styles.logo}
/>
</View>
);
}
// Main Screen
return (
<View style={styles.container}>
<TouchableOpacity style={styles.mainButton} onPress={() => setShowMain('buttons')}>
<Text style={styles.mainButtonText}>Start Now</Text>
</TouchableOpacity>
{showMain === 'buttons' && (
<View style={styles.buttonContainer}>
<TouchableOpacity style={styles.button} onPress={openWhatsApp}>
<Text style={styles.buttonText}>WhatsApp 🟢</Text>
</TouchableOpacity>
<TouchableOpacity style={styles.button} onPress={sendEmail}>
<Text style={styles.buttonText}>Email ✉️</Text>
</TouchableOpacity>
<TouchableOpacity style={styles.button} onPress={openPayPal}>
<Text style={styles.buttonText}>PayPal 💳</Text>
</TouchableOpacity>
</View>
)}
</View>
);
}
const styles = StyleSheet.create({
splash: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
backgroundColor: '#007bff',
},
splashText: {
fontSize: 28,
fontWeight: 'bold',
color: '#fff',
marginBottom: 20,
},
logo: {
width: 100,
height: 100,
},
container: {
flex: 1,
justifyContent: 'center',
alignItems: 'center',
backgroundColor: '#f2f2f2',
padding: 20,
},
mainButton: {
backgroundColor: '#007bff',
padding: 20,
borderRadius: 15,
width: '70%',
alignItems: 'center',
},
mainButtonText: {
color: '#fff',
fontSize: 22,
fontWeight: 'bold',
},
buttonContainer: {
marginTop: 30,
width: '80%',
},
button: {
backgroundColor: '#007bff',
padding: 15,
borderRadius: 12,
marginBottom: 15,
alignItems: 'center',
},
buttonText: {
color: '#fff',
fontSize: 18,
fontWeight: 'bold',
},
});
|
AnerYubo/blockassist-bc-dense_savage_lynx_1755677585
|
AnerYubo
| 2025-08-20T08:13:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dense savage lynx",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:13:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dense savage lynx
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-18-Sister-Hong-viral-Telegram/New.full.videos.Sister.Hong.Viral.Video.Official.Tutorial
|
VIDEOS-18-Sister-Hong-viral-Telegram
| 2025-08-20T08:12:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:12:24Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
ChavyvAkvar/Liquid-Thinking
|
ChavyvAkvar
| 2025-08-20T08:12:20Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"lfm2",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T16:28:34Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
clairedhx/mistral7b-labels2codes-lora
|
clairedhx
| 2025-08-20T08:12:07Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3",
"lora",
"sft",
"transformers",
"trl",
"text-generation",
"conversational",
"base_model:mistralai/Mistral-7B-Instruct-v0.3",
"region:us"
] |
text-generation
| 2025-08-20T07:57:35Z |
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
library_name: peft
model_name: mistral7b_labels2codes_lora
tags:
- base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3
- lora
- sft
- transformers
- trl
licence: license
pipeline_tag: text-generation
---
# Model Card for mistral7b_labels2codes_lora
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
It has been trained using [TRL](https://github.com/huggingface/trl).
Mistral-7B Instruct — LoRA (ICD-10 labels → codes)
This LoRA adapter fine-tunes mistralai/Mistral-7B-Instruct-v0.3 to map French ICD-10 diagnostic labels (synonyms) to their corresponding codes (dot-less, up to 5 chars).
## Quick start
```python
from transformers import pipeline
question = "Libellé: Antécédent bronchite chronique"
generator = pipeline("text-generation", model="None", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
It was trained via supervised fine-tuning (QLoRA) on an instruction dataset built from (label, code) pairs (instruct_labels2codes) derived from a curated ICD-10 synonyms table created from the webscrapinng of aideaucodage.fr .
### Framework versions
- PEFT 0.17.0
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.7.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
AnerYubo/blockassist-bc-fishy_endangered_antelope_1755677506
|
AnerYubo
| 2025-08-20T08:11:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy endangered antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:11:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy endangered antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755675981
|
calegpedia
| 2025-08-20T08:11:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:11:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
New-Clip-prabh-viral-video-Orginal/New.full.videos.prabh.Viral.Video.Official.Tutorial
|
New-Clip-prabh-viral-video-Orginal
| 2025-08-20T08:08:10Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T08:07:58Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
jakehsv/blockassist-bc-flexible_waddling_peacock_1755675452
|
jakehsv
| 2025-08-20T08:07:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flexible waddling peacock",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:07:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flexible waddling peacock
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jayssaa/my_awesome_video_cls_model
|
jayssaa
| 2025-08-20T08:07:30Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2025-08-20T08:06:45Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_video_cls_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_video_cls_model
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2870
- Accuracy: 0.4857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2211 | 1.0 | 300 | 1.2870 | 0.4857 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755675560
|
helmutsukocok
| 2025-08-20T08:07:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:07:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zzyyuu/distilbert-base-uncased-finetuned-imdb
|
zzyyuu
| 2025-08-20T08:06:33Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2025-08-20T07:47:21Z |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4892
- Model Preparation Time: 0.0016
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|
| 2.6814 | 1.0 | 157 | 2.4929 | 0.0016 |
| 2.5825 | 2.0 | 314 | 2.4480 | 0.0016 |
| 2.5258 | 3.0 | 471 | 2.4823 | 0.0016 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
TomeroSama07/act_single_lego_pp_420p_no_blur_compressed
|
TomeroSama07
| 2025-08-20T08:03:30Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"robotics",
"act",
"dataset:TomeroSama07/single_lego_pp_420p_no_blur_compressed",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T08:02:48Z |
---
datasets: TomeroSama07/single_lego_pp_420p_no_blur_compressed
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- lerobot
- robotics
- act
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
ypszn/blockassist-bc-yapping_pawing_worm_1755676956
|
ypszn
| 2025-08-20T08:03:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping pawing worm",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:03:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping pawing worm
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755676912
|
yaelahnal
| 2025-08-20T08:03:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:02:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Kokoutou/soundsright_dn_2008_5
|
Kokoutou
| 2025-08-20T08:02:43Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T07:02:42Z |
# Container Template for SoundsRight Subnet Miners
This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively.
