Spaces:
Sleeping
Sleeping
# LLaVA Implementation Developer Guide | |
## Overview | |
This guide is intended for developers who want to contribute to or extend the LLaVA implementation. The project is structured as a Python package with a Gradio web interface, using modern best practices and tools. | |
## Project Structure | |
``` | |
llava_implementation/ | |
βββ src/ # Source code | |
β βββ api/ # API endpoints and FastAPI app | |
β β βββ __init__.py | |
β β βββ app.py # Gradio interface | |
β βββ models/ # Model implementations | |
β β βββ __init__.py | |
β β βββ llava_model.py # LLaVA model wrapper | |
β βββ utils/ # Utility functions | |
β β βββ __init__.py | |
β β βββ logging.py # Logging utilities | |
β βββ configs/ # Configuration files | |
β βββ __init__.py | |
β βββ settings.py # Application settings | |
βββ tests/ # Test suite | |
β βββ __init__.py | |
β βββ test_model.py # Model tests | |
βββ docs/ # Documentation | |
β βββ api/ # API documentation | |
β βββ examples/ # Usage examples | |
β βββ guides/ # User and developer guides | |
βββ assets/ # Static assets | |
β βββ images/ # Example images | |
β βββ icons/ # UI icons | |
βββ scripts/ # Utility scripts | |
βββ examples/ # Example images for the web interface | |
``` | |
## Development Setup | |
### Prerequisites | |
- Python 3.8+ | |
- Git | |
- CUDA-capable GPU (recommended) | |
- Virtual environment tool (venv, conda, etc.) | |
### Installation | |
1. Clone the repository: | |
```bash | |
git clone https://github.com/Prashant-ambati/llava-implementation.git | |
cd llava-implementation | |
``` | |
2. Create and activate a virtual environment: | |
```bash | |
python -m venv venv | |
source venv/bin/activate # On Windows: venv\Scripts\activate | |
``` | |
3. Install development dependencies: | |
```bash | |
pip install -r requirements.txt | |
pip install -r requirements-dev.txt # Development dependencies | |
``` | |
### Development Tools | |
1. **Code Formatting** | |
- Black for code formatting | |
- isort for import sorting | |
- flake8 for linting | |
2. **Testing** | |
- pytest for testing | |
- pytest-cov for coverage | |
- pytest-mock for mocking | |
3. **Type Checking** | |
- mypy for static type checking | |
- types-* packages for type hints | |
## Code Style | |
### Python Style Guide | |
1. Follow PEP 8 guidelines | |
2. Use type hints | |
3. Write docstrings (Google style) | |
4. Keep functions focused and small | |
5. Use meaningful variable names | |
### Example | |
```python | |
from typing import Optional, List | |
from PIL import Image | |
def process_image( | |
image: Image.Image, | |
prompt: str, | |
max_tokens: Optional[int] = None | |
) -> List[str]: | |
""" | |
Process an image with the given prompt. | |
Args: | |
image: Input image as PIL Image | |
prompt: Text prompt for the model | |
max_tokens: Optional maximum tokens to generate | |
Returns: | |
List of generated responses | |
Raises: | |
ValueError: If image is invalid | |
RuntimeError: If model fails to process | |
""" | |
# Implementation | |
``` | |
## Testing | |
### Running Tests | |
```bash | |
# Run all tests | |
pytest | |
# Run with coverage | |
pytest --cov=src | |
# Run specific test file | |
pytest tests/test_model.py | |
# Run with verbose output | |
pytest -v | |
``` | |
### Writing Tests | |
1. Use pytest fixtures | |
2. Mock external dependencies | |
3. Test edge cases | |
4. Include both unit and integration tests | |
Example test: | |
```python | |
import pytest | |
from PIL import Image | |
def test_process_image(model, sample_image): | |
"""Test image processing functionality.""" | |
prompt = "What color is this image?" | |
response = model.process_image( | |
image=sample_image, | |
prompt=prompt | |
) | |
assert isinstance(response, str) | |
assert len(response) > 0 | |
``` | |
## Model Development | |
### Adding New Models | |
1. Create a new model class in `src/models/` | |
2. Implement required methods | |
3. Add tests | |
