Spaces:
Sleeping
Sleeping
A newer version of the Gradio SDK is available:
5.43.1
LLaVA Implementation Developer Guide
Overview
This guide is intended for developers who want to contribute to or extend the LLaVA implementation. The project is structured as a Python package with a Gradio web interface, using modern best practices and tools.
Project Structure
llava_implementation/
βββ src/ # Source code
β βββ api/ # API endpoints and FastAPI app
β β βββ __init__.py
β β βββ app.py # Gradio interface
β βββ models/ # Model implementations
β β βββ __init__.py
β β βββ llava_model.py # LLaVA model wrapper
β βββ utils/ # Utility functions
β β βββ __init__.py
β β βββ logging.py # Logging utilities
β βββ configs/ # Configuration files
β βββ __init__.py
β βββ settings.py # Application settings
βββ tests/ # Test suite
β βββ __init__.py
β βββ test_model.py # Model tests
βββ docs/ # Documentation
β βββ api/ # API documentation
β βββ examples/ # Usage examples
β βββ guides/ # User and developer guides
βββ assets/ # Static assets
β βββ images/ # Example images
β βββ icons/ # UI icons
βββ scripts/ # Utility scripts
βββ examples/ # Example images for the web interface
Development Setup
Prerequisites
- Python 3.8+
- Git
- CUDA-capable GPU (recommended)
- Virtual environment tool (venv, conda, etc.)
Installation
- Clone the repository:
git clone https://github.com/Prashant-ambati/llava-implementation.git
cd llava-implementation
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install development dependencies:
pip install -r requirements.txt
pip install -r requirements-dev.txt # Development dependencies
Development Tools
Code Formatting
- Black for code formatting
- isort for import sorting
- flake8 for linting
Testing
- pytest for testing
- pytest-cov for coverage
- pytest-mock for mocking
Type Checking
- mypy for static type checking
- types-* packages for type hints
Code Style
Python Style Guide
- Follow PEP 8 guidelines
- Use type hints
- Write docstrings (Google style)
- Keep functions focused and small
- Use meaningful variable names
Example
from typing import Optional, List
from PIL import Image
def process_image(
image: Image.Image,
prompt: str,
max_tokens: Optional[int] = None
) -> List[str]:
"""
Process an image with the given prompt.
Args:
image: Input image as PIL Image
prompt: Text prompt for the model
max_tokens: Optional maximum tokens to generate
Returns:
List of generated responses
Raises:
ValueError: If image is invalid
RuntimeError: If model fails to process
"""
# Implementation
Testing
Running Tests
# Run all tests
pytest
# Run with coverage
pytest --cov=src
# Run specific test file
pytest tests/test_model.py
# Run with verbose output
pytest -v
Writing Tests
- Use pytest fixtures
- Mock external dependencies
- Test edge cases
- Include both unit and integration tests
Example test:
import pytest
from PIL import Image
def test_process_image(model, sample_image):
"""Test image processing functionality."""
prompt = "What color is this image?"
response = model.process_image(
image=sample_image,
prompt=prompt
)
assert isinstance(response, str)
assert len(response) > 0
Model Development
Adding New Models
- Create a new model class in
src/models/
- Implement required methods
- Add tests
- Update documentation
Example:
class NewModel:
"""New model implementation."""
def __init__(self, config: dict):
"""Initialize the model."""
self.config = config
self.model = self._load_model()
def process(self, *args, **kwargs):
"""Process inputs and generate output."""
pass
Model Configuration
- Add configuration in
src/configs/settings.py
- Use environment variables for secrets
- Document all parameters
API Development
Adding New Endpoints
- Create new endpoint in
src/api/app.py
- Add input validation
- Implement error handling
- Add tests
- Update documentation
Error Handling
- Use custom exceptions
- Implement proper logging
- Return appropriate status codes
- Include error messages
Example:
class ModelError(Exception):
"""Base exception for model errors."""
pass
def process_request(request):
try:
result = model.process(request)
return result
except ModelError as e:
logger.error(f"Model error: {e}")
raise HTTPException(status_code=500, detail=str(e))
Deployment
Local Deployment
- Build the package:
python -m build
- Run the server:
python src/api/app.py
Hugging Face Spaces
- Update
README.md
with Space metadata - Ensure all dependencies are in
requirements.txt
- Test the Space locally
- Push changes to the Space
Production Deployment
- Set up proper logging
- Configure security measures
- Implement rate limiting
- Set up monitoring
- Use environment variables
Contributing
Workflow
- Fork the repository
- Create a feature branch
- Make changes
- Run tests
- Update documentation
- Create a pull request
Pull Request Process
- Update documentation
- Add tests
- Ensure CI passes
- Get code review
- Address feedback
- Merge when approved
Performance Optimization
Model Optimization
- Use model quantization
- Implement caching
- Batch processing
- GPU optimization
API Optimization
- Response compression
- Request validation
- Connection pooling
- Caching strategies
Security
Best Practices
- Input validation
- Error handling
- Rate limiting
- Secure configuration
- Regular updates
Security Checklist
- Validate all inputs
- Sanitize outputs
- Use secure dependencies
- Implement rate limiting
- Set up monitoring
- Regular security audits
Monitoring and Logging
Logging
- Use structured logging
- Include context
- Set appropriate levels
- Rotate logs
Monitoring
- Track key metrics
- Set up alerts
- Monitor resources
- Track errors
Future Development
Planned Features
- Video support
- Batch processing
- Model fine-tuning
- API authentication
- Advanced caching
Contributing Ideas
- Open issues
- Discuss in PRs
- Join discussions
- Share use cases