This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed.
To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt.
Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html).
Verify that the CDI specification was done correctly with:
```
$ nvidia-ctk cdi list
```
You should see this in your output:
```
nvidia.com/gpu=all
nvidia.com/gpu=0
```
If you are running podman as root, run the following command to start the container:
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
If you are running the container rootless, there are a few more changes to make:
First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters:
```
[nvidia-container-cli]
no-cgroups = true
[nvidia-container-runtime]
debug = "/tmp/nvidia-container-runtime.log"
```
You can also run the following command to achieve the same result:
```
$ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place
```
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
Running the container will spin up an API with the following endpoints:
1. `/status/` : Communicates API status
2. `/prepare/` : Download model checkpoint and initialize model
3. `/upload-audio/` : Upload audio files, save to noisy audio directory
4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory
5. `/download-enhanced/` : Download enhanced audio files
By default the API will use host `0.0.0.0` and port `6500`.
### References
1. **Welker, Simon; Richter, Julius; Gerkmann, Timo**
*Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*.
Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932.
[DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653)
2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo**
*Speech Enhancement and Dereverberation with Diffusion-based Generative Models*.
*IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364.
[DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241)
3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo**
*EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*.
Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
|
Kokoutou/soundsright_dn_2008_6
|
Kokoutou
| 2025-08-20T08:02:35Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T07:02:42Z |
# Container Template for SoundsRight Subnet Miners
This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively.
This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed.
To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt.
Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html).
Verify that the CDI specification was done correctly with:
```
$ nvidia-ctk cdi list
```
You should see this in your output:
```
nvidia.com/gpu=all
nvidia.com/gpu=0
```
If you are running podman as root, run the following command to start the container:
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
If you are running the container rootless, there are a few more changes to make:
First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters:
```
[nvidia-container-cli]
no-cgroups = true
[nvidia-container-runtime]
debug = "/tmp/nvidia-container-runtime.log"
```
You can also run the following command to achieve the same result:
```
$ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place
```
Run the container with:
```
podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi
```
Access logs with:
```
podman logs -f modelapi
```
Running the container will spin up an API with the following endpoints:
1. `/status/` : Communicates API status
2. `/prepare/` : Download model checkpoint and initialize model
3. `/upload-audio/` : Upload audio files, save to noisy audio directory
4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory
5. `/download-enhanced/` : Download enhanced audio files
By default the API will use host `0.0.0.0` and port `6500`.
### References
1. **Welker, Simon; Richter, Julius; Gerkmann, Timo**
*Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*.
Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932.
[DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653)
2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo**
*Speech Enhancement and Dereverberation with Diffusion-based Generative Models*.
*IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364.
[DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241)
3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo**
*EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*.
Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
|
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755674877
|
milliarderdol
| 2025-08-20T08:01:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring rough scorpion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T08:01:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring rough scorpion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thedeba/debai
|
thedeba
| 2025-08-20T08:01:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T07:46:34Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Singhzaman/qwen-2.5-vl-lora-sroie
|
Singhzaman
| 2025-08-20T08:00:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T21:21:35Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/BiggerCoQ-Qwen3-10b-GGUF
|
mradermacher
| 2025-08-20T08:00:48Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:KaraKaraWitch/BiggerCoQ-Qwen3-10b",
"base_model:quantized:KaraKaraWitch/BiggerCoQ-Qwen3-10b",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T06:17:16Z |
---
base_model: KaraKaraWitch/BiggerCoQ-Qwen3-10b
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/KaraKaraWitch/BiggerCoQ-Qwen3-10b