4. Update documentation | |
Example: | |
```python | |
class NewModel: | |
"""New model implementation.""" | |
def __init__(self, config: dict): | |
"""Initialize the model.""" | |
self.config = config | |
self.model = self._load_model() | |
def process(self, *args, **kwargs): | |
"""Process inputs and generate output.""" | |
pass | |
``` | |
### Model Configuration | |
1. Add configuration in `src/configs/settings.py` | |
2. Use environment variables for secrets | |
3. Document all parameters | |
## API Development | |
### Adding New Endpoints | |
1. Create new endpoint in `src/api/app.py` | |
2. Add input validation | |
3. Implement error handling | |
4. Add tests | |
5. Update documentation | |
### Error Handling | |
1. Use custom exceptions | |
2. Implement proper logging | |
3. Return appropriate status codes | |
4. Include error messages | |
Example: | |
```python | |
class ModelError(Exception): | |
"""Base exception for model errors.""" | |
pass | |
def process_request(request): | |
try: | |
result = model.process(request) | |
return result | |
except ModelError as e: | |
logger.error(f"Model error: {e}") | |
raise HTTPException(status_code=500, detail=str(e)) | |
``` | |
## Deployment | |
### Local Deployment | |
1. Build the package: | |
```bash | |
python -m build | |
``` | |
2. Run the server: | |
```bash | |
python src/api/app.py | |
``` | |
### Hugging Face Spaces | |
1. Update `README.md` with Space metadata | |
2. Ensure all dependencies are in `requirements.txt` | |
3. Test the Space locally | |
4. Push changes to the Space | |
### Production Deployment | |
1. Set up proper logging | |
2. Configure security measures | |
3. Implement rate limiting | |
4. Set up monitoring | |
5. Use environment variables | |
## Contributing | |
### Workflow | |
1. Fork the repository | |
2. Create a feature branch | |
3. Make changes | |
4. Run tests | |
5. Update documentation | |
6. Create a pull request | |
### Pull Request Process | |
1. Update documentation | |
2. Add tests | |
3. Ensure CI passes | |
4. Get code review | |
5. Address feedback | |
6. Merge when approved | |
## Performance Optimization | |
### Model Optimization | |
1. Use model quantization | |
2. Implement caching | |
3. Batch processing | |
4. GPU optimization | |
### API Optimization | |
1. Response compression | |
2. Request validation | |
3. Connection pooling | |
4. Caching strategies | |
## Security | |
### Best Practices | |
1. Input validation | |
2. Error handling | |
3. Rate limiting | |
4. Secure configuration | |
5. Regular updates | |
### Security Checklist | |
- [ ] Validate all inputs | |
- [ ] Sanitize outputs | |
- [ ] Use secure dependencies | |
- [ ] Implement rate limiting | |
- [ ] Set up monitoring | |
- [ ] Regular security audits | |
## Monitoring and Logging | |
### Logging | |
1. Use structured logging | |
2. Include context | |
3. Set appropriate levels | |
4. Rotate logs | |
### Monitoring | |
1. Track key metrics | |
2. Set up alerts | |
3. Monitor resources | |
4. Track errors | |
## Future Development | |
### Planned Features | |
1. Video support | |
2. Batch processing | |
3. Model fine-tuning | |
4. API authentication | |
5. Advanced caching | |
### Contributing Ideas | |
1. Open issues | |
2. Discuss in PRs | |
3. Join discussions | |
4. Share use cases | |
## Resources | |
### Documentation | |
- [Python Documentation](https://docs.python.org/) | |
- [Gradio Documentation](https://gradio.app/docs/) | |
- [Hugging Face Docs](https://huggingface.co/docs) | |
- [Pytest Documentation](https://docs.pytest.org/) | |
### Tools | |
- [Black](https://black.readthedocs.io/) | |
- [isort](https://pycqa.github.io/isort/) | |
- [flake8](https://flake8.pycqa.org/) | |
- [mypy](https://mypy.readthedocs.io/) | |
### Community | |
- [GitHub Issues](https://github.com/Prashant-ambati/llava-implementation/issues) | |
- [Hugging Face Forums](https://discuss.huggingface.co/) | |
- [Stack Overflow](https://stackoverflow.com/) |