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#BiggerCoQ-Qwen3-10b-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q2_K.gguf) | Q2_K | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q3_K_S.gguf) | Q3_K_S | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q3_K_M.gguf) | Q3_K_M | 5.5 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q3_K_L.gguf) | Q3_K_L | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.IQ4_XS.gguf) | IQ4_XS | 6.2 | |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q4_K_S.gguf) | Q4_K_S | 6.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q4_K_M.gguf) | Q4_K_M | 6.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q5_K_S.gguf) | Q5_K_S | 7.7 | |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q5_K_M.gguf) | Q5_K_M | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q6_K.gguf) | Q6_K | 9.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q8_0.gguf) | Q8_0 | 11.7 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.f16.gguf) | f16 | 21.9 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
CoDiEmb/CoDi-MiniCPM_sentence_transformers
|
CoDiEmb
| 2025-08-20T07:59:30Z | 0 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"minicpm",
"sentence-similarity",
"feature-extraction",
"custom_code",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-08-20T07:48:03Z |
---
language: []
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
widget: []
datasets: []
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 2304-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 2304 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: MiniCPMModel
(1): Pooling({'word_embedding_dimension': 2304, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 2304]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Framework Versions
- Python: 3.10.10
- Sentence Transformers: 3.0.1
- Transformers: 4.51.3
- PyTorch: 2.2.1+cu118
- Accelerate:
- Datasets: 3.4.1
- Tokenizers: 0.21.1
## Citation
### BibTeX
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
ypszn/blockassist-bc-yapping_pawing_worm_1755676531
|
ypszn
| 2025-08-20T07:57:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping pawing worm",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:56:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping pawing worm
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
WIHOW3H/my_awesome_video_cls_model
|
WIHOW3H
| 2025-08-20T07:56:58Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"base_model:finetune:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2025-08-20T07:56:31Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_video_cls_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_video_cls_model
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2573
- Accuracy: 0.9286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0813 | 0.25 | 300 | 1.1575 | 0.4571 |
| 1.4385 | 1.25 | 600 | 1.5501 | 0.6429 |
| 0.0222 | 2.25 | 900 | 0.4601 | 0.8429 |
| 1.2499 | 3.25 | 1200 | 0.2573 | 0.9286 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
AXERA-TECH/MiniCPM4-0.5B
|
AXERA-TECH
| 2025-08-20T07:56:47Z | 8 | 0 | null |
[
"minicpm4",
"int8",
"text-generation",
"en",
"base_model:openbmb/MiniCPM4-0.5B",
"base_model:finetune:openbmb/MiniCPM4-0.5B",
"license:mit",
"region:us"
] |
text-generation
| 2025-06-11T17:14:28Z |
---
license: mit
language:
- en
base_model:
- openbmb/MiniCPM4-0.5B
pipeline_tag: text-generation
tags:
- minicpm4
- int8
---
# MiniCPM4-0.5B-Int8
This version of MiniCPM4-0.5B has been converted to run on the Axera NPU using **w8a16** quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 4.2(Not released yet)
## Convert tools links:
For those who are interested in model conversion, you can try to export axmodel through the original repo :
https://huggingface.co/openbmb/MiniCPM4-0.5B
[Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html)
[AXera NPU LLM Runtime](https://github.com/AXERA-TECH/ax-llm)
## Support Platform
- AX650
- [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)
- AX630C
- [爱芯派2](https://axera-pi-2-docs-cn.readthedocs.io/zh-cn/latest/index.html)
- [Module-LLM](https://docs.m5stack.com/zh_CN/module/Module-LLM)
- [LLM630 Compute Kit](https://docs.m5stack.com/zh_CN/core/LLM630%20Compute%20Kit)
|Chips|w8a16|w4a16|
|--|--|--|
|AX650| 36 tokens/sec|TBD|
|AX630C| 12 tokens/sec|TBD|
## How to use
Download all files from this repository to the device
```
root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# tree -L 1
.
|-- main_ax650
|-- main_axcl_aarch64
|-- main_axcl_x86
|-- minicpm4-0.5b-int8-ctx-ax650
|-- minicpm4_tokenizer
|-- minicpm4_tokenizer_uid.py
|-- post_config.json
|-- run_minicpm4_0.5b_int8_ctx_ax650.sh
`-- run_minicpm4_0.5b_int8_ctx_axcl_x86.sh
2 directories, 7 files
```
#### Start the Tokenizer service
Install requirement
```
pip install transformers jinja2
```
```
root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# python3 minicpm4_tokenizer_uid.py
Server running at http://0.0.0.0:12345
```
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) or AX650N DEMO Board
Open another terminal and run `run_minicpm4_0.5b_int8_ctx_ax650.sh`
```
root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# ./run_minicpm4_0.5b_int8_ctx_ax650.sh
[I][ Init][ 110]: LLM init start
[I][ Init][ 34]: connect http://127.0.0.1:12345 ok
[I][ Init][ 57]: uid: c779ded0-ff14-4877-869b-1aacc948f2d8
bos_id: 1, eos_id: 73440
100% | ████████████████████████████████ | 27 / 27 [2.53s<2.53s, 10.67 count/s] init post axmodel ok,remain_cmm(4244 MB)
[I][ Init][ 188]: max_token_len : 1023
[I][ Init][ 193]: kv_cache_size : 128, kv_cache_num: 1023
[I][ Init][ 201]: prefill_token_num : 128
[I][ Init][ 205]: grp: 1, prefill_max_token_num : 1
[I][ Init][ 205]: grp: 2, prefill_max_token_num : 128
[I][ Init][ 205]: grp: 3, prefill_max_token_num : 512
[I][ Init][ 209]: prefill_max_token_num : 512
[I][ load_config][ 282]: load config:
{
"enable_repetition_penalty": false,
"enable_temperature": false,
"enable_top_k_sampling": true,
"enable_top_p_sampling": false,
"penalty_window": 20,
"repetition_penalty": 1.2,
"temperature": 0.9,
"top_k": 1,
"top_p": 0.8
}
[I][ Init][ 218]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
[I][ GenerateKVCachePrefill][ 271]: input token num : 25, prefill_split_num : 1 prefill_grpid : 2
[I][ GenerateKVCachePrefill][ 308]: input_num_token:25
[I][ main][ 230]: precompute_len: 25
[I][ main][ 231]: system_prompt: You are MiniCPM4, created by ModelBest. You are a helpful assistant.
prompt >> 你是谁?
[I][ SetKVCache][ 531]: prefill_grpid:2 kv_cache_num:128 precompute_len:25 input_num_token:12
[I][ SetKVCache][ 534]: current prefill_max_token_num:384
[I][ Run][ 660]: input token num : 12, prefill_split_num : 1
[I][ Run][ 686]: input_num_token:12
[I][ Run][ 829]: ttft: 147.65 ms
你好,我是MiniCPM系列模型,由面壁智能和OpenBMB开源社区开发。详细信息请访问https://github.com/OpenBMB/
[N][ Run][ 943]: hit eos,avg 35.75 token/s
[I][ GetKVCache][ 500]: precompute_len:162, remaining:350
prompt >> 9.9与9.11
[I][ SetKVCache][ 531]: prefill_grpid:3 kv_cache_num:512 precompute_len:162 input_num_token:17
[I][ SetKVCache][ 534]: current prefill_max_token_num:256
[I][ Run][ 660]: input token num : 17, prefill_split_num : 1
[I][ Run][ 686]: input_num_token:17
[I][ Run][ 829]: ttft: 274.38 ms
9.9比9.11大。
[N][ Run][ 943]: hit eos,avg 35.44 token/s
[I][ GetKVCache][ 500]: precompute_len:189, remaining:323
prompt >> q
root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx#
```
|
AnerYubo/blockassist-bc-alert_snorting_fox_1755676563
|
AnerYubo
| 2025-08-20T07:56:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"alert snorting fox",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:56:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- alert snorting fox
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hobson123/blockassist-bc-mammalian_dense_gibbon_1755676070
|
hobson123
| 2025-08-20T07:54:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian dense gibbon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:53:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian dense gibbon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05
|
joanna302
| 2025-08-20T07:53:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"sft",
"unsloth",
"trl",
"conversational",
"base_model:unsloth/Qwen3-8B-Base",
"base_model:finetune:unsloth/Qwen3-8B-Base",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-17T09:27:16Z |
---
base_model: unsloth/Qwen3-8B-Base
library_name: transformers
model_name: Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05
tags:
- generated_from_trainer
- sft
- unsloth
- trl
licence: license
---
# Model Card for Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05
This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05/runs/urz9gi0n)
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755676336
|
yaelahnal
| 2025-08-20T07:53:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:53:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755674677
|
quantumxnode
| 2025-08-20T07:52:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:52:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755674653
|
lisaozill03
| 2025-08-20T07:50:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:50:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
joanna302/Qwen3-8B-Base_pag_mt_alpaca_0.66_part_SFT_0.0002
|
joanna302
| 2025-08-20T07:47:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"sft",
"unsloth",
"trl",
"conversational",
"base_model:unsloth/Qwen3-8B-Base",
"base_model:finetune:unsloth/Qwen3-8B-Base",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T06:14:28Z |
---
base_model: unsloth/Qwen3-8B-Base
library_name: transformers
model_name: Qwen3-8B-Base_pag_mt_alpaca_0.66_part_SFT_0.0002
tags:
- generated_from_trainer
- sft
- unsloth
- trl
licence: license
---
# Model Card for Qwen3-8B-Base_pag_mt_alpaca_0.66_part_SFT_0.0002
This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_mt_alpaca_0.66_part_SFT_0.0002", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_mt_alpaca_0.66_part_SFT_0.0002/runs/s7dl7p4h)
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
koloni/blockassist-bc-deadly_graceful_stingray_1755674401
|
koloni
| 2025-08-20T07:46:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:46:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Alfie703/gemma3-270m
|
Alfie703
| 2025-08-20T07:46:20Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"endpoints_compatible",
"region:us"
] | null | 2025-08-18T11:55:04Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: gemma3-270m
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for gemma3-270m
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Alfie703/gemma3-270m", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.5.1+cu121
- Datasets: 4.0.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
joanna302/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05
|
joanna302
| 2025-08-20T07:45:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"generated_from_trainer",
"unsloth",
"trl",
"sft",
"conversational",
"base_model:unsloth/Qwen3-8B-Base",
"base_model:finetune:unsloth/Qwen3-8B-Base",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-18T13:47:27Z |
---
base_model: unsloth/Qwen3-8B-Base
library_name: transformers
model_name: Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05
tags:
- generated_from_trainer
- unsloth
- trl
- sft
licence: license
---
# Model Card for Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05
This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05/runs/vuased7f)
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
aleebaster/blockassist-bc-sly_eager_boar_1755674371
|
aleebaster
| 2025-08-20T07:45:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sly eager boar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:45:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sly eager boar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755674272
|
kojeklollipop
| 2025-08-20T07:44:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:44:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
k1000dai/residualact_libero_smolvla_chunk_batch64
|
k1000dai
| 2025-08-20T07:44:50Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"residualact",
"robotics",
"dataset:k1000dai/libero-smolvla",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-17T08:07:41Z |
---
datasets: k1000dai/libero-smolvla
library_name: lerobot
license: apache-2.0
model_name: residualact
pipeline_tag: robotics
tags:
- residualact
- robotics
- lerobot
---
# Model Card for residualact
<!-- Provide a quick summary of what the model is/does. -->
_Model type not recognized — please update this template._
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
yukiharada1228/tsukuyomichan-llm-jp-3.1-1.8b-instruct4
|
yukiharada1228
| 2025-08-20T07:44:36Z | 0 | 0 | null |
[
"safetensors",
"text-generation",
"conversational",
"ja",
"base_model:llm-jp/llm-jp-3.1-1.8b-instruct4",
"base_model:finetune:llm-jp/llm-jp-3.1-1.8b-instruct4",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2025-07-30T22:58:53Z |
---
license: apache-2.0
language:
- ja
base_model:
- llm-jp/llm-jp-3.1-1.8b-instruct4
pipeline_tag: text-generation
---
## モデル概要
yukiharada1228/tsukuyomichan-llm-jp-3.1-1.8b-instruct4-GGUFは、[つくよみちゃん会話AI育成計画](https://tyc.rei-yumesaki.net/material/kaiwa-ai/)の公式データを使用して[LLM-JP 3.1 1.8B Instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-1.8b-instruct4)モデルをファインチューニングした日本語会話AIモデルです。
## モデル情報
- **ライセンス**: Apache 2.0
- **言語**: 日本語 (ja)
- **ベースモデル**: yukiharada1228/tsukuyomichan-llm-jp-3.1-1.8b-instruct4
- **パイプラインタグ**: text-generation
- **量子化**: q4_k_m
## 特徴
### 会話能力
- つくよみちゃんのキャラクターに特化した自然な日本語会話
- 親しみやすく、丁寧な応答スタイル
- 複数往復の会話に対応
### 技術仕様
- **モデルサイズ**: 1.8B パラメータ
- **ファインチューニング手法**: PEFT (Parameter-Efficient Fine-Tuning)
- **量子化**: 4bit量子化によるメモリ効率化
- **最大シーケンス長**: 4096トークン
## 学習データ
### データソース
- [つくよみちゃん会話AI育成計画](https://tyc.rei-yumesaki.net/material/kaiwa-ai/)の公式データ
- 複数往復の会話データを含む
- 日本語の自然な会話パターン
### データ形式
学習データは以下の形式で構成されています:
- **システムプロンプト**: "あなたは、つくよみちゃんです。"
- ユーザー入力: 質問や会話の内容
- アシスタント応答: 応答
## 制限事項
### 技術的制限
- 1.8Bパラメータのため、複雑な推論には制限があります
- 4bit量子化により精度が若干低下する可能性があります
- 最大4096トークンのコンテキスト長制限
### 使用上の制限
- 学習目的での使用を推奨
- 商用利用の際は適切なライセンス確認が必要
- 元データの著作権に注意
## ライセンスとクレジット
### ライセンス
このモデルはApache 2.0ライセンスの下で公開されています。
### クレジット
- **元データ**: つくよみちゃん会話AI育成計画 © Rei Yumesaki
- **ベースモデル**: LLM-JP 3.1 1.8B Instruct4 © LLM-JP Project
- **ファインチューニング**: yukiharada1228
## サポート
このモデルに関する質問や問題については、GitHubのIssuesページをご利用ください。
## 関連リンク
- [つくよみちゃん会話AI育成計画](https://tyc.rei-yumesaki.net/material/kaiwa-ai/)
- [LLM-JP 3.1 1.8B Instruct4](https://huggingface.co/llm-jp/llm-jp-3.1-1.8b-instruct4)
- [プロジェクトリポジトリ](https://github.com/yukiharada1228/tsukuyomichan-llm-ft)
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755674158
|
katanyasekolah
| 2025-08-20T07:44:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:44:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755673971
|
vwzyrraz7l
| 2025-08-20T07:41:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:41:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755674102
|
calegpedia
| 2025-08-20T07:41:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T07:41:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Albertdebeauvais/all-MiniLM-L6-v2_bibliographie
|
Albertdebeauvais
| 2025-08-20T07:40:53Z | 8 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:388038",
"loss:CosineSimilarityLoss",
"arxiv:1908.10084",
"base_model:sentence-transformers/all-MiniLM-L6-v2",
"base_model:finetune:sentence-transformers/all-MiniLM-L6-v2",
"model-index",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2025-07-15T09:04:27Z |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:388038
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: Les Chemins de l'effort, édité en 1975, Paris, éd. Actes Sud.
sentences:
- chisinau, Actes Sud, FECOURA, Dusty et VEHIER, Tyrrell, en 1915, « Les œufs d'or
de ; oa guerre ».
- Zagreb, éd. CNRS, FABRIE, Seneca, FARHAT, Hope, DE LASTIC SAINT JAL, Daniella,
1997, Poe et les enseignements de l'Est.
- (1975), Paris, Actes Sud éditions, « Les Chemins de l'effort ».
- source_sentence: par BURTSCHELL, Régine et ALESSANDRONI, Diggory, 1900, « Complément
du catalogue analytique des manuscrits de la bibliothèque d'Abbeville », Rennes,
Verlag Ferdinand Schöningh éditions.
sentences:
- « Complément du catalogue analytique des manuscrots de la bibliothèque d'Abbeville
», Rennes, Verlag Ferdinand Schöningh éditions, BURTSCHELL, Régine, sous la direction
de ALESSANDRONI, Diggory, (1900).
- Vortex, le cheval fou, publié en ; 1926, , Bordeaux, L’Harmattan.
- 1997, DEPOUMEAUX, Summer, « De chair et de lumière », Luxembourg, L’Harmattan
éditions.
- source_sentence: de Lorita, STREIFF, Petronella, MONTIALOUX, Gale, DANGOUMAU et
ed Montgomery, D AUBERT, Dean Martin, (2011), Prague, éd. Peter Lang.
sentences:
- Amiens, University of Chicago Press, GUILLION L. et LAPERDRIX K., Autres courants,
2015.
- 'Prague, éd. : Peter Lang, , (2011), "Dean Martin", pr + 20 ill.. Gale, DANGOUMAU
et Lorita, STREIFF, Petronella, MONTIALOUX, Montgomery, D AUBERT.'
- Valerie, PAIRA, Niles, AUDUBERT, 1986, Au gré des saisons, Amsterdam, Routledge.
- source_sentence: 1948, Seattle, éd. Payot & Rivages, de Trudy, SAINT-AIME, Toponymes
finnois et germaniques en Lithuanie... Remarques sur le nom de la Vistule.
sentences:
- Toponymes finnois et germaniques en Lithuanie... Remarques sur le nom de la Vistule,
en 1952, Seattle, Payot & Rivages éditions, Delia, HOZE.
- Cologne, Les Belles Lettres, Éléments de géométrie expérimentale, à l'usage des
élèves des cours professionnels et des ouvriers, avec de nombreuses applications
au trait, LAGEIX, Shelly, (1898).
- 1887., The variations of glaciers. XVI, Jessika, ANNIEL, Chisinau, éd. Stanford
University Press.
- source_sentence: BENMAMAR, A. et LUZEUX, K., JARRAND-MARTIN, S., "La science alchimique",
Master drawings, numéro 92, pages 511-649, 1904, Valence, éd. Zed Books.
sentences:
- Dublin, éd. CNRS, Les mystères de la cour de Cornouailles, N. BILLEBEAU, en 1966.
- En 1939, New York, Fayard, réactions et méthodes nouvelles d'analyse qualitative
minérale, BERTIER, R.
- édité en 2020, Alexandre, GLERAND et Ashleigh, BIZET, "Un long voyage", Reims,
Editions Payot éditions.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy
value: 0.9845532980795992
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7197951674461365
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9822371579452713
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7197951674461365
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9880875724404379
name: Cosine Precision
- type: cosine_recall
value: 0.9764556156538339
name: Cosine Recall
- type: cosine_ap
value: 0.9978040298718638
name: Cosine Ap
- type: cosine_mcc
value: 0.9686262528236084
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy
value: 0.9851563224788942
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7434847354888916
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9829406120055443
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7414178252220154
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9907576571735626
name: Cosine Precision
- type: cosine_recall
value: 0.975245953665503
name: Cosine Recall
- type: cosine_ap
value: 0.9978710556305371
name: Cosine Ap
- type: cosine_mcc
value: 0.9698992765132763
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'BENMAMAR, A. et LUZEUX, K., JARRAND-MARTIN, S., "La science alchimique", Master drawings, numéro 92, pages 511-649, 1904, Valence, éd. Zed Books.',
'édité en 2020, Alexandre, GLERAND et Ashleigh, BIZET, "Un long voyage", Reims, Editions Payot éditions.',
'Dublin, éd. CNRS, Les mystères de la cour de Cornouailles, N. BILLEBEAU, en 1966.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `eval` and `test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | eval | test |
|:--------------------------|:-----------|:-----------|
| cosine_accuracy | 0.9846 | 0.9852 |
| cosine_accuracy_threshold | 0.7198 | 0.7435 |
| cosine_f1 | 0.9822 | 0.9829 |
| cosine_f1_threshold | 0.7198 | 0.7414 |
| cosine_precision | 0.9881 | 0.9908 |
| cosine_recall | 0.9765 | 0.9752 |
| **cosine_ap** | **0.9978** | **0.9979** |
| cosine_mcc | 0.9686 | 0.9699 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 388,038 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 17 tokens</li><li>mean: 50.25 tokens</li><li>max: 169 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 47.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~57.00%</li><li>1: ~43.00%</li></ul> |
* Samples:
| text1 | text2 | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>(1973),. 70, p. 36-98, Revue d'histoire locale (Chevillon), 3, « La Font perduda », Berlin, éd. Maison des Sciences de l’Homme, editor Dorcas, PEDEVILLA, Alannis, GRANZOTTO, Annabel, VOYRON, Dulcie, MIGLIORI.</code> | <code>Revue d'histoire locale (Chevillon)</code> | <code>0</code> |
| <code>Revista del Instituto Egipcio de Estudios Islámicos, n°100, pages 483-496, (2006), Administration et bibliothèques, CAGLAYAN, Kaden, BOULAABI, Fredrick, WORMSER, Bea, Vienne, éd. Beacon Press.</code> | <code>WORMSER, Bea, CAGLAYAN, Kaden, ed BOULAABI, Fredrick, édité en 2006, Administration et bibliothèques, Revista del Instituto Egipcio de Estudios Islámicos,. 100,. p. 483-496, Vienne, Beacon Press.</code> | <code>1</code> |
| <code>Atlantic Charter (1941), Bulletin de la Société d'Histoire et d'Archéologie de Nantes et de Loire-Atlantique,. numéro 31, pp. 997-1125, Léontine, SCHWERDROFFER, Sandford, CHUDZIK, Metz, Zed Books éditions, 1941.</code> | <code>(1941),. n° 31, Bulletin de la Société d'Histoire et d'Archéologie de Nantes et de Loire-Atlantique, pages 997-1125, Atlantic Charter (1941), Léontine, SCHWERDROFFER, Sandford, CHUDZIK, Metz, Zed Books.</code> | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 21,558 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 15 tokens</li><li>mean: 49.64 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 46.31 tokens</li><li>max: 160 tokens</li></ul> | <ul><li>0: ~57.70%</li><li>1: ~42.30%</li></ul> |
* Samples:
| text1 | text2 | label |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Le Progressisme, aspects doctrinaux, DURAZ, Constance, 1955, Montpellier, éd. Routledge,. vol. 1,. pp. 26-39, n°29, Journal of philosophical research.</code> | <code>1955, "Le Progressisme, aspects doctrinaux", Montpellier, Routledge, Journal of philosophical research, pp. 26-39,. volume 1, #29.</code> | <code>1</code> |
| <code>Turin, éd. Suhrkamp Verlag, #17, pages 67-111, 2, Annales d'Avignon et du Comtat Venaissin, "Faire face aux crises de colère de l'enfant et de l'adolescent", ed HERREYE, Kassidy, (2019).</code> | <code>Amsterdam, University of Minnesota Press éditions, (1968), "Ainsi de chaque jour".</code> | <code>0</code> |
| <code>« Discours et conférences sur la science et ses applications », publié en 1927, Tours, éd. Actes Sud, Cherise, THIEFIN et de Eudora, FINGERHUT et Rona, DELLAL et Josette, DEGIOANNINI.</code> | <code> Les formes verbales du conditionnel dans le vieux sanskrit , Eudora, FINGERHUT et Cherise, THIEFIN et par Rona, DELLAL, par Josette, DEGIOANNINI, Tours, Actes Sud éditions, publié en 1927.</code> | <code>0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `learning_rate`: 3e-05
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | eval_cosine_ap | test_cosine_ap |
|:------:|:-----:|:-------------:|:---------------:|:--------------:|:--------------:|
| -1 | -1 | - | - | 0.8231 | - |
| 0.0258 | 500 | 0.1033 | - | - | - |
| 0.0515 | 1000 | 0.0885 | - | - | - |
| 0.0773 | 1500 | 0.0778 | - | - | - |
| 0.1031 | 2000 | 0.0721 | - | - | - |
| 0.1289 | 2500 | 0.0697 | - | - | - |
| 0.1546 | 3000 | 0.0645 | - | - | - |
| 0.1804 | 3500 | 0.0619 | - | - | - |
| 0.2062 | 4000 | 0.0604 | - | - | - |
| 0.2319 | 4500 | 0.0569 | - | - | - |
| 0.2577 | 5000 | 0.0545 | - | - | - |
| 0.2835 | 5500 | 0.0539 | - | - | - |
| 0.3092 | 6000 | 0.0517 | - | - | - |
| 0.3350 | 6500 | 0.0506 | - | - | - |
| 0.3608 | 7000 | 0.0511 | - | - | - |
| 0.3866 | 7500 | 0.0486 | - | - | - |
| 0.4123 | 8000 | 0.0463 | - | - | - |
| 0.4381 | 8500 | 0.0463 | - | - | - |
| 0.4639 | 9000 | 0.0471 | - | - | - |
| 0.4896 | 9500 | 0.0454 | - | - | - |
| 0.5154 | 10000 | 0.0445 | - | - | - |
| 0.5412 | 10500 | 0.0455 | - | - | - |
| 0.5670 | 11000 | 0.0441 | - | - | - |
| 0.5927 | 11500 | 0.0437 | - | - | - |
| 0.6185 | 12000 | 0.0449 | - | - | - |
| 0.6443 | 12500 | 0.0413 | - | - | - |
| 0.6700 | 13000 | 0.0413 | - | - | - |
| 0.6958 | 13500 | 0.0422 | - | - | - |
| 0.7216 | 14000 | 0.0411 | - | - | - |
| 0.7473 | 14500 | 0.0404 | - | - | - |
| 0.7731 | 15000 | 0.0374 | - | - | - |
| 0.7989 | 15500 | 0.0378 | - | - | - |
| 0.8247 | 16000 | 0.0384 | - | - | - |
| 0.8504 | 16500 | 0.0389 | - | - | - |
| 0.8762 | 17000 | 0.0377 | - | - | - |
| 0.9020 | 17500 | 0.0374 | - | - | - |
| 0.9277 | 18000 | 0.0366 | - | - | - |
| 0.9535 | 18500 | 0.0368 | - | - | - |
| 0.9793 | 19000 | 0.0367 | - | - | - |
| 1.0 | 19402 | - | 0.0310 | 0.9965 | - |
| 1.0051 | 19500 | 0.0364 | - | - | - |
| 1.0308 | 20000 | 0.0323 | - | - | - |
| 1.0566 | 20500 | 0.0319 | - | - | - |
| 1.0824 | 21000 | 0.0317 | - | - | - |
| 1.1081 | 21500 | 0.0298 | - | - | - |
| 1.1339 | 22000 | 0.0336 | - | - | - |
| 1.1597 | 22500 | 0.0304 | - | - | - |
| 1.1854 | 23000 | 0.0302 | - | - | - |
| 1.2112 | 23500 | 0.031 | - | - | - |
| 1.2370 | 24000 | 0.0301 | - | - | - |
| 1.2628 | 24500 | 0.0302 | - | - | - |
| 1.2885 | 25000 | 0.0305 | - | - | - |
| 1.3143 | 25500 | 0.0293 | - | - | - |
| 1.3401 | 26000 | 0.0307 | - | - | - |
| 1.3658 | 26500 | 0.0304 | - | - | - |
| 1.3916 | 27000 | 0.03 | - | - | - |
| 1.4174 | 27500 | 0.0312 | - | - | - |
| 1.4432 | 28000 | 0.0296 | - | - | - |
| 1.4689 | 28500 | 0.0301 | - | - | - |
| 1.4947 | 29000 | 0.0295 | - | - | - |
| 1.5205 | 29500 | 0.0295 | - | - | - |
| 1.5462 | 30000 | 0.029 | - | - | - |
| 1.5720 | 30500 | 0.0295 | - | - | - |
| 1.5978 | 31000 | 0.029 | - | - | - |
| 1.6235 | 31500 | 0.029 | - | - | - |
| 1.6493 | 32000 | 0.0271 | - | - | - |
| 1.6751 | 32500 | 0.029 | - | - | - |
| 1.7009 | 33000 | 0.0278 | - | - | - |
| 1.7266 | 33500 | 0.0286 | - | - | - |
| 1.7524 | 34000 | 0.0272 | - | - | - |
| 1.7782 | 34500 | 0.0279 | - | - | - |
| 1.8039 | 35000 | 0.0285 | - | - | - |
| 1.8297 | 35500 | 0.0286 | - | - | - |
| 1.8555 | 36000 | 0.0297 | - | - | - |
| 1.8812 | 36500 | 0.0273 | - | - | - |
| 1.9070 | 37000 | 0.0269 | - | - | - |
| 1.9328 | 37500 | 0.0276 | - | - | - |
| 1.9586 | 38000 | 0.0278 | - | - | - |
| 1.9843 | 38500 | 0.0267 | - | - | - |
| 2.0 | 38804 | - | 0.0248 | 0.9976 | - |
| 2.0101 | 39000 | 0.0252 | - | - | - |
| 2.0359 | 39500 | 0.0233 | - | - | - |
| 2.0616 | 40000 | 0.0233 | - | - | - |
| 2.0874 | 40500 | 0.0236 | - | - | - |
| 2.1132 | 41000 | 0.023 | - | - | - |
| 2.1390 | 41500 | 0.0212 | - | - | - |
| 2.1647 | 42000 | 0.0233 | - | - | - |
| 2.1905 | 42500 | 0.0227 | - | - | - |
| 2.2163 | 43000 | 0.0227 | - | - | - |
| 2.2420 | 43500 | 0.0233 | - | - | - |
| 2.2678 | 44000 | 0.0241 | - | - | - |
| 2.2936 | 44500 | 0.0218 | - | - | - |
| 2.3193 | 45000 | 0.0232 | - | - | - |
| 2.3451 | 45500 | 0.0235 | - | - | - |
| 2.3709 | 46000 | 0.024 | - | - | - |
| 2.3967 | 46500 | 0.0237 | - | - | - |
| 2.4224 | 47000 | 0.0228 | - | - | - |
| 2.4482 | 47500 | 0.0231 | - | - | - |
| 2.4740 | 48000 | 0.0223 | - | - | - |
| 2.4997 | 48500 | 0.0232 | - | - | - |
| 2.5255 | 49000 | 0.022 | - | - | - |
| 2.5513 | 49500 | 0.0227 | - | - | - |
| 2.5771 | 50000 | 0.0226 | - | - | - |
| 2.6028 | 50500 | 0.0233 | - | - | - |
| 2.6286 | 51000 | 0.0224 | - | - | - |
| 2.6544 | 51500 | 0.0224 | - | - | - |
| 2.6801 | 52000 | 0.0224 | - | - | - |
| 2.7059 | 52500 | 0.022 | - | - | - |
| 2.7317 | 53000 | 0.0223 | - | - | - |
| 2.7574 | 53500 | 0.023 | - | - | - |
| 2.7832 | 54000 | 0.023 | - | - | - |
| 2.8090 | 54500 | 0.023 | - | - | - |
| 2.8348 | 55000 | 0.0225 | - | - | - |
| 2.8605 | 55500 | 0.0229 | - | - | - |
| 2.8863 | 56000 | 0.0229 | - | - | - |
| 2.9121 | 56500 | 0.0224 | - | - | - |
| 2.9378 | 57000 | 0.0218 | - | - | - |
| 2.9636 | 57500 | 0.0226 | - | - | - |
| 2.9894 | 58000 | 0.0229 | - | - | - |
| 3.0 | 58206 | - | 0.0231 | 0.9978 | - |
| -1 | -1 | - | - | - | 0.9979 |
</details>
### Framework Versions
- Python: 3.12.0
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu128
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.